
Escaping Local Optima in POMDP Planning as Inference

(Extended Abstract)
Pascal Poupart

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada

ppoupart@cs.uwaterloo.ca

Tobias Lang and Marc Toussaint
Machine Learning and Robotics Lab

FU Berlin, Germany
{tobias.lang,marc.toussaint}@fu-

berlin.de

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords
Planning, POMDPs, EM

1. INTRODUCTION
Planning as inference recently emerged as a versatile ap-

proach to decision-theoretic planning and reinforcement learn-
ing for single and multi-agent systems in fully and partially
observable domains with discrete and continuous variables.
Since planning as inference essentially tackles a non-convex
optimization problem when the states are partially observ-
able, there is a need to develop techniques that can robustly
escape local optima. We propose two algorithms: the first
one adds nodes to the controller according to an increasingly
deep forward search, while the second one splits nodes in a
greedy fashion to improve reward likelihood.1

2. PLANNING AS INFERENCE
Consider a partially observable Markov decision process

(POMDP) described by a set S of states s, a set A of ac-
tions a, a set O of observations o, a transition distribution
Pr(s′|s, a) = ps′|sa, an observation distribution Pr(o′|s, a) =
po′|sa and a reward function R(s, a) = rsa ∈ <. An impor-
tant class of policies (denoted by π) are those representable
by a stochastic finite state controller (FSC), which is a di-
rected acyclic graph such that each node n chooses an action
a according to Pr(a|n) = πa|n, each edge is labeled with an
observation o′ that chooses a successor node n′ according to
Pr(n′|n, o′) = πn′|no′ and the initial node is chosen accord-
ing to Pr(n) = πn.

Toussaint et al. [6] recently proposed to formulate the op-
timization of stochastic controllers as a likelihood maximiza-
tion problem. The idea is to treat rewards as random vari-
ables by normalizing them. Let R̄ be a binary variable such

1More details can be found in a longer version of this paper.

Cite as: Escaping Local Optima in POMDP Planning as Inference (Ex-
tended Abstract), P. Poupart, T. Lang and M. Toussaint, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 1263-1264.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that Pr(R̄=true|s, a) = pr̄true|sa = (rsa − rmin)/(rmax −
rmin). Similarly, we treat the decision variables A and N as
random variables with conditional distributions correspond-
ing to πa|n, πn and πn′|no′ . The POMDP is then converted
into a mixture of dynamic Bayesian networks (DBNs) where
each DBN is t time steps long with a single reward vari-
able at the end and is weighted by a term proportional to
γt. Hence, the value of a policy is proportional to pr̄true in
this mixture of DBNs. To optimize the policy, it suffices to
search for the distributions πn, πn′|no′ and πa|n that maxi-
mize pr̄true . This can be done by Expectation Maximization
(EM), which repeatedly updates the distributions

πi+1
n ∝Ps psπ

i
nβns

πi+1
a|n ∝

P
ss′o′n′ αsnπ

i
a|n[pr̄true|sa+γps′|sapo′|s′aπ

i
n′|o′nβn′s′]

πi+1
n′|o′n ∝

P
ss′a αsnπ

i
a|nps′|sapo′|s′aπ

i
n′|o′nβn′s′

Here, α = limt→∞ αt and β = limt→∞ βt are the forward
and backward terms obtained in the limit according to

αts′n′ = bs′πn′ + γ
P
asno′ α

t−1
sn πa|nps′|sapo′|as′πn′|no′

βtsn =
P
as′n′o′ πa|n[pr̄true|sa + γps′|sapo′|as′πn′|no′β

t−1
s′n′]

The reformulation of policy optimization as an inference
problem opens the door to a variety of inference techniques,
however an important problem remains: policy optimization
is inherently non-convex and therefore the DBN mixture re-
formulation does not get rid of local optima issues.

3. ESCAPING LOCAL OPTIMA
Since global optimality is ensured when optimal action

and successor node distributions are used for all reachable
beliefs, we can perform a forward search from the initial
belief to add new nodes each time suboptimal actions or
successor nodes are chosen for some reachable beliefs. Since
the search grows exponentially with the planning horizon, we
propose to start the search from the “mean” beliefs bs|n ∝
αsn associated with each node n to reduce the number of
steps necessary before a suboptimal action is detected. Alg. 1
describes an incremental forward search that verifies whether
the action and successor node distributions are optimal with
respect to the value function of the controller for all beliefs
reachable at increasing depths. When a non-optimal action
or successor node choice is detected, a new node is created
with optimal action and successor node distributions. We
also create nodes for each belief traversed on the path since
their action and successor node distributions may change
too. These new nodes are added to the controller, which is
re-optimized by EM.

1263

(a)

-25

-20

-15

-10

-5

 0

 5

 5 7 9 11 13 15 17 19 21 23 25 27 29 31

v
a
lu

e

FSC size

cheese-taxi

forward search
forward search from init

node splitting
random restarts

(b)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

v
a
lu

e

FSC size

hallway

forward search
forward search from init

node splitting
random restarts

(c)

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 62.5

 63

 63.5

 5 7 9 11 13 15 17 19

v
a
lu

e

FSC size

machine

forward search
forward search from init

node splitting
random restarts

Figure 1: Performance as the number of nodes increases.

Algorithm 1 ForwardSearch(α, β, π, b0)

for depth = 1 to ∞ do
for each b reachable from b0 in depth steps do
v ← maxn

P
s bsβsn

v∗ ← maxa pr̄true|ba + γ
P
o′ po′|bamaxn′

P
s′ b

ao′
s′ βs′n′

if v∗ − v > 0 then
return controller with new nodes corresponding to the
actions and successor nodes chosen along the path

end if
end for

end for

Algorithm 2 NodeSplitting(α,β,π)

for n ∈ N do
split n into n1 and n2

initialize πa|n1 = πa|n2 = πa|n, πn′|o′n1 = πn′|o′n2 =
πn′|o′n, πn1 + πn2 = πn, πn′

1|o′n + πn′
2|o′n = πn′|o′n

initialize αn1 + αn2 = αn, βn1 = βn2 = βn
re-run EM
gain(n) = increase in value when splitting n

end for

return π∗, α∗, β∗ based on splitting n∗ = argmaxn gain(n)

Siddiqi et al. [4] recently proposed an approach to discover
the number of hidden states in HMMs by state splitting. In
Alg. 2, we adapt this approach to POMDP controllers where
internal nodes are split to escape local optima. For each
node n of the controller, consider the possibility of splitting
that node in two new nodes n1 and n2. More precisely re-
place the parameters that involve n by new parameters that
involve n1 and n2 and re-run EM. To speed up computation,
initialize α and β with those of the unsplitted controller. Af-
ter re-training the model for each potential split, select the
split that yields the largest increase in likelihood.

4. EXPERIMENTS
We tested four methods to escape local optima: i) for-

ward search from the mean belief bs|n associated with each
node n, ii) forward search from init (initial belief), iii) node
splitting and iv) random restarts: retain best controller ob-
tained by running EM from different random initializations.
Figure 1 shows the performance of each method as the num-
ber of nodes increases for 3 POMDP benchmarks.Each curve
is the median of 21 runs from different initial random con-
trollers with error bars corresponding to the 25% and 75%
quantiles. The cheese-taxi problem is challenging for policy
search techniques because its optimal policy includes a long
sequence of actions such that any small deviation from that
sequence is bad. Only the forward search techniques found
good policies because of their ability to modify sequences of
actions by adding multiple nodes in one step. For the hall-

Table 1: Average value for controllers of different
sizes indicated in parenthesis. n.a. = not available.

Techniques cheese-taxi hallway machine
upper bound 2.48 1.19 66.7
HSVI2 2.48 1.03 58.2
biased BPI 2.13 (30) 0.94 (40) 63.0 (30)
QCLP n.a. 0.72 (08) 61.0 (06)
BBSLS n.a. 0.80 (10) n.a.
ForwardSearch 2.47 (19) 0.92 (40) 62.6 (19)
NodeSplitting -20.0 (30) 0.95 (40) 63.0 (16)

way and machine problems, adding or splitting one node
at a time is adequate, however node splitting outperforms
forward search because it evaluates more accurately alterna-
tive controllers by re-running EM, which allows it to greedily
select the best split at each step.

In Table 1, we compare the forward search and node split-
ting techniques to a leading point-based value iteration tech-
nique (HSVI2 [5]) and three policy search techniques for fi-
nite state controllers (biased BPI with escape [3], non-linear
optimization (QCLP) [1] and stochastic local search (BB-
SLS) [2]). Since the optimal policy is not known for several
problems, we also report an upper bound on the optimal
value (computed by HSVI2). The results show that EM
with forward search or node splitting is competitive with
other policy search techniques. HSVI2 finds better policies,
but at the cost of a much larger representation.

5. CONCLUSION
Although there already exists escape techniques for finite

state controllers, none of them can be combined with EM
(or planning as inference). Hence, this work resolves an
important issue by mitigating the effect of local optima and
improving the reliability of EM. Our next step is to extend
our implementation to factored domains since this is where
planning as inference becomes really attractive.

6. REFERENCES
[1] C. Amato, D. Bernstein, and S. Zilberstein. Solving

POMDPs using quadratically constrained linear programs.
In IJCAI, pages 2418–2424, 2007.

[2] D. Braziunas and C. Boutilier. Stochastic local search for
POMDP controllers. In AAAI, pages 690–696, 2004.

[3] P. Poupart. Exploiting Structure to efficiently solve large
scale partially observable Markov decision processes. PhD
thesis, University of Toronto, 2005.

[4] S. Siddiqi, G. Gordon, and A. Moore. Fast state discovery
for HMM model selection and learning. In AI-STATS, 2007.

[5] T. Smith and R. Simmons. Point-based POMDP algorithms:
improved analysis and implementation. In UAI, 2005.

[6] M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic
inference for solving (PO)MDPs. Technical Report
EDI-INF-RR-0934, School of Informatics, University of
Edinburgh, 2006.

1264

