
Multiagent Environment Design in Human Computation

(Extended Abstract)
Chien-Ju Ho

Computer Science Department
University of California, Los Angeles

cjho@cs.ucla.edu

Yen-Ling Kuo and Jane Yung-jen Hsu
Computer Science & Information Engineering

National Taiwan University
{b94029,yjhsu}@csie.ntu.edu.tw

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Design

Keywords
Human Computation, Environment Design, Collaborative
Filtering

1. INTRODUCTION
Human computation aims to solve computationally-hard

problems, e.g. image tagging or commonsense collection, by
utilizing collective human brain power. There are a variety
of applications available nowadays. Games with A Purpose
(GWAP) [4] engage players in an online game and let them
help solve tasks while having fun. Crowdsourcing markets,
such as Amazon Mechanical Turk (http://mturk.com), pro-
vide platforms for workers to contribute their brain power
in exchange for monetary rewards. Peer productions sys-
tems, e.g. Wikipedia or Yahoo! Answers, let online users
construct knowledge bases for common good.

Despite the impressive progress of developing applications
to solve real-world problems, little study is conducted in
theory to guide the design of human computation systems.
von Ahn and Dabbish [4] discussed the design principles of
Games with A Purpose. Some other researchers [3] analyzed
the incentive structure of human computation systems in a
game theoretic approach. While these projects addressed
the design of the system mechanisms, many situations arise
when the developers do not have full privilege to modify the
systems. For example, developers on Mechanical Turk can-
not change the way they interact with the workers. They can
only make little modifications, such as the size of payments,
or the task descriptions, to encourage workers complete the
tasks quickly and accurately. In this work, we focus on sit-
uations in which developers can only make limited changes
to the systems. In particular, we view this problem as an
environment design problem with multiple agents.

Cite as: Multiagent Environment Design in Human Computation (Ex-
tended Abstract), Chien-Ju Ho, Yen-Ling Kuo and Jane Yung-jen Hsu,
Proc. of 10th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and
Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1279-1280.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The concept of environment design was first proposed by
Zhang and Parkes [6], where they considered the interested
party tries to influence agent’s behaviors in a Markov De-
cision Process (MDP) setting, and the interested party can
only make limited changes to the reward function. In their
work, they proposed solutions to find the optimal environ-
ment for a single agent by active indirect elicitation algo-
rithms. The agent’s private information is inferred by ob-
serving its responses to incentive changes. They then ex-
tended their work to a more general framework [5] and pro-
vided algorithms for problem solution. Inspired by their
work, Huang et al. [2] conducted an empirical study apply-
ing environment design framework for automatic task design
in Amazon Mechanical Turk.

In this work, we incorporate collective information from
multiple agents to enhance the environment design frame-
work. We extend the environment design problem to set-
tings with multiple agents in the context of human compu-
tation. While users usually perform independent tasks in
human computation systems, we assume there is no agent
interactions. Another assumption is that users will take ac-
tions similar to the actions taken by like-minded users or
users with similar abilities. We propose two approaches to
utilize collective information. First, we assume the existence
of the agent types and propose an algorithm for agent type
elicitation. We then relax the assumption of agent types by
adopting the collaborative filtering technique.

2. MULTIAGENT ENVIRONMENT DESIGN
Our model is an extension of Zhang and Parkes’s work [5].

The only change is the introduction of multiple agents. A
multiagent environment design problem in human computa-
tion consists of agents, environments, agent model param-
eters, agent decision space, agent decision function, and a
utility function. The goal of the problem is to maximize the
total utility value by finding the best environment for each
agent using the histories of the agent’s behaviors.

Take developers on Mechanical Turk for example, agents
are workers, environments are possible modifications devel-
opers can make, agent decision space is the set of actions
workers can take, agent model parameters are the private
information of workers, and the utility function describes
how desirable the workers’ actions are to the developers.

Clearly, without any assumption about the agents, we
cannot do any better than the one-agent environment de-
sign problem. The fundamental assumption in this work
is that agents will take actions similar to the actions that
like-minded agents or agents with similar abilities take.

1279

2.1 Agent type elicitation
We first assume that agents fall into a relatively small

set of “types”. Agents of the same type will take the same
actions in all environments. In the following discussion, the
number of agents is denoted as m, and the number of agent
types is denoted as k. If the types of agents are known a
priori, the agent behaviors of the same type can be used
together to elicit agent model parameters. Therefore, the
convergence speed is trivially O(m/k) times faster than the
one-agent algorithm proposed by Zhang et al.[5] However,
it is usually not possible to know the types of agents in
advance. Therefore, we propose an algorithm, which picks
an environment set E as pre-testing rounds, to elicit agent
types. The agent type information is then used to help speed
up the elicitation of model parameters.

It is clear that the performance of the algorithm highly
depends on the choice of the environment set E . In the
following definition, we provide a measure for how good the
environment set can be used to distinguish agent types.

Definition 1. (p-separable) The agent types are called
p-separable in environment set E if for any two agents of
different types, the fraction of the environments set E that
they choose different actions is larger than p.

The smaller value of p means that agents of different types
are less likely to take the same actions in the environment
set E . Therefore it is easier to distinguish different types of
agents in the environment set E . In real-world applications,
the developers usually have prior knowledge about the en-
vironments, e.g. task types in Mechanical Turk. Therefore,
they could choose representative environments (i.e. mini-
mizing p) to speed up the convergence of classifying agents.

Lemma 1. If the agent types are p-separable in environ-
ment set E and |E| = r, the probability of eliciting the wrong
agent type after observing r environments would be less than
(k − 1)pr.

Assume there are 10 types of agents (k = 10), and the en-
vironment set E , where |E| = 10, is 0.5-separable for agents.
Then the probability of wrongly classifying the agents are
less than 1%.

2.2 Collaborative filtering
In this section, we relax the agent type assumption and

propose a collaborative filtering approach. If we record the
utility values of agent’s past actions in a matrix, the prob-
lem we are solving is to find the environment with highest
utility value for each agent. This is actually an environment
recommendation problem in which developers aim to find
the best environment for each user to maximize the utility
value. Since this problem is in a standard format of col-
laborative filtering. Any collaborative filtering algorithms
can be applied. In this work, we are more curious about
if we can design an algorithm to achieve high accuracy of
recommendations with few matrix entries.

Given the assumption that agents take actions similar to
the actions taken by like-minded agents, it is implied that
the matrix has a good low rank approximation. In the fol-
lowing discussion, we first talk about the result of Drineas
et al. [1] and then interpret how their result can be applied
in our problem settings. In their algorithm, they random
sample c columns and r rows of the matrix A. They can

then provide a prediction matrix Â, where the expected er-
ror between A and Â satisfies the following lemma.

Lemma 2. ([1]) Let σt, t = 1, . . . , ρ denote the singular
value of A. Then, the algorithm shows the error satisfies

E(‖A− Â‖2F) ≤
ρX

t=k+1

σ2
t + (

r
k

c
+
k

r
)‖A‖2F

In the lemma, picking O(k/ε) rows and O(k/ε2) column
bounds the expectation of relative error to λ+ ε, where λ is
the relative error between the actual and low-rank matrix.
Therefore, if we can find volunteers to test all environments
(r rows) and ask the other users to perform test rounds (c
columns), Lemma 2 can be used to provide an error bound.
Though it is often infeasible to ask a small number of agents
to test all the environments, we could still get some intu-
itions about how good the approximation could be. Devel-
oping new algorithms to avoid “sampling all environment” is
an interesting future research direction.

3. CONCLUSION
In this work, we extend the environment design problem

to settings with multiple agents in the context of human
computation. To incorporate the collective information from
multiple agents, we propose two approaches, agent type elic-
itation and collaborative filtering, under different assump-
tions. The formulation and algorithms provide solutions for
developers in human computation systems to find the en-
vironment settings maximizing their goal functions. Future
work should continue to explore the aspects of agent in-
teractions, integrations to the mechanism design of human
computation, and applying the results to real-world appli-
cations.

Acknowledgements
We would like to thank Jennifer Wortman Vaughan for the
helpful comments for this paper. This research was sup-
ported in part by grant #NSC 99-2221-E-002-139-MY3 from
the National Science Council of Taiwan.

4. REFERENCES
[1] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive

recommendation systems. In Proceedings of STOC’02,
pages 82–90, New York, NY, USA, 2002. ACM.

[2] E. Huang, H. Zhang, D. C. Parkes, K. Z. Gajos, and
Y. Chen. Toward automatic task design: a progress
report. In HCOMP’10, pages 77–85, New York, NY,
USA, 2010. ACM.

[3] S. Jain and D. C. Parkes. A game-theoretic analysis of
games with a purpose. In WINE 2008, pages 342–350,
Dec. 2008.

[4] L. von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 51(8):58–67,
2008.

[5] H. Zhang, Y. Chen, and D. C. Parkes. A general
approach to environment design with one agent. In
Proceedings of IJCAI’09, Pasadena, CA, USA, 2009.
ACM.

[6] H. Zhang and D. C. Parkes. Value-based policy
teaching with active indirect elicitation. In Proceedings
of AAAI’08, 2008.

1280

