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ABSTRACT
The idea of Smart Walkers is to equip customary rolling
walkers with sensors in order to assist users, caregivers and
clinicians. The integral part of the Smart Walkers is an
autonomous agent which monitors the activity of the user,
assesses his physical conditions, and detects potential risks
of falls. In this paper, we study methods which enable the
agent to recognize the user activity from the sensor mea-
surements. The proposed methods use Conditional Random
Fields with features based on discriminant rules. A special
case are features which, in order to distinguish between two
activities, compare the sensor measurements to thresholds
learned by a linear classifier. Experiments with real user
data show that the methods achieve a good accuracy; the
best results are obtained using “smooth” thresholds based
on sigmoid functions.
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J.3 [Computer Applications]: Life and Medical Sciences—
Health; I.2.6 [Computing Methodologies]: Robotics—
Sensors

General Terms
Experimentation

Keywords
Single agent learning, Reasoning

1. INTRODUCTION
Safe and independent mobility is a key factor in the qual-

ity of life of elderly people. Mobility aids, such as canes,
rolling walkers and wheel chairs, encourage independent mo-
bility, however, improper use can induce additional risks of
falling, particularly as the individual motoric capabilities de-
teriorate. To improve the utility of mobility aids, we are
developing a mixed-initiative system, called Smart Walker,
which is a customary four-wheel rolling walker equipped
with a set of sensors. The integral part of the Smart Walker
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is an autonomous agent which takes into account the sensor
measurements and monitors the user activity. Our goal is to
assist users, caregivers and clinicians, e.g., by monitoring the
user’s stability, supervising the execution of daily excercises
and providing longitudinal data of the physical and mental
conditions of walker users. A key step in implementing these
functionalities is enabling the agent to recognize the activity
of the user from the sensor measurements.

2. ACTIVITY RECOGNITION
We use the following sensor measurements: xspeed

t , the
speed of the walker; xtot. load

t , the total load on the four
wheels; xFCOP

t , the relative difference between the load on
the left and the right wheels; xSCOP

t , the difference between
the load on the rear and the front wheels; xx-acc.

t , xy-acc.
t and

xz-acc.
t , the acceleration in the three spatial dimensions. In

order to include information on the past, we also compute
the mean and the variance over the previous 5 and 25 time
points. Note that the measurements are digitized with 50
Hz, so 25 time points correspond to half a second.

2.1 Conditional Random Fields
In [3], we compared the performance of several probabilis-

tic models and found that the best results were obtained for
Conditional Random Fields (CRFs). A CRF specifies the
distribution of a sequence of labels, Y = (Y1, . . . , Yn), con-
ditional on a sequence of observations, X = (X1, . . . , Xn)
(see [2]). In our context, the observations represent the sen-
sor measurements, and the hidden states the user activities.
CRFs are parameterized by features, f , and model weights,
λ. For any x = (x1, . . . , xn) and y = (y1, . . . , yn), the prob-
ability of Y = y conditional on X = x is given by

Pλ(Y = y |X = x) ∝ exp
(
λT f(x, y)

)
.

For the labeling of sequential data, linear-chain CRFs are of
particular importance. For that type of models, λT f(x, y)
can be written in terms of state and transition features:

λT f(x, y) =

n∑
t=1

µT f state(xt, yt) +

n∑
t=2

νT f trans(yt−1, yt).

More generally, f trans may also depend on xt. In our exper-
iments, we chose νT f trans(yt−1, yt) = ν 1(yt−1 = yt), which
simply reflects whether or not an activity persists. For the
selection of the state features, we propose to use discrim-
inant rules. The basic idea is, in order to determine the
compatibility of the events Xt = xt and Yt = i, to consider
any potential alternative, Yt = j, and to assess whether
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Xt = xt is more compatible with Yt = i or Yt = j. Writing
Y for the set of all labels, this gives us

µT f state(xt, i) =
∑

j∈Y\{i}
µT

ijdij(xt),

where dij(·) are functions discriminating between i and j,
associated with the weights µij . In the following, we con-
sider several examples.

2.1.1 Binary Thresholds
The simplest type of discriminant rules is obtained by

comparing the observations (component-wise) to thresholds.
Write 1(·) for the function evaluating to 1 if the statement
in the brackets is true and to 0, otherwise. Then

µT
ijdij(xt) = µ

(g)
ij 1(xt ≥ τij) + µ

(l)
ij 1(xt < τij).

For the selection of τij , suppose that we are given training
data x = (x1, . . . , xn) and y = (y1, . . . , yn). Write ni for
the number of points in the training data for which yt = i,
and let µi := 1

ni

∑n
t=1 1(yt = i)xt. Similarly, define nj

and µj . In our experiments, we use the threshold τij =
(µi+µj)/2. Note that τij is the threshold obtained by Linear
Discriminant Analysis if ni and nj are equal (see [1]).

2.1.2 Sigmoid Thresholds
In order to take into account by what margin xt exceeds

τij , we consider continuous thresholds based on the sigmoid
function sig(x) = 1/(1 + e−x). The slope is determined by
a scaling parameter γij , yielding

µT
ijdij(xt) = µ

(g)
ij sig(γij(xt − τij)) + µ

(l)
ij sig(γij(τij − xt)).

Note that the larger γij , the more similar are the continuous
thresholds to the binary ones. For the selection of γij , we
maximize the likelihood of a logistic regression model with
the slope γij and the intercept −γijτij (see [1]).

2.1.3 Using Raw Observations
Finally, we consider discriminant rules based on the raw

observations. Let µ and σ2 denote the sample mean and
variance of xt in the training set. Then we use the rules

µT
ijdij(xt) = µ

(ic)
ij + µ

(sl)
ij

(
σ−1(xt − µ)

)
.

The standardization of xt is necessary to avoid a penaliza-

tion of µ
(ic)
ij and µ

(sl)
ij during the training of the CRF.

3. EXPERIMENTS
We collected user data in two different setups. In the

first experiment, we asked 12 healthy young subjects (19-53
years old) to walk twice through a predefined course which
included the following activities: not touching the walker
(N), stopping (S), walking forward/backwards (F/B), turn-
ing left/right (L/R), transferring between the walker and a
chair (T). The participants of the second experiment were 15
older adults (80-97 years old), 8 of which were regular walker
users. Besides the activities in the first experiment, the par-
ticipants were sitting on the walker (SI), going up/down
a ramp (UR/DR), and going up/down a curb (UC/DC).
While they were performing the courses, we asked the partic-
ipants of the second experiment to execute real-life tasks like
picking up objects from the ground or walking at different
speeds; moreover, we recorded some spontaneous activity in
between the two courses.

Table 1: Accuracy for Experiment 1 (in %)
N S F L R B T Tot.

Thre 81 70 95 74 65 91 61 87
Sigm 88 71 96 77 71 92 56 89
Raw 91 57 96 71 60 88 42 86
Bin 75 73 95 74 67 92 53 86

Table 2: Accuracy for Experiment 2 (in %)
S F L R SI UR DR UC DC Tot.

Thre 89 82 56 52 98 65 54 60 55 81
Sigm 90 85 63 51 99 79 58 61 54 83
Raw 89 85 58 46 99 67 63 55 47 82
Bin 89 85 58 53 99 72 52 56 58 82

We compare four different methods: Thre, based on bi-
nary thresholds; Sigm, based on sigmoid thresholds; Raw,
using the raw observations; Bin, using features based on
data binning, where we chose the number of data bins equal
to the number of different labels. Given the trained CRF
and observations x = (x1, . . . , xn), we predict the sequence
of labels y = (y1, . . . , yn) component-wise by maximizing
the marginal distribution of Yt conditional on X = x.

The results are shown in Table 1 and 2. As can be seen,
Sigm achieves the best performance with an overall accu-
racy of 89% and 83%. Except for Bin in Experiment 2, the
differences in the performance are all statistically significant
(one-tailed Wilcoxon test, α = 0.05). Not surprisingly, all
methods have problems to recognize transferring, which is
an intermediate activity between not touching the walker
and stopping. Turns are sometimes confused with walking
forward, however, also for human observers it is not easy to
tell when a turn exactly starts or ends.

Overall, the results for Experiment 1 are better than for
Experiment 2. One reason is that the participants in Ex-
periment 1 performed the course twice, so the training set
always includes one recording of the person for which the
activity is predicted. Furthermore, the activities in Experi-
ment 2 are more individual, e.g., the participants used very
different strategies to go up and down the curb. Even for
simple activities the variability in Experiment 2 is higher, as
the participants were instructed to perform different real-life
tasks meanwhile.
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