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ABSTRACT
Although much work has been done on designing autonomy
and user interfaces for managing small teams of indepen-
dent robots, much less is known about managing large-scale
bio-inspired robot (BIRT) teams. In this paper, we explore
human interaction with BIRT teams in an information forag-
ing task. We summarize results from two small experiments
that use two types of BIRT teams in a foraging task. The re-
sults illustrate differences in BIRT performance for different
types of human interaction, and illustrate how performance
robustness can vary as a function of interaction type.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Robotics—Operator
interfaces
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1. INTRODUCTION
Two current research areas are receiving considerable at-

tention in the recent literature: human-robot interaction
(HRI) and bio-inspired robot teams (BIRT). HRI empha-
sizes the design of robot behaviors that respect and sup-
port human psychological principles. BIRT research empha-
sizes identifying principles and practices of biological soci-
eties such as ants and bees and then abstracting and encod-
ing these principles in robots [5]. HRI helps humans design
robots that are responsive to human input and BIRT helps
humans design teams that are robust. Research that com-
bines elements of HRI with BIRT should allow humans to
design robot teams that are both responsive and robust. We
call the combination human-BIRT (HuBIRT) to emphasize
human-centered design of bio-inspired teams.

We apply HuBIRT to a foraging task where there are mul-
tiple tasks that appear at unknown locations in a spatial
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domain. Agents must discover the tasks, assign a subset or
subteam of the agents to perform the task, and persist until
the task is complete. New tasks randomly appear. Bio-
inspired agents are capable of performing some aspects of
this task by themselves, but are generally inefficient at the
task without having some kind of human input.

We analyze how human input can influence two kinds of
bio-inspired teams: one based on a physicomimetic model
and the other based on a biomimetic model. In contrast to
this approach, agent-based simulation has been used in Hu-
BIRT to determine team organizational aspects/parameters
of a team by finding a relationship between parameters and
team behavior [7, 3], while leader-based models were ex-
plored in [2, 4].

2. PHYSICOMIMETICS
In a physicomimetics model, all agents experience inter-

agent attraction that draws agents together and inter-agent
repulsion that keeps agents from getting too close. These
forces can produce collective behavior based on very simple
agent autonomy. Each agent is treated as a particle that cal-
culates the force acting on it by other agents using equations
in [6]. Since these agents are not goal-driven, responsive col-
lective behavior can benefit from human influence.

Attraction Repulsive Control (ARC). In ARC, the
operator uses a virtual agent to attract (influence) the real
agents in the field. Once, the agents are attracted, the op-
erator drags the virtual agent to the resource location. This
makes the agents responsive to a given individual task but,
the operator is required to be in the loop throughout the
mission. As the number of tasks grows, operator and com-
munication channel can quickly become overloaded.

Leader Model (LM). In LM, the operator manages a
small number of leader agents. Once a leader agent is as-
signed to a task, it recruits other agents and pulls them to
the resource location. The attraction radius of influence is
assigned by the operator and also the location of the re-
source.

Results. We simulated a swarm of 100 agents with 10
leader agents (for LM). Figure 1 illustrates performance for
the ARC and LM as the probability of communication P is
varied between 1, 0.5, 0, 1 and 0.01. LM always performed
better than ARC. This is because the operator can assign a
leader to a target, choose a desired radius of influence, and
then switch attention to another assignment. By contrast,
in the ARC case, the operator is attached to a set of agents
until the target is minimized. Thus, the response time for
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LM model is lower than for ARC model.
ARC performs poorly for P < 1 (see Figure 1) because it

requires nearly constant communication between the virtual
and other agents. By contrast, LM performance degrades
only slightly with decrease in P , indicating robust perfor-
mance. The leader at every time step, tries to attract more
agents as it moves towards the resource location. Once, the
agent is attracted to the leader, the agent is programmed to
follow the leader and hence the swarm does not fluctuate.

3. BIOMIMETICS
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Figure 1: Avg. response time vs. P .

Consider the
biomimetics
model from [1].
In this model,
agents em-
ulate fish by
using prior-
itized behav-
ioral rules
to tell a fish
to change
its desired
direction as
a function
of the distance and direction of neighbors within a specified
“zone of repulsion,”, “zone of orientation,” “zone of attrac-
tion”, and “blind zone”. The scenario consists of 100 fish in
a 120 × 120 area. Quantities of food (represented graphi-
cally as barrels) are placed around the map to represent the
information to be gathered. The “food” is depleted at 1 unit
per second per fish whenever a fish is within range.

Parameter-Based Management (PAR). In PAR, fish
behavior is determined by an operator offline by selecting pa-
rameters that cause fish to spread out and keep a minimum
distance from each other. The fish spread out over the map
and consume food they come in contact with. In simulation,
the parameter values were subjectively optimized to perform
best for small sources of food located in a uniform grid.

Predator-Based Management (PRED). In PRED,
and operator controls a single predator to split and steer
groups of aligned fish; fish are repelled by a predator if
the predator is within a prescribed distance. The preda-
tor moves slightly faster than the fish and can turn much
more sharply. Collectively, the fish are clustered in a small
group, but if a predator gets close then they are repelled by
this predator. Parameters are chosen such that fish tend to
stay close together even when the predator “chases” them.

Results. Four simulations were conducted. In the first
two simulations, food was placed in a uniform grid, 10 units
apart; each container held one resource unit. The second
simulation again placed food in a uniform grid, but the size
of the containers was increased to 10 resource units. In the
third simulation, 10 containers of food are randomly placed
using a uniform distribution on x and y. This scenario is
designed to require fish to coordinate in schools, when the
size of the food containers is large. To make the total amount
of resource comparable to the second simulation, each food
container held 100 resource units. In the fourth simulation,
200 resource units were placed in each barrel.

Average results over five trials are shown in Figures 2(a)-
2(b). The plots include the mean, the interquartile range,
and the range. The thick magenta line shows the trends of

(a) (b)

Figure 2: Completion time for (a) parameter-based
management and (b) predator-based management.

the average values.
PAR completed the tasks more quickly for all simulations.

Uniformly spreading the fish out in all directions produces
collectively fish that cover the area effectively. The predator-
managed fish travel in schools and, therefore, take more time
to cover the whole map. Note the trends between the second
through fourth simulations. PRED stays fairly constant but
PAR increased. This is because PRED allowed a school of
fish to focus on a concentrated resource for a long period
of time, whereas PAR equired the fish to continue to move
about randomly, being repelled by each other on occasion or
when the came near to walls. The predator approach seems
to be potentially more robust to variations in the concentra-
tions and distributions of the resources.

4. SUMMARY
This paper illustrates how leader-based and predator-based

interactions can help a human robustly manage a bio-inspired
robot team.
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