
Reasoning About Preferences in BDI Agent Systems∗

(Extended Abstract)
Simeon Visser
Utrecht University

Amsterdam, the Netherlands
simeon87@gmail.com

John Thangarajah
RMIT University

Melbourne, Australia
johnt@rmit.edu.au

James Harland
RMIT University

Melbourne, Australia
james.harland@rmit.edu.au

ABSTRACT
BDI agents often have to make decisions about which plan
is used to achieve a goal, and in which order goals are to
be achieved. In this paper we describe how to incorporate
preferences (based on the LPP language) into the BDI ex-
ecution model.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Intelligent agents

General Terms
Algorithms

Keywords
Agent programming languages, Reasoning (single and mul-
tiagent), Preference reasoning

1. INTRODUCTION
A fundamental feature of agent systems is the ability to

make decisions and to manage the consequences of these
decisions in complex dynamic environments. In agent sys-
tems based on the Belief-Desire-Intention (BDI) model, an
agent typically has a set of beliefs about the current state
of the world, a set of goals, which represent states of the
world that it would like to bring about, and plans which are
used to achieve its goals. Due to the unpredictability of an
agent’s environment, it is normal for the agent to have to
choose one of several plans which may be used to achieve
a particular goal; by suitably adapting the choice of plan
for the circumstances applicable at the time, the agent can
provide robust behavior.

For example, a travel agent that is asked to book a hol-
iday may subdivide this task into two subgoals of booking
accommodation and booking transport. If there are multi-
ple accommodation venues and multiple means of transport,
there can be numerous combinations that may be used by
the agent to achieve the goal of booking a holiday.

In practice, it is common for the user to want to specify
some preferences for how the goal should be achieved. For

∗We acknowledge the ARC Discovery Grant DP 1094627

Cite as: Reasoning About Preferences in BDI Agent Systems (Extended
Abstract), Simeon Visser, John Thangarajah, James Harland, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 1139-1140.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

instance, in the travel example above, the user may wish to
specify a particular choice of airline or that it is preferable
to travel by train and spend any money saved on a bet-
ter class of accommodation. This extra information should
be included as a preference rather than a goal since, it is
acceptable to satisfy the goal without satisfying the pref-
erence. For example, specifying the preference to fly with
Dodgy Airlines as a goal would mean the user refuses to
travel by any means other than Dodgy Airlines.

We have incorporated preferences into the BDI plan se-
lection process by using preferences as a constraint on plan
selection when a choice needs to be made. For example, if
the user prefers 5∗ hotels, then the agent should first choose
plans which book 5∗ hotels in preference to other plans. We
also allow preferences to be specified for ordering subgoals
of plans when their ordering is not determined by design.
For example, satisfying the preference of travelling by train
and spending any money saved on accommodation requires
the subgoal of booking a train to be performed first.

2. PREFERENCE SPECIFICATION
Our preference specification consists of two parts: express-

ing the user preferences in a preference language and anno-
tating the goals and plans of the agent with additional infor-
mation. The annotated information is used at runtime when
the agent utilizes the user preferences to make a decision.

Preferences are expressed in terms of properties of goals,
which can be thought of as the relevant effects of the achieve-
ment of a goal. For example, a goal G of booking a holiday
may have a property called payment which specifies the pay-
ment method used. Any plan that achieves G by paying for
the holiday with a credit card will result in the value credit
being assigned to this property. Similarly, an alternative
plan may assign the value debit for payment. This means
that the set {credit, debit} contains the possible values of
the property payment for G.

The intended meaning of a property p of a goal or plan
is that upon successful execution of that goal or plan, the
value of p will be either one of the programmer-specified
values or a value called null when the agent’s execution does
not explicitly assign a value (e.g., a goal property may not
receive a value if not all plans for that goal assign a value to
that property).

Our preference language is based on the language LPP [1]
and it allows the user to specify preferences over property
values. For example, the statement “I would prefer for pay-
ment to be made via credit card” states the preference for
the value credit rather than debit for the payment property.

The structure of our preference formulas follows LPP in

1139



that we we use basic desire formulas to represent basic state-
ments about the preferred situation, atomic preference for-
mulas to represent an ordering over basic desire formulas
and general preference formulas to express atomic prefer-
ence formulas that are optionally subjected to a condition.
We introduce the class of conditional preference formulas
that allow us to specify conditions with regard to informa-
tion collected at runtime. The user preferences are specified
as a set of general preference formulas.

Due to space constraints we only give examples of each
class of preference formulas and some user preferences to-
gether with their representation in our preference language.
The semantics of our language is similar to that of LPP [1].

Examples of basic desire formulas are transport.type =
train and usage(money, 500,≤), indicating a preference for
a preferred property value and the usage of a resource respec-
tively. In atomic preference formulas we can order basic de-
sire formulas to represent a preference of one over the other.
For example, the atomic preference formula transport.type =
plane (0) � transport.type = train (100) expresses that
transport by plane is preferred to transport by train. A con-
ditional preference formula, such as failure(book flight),
can be used to express preferences such as, “If I’m unable to
travel by plane, then I prefer ...”

We now give several user preferences and their represen-
tation in our preference language. Examples of user prefer-
ences are “I prefer to minimize the money spent on accom-
modation.”, “I prefer to fly rather than travel by train.”, and
“If the accommodation is a hotel then I prefer to fly with
Jetstar.”. We can represent the given user preferences as
the following preference formulas:

acc.minimize(money) (0)
transport.type = plane (0)� transport.type = train (100)
acc.type = hotel : book flight.airline = Jetstar (0)

For the purpose of annotating and computing additional
information for the goals and plans of the agent, we use the
notion of a goal-plan tree. A goal-plan tree contains goal and
plan nodes and it captures the decomposition of a goal into
plans that can achieve that goal and the decomposition of a
plan into subgoals that are posted by that plan. Specifically,
in a goal-plan tree a goal node has one or more plan nodes
as children and a plan node has zero or more goal nodes as
children. We follow the approach of Thangarajah et al. [2,
3] to augment the nodes in a goal-plan tree with summary
information. We annotate a node with a property summary
containing properties with their possible values. We use
resource summaries [3] to guide the agent’s decisions with
regard to preferences over resource usage.

For each goal node the programmer specifies a human-
readable name and for each plan node the programmer can
specify resource requirements and properties. For example,
a goal named book hotel can have a plan for booking a 3∗

hotel (with resource requirement money = 200 and a prop-
erty quality = 3∗) and a plan for booking a 5∗ hotel (with
money = 400 and quality = 5∗).

After annotating the goals and plans we propagate this
information to nodes higher in the goal-plan tree. As a re-
sult, each property summary contains information of that
node and all nodes below it in the goal-plan tree. We define
two propagation rules that compute, for a given goal or plan
node, the information in its property summary based on the
annotations of that node and its child nodes. For exam-
ple, the book hotel goal above, assuming just the two plans
mentioned as children, would have a resource summary of

〈 (money, 200), (money, 600) 〉1 and a property summary of
〈 (quality, {3∗, 5∗}) 〉2 attached to its node in the tree.

We propagate information upwards to accumulate the avail-
able summary information in the root node (top-level goal)
of the goal-plan tree. The user specifies preferences in terms
of the summary information of the root node. The user
therefore does not need to know the structure of the goal-
plan tree. Further, the goal-plan tree can be used by multi-
ple users as preferences are specified separately from it.

3. REASONING ABOUT PREFERENCES
We can identify two types of decisions that an agent needs

to make. For a goal, an agent can select one of the plans
and for a plan, an agent can choose the order in which to
pursue the subgoals, if any, unless the order is determined
by the structure of the plan.

The preferred order in which plans of a goal should be
selected for execution is computed in two steps. We compute
a score for each plan of a goal by evaluating the preference
formulas and we then sort the plans by that score from most
to least preferred. The output of this algorithm is an ordered
list of the plans and the agent attempts the plans in that
order. In case of plan failure, the next plan in the ordered
list is attempted.

The order in which subgoals of a plan should be pursued is
computed by analyzing the preference formulas containing
a condition as well as the structure of the goal-plan tree.
Consider the general preference formula

goal1.prop1 = value1 : goal2.prop2 = value2 (0)

which can be read as“if prop1 of goal1 has received the value
value1 then I prefer prop2 of goal2 to receive value2”. To
satisfy this preference, we should execute goal1 before goal2
to determine the value of prop1. If its value is indeed value1
then we can aim to satisfy the preferred value of prop2 for
goal2. We compute the constraints on subgoals for each
plan (i.e. subgoal g1 should preferably be executed before
subgoal g2) and we use these to compute the preferred order
of subgoals of a plan. The execution order of subgoals of
a plan is computed by repeatedly adjusting an ordering of
the subgoals, starting with an arbitrary ordering, using the
ordering constraints. For example, if g1 should preferably be
executed before g2, we move g2 to the end of the ordered list
of subgoals and we proceed to the next ordering constraint.

We have implemented and tested our preference system in
the agent platform Jadex3 using a number of examples. The
implementation consists of around 3000 lines of code, which
utilizes the metagoal and metaplan features of Jadex.

4. REFERENCES
[1] M. Bienvenu, C. Fritz, and S. A. McIlraith. Planning

with qualitative temporal preferences. In KR, pages
134–144. AAAI Press, 2006.

[2] J. Thangarajah, L. Padgham, and M. Winikoff.
Detecting & exploiting positive goal interaction in
intelligent agents. In AAMAS, pages 401–408, 2003.

[3] J. Thangarajah, M. Winikoff, L. Padgham, and
K. Fischer. Avoiding resource conflicts in intelligent
agents. In ECAI, pages 18–22, 2002.

1The necessary and possible resource requirements as de-
scribed in [3].
2The property is assigned one and only of the values.
3http://jadex.informatik.uni-hamburg.de

1140


