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ABSTRACT
Game-tree search algorithms, such as the two-player Mini-
max algorithm and its multi-player counterpart, Max-n, are
a fundamental component in the development of computer
programs for playing extensive-form games. The success of
these algorithms is limited by the underlying assumptions
on which they are built. For example, it is traditionally as-
sumed that deeper search always produces better decisions
and also that search procedures can assume all players are
selfish and ignore social orientations. Deviations from these
assumptions can occur in real games and can affect the suc-
cess of a traditional search algorithms. The goal of my thesis
is to determine when such deviations occur and modify the
search procedure to correct the errors that are introduced.
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I.2.8 [Artificial Intelligence]: Problem Solving, Control
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1. INTRODUCTION
Game-tree search algorithms, such as the two-player Min-

imax [5] algorithm and its multi-player counterpart, Max-n,
are a fundamental component in the development of com-
puter programs for playing extensive-form games. In fact,
game-tree search algorithms have contributed greatly to the
success of computerized players in two-player games, pro-
ducing players that are as good or better than the best hu-
man players [6].

Despite this success, these algorithms are limited by the
underlying assumptions they are built upon. My work fo-
cuses on two of these assumptions: 1) deeper search pro-
duces better, more informed decisions and 2) players are

Cite as: Improving Game-tree Search by Incorporating Error Propaga-
tion and Social Orientations (Extended Abstract), Brandon Wilson, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 1355-1356.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

rational agents that are indifferent to their opponents’ util-
ity.

My first problem focuses on the generally accepted belief
that deeper search results in better game-play. In the early
1980s, however, Nau [3] discovered a class of games that
exhibits a phenomenon known as game-tree pathology, in
which deeper minimax search results in worse performance.
Mutchler [2] later discovered that pathology also exists in
the multi-player adversarial search algorithm, max-n. More
recently, game-tree pathology has been shown to exist in
two chess endgames and kalah [4]. My goal is to develop
a method for recognizing the portions of a game-tree that
introduce pathological behavior and then to dynamically ad-
just search depth in these portions of the search to improve
decision accuracy.

My second problem concerns the importance of inter-player
relationships in multi-player games. For example, consider a
game in which a player has lost all“practical”chances of win-
ning, but still can influence the outcome of the game. The
typical approach to dealing with this problem has been to
make simplifying assumptions. Max-n, for example, assumes
that all players are rational and do not consider other play-
ers’ utilities. The Paranoid algorithm [7], on the other hand,
assumes that while the searching player attempts to maxi-
mize its own utility, all other players have formed a coalition
against that player. In the real world, these assumptions of-
ten do not hold. In fact, relationships can change drastically
throughout a single game as the circumstances change. The
goal of this work is to develop a way to explicitly capture,
learn, and utilize these social preferences in the search pro-
cedure.

2. ERROR MINIMIZING SEARCH
In pathological game trees, searching deeper is less likely

to produce a move with maximal utility. Most games such
as chess, checkers, and the like have been thought to not be
pathological: deeper searching minimax algorithms tend to
result in better play. As such, little work has been focused
on game-tree pathology since its discovery.

However, it has recently been shown that even non-patho-
logical games, such as chess, exhibit locally-pathological char-
acteristics [4] where portions of the search can reduce deci-
sion accuracy despite an improvement in overall accuracy.
Therefore, the work in this section is intended to formally de-
fine and characterize the notion of error in game-tree search,
leverage it to identify local pathologies, and improve decision

1355



accuracy in games with any degree of local pathology.

2.1 Progress to Date
We initially focused on two-player games and the problem

of defining error with respect to a game tree. We examined a
simplified representation of a game tree and static evaluation
function.We identified probabilistic rules for propagating er-
ror based on the type of node (i.e., forced-win, forced-loss, or
critical node) in the tree. Integrating this error calculation
with the minimax search procedure forms what we refer to as
Error Minimizing Minimax (EMM). The algorithm propa-
gates both minimax values and error values simultaneously,
replacing the propagated value with the static evaluation
when the propagated error exceeds the static evaluation er-
ror. Similarly, we developed a multi-player algorithm, Error
Minimizing Max-n (EMMN), for multi-player games.

Initial experimental results on a board-splitting game in-
dicate improvement over classical minimax [9] and max-n
search. Neither EMM nor EMMN exhibit pathological be-
havior in the same circumstances that induce such behavior
for minimax and max-n.

2.2 Future Directions
The next step with this work is to apply it to real games.

Specifically, endgame chess and kalah, which were shown to
have situations that are pathological [4], would be a sig-
nificant step for this work. Applying our error minimizing
search to real games requires that we estimate the error as-
sociated with a static evaluator. This is significantly more
difficult than in the case of the board-splitting game since
completely solving such games is not possible. Therefore,
correlating the evaluation with the true minimax value is
not possible. One potential solution is a Monte-Carlo ap-
proach but we will need to evaluate this and other potential
solutions empirically.

3. SOCIALLY ORIENTED SEARCH
Unlike two-player games, where interpersonal relationships

are unlikely to arise, interpersonal relationships can have
a significant effect on the outcome of a multi-player game;
some games even have interpersonal relationships as an inte-
gral component to success (e.g., Settlers of Catan and Diplo-
macy). Incorporating these relationships into the heuristic
function directly is the only solution we have seen for this in
the literature. There are two problems with this approach:
1) heuristic functions are already difficult to design, requir-
ing vast amounts of domain knowledge for a strong estimate
and 2) the heuristic function is typically designed offline and
before the game is played, so once the game is started, the
relationships cannot be altered unless other evaluation func-
tions have been prepared and can be swapped.

Our goal with this work is to represent social preferences
of one’s opponents, learn these preferences as the game pro-
gresses, and successfully integrate the preferences into the
game-tree search. This model of social preferences will com-
plete the concept of an opponent model in multi-player games
where much work has already been done to model individual
evaluation functions [8].

3.1 Progress to Date
Our work is built upon a recently suggested social-range

matrix model [1] of social preferences that supports the de-
scription of interpersonal orientations as captured in the so-

cial behavior spectrum. The social matrix construct makes
it possible to model “socially heterogeneous” systems where
players may have different social orientations toward each of
the other players.

We incorporate the social-range matrix into a search we
refer to as Socially Oriented Search (SOS). We use the player’s
social orientation to transform each evaluation vector to be
a linear combination of each player’s utility. Then we es-
timate the social matrix by simply averaging the effects of
each player’s recent move history. For example, a player
that tends to make moves that negatively affect player i’s
state and positively affect player j’s state will be seen as co-
operating with player j and competing with player i. This
generalization allows the SOS algorithm to implement both
Max-n and Paranoid algorithms, as well as an infinite num-
ber of other possibilities, by simply modifying the social-
range matrix.

We empirically evaluated the SOS algorithm in the four-
player game Quoridor against opponents with random pref-
erences. SOS significantly outperformed two multi-player
game-tree search algorithms (Max-n and Paranoid).

3.2 Future Directions
The next step in this work is to experiment with more

robust learning algorithms for learning the social-range ma-
trix. Our goal with learning the social matrix is twofold:
1) learn the social-range matrix as accurately as possible
and 2) learn it quickly and be able to account for relation-
ship changes that occur abruptly during the game. There
is a tradeoff in that having more data (i.e., a longer move
history) improves the chances of inferring accurate relation-
ships and at the same time if these relationships are dynam-
ically changing then this information can quickly become
stale.
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