
Prognostic normative reasoning in coalition planning∗

(Extended Abstract)

Jean Oh
Felipe Meneguzzi

Robotics Institute
Carnegie Mellon University

Pittsburgh, USA
jeanoh@cs.cmu.edu

meneguzz@cs.cmu.edu

Katia Sycara

Robotics Institute
Carnegie Mellon University

Pittsburgh, USA
katia@cs.cmu.edu

Timothy J. Norman

Dept. of Computing Science
University of Aberdeen

Aberdeen, UK
t.j.norman@abdn.ac.uk

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Design, Languages

Keywords
Proactive assistant, Norms, Prognostic normative reasoning

INTRODUCTION
Human users planning for multiple objectives in coalition environ-
ments are subjected to high levels of cognitive workload, which
can severely impair the quality of the plans created. The cognitive
workload is significantly increased when a user must not only cope
with a complex environment, but also with a set of unaccustomed
rules that prescribe how the coalition planning process must be car-
ried out. In this context, we develop a prognostic assistant agent
that takes a proactive stance in assisting cognitively overloaded hu-
man users by providing timely support for normative reasoning–
reasoning about prohibitions and obligations.

Existing work on automated norm management relies on a deter-
ministic view of the planning model [1], where norms are specified
in terms of classical logic; in this approach, violations are detected
only after they have occurred, consequently assistance can only be
provided after the user has already committed actions that caused
the violation [3]. By contrast, our agent predicts potential future vi-
olations and proactively takes action to help prevent the user from
violating the norms.

Here, we introduce the notion of prognostic normative reason-
ing so that the agent can reason about norm-compliant planning in
advance. In order for that, we use probabilistic plan recognition
to predict the user’s future plan steps based on the user’s current
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behavior and the changes in her environment. As the environment
changes the agent’s prediction is continuously updated, and thus its
plan for remedial actions must be frequently revised during execu-
tion. In order to address this issue, our agent system supports a
full cycle of autonomy including planning, execution, and replan-
ning. This paper is specifically focused on the agent’s prognostic
normative reasoning.

PROGNOSTIC NORMATIVE REASONING
Our approach integrates plan recognition with normative reason-
ing. To illustrate our approach, we use a peacekeeping scenario,
whereby military forces cooperate with various humanitarian coali-
tion partners including the United Nations and Non-Governmental
Organizations (NGOs). In this context, we consider the rules that
regulate NGO operations in conflict areas, e.g., an armed escort is
required to transport relief supplies through certain routes.

Probabilistic plan recognition
From observing a user’s current activities, the agent predicts the
user’s future activities as follows. We assume that a user’s planning
problem is given as a Markov Decision Process (MDP). Based on
the assumption that a human user generally reasons about conse-
quences and makes decisions to maximize her long-term rewards,
we utilize an optimal stochastic policy of the MDP to predict a
user’s future activities.

The plan recognition algorithm is a two-step process. In the first
step, the algorithm estimates a probability distribution over a set of
possible goals. We use a Bayesian approach that assigns a proba-
bility mass to each goal according to how well a series of observed
user actions is matched with the optimal plan toward the goal. We
assume that the agent can observe a user’s current state and action.
Let Ot = s1, a1, s2, a2, ..., st, at denote a sequence of observed
states and actions from time steps 1 through t where st and at de-
note the user state and action, respectively, at time step t.

When a new observation is made, the agent updates, for each
goal g, the conditional probability p(g|Ot) that the user is pursu-
ing goal g given the sequence of observations Ot. The conditional
probability p(g|Ot) can be rewritten using Bayes’ rule as:

p(g|Ot) =
p(s1, a1, ..., st, at|g)p(g)∑

g′∈G p(s1, a1, ..., st, at|g′)p(g′) . (1)

By applying the chain rule, we can write the conditional probability
of observing the sequence of states and actions given a goal as:

p(s1, a1, ..., st, at|g) = p(s1|g)p(a1|s1, g)p(s2|s1, a1, g)

... p(st|st−1, at−1, ..., g).
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We replace the probability p(a|s, g) with the user’s stochastic pol-
icy πg(s, a) for selecting action a from state s given goal g. By the
MDP problem definition, the state transition probability is indepen-
dent of the goals. Due to the Markov assumption, the state transi-
tion probability depends only on the current state, and the user’s
action selection on the current state and the specific goal. By using
these conditional independence relationships, we get:

p(s1, a1, ..., st, at|g) = p(s1)πg(s1, a1)p(s2|s1, a1)

... p(st|st−1, at−1), (2)

By combining Equations 1 and 2, the conditional probability of a
goal given a series of observations can be obtained.

In the second step, we sample likely user actions in the current
state according to a stochastic policy of each goal weighted by the
conditional probability from the previous step. Subsequently, the
next states after taking each action are sampled using the MDP’s
state transition function. From the sampled next states, user actions
are recursively sampled, generating a tree of user actions known
here as a plan-tree. The algorithm prunes the nodes with probabili-
ties below some threshold. A node in a plan-tree can be represented
in a tuple 〈t, s, l〉 representing the depth of the node (i.e.the num-
ber of time steps away from the current state), a predicted user state,
and an estimated probability of the state visited by the user, respec-
tively. Example 1 shows a segment of plan-tree indicating that the
user is likely be in area 16 with probability .8 or in area 15 with
probability .17 at time step t1.

EXAMPLE 1. 〈〈t1, (area = 16), .8〉, 〈t1, (area = 15), .17〉〉
Normative reasoning
After predicting a user’s plan, the agent evaluates the predicted plan
according to a set of normative regulations to prevent any potential
violations. Norms generally define constraints that should be fol-
lowed by the members in a society at particular points in time in
order for them to be compliant with societal regulations. Formally,

DEF. 1 (NORM). A norm is a tuple 〈ν, α, µ〉, where the de-
ontic modality ν ∈ {O,F} and O and F denote obligations and
prohibitions, respectively; α is a formula specifying when the norm
is relevant to a state (context condition); and µ, a formula specify-
ing the constraints imposed on an agent when the norm is relevant
(normative condition).

EXAMPLE 2. An intelligence message notifies that regions 3,
16 and 21 are unsafe. The norm, denoted by ιescort, that an NGO
is obliged to have an armed escort can be expressed as:

ιescort = 〈O, area ∈ {3, 16, 21}, escort = granted〉.
DEF. 2 (SATISFIABILITY). A context condition α or a nor-

mative condition µ containing variables {ϕk . . . ϕm} ⊆ ~ϕ with
specified domains dϕk , . . . dϕm is satisfiable in state s (so that s |=
α) if the value assigned to the variables in state s is within the do-
main specified for the variables in conditionα, so that ∀ϕj ∈ α.(ϕj =
v) ∧ (v ∈ dϕj ).

When a state is relevant to a norm – i.e., the norm’s context
condition is satisfied in the state – a normative condition is eval-
uated to determine the state’s compliance, which depends on the
deontic modality of the norm. Specifically, an obligation is vio-
lated if the normative condition µ is not supported by state s; i.e.,
s 6|= µ. For instance, considering norm ιescort in Example 2, given
state s = {(area = 16), (escort = init)} the violation detection
function violation(s, ιescort) would return 1, denoting that norm
ιescort is violated in state s.

Given a predicted user plan in a plan-tree, the norm reasoner
traverses each node in the plan-tree and evaluates the associated
user state for any norm violations. For each state that violates a
norm the agent needs to find a state that is compliant with all norms;
i.e., for each state s where violating(s, ·) = 1, the agent is to find
the nearest state g that satisfies violating(g, ∗) = 0. Here, the
distance between two states is measured by the number of variables
whose values are different.

Since norm violations occur as the result of certain variables in
the state space being in particular configurations, finding compliant
states can be intuitively described as a search process for alternative
value assignments for the variables in the normative condition such
that norms are no longer violated, which is analogous to search
in constraint satisfaction problems. When a norm-violating state
is detected, the norm reasoner searches the nearby state space by
trying out different value assignment combinations for the agent-
variables. For each altered state, the norm reasoner evaluates the
state for norm compliance. The current algorithm is not exhaustive,
and only continues the search until a certain number of compliant
states, say m, are found.

When compliant state g is found for violating state s, state g be-
comes a new goal state for the agent, generating a planning problem
for the agent such that the agent needs to find a series of actions to
move from initial state s to goal state g. The goals that fully comply
with norms are assigned with compliance level 1. When a search
for compliant states fails, the agent must proactively decide on re-
medial actions aimed at either preventing the user from going to a
violating state, or mitigating the effects of a violation. In the norm
literature these are called contrary-to-duty obligations [2]. For in-
stance, a contrary-to-duty obligation in the escort scenario can be
defined such that if a user is about to enter a conflict area without
an escort, the agent must alert the user of the escort requirement.
For such partial compliance cases, we assign compliance level 2.

EXAMPLE 3. Let the domain of variable escort be: {init ,
requested , granted , denied , alerted}. Given a predicted plan-
tree in Example 1, if variable escort for area 16 has value init
indicating an escort has not been arranged, the agent detects a
norm violation and thus searches for a compliant state as follows.
By alternating values, we get two compliant states, where state
(granted) is fully compliant while state (alerted) is partially com-
pliant – as it complies with the contrary-to-duty obligation. As a
result, a newly generated planning problem is passed to the planner
module as follows: 〈init , {(granted , 1), (alerted , 2)}〉.

CONCLUSION
The main contributions of this paper are the following. We devel-
oped a proactive assistant agent architecture where the agent au-
tonomously identifies and performs new tasks in a principled way
by integrating probabilistic plan recognition with reasoning about
norm compliance. We introduced the notion of prognostic norm
reasoning to predict the user’s likely normative violations, allow-
ing the agent to plan and take remedial actions before the violations
actually occur. To the best of our knowledge, our approach is the
first that manages norms in a proactive and autonomous manner.
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