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ABSTRACT
We present a method for identifying actions that lead to ob-
servations which are only weakly informative in the context
of partially observable Markov decision processes (POMDP).
We call such actions as weak- (inclusive of zero-) informa-
tion inducing. Policy subtrees rooted at these actions may
be computed more efficiently. While zero-information in-
ducing actions may be exploited without error, the quicker
backup for weak but non-zero information inducing actions
may introduce error. We empirically demonstrate the sub-
stantial computational savings that exploiting such actions
may bring to exact and approximate solutions of POMDPs
while maintaining the solution quality.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Dynamic Programming

General Terms
Theory, Performance
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1. INTRODUCTION
A large body of approximation techniques exploit struc-

ture in the problem in order to scale POMDPs [1, 3, 5] lead-
ing to significant performance gains for particular problems
which exhibit the relevant structure. Consistent with this
promising line of investigation, we identify a type of action
often found in problem domains such that related compu-
tations may be performed more efficiently. Specifically, we
consider actions that lead to observations that tend to be
only weakly informative. As an example, observations made
during movement by a robotic vehicle (typically modeled se-
quentially post action in a POMDP) tend to be far less infor-
mative than those resulting from an action dedicated to ob-
serving. We call such actions as weak-information inducing;
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these include those that induce no information as well. We
provide a simple and novel definition for weak information-
inducing actions, characterizing the weakness of the observa-
tions using a parameter. Observing that policy trees rooted
at zero-information inducing actions may be compressed, we
utilize a simplified backup process that excludes considering
observations for any weak-information inducing action while
solving POMDPs. This results in significant computational
savings, albeit we are currently unable to upper bound the
error in optimality that this approximation introduces in the
POMDP solution. We demonstrate the significant compu-
tational savings by exploiting such actions in the context of
an exact solution technique – incremental pruning (IP) [2] –
and the well-known point-based value iteration (PBVI) [4],
and empirically show that the solutions are of comparable
quality.

2. λ-INFORMATION INDUCING ACTIONS
We begin by formalizing a definition of such actions and

motivation for distinguishing them. We then show how we
may exploit such actions thereby reducing the complexity of
the backup.

2.1 Definition
In the classical tiger problem, noises subsequent to open-

ing a door (OL/OR) do not provide any information about
the door containing the tiger. We generalize this concept to
actions leading to weakly informative observations. We call
such actions λ-information inducing, and define them as:

Definition 1 (λ-information inducing action). An
action, a ∈ A, is λ-information inducing if for all observa-
tions:

1 ≤ maxs′∈S O(s′, a, o)

mins′′∈S O(s′′, a, o)
≤ λ ∀o ∈ Ω

where λ ∈ R. We denote the action using aλ and the set of
all such actions using Aλ. Let Āλ = A−Aλ.

In general, low values of λ are representative of actions
that generate weak observations while high λ signals rich
observation(s), although the actual values are subjective to
the problem domain.

2.2 Approximate Solution
We may decompose the POMDP belief update into the

prediction step where the agent updates its belief based on
the action and the correction step where the belief is cor-
rected using the observation that the agent received. We
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observe that for zero-information inducing actions (λ = 1
in Def. 1) the belief updated by the correction step remains
unchanged from the prediction step. Hence, we need not
perform the correction step for such actions. We extend
this to λ-information inducing actions in general.

Our approach is to shorten the belief update process for λ-
information inducing actions by ignoring observations. The
abbreviated update leads to a different and quicker backup.

Substituting just the prediction step within the Bellman
equation leads to the following backup for all actions, aλ ∈
Aλ. Let Γn−1 be the set of horizon n− 1 alpha vectors.

Γaλ,∗ ∪← αaλ,∗(s) = R(s, aλ)+γ
∑
s′∈S

T (s, aλ, s′)α(s′) ∀α ∈ Γn−1

Γλ =
⋃

aλ∈Aλ

Γaλ,∗

The backup process proceeds as in the original procedure
for all other actions in Āλ resulting in the set Γ′. We obtain
the final set of vectors for horizon n as:

Γn
λ = prune (Γλ

⋃
Γ′)

Notice the absence of cross-sum operations for actions in Aλ.
Consequently, we generate |Āλ||Γn−1||Ω| + |Aλ||Γn−1| inter-
mediate vectors in the worst case, which could be far less
than |A||Γn−1||Ω| vectors generated in the exact approach,
if the set Aλ is not empty. The horizon n value function is
obtained as: V n

λ (b) = max
α∈Γn

λ

α · b

3. EXPERIMENTS
We implemented the approximate solution described in

Section 2.2 in the context of both IP and PBVI. We se-
lected well-known benchmark problem domains often used
to evaluate POMDP solution techniques. In Table 1, we
show results for a variety of problem domains. Our method-
ology was to solve each problem exactly using IP and ap-
proximately using PBVI – often for longer time horizon in
the latter case. We noted the maximum expected reward ob-
tained by averaging over 1,000 or more random belief points
(shown in column R). We then measured the time taken by
the approaches modified to exploit λ-information inducing
actions to reach the expected rewards obtained previously
(including time taken to identify such actions).

4. DISCUSSION
While parameter, λ, in Def. 1 could be seen as a simple

way of focusing on actions that induce observations with lim-
ited information content, we are unable to bound the differ-
ence between the corrected and predicted beliefs for the ac-
tion in terms of λ. Consequently, the error introduced by the
approximation may not be bounded. However, our empiri-
cal results in Table 1 indicate that if λ is relatively low, we
obtain solutions of quality comparable to the original tech-
niques. We selected IP for demonstration because it is one of
the quickest exact POMDP solution techniques, while PBVI
is representative of POMDP approximation techniques that
scale. If λ is high to the extent that all actions in a problem
domain are identified and exploited, the approach may not
result in good quality solutions due to high error. Thus, low
values of λ that identify a subset of actions are preferable.
Consequently, the approach should not be used for prob-
lems where the observation functions are identical for most
actions.

Method |Aλ| R Time (secs) H |Γ| Speedup%
Tiger (2s, 3a, 2o)
IP n.a. 9.41 3.83 ± 0.2 226 9
IP + λ=1 2 9.41 3.4 ± 0.22 226 9 ∼12
PBVI n.a. 8.96 0.16 ± 0.2 30 9
PBVI + λ=1 2 8.96 0.1 ± 0.01 30 9 ∼23
Machine 256 (256s, 4a, 16o)
IP n.a. 1.62 0.08 10 2
IP + λ = 1 2 1.62 0.04 ± 0.01 10 2 ∼47
PBVI n.a. 1.33 290.67 ± 1.39 20 1
PBVI + λ = 1 2 1.33 164.94 ± 2.26 20 1 ∼43
RockSample 5 5 (801s, 10a, 2o)
IP n.a. 5.7 103.37 ± 0.52 3 151
IP + λ = 1 5 5.7 106.36 ± 2.73 3 151 ∼3
PBVI n.a. 8.18 2653.4 ±93.17 9 169
PBVI + λ = 1 5 8.18 1954.2 ±8.85 9 169 ∼26
RockSample 5 7 (3201s, 12a, 2o)
IP n.a. -14.44 2.09 ± 0.02 2 20
IP + λ = 1 5 -14.44 1.61 ± 0.02 2 20 ∼23
PBVI n.a. 6.88 3191.6 ± 73.67 4 58
PBVI + λ = 1 5 6.88 2410.2 ± 36.21 4 58 ∼24
UAV Reconnaissance (4096s, 9a, 9o)
IP n.a. – – – – –
IP + λ = 1 5 – – – – –
PBVI n.a. – – – –
PBVI + λ = 1 5 -8.28 796.13 ± 1.37 2 207 ∼80
Learning c2 (12s, 8a, 3o)
IP n.a. 0.40 0.72 2 338
IP + λ=10 6 0.39 0.03 2 27 91
PBVI n.a. 0.63 127.17 ± 3.57 6 873
PBVI + λ=10 6 0.63 16.65 ± 0.07 7 201 ∼87
Learning c3 (24s, 12a, 3o)
IP n.a. 0.39 54.22 ± 1.93 2 2680
IP + λ=10 9 0.38 0.77 ± 0.01 2 54 ∼99
PBVI n.a. 0.78 608.94 ± 10.5 8 880
PBVI + λ=10 9 0.79 158.35 ± 1.79 10 312 ∼74
Learning c4 (48s, 16a, 3o)
IP n.a. – – – –
IP + λ=10 12 – – – –
PBVI n.a. 0.78 2025.7 ± 41.8 11 896
PBVI + λ=10 12 0.79 636.39 ± 10.8 12 338 ∼69

Table 1: Significant speed ups are obtained for sev-
eral problems when λ-information inducing actions
are exploited for different λ. ‘–’ indicates that the
problem could not be solved for at least horizon 2
within an hour. Times are averages of 5 runs on
Intel duo 2.8GHz, 4GB RAM.
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