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ABSTRACT

In this paper, we use LTL to specify acceptable/desirable
behaviours for a system modelled as a Petri net, and create
a Petri net realization of a supervisor that is guaranteed to
enforce them, by appropriately restricting the uncontrolled
behaviour of the system.We illustrate the method with an
application to the specification of coordination requirements
between the members of a team of simulated soccer robots.
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1.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Fvent; F.4.1 [Mathematical Logic and Formal
Languages|: Mathematical Logic— Temporal Logic
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1. INTRODUCTION

When designing multi-agent systems (MAS), concepts such
as concurrency, parallelism, synchronisation or decision mak-
ing are of central importance. In order to be able do deal
with these notions as the systems become more complex,
one needs a formal approach to modelling, analysis and con-
troller synthesis. In this paper, we use Petri nets (PN) to
model and analyse MAS, due to to the fact that PNs are
particularly well suited to model distributed systems and
handle all the above concepts. Given a PN model of a MAS
and a natural language specification for it to fulfil, we will
be interested in synthesising a PN realization of a supervisor
based in discrete event system (DES) theory that restricts
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the behaviour of the system such that the specification is
satisfied. The construction of this supervisor is done by
translating the natural language specification into a linear
temporal logic (LTL) formula and then composing its equiv-
alent Biichi automaton (BA) with the the PN model in such
a way that the composition complies with the LTL specifica-
tion. There has been a considerable amount of work on the
control of PNs. For example, in [3] a method where the spec-
ifications are written as linear constraints on the reachable
markings of the system and the number of firings of each
transition is defined and in [2] a study on the advantages
and limitations of using PNs as a tool to realize supervisors
is provided. There have been several approaches to the use
of temporal logic as a tool to specify and synthesize goal be-
haviours. The work presented in [6] introduces a planning
algorithm over a domain given as an non-deterministic finite
state automaton (FSA) where the states correspond to sets
of propositional symbols and the goal is given as a tempo-
ral logic formula over those symbols. In both of this work,
the temporal logic formulas are written only over the state
space of the system, thus direct reasoning about sequences
of events is not allowed. In [4], a motion planning method
where the goals are defined as LTL formulas is presented.
The work in [5] also deals with motion planning with tempo-
ral logic goals but allowing the robot to also react to sensor
readings and perform actions other than moving. This ap-
proach, using DES models, reduces the involved complexity
in comparison with hybrid systems models, by only taking
the (discrete) sequences of actions into account.

2. CONSTRUCTING THE LTL BASED PN
SUPERVISOR

We will explain the method through an example. Consider
a soccer team of n robots. The goal is to reach a situation
in which one of the robots is close enough to the goal to
shoot and score. When a robot does not have the ball in its
possession, it can move to the ball until it is close enough
to take its possession or get ready to receive a pass from
a teammate. When it has the ball, it can shoot the ball,
take the ball to the goal if there is no opponent blocking
its path or choose a teammate to pass the ball and, when
it is ready to receive, pass it. In Figure 1, we present the
PN N; for one of the robots. We depict both events labels,
associated to transitions, and state description symbols, as-
sociated to places, as (.). The LTL formulas will be written



2 (start.passingi;)

7 (blocked_path;)

Figure 1: PN model for robot i. Places depicted
with the same color represent the same place, we
separated them to improve readability.

over the union of these two sets. A PN model for the whole
team is given by the parallel compositions of the PN mod-
els for each robot, synchronizing transitions with common
event labels and keeping the state description. The events
close_to_ball;, close_to_goal; and blocked_path; are caused
by changes in the environment, hence uncontrollable. The
remaining events are controllable events. For each NN;, we
define the set E! as the set of controllable events of N;. This
set is used to guarantee the supervisor admissibility: instead
of writing that a controllable event e € EX must occur, we
write that all other controllable events in E? cannot occur
until the occurrence of e. One may define the following spec-
ifications: For the whole team, a robot will move to the ball
if and only if the ball is not in the team’s possession and no
other teammate is moving towards it:

n n n
o= G(( \/ moving2ball; \/ hasball;) = (X ( /\ —move_to_ball;)))

i=1 i=1 i=1

For each robot N;, it will not get ready to receive a pass if
none of its teammates wants to pass it the ball:

Y; = G(( /\ —start_passing; ;) = (X -start_receiving_i))
%
For each robot N;, when one of the teammates decides to
pass it the ball, it will be ready to receive the pass as soon
as possible:

vi = G(( \/ start_passing; ;) =

A

J#i
’ ..
—e')Ustart_receiving;)))
e’ € B\ {start_receiving;}

(X((

The supervisors are built by appropriately composing the
BA obtained for each LTL specification' above with the PN

'The BA are obtained using the LTL2BA algorithm [1].
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model of the system. This composition yields a PN that
simulates a run in parallel of the BA and the PN modelling
the system, only allowing the occurrence of the PN transi-
tions that lead the system to a sequence of events plus state
description symbols that satisfies the LTL formula. To build
such a PN, we compare each transition of the PN model of
the system with the labels of the BA transitions (encoded
as propositional logic formulas) and add reflexive-arcs® be-
tween the PN transitions and the places representing a truth
value of a state description symbol that is needed for the BA
transition label to be satisfied. Hence, we only allow the fir-
ing of the PN transition when it leads us to a marking for
which the set of true state description symbols, in conjunc-
tion with the fired event, satisfies the BA transition. If it
is not possible to satisfy the BA transition, no transition
is added to the PN supervisor. We were able to build the
supervisor to a team of up to 10 robots. Even though the
supervisors are large, we were able to build them in a decent
amount of time and for an already large number of robots?.
We argue that without a formal method for the construc-
tion of the supervisors that automatically guarantees that
the specifications are met, the construction of supervisors
for this number of robots would not be feasible.

3. CONCLUSION AND FURTHER WORK

We presented a method to build PN supervisors that are
guaranteed to fulfil LTL specifications. This method allows
the designer to specify intricate behaviours, e.g., coordina-
tion rules, in a close-to-natural-language formalism, as illus-
trated in an application example. Our main goal for future
work is to add uncertainty to the models in order to pro-
vide a method that is robust both to failures in performing
actions and errors in sensor readings.
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2A reflexive arc between ¢ and p is a pair of arcs, one from
p to t and the other from ¢ to p.

3For 10 robots, the supervisors were built in around 2h30m,
using an Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz.



