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ABSTRACT
This paper studies the problem of collective decision-making in
combinatorial domain where the agents’ preferences are represented
by qualitative models with TCP-nets (Tradeoffs-enhanced Condi-
tional Preference Network). The features of TCP-nets enable us
to easily encode human preferences and the relative importance
between the decision variables; however, many group decision-
making methods require numerical measures of degrees of desir-
ability of alternative outcomes. To permit a natural way for prefer-
ence elicitation while providing quantitative comparisons between
outcomes, we present a computationally efficient approach that com-
piles individual TCP-nets into ordinal penalty scoring functions.
After the individual penalty scores are computed, we further define
a collective penalty scoring function to aggregate multiple agents’
preferences.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design
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1. INTRODUCTION
In many real world scenarios, we need to represent and reason

about the simultaneous preferences of multiple agents [4]. In this
paper, we investigate the theory of TCP-nets (Tradeoffs-enhanced
Conditional Preference Network) [2], a variant of CP-net (Condi-
tional Preference Network) [1], as a formal model for representing
and reasoning about the agents’ preferences. We present an ap-
proach that compiles an individual TCP-net into an ordinal penalty
scoring function. The proposed approach preserves all strict pref-
erence ordering induced by the original TCP-net and provides a
numerical measure of desirability of alternative outcomes. More-
over, it provides an easy way for preferential comparisons. After
the individual penalty scores of each agent is built, then the indi-
vidual penalty scores are aggregated into a normalized collective
penalty scoring function modelling the preferences of a group of
agents.
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2. TCP-NETS
A TCP-net (Tradeoffs-enhanced Conditional Preference Network)
N [2] is a preference-representation structure that extends the CP-
net [1] by incorporating the relative importance between variables.
The nodes of a TCP-net are the domain variables. There are three
sets of arcs between variables: cp, i and ci. cp denotes a set of
directed cp-arcs (cp stands for conditional preference). A cp-arc
〈
−−→
X,Y 〉 is in N iff the preferences over the values of Y depend on

the actual value of X; we called X is a parent variable of Y . Each
variable Y is then annotated with a conditional preference table
CPT (Y ), which associates a total order �Y |u with each instanti-
ation u of Y ’s parents Pa (Y ), i.e. u ∈ D (Pa (Y )). i is a set of
directed i-arcs (where i stands for importance). An i-arc 〈

−−→
X,Y 〉 is

in N iff X is unconditionally more important than Y , i.e., X . Y .
ci is a set of undirected ci-arcs (where ci stands for conditional im-
portance). A ci-arc (X,Y ) is in N iff we have RI (X,Y |Z) for
some Z ⊆ V− {X,Y } and Z is called the selector set of (X,Y ).
We denote the selector set of a ci-arc γ = (X,Y ) by S (γ) and
the union of the selector set in a TCP-net N by S(N ). Each ci-
arc γ = (X,Y ) is associated with a conditional importance table
CIT (γ) from every instantiation of s ∈ D (S (γ)) to the orders
over the set {X,Y }. A TCP-net in which the sets i and ci (and
therefore, the conditional importance tables) are empty, is also a
CP-net. In this paper, we make the classical assumption that each
agent j’s TCP-netsNj is conditionally acyclic1.

3. INDIVIDUAL PREFERENCE
Our work of individual preference approximation is based on the

work of Domshlak et al. [3], which provides a numerical approxi-
mation for acyclic CP-nets using weighted soft constraints. In this
paper, we go one step further by incorporating the relative impor-
tance information among pairs of variables and introduce an ordi-
nal penalty scoring function as a numerical approximation not only
for acyclic CP-nets, but also for conditionally acyclic TCP-nets. In
broad terms, given a conditionally acyclic TCP-net, we generate a
penalty scoring function representing that TCP-net in the follow-
ing steps. First, we assign an importance weight to each variable
based on the structure of the given TCP-net. Next, a penalty scor-
ing function is defined based on penalty analysis. As to examine
the structure induced by a TCP-net, we recall the following notion
of the dependency graph of a TCP-net [2]:

DEFINITION 1 (DEPENDENCY GRAPH). The dependency graph
N ∗ of a TCP-net N contains all the nodes and arcs of N , and for
every ci-arc γ = (X,Y ) in N and every variable Z ∈ S (γ), N ∗

1We refer to [2] for the formal definition of conditionally acyclic
TCP-nets.
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(a) TCP-net (b) Dependency graph (c) Arc value

Figure 1: An example of TCP-net, its dependency graph and arc values

contains a directed sci-arc 〈
−−→
Z,X〉 (resp. 〈

−−→
Z, Y 〉), if there is no arc

between Z and X (resp. Z and Y ) in N . We denote sci as the set
of sci-arcs inN ∗.

Figure 1(b) shows the dependency graph of the CP-net in Fig-
ure 1(a). For a variable X in N ∗, we call the variables Y s.t.
〈
−−→
X,Y 〉 ∈ cp ∪ sci as the dependants of X . For a variable X ,

let |D (X)| be the domain size of X and thus there are |D (X)|
degrees of penalties. Without loss of generality, we assume the de-
gree of penalties of a variableX range between 0 and |D (X)|−1,
that is, d1 = 0, . . . , d|D(X)| = |D (X)| − 1. For the TCP-nets
in Figure 1(a), since all variables are binary, there are only two de-
grees of penalties, i.e., d1 = 0 and d2 = 1. For a variable X ,
consider a preference ordering over the value ofX given an instan-
tiation ofX’s parents, let the rank of the most preferred value ofX
be 0 and the rank of the least preferred value of X be |D (X)| − 1.
Consequently, given an outcome o, the degree of penalty of a vari-
able X in o is the rank of the value o[X] in the preference or-
dering over X given the parent context u = o[Pa(X)]. We de-
note by do

X (do
X ∈

{
d1, . . . , d|D(X)|

}
) the degree of penalty of

X with respect to o. For instance, consider a variable X such
that D(X) = {x, x′, x′′}. Assume that, under a parent context
u = o[Pa(X)] assigned by an outcome o, x � x′ � x′′. Hence, if
o[X] = x, then do

X = d1 = 0; if o[X] = x′, then do
X = d2 = 1;

if o[X] = x′′, then do
X = d3 = 2.

We then analyse the importance weights of variables in a TCP-
net. We first assign the value to each arc in the dependency graph
of the given TCP-net, then, we analyse the importance weight of a
variable X in a particular outcome o, denoted by wo(X), by con-
sidering (i) the values of the directed cp-, i- and sci-arcs 〈

−−→
X,Y 〉 that

originate at X; and (ii) the values of the ci-arcs γ = (X,Y ) ∈ ci
s.t. X . Y given z = o[S(γ)]. We denote the value of an arc
γ where γ ∈ cp ∪ sci ∪ i by v(γ); and the value of an arc γ =
(X,Y ) ∈ ci under the condition that X . Y (resp. Y . Z) by
vX.Y (γ) (resp. vY .X(γ)). Moreover, as the importance weight
of a variable X is context-dependent, when we assign the value to
an arc γ, we consider the upper bound weight of X that γ points
to. The upper bound weight of a variable X , denoted by wub(X1),
is computed under the assumption that for all ci-arc (X,Y ) ∈ ci,
X is contextually more important than Y . Figure 1(c) shows an
example of assignments to the arc values and upper bound weights
of variables for the given dependency graph in Figure 1(b).

Given a TCP-net N and an outcome o, the penalty of a vari-
able X in o is the degree of penalty of X in o, i.e. do

X , multiplied
by the importance weight of X in o, i.e. wo(X). Then we can
analyse the penalty score of an outcome by considering the sum of
the penalties of variables in that outcome: ∀o ∈ O, pen (o) =∑

X∈V wo (X) · do
X

4. COLLECTIVE PREFERENCE
After the individual penalty scores are computed independently,

these penalty scores are aggregated into a normalized collective
penalty scoring function that best conveys the preferences of the
group of the agents.

DEFINITION 2 (COLLECTIVE PENALTY SCORING FUNCTION).
Given a set of conditionally acyclic TCP-nets N = {N1, . . . ,Nn},
the collective penalty scoring functionP mapping fromO to [0,+∞]
is defined by:

∀o ∈ O, P (o) = ^ {peni (o) | i = 1, . . . , n} (1)

where ^ is a function that satisfies non-decreasingness for each of
its argument and commutativity.

As discussed in [4], the most natural choices for ^ are sum and
max. sum is a utilitarian aggregation operator, stating that the col-
lective penalty score of an outcome is the sum of the penalty scores
of the agents in the group. On the other hand, max states that the
maximum penalty score among all the agents should be considered.
Thus, the max aggregation operator corresponds to the egalitarian
social welfare.

5. FUTURE WORK
. In this paper, we have studied the problem of group decision-

making with TCP-nets (Tradeoffs-enhanced Conditional Preference
Network). Based on the previous work, we have gone one step fur-
ther by incorporating the relative importance relation among pairs
of variables and introduced an individual penalty scoring function
as a numerical approximation not only for acyclic CP-nets, but also
for conditionally acyclic TCP-nets.

Nonetheless, the present work is only applicable for condition-
ally acyclic TCP-nets. The investigation of techniques to deal with
cyclic preferences need to be further explored.
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