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Introduction

The Autonomous Agents and MultiAgent Systems (AAMAS) conference series brings together researchers from
around the world to share the latest advances in the field. It provides a marquee, high-profile forum for research in
the theory and practice of autonomous agents and multiagent systems. AAMAS 2002, the first of the series, was held
in Bologna, followed by Melbourne (2003), New York (2004), Utrecht (2005), Hakodate (2006), Honolulu (2007),
Estoril (2008), Budapest (2009) and Toronto (2010). You are now about to enter the proceedings of AAMAS 2011,
held in Taipei, Taiwan, as AAMAS celebrates its 10th anniversary as the successful merger of three related events
that had run for some years previously.

In addition to the general track for the AAMAS 2011 conference, submissions were invited to three special tracks:
a Robotics track, a Virtual Agents track and an Innovative Applications track. The aims of these special tracks
were to give researchers from these areas a strong focus, to provide a forum for discussion and debate within the
encompassing structure of AAMAS, and to ensure that the impact of both theoretical contributions and innovative
applications were recognized. Each track was chaired by a leader in the field: Maria Gini for the robotics track,
James Lester for the virtual agents track, and Peter McBurney for the innovative applications track. The special
track chairs provided critical input to selection of Program Committee (PC) and Senior Program Committee (SPC)
members, and to the reviewer allocation and the review process itself. The final decisions concerning acceptance of
papers were taken by the AAMAS 2011 Program Co-chairs in discussion with, and in full agreement with the special
track chairs.

Only full paper submissions were solicited for AAMAS 2011. The general, robotics, virtual agents, and innovative
applications tracks received 452, 31, 51, and 41 submissions respectively, for a total of 575 submissions.

After a thorough and exciting review process, 126 papers were selected for publication as Full Papers each of which
was allocated 8 pages in the proceedings and allocated 20 minutes in the Program for oral presentation. Another
123 papers were selected as Extended Abstracts and allocated 2 pages each in the proceedings. Both Full Papers
and Extended Abstracts are presented as posters during the conference.

Of the submissions, more than half (338) have a student as first author, which indicates an exciting future for the
field. Representation under all submissions of topics (measured by first keyword) was broad, with top counts in
areas such as teamwork, coalition formation, and coordination (31), distributed problem solving (30), game theory
(30), planning (26), multiagent learning (24), and trust, reliability and reputation (17).

We thank the PC and SPC members of AAMAS 2011 for their thoughtful reviews and extensive discussions. We
thank Maria Gini, James Lester and Peter McBurney for making the Robotics, the Virtual Agents and the Innovative
Applications tracks a success. We thank Michael Rovatsos for putting together the proceedings. Finally, we thank
David Shield for his patience and support regarding Confmaster during every stage between the submission process
and the actual AAMAS 2011 event. The Program represents the intellectual motivation for researchers to come
together at the Conference, but the success of the event is dependent on the many other elements that make up
the week especially the tutorials, workshops, and doctoral consortium. We thank all members of the Conference
Organising Committee for their dedication, enthusiasm, and attention to detail, and wish to particularly thank
Von-Wun Soo as Chair of the Local Organising Committee for his contributions.

Kagan Tumer and Pınar Yolum,
AAMAS 2011 Program Co-Chairs

Peter Stone and Liz Sonenberg,
AAMAS 2011 General Co-Chairs
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Stéphane Airiau (University of Amsterdam)
Francesco Amigoni (Politecnico di Milano)
Ana Bazzan (Universidade Federal do Rio Grande do Sul)
Jamal Bentahar (Concordia University)
Rafael Bordini (Universidade Federal do Rio Grande do Sul)
Cristiano Castelfranchi (ISTC-CNR)
Steve Chien (Jet Propulsion Laboratory, Caltech)
Amit Chopra (University of Trento)
Brad Clement (California Institute of Technology)
Helder Coelho (Universidade de Lisboa)
Vincent Conitzer (Duke University)
Mehdi Dastani (Utrecht University)
Keith Decker (University of Delaware)
Ed Durfee (University of Michigan)
Edith Elkind (Nanyang Technological University)
Ulle Endriss (University of Amsterdam)
Piotr Gmytrasiewicz (University of Illinois at Chicago)
Jonathan Gratch (University of Southern California)
Dominic Greenwood (Whitestein Technologies)
Dirk Heylen (University of Twente)
Koen Hindriks (Delft University of Technology)
Takayuki Ito (Nagoya Institute of Technology)
Odest Jenkins (Brown University)
Gal Kaminka (Bar Ilan University)
Jeffrey Kephart (IBM Research)
Sven Koenig (University of Southern California)
Sarit Kraus (Bar-Ilan University)
Kate Larson (University of Waterloo)
João Leite (Universidade Nova de Lisboa)
Pedro Lima (Lisbon Technical University)
Michael Luck (King’s College London)
Rajiv Maheswaran (University of Southern California)
Janusz Marecki (IBM Research)
Stacy Marsella (University of Southern California)
John-Jules Meyer (Utrecht University)



Daniele Nardi (Sapienza University Roma)
Ann Nowe (Vrije Universiteit Brussel)
Ana Paiva (INESC-ID)
Simon Parsons (City University of New York)
Michal Pechoucek (Czech Technical University)
Paul Piwek (The Open University)
Helmut Prendinger (National Institute of Informatics)
Iyad Rahwan (Masdar Institute)
Mark Riedl (Georgia Institute of Technology)
Thomas Rist (University of Applied Sciences Augsburg)
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Célia da Costa Pereira (Université de Nice Sophia-Antipolis)
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Yann-Michaël De Hauwere, Peter Vrancx, Ann Nowé . . . . . . . . . . . . . . . . . . . . . . . . . 1115

Human-like Memory Retrieval Mechanisms for Social Companions
Mei Yii Lim, Ruth Aylett, Patricia A. Vargas, Wan Ching Ho, João Dias . . . . . . . . . . . . . 1117

Forgetting Through Generalisation - A Companion with Selective Memory
Mei Yii Lim, Ruth Aylett, Patricia A. Vargas, Sibylle Enz, Wan Ching Ho . . . . . . . . . . . . . 1119

Representation of Coalitional Games with Algebraic Decision Diagrams
Karthik .V. Aadithya, Tomasz P. Michalak, Nicholas R. Jennings . . . . . . . . . . . . . . . . . . 1121

Game Theoretical Adaptation Model for Intrusion Detection System
Martin Rehak, Michal Pěchouček, Martin Grill, Jan Stiborek, Karel Bartos . . . . . . . . . . . . . 1123

Solving Strategic Bargaining with Arbitrary One-Sided Uncertainty
Sofia Ceppi, Nicola Gatti, Claudio Iuliano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

Manipulation in Group Argument Evaluation
Martin Caminada, Gabriella Pigozzi, Miko laj Podlaszewski . . . . . . . . . . . . . . . . . . . . . . 1127

Abstraction for Model Checking Modular Interpreted Systems over ATL
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ABSTRACT
Central to the vision of the smart grid is the deployment of
smart meters that will allow autonomous software agents,
representing the consumers, to optimise their use of devices
and heating in the smart home while interacting with the
grid. However, without some form of coordination, the pop-
ulation of agents may end up with overly-homogeneous op-
timised consumption patterns that may generate significant
peaks in demand in the grid. These peaks, in turn, reduce
the efficiency of the overall system, increase carbon emis-
sions, and may even, in the worst case, cause blackouts.
Hence, in this paper, we introduce a novel model of a De-
centralised Demand Side Management (DDSM) mechanism
that allows agents, by adapting the deferment of their loads
based on grid prices, to coordinate in a decentralised man-
ner. Specifically, using average UK consumption profiles for
26M homes, we demonstrate that, through an emergent co-
ordination of the agents, the peak demand of domestic con-
sumers in the grid can be reduced by up to 17% and carbon
emissions by up to 6%. We also show that our DDSM mech-
anism is robust to the increasing electrification of heating in
UK homes (i.e., it exhibits a similar efficiency).

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Agents, Multi-Agent Systems

Keywords
Energy, Demand-side Management Electricity, Multi-Agent
Systems, Agent-Based Control, Agents.

1. INTRODUCTION
The creation of the Smart Grid has been posed as one of the
greatest challenges of this century, as countries face dwin-
dling non-renewable energy sources and the adverse effects
Cite as: Agent-Based Control for Decentralised Demand Side Manage-
ment in the Smart Grid, S. D. Ramchurn, P. Vytelingum, A. Rogers, N. R.
Jennings, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems – Innovative Applications Track (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp.   5-12.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of climate change due to carbon emissions [12]. The vision of
a Smart Grid includes technologies that enable the efficient
integration of intermittent renewable energy sources (such
as wind or solar energy) and electric vehicles, and will re-
duce demand by allowing consumers to better manage how
electricity is used, stored, and delivered. One of the key
underpinnings of this endeavour is the concept of the smart
meter which aims to manage the devices in the home to min-
imise inefficiencies in usage and maximise the user’s savings.
Smart meters also aim to interact with the grid in order to
help reduce peaks in demand (which would otherwise lead to
instability in the grid, higher energy costs and higher carbon
emissions) and keep up with variable output from wind or
solar energy generators [1]. If these ideal features of smart
metering materialise, they may lead to significant reductions
in energy costs and carbon emissions while guaranteeing se-
curity of supply.

To date, smart meters have mainly been designed to act
as information provisioning devices that tend to leave it to
the user to manage devices in the home, with the hope they
will reduce their energy demands. In addition to this, De-
mand Side Management (DSM) technologies have also been
developed to alter the behaviour of users by either charging
them for using electricity at peak hours (potentially leading
to other peaks at cheaper hours) or by inducing the devices,
via the smart meter, to turn off (or on) when the network
signals them to (either through price signal or the frequency
of AC power) [6, 7].1 While such DSM techniques have been
shown to bring about significant improvements on a small
number of houses, it is unclear how such technologies will
scale when smart meters are rolled out to millions of homes
or buildings nationwide.2 In particular, the centralised man-
agement of even thousands of smart meters is likely to be
a complex task that may require intruding upon users’ pri-
vacy to cater for all homes, each with its own specific set of
devices, usage profile, and preferences set by the owner (e.g.,
thermostat settings or times at which she wishes to switch on
energy intensive devices such as washing machines). More-
over, as we show in this paper, simply leaving smart meters
to react to price or frequency fluctuations can cause all de-
vices to respond at the same time (e.g., every user switching

1A change in frequency is caused by unmatched supply and
demand in the grid. Maintaining the frequency of electric-
ity (50Hz in UK) is important because devices running on
AC power such as electric motors in household appliances
are optimised for this frequency and may be damaged if it
deviates too far.
2As per the Climate Change Act of 2008, the UK Govern-
ment has committed to installing smart meters in all of the
26M homes in the UK by 2020 [2].
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on the air conditioning unit or washing machine at the same
time), thus generating peaks in demand that impact on the
system. Finally, the fact that increasingly more and more
features of the home are likely to be electrified in the future
[3] (e.g., the use of heat pumps for space and water heat-
ing), means that more significant peaks may be created due
to the reactive behaviour of the smart meters. Thus, un-
less appropriate control strategies are implemented to allow
smart meters to coordinate, they may well generate greater
peaks in demand than before, leading to a more stressed grid
and, in the worst case, blackouts.

Against this background, in this paper, we develop and
evaluate a model of decentralised demand side management
(DDSM) to coordinate large populations of autonomous agents
representing individual smart meters. In more detail, we
model the smart home as being composed of a number of
deferrable loads (controlled by an agent that optimises the
deferment of these loads so as to maximise the comfort in
the home and minimise energy costs) as well as non-deferable
loads. Moreover, we design mechanisms for agents to adapt
(instead of reacting as in traditional DSM mechanisms) the
deferment of their loads. Thus, this paper advances the
state of the art in the following ways. First, we provide a
model of the smart home where the deferment of loads is op-
timised using mathematical programming techniques. Sec-
ond, we provide motivating examples that illustrate the key
requirements to implement fully decentralised agent-based
control strategies and thereon show that our model of DDSM
meets these requirements. Third, we empirically evaluate
our DDSM mechanism (on a population of 5000 agents) and
show that using DDSM leads to the emergent coordination
of agents (without directly communicating with each other).
Based on the average load profile of 26M UK homes, the
agents converge to an equilibrium where the peak demand
of the domestic consumers is flattened by up to 17% and
carbon emissions are reduced by up to 6%. Furthermore,
using evolutionary game theoretic techniques, we also show
that it is always profitable (i.e., it is a Nash Equilibrium) to
allow agents to control the deferment of devices as the pro-
portion of smart homes in the population increases. Finally,
we demonstrate that our DDSM mechanism would remain
effective even in a future with significantly more electrified
heating.

The rest of this paper is structured as follows. In Section
2, we review the literature and in Section 3, we describe our
model of the smart home. Section 4 presents the mathemat-
ical programming solutions we propose to the optimisation
problems that may need to be solved by the smart meter.
We present the requirements for implementing the DDSM
and then, our DDSM in Section 5. In Section 6, we em-
pirically evaluate the performance of the DDSM in terms
of its impact on the smart home and the grid performance.
Section 7 concludes.

2. BACKGROUND
Schweppe et al. introduced the concept of DDSM and were
the first to propose a design for the smart meter which in-
cluded advanced functions to optimise the schedule of loads,
the prediction of demand in the home, and the prediction
of weather conditions among others [10].3 While being far
ahead of their time, their work mainly dealt with predicting

3Prior to this, they had provided techniques to (i) control
demand and supply in the network through the use of spot
pricing of electricity [11] (ii) perform demand side manage-

the system behaviour, given the implementation of smart
meters, using closed form solutions that required approxi-
mating and homogenising the behaviours of actors involved
in the system. In contrast, in this paper, we present an
agent-based approach that allows us to model each individ-
ual home in the system and to simulate large numbers of
such homes (potentially in the order of millions given enough
computational resources) in order to analyse system perfor-
mance. In so doing, we are able to establish the incentives of
the users to adopt smart metering technology using agent-
based simulations and evolutionary game theoretic (EGT)
techniques.

Similar to our work is that of Vytelingum et al. [13] who
presented a model of smart meters controlling storage de-
vices in the home and showed how doing so improves the
performance of the system at large. However, they do not
deal with more complex deferrable loads and managing the
comfort in the home, which are key issues in DSM. Hence,
we believe our paper generalises their approach by formal-
ising and evaluating the control mechanism needed to elicit
good equilibria in the system when performing demand side
management.

In addition to these theoretical studies, recent DSM tri-
als by the GridWise Project4 have shown that market-based
control techniques, where homes respond to real-time pric-
ing (RTP), can reduce peak demand (when prices are high)
to some degree [6, 7]. Theoretical studies of this setting also
predict similar benefits [8]. However, these approaches sim-
plify the behaviour of the devices in the home to reactively
respond to prices rather than predicting and planning use.
This uncoordinated behaviour, in turn, leads to peaks in de-
mand being shifted to periods when the prices are low. In
contrast, in our DDSM, the agents adapt the behaviour of
the devices which allows them to coordinate, in an emergent
fashion, to flatten demand.

3. THE SMART HOME MODEL
In this section we present a model of an agent that optimises
the home’s energy usage by managing loads to maximise
savings while mitigating the impact on the user’s lifestyle
(or comfort). Now, it is important to note that loads can
be classified into two categories: those that can and those
that cannot be deferred to later times. Examples of the lat-
ter include lighting, entertainment devices, phone charging
and computer usage and of the former, include washing ma-
chines, dishwashers, boilers and fridges. Hence, the agent is
only able to control some of the devices in the home without
impacting too much on the lifestyle of the user. Moreover in
the UK, deferrable loads currently account for around 20%
of the domestic electricity usage and this is likely to grow
with the increased electrification of space and water heating
[2, 9].5 Now, if agents are not coordinated in defering these
loads, they may induce higher peaks in the system than
before (as discussed in Section 1). Thus, before proposing
our solution to this, in the following subsections we build a
model of a smart home that is sufficiently realistic to cap-

ment through market-based exchanges of energy rights to re-
duce peaks in electricity demand [15], and (iii) optimise the
heating module of a building or a set of buildings through
the use of spot pricing.
4See more details at http://gridwise.pnl.gov/.
5Mackay convincingly argues that heat pumps are much
more efficient than (micro) combined heating and power
(CHP) technology that is currently more popular.
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ture the key effects that we address. In the next subsection,
we elaborate on the types of devices we consider.

3.1 Deferrable Loads
Within the domestic energy domain, it is common to char-
acterise the devices under four specific categories [5]: (i) wet
(e.g., washing machine or dishwasher), (ii) cold (e.g., fridge
or freezer), (iii) water heating (e.g., boiler or hot water dis-
penser) (iv) space heating (e.g., heat pumps or radiators).
The devices that fall under these different categories be-
have very differently. For example, the wet types usually
involve set periods of time at which they are switched on
and off either by the user or by the device controller. The
cold, water and space heating devices are much more de-
pendent on the usage and the temperature of the home and
will vary their behaviour depending on various external fac-
tors beyond the control of the user. Hence, we categorise
these different loads in terms of those that have precise run-
ning times and running periods, which we call shiftable static
loads (SSLs), and those that are more dependent on the tem-
perature, which we call thermal loads.6 Given this, in the
next sub-sections, we provide examplar optimisation mod-
els for SSLs and a thermal load. We will consider a typical
domestic profile that spans the usage over a day divided in
half-hourly slots represented by a set of time slots t ∈ T
where T = {1, · · · , 48}. We also assume the smart meter
receives a price signal (which may be fixed) at every time t.

3.2 Shiftable Static Loads
The set of SSLs is noted as l ∈ L where each load is charac-
terised by a set of parameters. Thus, ol ⊆ T is a set of time
slots at which the device is set by the user to turn on. In ef-
fect, ol represents the preferred time at which the user would
like to switch on the device (e.g., switch on the washing ma-
chine while she is away). Any deviation from this preset
time is likely to cause a loss of comfort to the user. Let
dl ∈ {−24,−23, · · · , 23, 24} be the deferment of the device
and note rl ∈ R+ as the power rating of the device in kW.
The duration vl (in time slots) of each load is drawn from a
uniform distribution, U(vl

min, vl
max) where vl

min, vl
max ∈ T

will depend on the device used (e.g., a washing machine typ-
ically runs between 1 and 3 hours). To model the effect of
shifting loads from their preset time, let Δcl ∈ R+ be the
marginal comfort cost associated with deferring the device
to a different time from those initially set in ol. Then, the
overall comfort cost is cl = Δcl|dl|. This assumes that the
more the smart meter deviates from the time at which the
user initially sets a device to run, the more discomfort it
will cause to the user.7 The key variable in our optimisa-
tion model is effectively dl since it determines the power
consumption (which, in turn, determines the price paid by
the user) and comfort cost of the user. Given a price pt (in
£/kWh), ∀t ∈ T , the objective is then to minimise the cost
and comfort cost, as follows:

min
dl∀l∈L

∑
l∈L σcl +

∑
t∈T

∑
l∈L γl

trlptv
l0

such that γl
t =

{
1 , t = t′ + dl

0 , otherwise
,

where t′ ∈ ol

(1)

6It is possible to cast cold loads such as small fridges under
SSLs if, for example, it is only required for the fridge to keep
its contents well below room temperature (instead of a set
temperature) by turning it on and off at regular intervals).
7Of course, more complex functions could be built by the
user, but this is beyond the scope of this paper.

such that γl
t ∈ {0, 1} determines when the devices is turned

on or off (based on the shifting of the on times ol by dl),
vl is a number of time slots over which device l is on, and
σ ∈ [0, 1] is a scaling factor determining how much comfort
is more important to the user relative to price. Using the
above mathematical programming formulation, the optimi-
sation problem of finding the optimal deferment of SSLs be
therefore be directly solved using standard solvers.

3.3 Thermal Loads
We now turn to modelling the thermal properties of the
home and the use of a heater controlled by an intelligent
adaptive thermostat controlled by the smart meter.8 Stan-
dard adaptive thermostats warm up the house to be at the
required temperature exactly when the user expects to be
home. By turning on the heating before the user is present,
the thermostat ensures the house is always warm when the
user requires it to be. An intelligent adaptive thermostat, in
turn, aims to optimise the heating (or cooling) profile (i.e.,
times at which the heater is turned on), in order to guar-
antee the required temperature is reached at the time the
user is present and that the costs of doing so are minimised.
To this end, we specify the properties of our heating opti-
misation model as follows. First, we detail the properties of
the home and the heater. The heater we choose to model
is a heat pump (either air-source or ground-source) which
simply extracts heat from one place and moves it to another
place [9]. Second, we provide a mixed-integer quadratic pro-
gramming (MIQP) formulation of the problem which can be
solved using off-the-shelf solvers.9

3.3.1 Home and Heater Properties
To model and simulate the thermal properties of the home
and heater, we build upon the models proposed by [4] which
use the ASHRAE model of comfort.10 Let φ ∈ R+ be the
thermal leakage rate of the house measured in W/K. The
internal temperature of the home at time t is τ t

in ∈ R+ and
the external temperature (in K) is denoted as τ t

ext ∈ R+.
The user will set the temperature τopt ∈ R+ at the level
she feels comfortable (typically 22.5 degrees Celcius). The
heat capacity and the total mass of air in the home are
denoted as ahc ∈ R+ (in J/kg/K) and amass ∈ R+ (in kg)
(which is computed using the air density and house volume)
respectively. The heater is described by rh and oh where
rh ∈ R+ is the power rating (in kW) of the heater and oh ⊆
T is a set of time slots at which the heat pump is switched
on. Given this, we also define the variable ht

on ∈ {0, 1} for
every t ∈ T where ht

on = 1 if t ∈ oh and 0 otherwise. This
description of the heater is similar to the deferrable loads
above except that the deferment of the heater is much more
complex as we will see next. For now, we can compute the
total heat input in the system as:

ηt
i = ht−1

on rh − φ(τ t−1
in − τ t−1

ext ) (2)

Moreover, we can define the relationship between the inside
temperature at time t and the amount of heat injected in

8The model also applies to cooling effects simply by setting
the parameters differently to model heat extraction rather
than heat injection as we do here.
9We use IBM ILOG CPLEX 12.2 in our experiments.

10American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) Standard 55-
2010:Thermal environmental conditions for human occu-
pancy.
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the house at time t − 1 as:

τ t
in = τ t−1

in +
kηt

i

ahcamass
(3)

where k = 24×3600
|T | is the time (in seconds) during which the

heater is on.11

Now, we expect users to set the times at which they will
be at home and will want the temperature adjusted for their
comfort. To this end, we define comfort on times as a Ct

on ∈
{0, 1} at every time slot t ∈ T such that the Ct

on = 1 if the
user needs comfort and Ct

on = 0 otherwise. During every
time slot, we model the instantaneous comfort cost (i.e.,
ignoring changes from the previous time slot) of the user
due to heating as Δct

h ∈ R+ such that:

Δct
h =

{
Ct

onω1(τ
t
in − τopt)

2, τ t
in ≥ τopt

Ct
onω2(τ

t
in − τopt)

2, τ t
in < τopt

}
(4)

where ω1, ω2 ∈ [0, 1] are constants that scale the effect of the
temperature difference depending on whether it is more (or
less) comfortable when the temperature is higher or lower
than topt (in degrees celcius). Typically, in colder periods,
ω1 < ω2 is preferred. Then, the total comfort cost at time t
is a combination of the present instantaneous comfort cost
and at t − 1 given by:

ct
h = Δct

h + γΔct−1
h (5)

where γ ∈ [0, 1] scales the effect of the previous time slot on
the current one (and captures the psychological persistence
of discomfort).

3.3.2 MIQP Formulation
Given the times when Ct

on = 1 and the comfort cost ct
h, the

goal of the agent is to optimise the heating so as to minimise
the price paid by the user. Thus, assuming the price of elec-
tricity at every time t is pt, and specifying ht

on ∈ {0, 1}, ∀t ∈
T as the decision variables, the objective function of the
program is:

min
ht

on∀t∈T

∑
t∈T

ct
h + κ(vhht

onrhpt) (6)

subject to (2),(3), and (4), where κ ∈ [0, 1] balances the
cost of heating against the comfort and vh = 1800s is the
duration of one time slot in seconds (assuming each time the
heater is turned on for a half-hour). The quadratic nature of
the objective function arises as a result of the computation
of the comfort cost in (4). We set κ to a very small value to
ensure that this part of the objective function only ensures
that the user mainly optimises her comfort. Now, in some
cases, a budget can be set by the user according to how
much she can afford to spend on a daily basis for heating
purposes. Thus, in order to ensure that the cost is never
higher than a set value p′ ∈ R+, we also add the following
constraint to the model:∑

t∈T

vhht
onrhpt ≤ p′ (7)

Since agents are only intent on maximising their gains
(in comfort and cost savings), their aggregated uncoordi-
nated behaviour may result in poor system performance un-
less demand-side management mechanisms are put in place.

11In our experiments, we refine the resolution to smaller time
slots (e.g., of 5 or 10 minutes) to get a better measure of the
temperature inside the room.

Hence, given our model of the smart home, in the next sec-
tion, we first describe the optimal and centralised solution
that maximises social welfare (and describes what optimal
means in this context) that determines the optimal coor-
dinated behaviour of the agents. By so doing, we can use
this as a benchmark for any control mechanism that can
be developed in this domain (which we use to evaluate our
mechanism in Section 6.

4. MAXIMISING SOCIAL WELFARE
As a result of the individual agents’ deferment of loads, the
consumption of energy at different times of the day may
significantly increase or decrease, resulting in price spikes in
the system. Before going on to design a control mechanism
to reduce this effect, however, we need to determine the
optimal performance of the population of agents as a whole
to evaluate our control mechanism (see Section 6).

As was shown in [13], when agents attempt to defer con-
sumption (in their case, they used storage), a game theo-
retic analysis of the problem predicts that the agents should
converge to the competitive equilibrium. This means that
they converge to an equilibrium (flat) price for electricity
if there is enough storage, at which point social welfare is
maximised.

In the context of deferrable loads, such an analysis is sig-
nificantly more complex as shiftable static loads, comfort
costs, and thermal loads are not homogeneous across the
population of agents. Instead, we can compute the point at
which all agents behave optimally by aligning their individ-
ual objective functions with the global optimum as follows.
First, we assume that each agent i ∈ I , where I is the set of
agents, has a non-shiftable static load lfixed such as light-
ing, cooking and other types of essential loads which have a
power rating fixedt,i ∈ R+ in kW at every time point t ∈ T .
Second, we assume that the cost of electricity for the pop-
ulation is given by a quadratic cost function (the function
is assumed to be quadratic to mimic an increasing marginal
cost for electricity supply – we use such a model in our evalu-
ation) st : R+ → R+ for every time slot t such as st(q) = θq2

where θ > 0. This means that the greater the demand from
the agents, the higher will be the unit price of electricity
(because of the monotonically increasing function). Then,
we aggregate the functions in equations (1) and (6) subject
to the individual constraints as stated in Equations (2), (3)
and (5) and the conditions stated in Sections 3.2 and 3.3.1
as follows:

min
ht

on,i∀t∈T,di
l
∀l∈Li

∑
i∈I

⎛
⎜⎝

∑
t∈T ct

h,i +
∑

l∈Li
σcl,i

+
∑

t∈T st

(∑
l∈Li

γl
t,irl,iv

l
i

+κiv
h
i ht

on,irh,i + fixedt,i

)

⎞
⎟⎠
(8)

The main difference between the above objective and the
individual agents’ objective is that the cost of electricity in
the above case is based on the induced cost as a result of
the agents’ aggregated demand (both from their deferrable
loads and their static demand) using the supply function
s(·) rather than the cost predicted by the agents pt (which
is assumed to be a fixed unit cost).

Note that the optimal algorithm above is unlikely to scale
very well in the number of loads per agent and deferabil-
ity of these loads given the complexity of the optimisation
problem and given non-linearity of the objective function.
Specifically, experiments (where Equation (4) is linearised)
using a standard MIQP solver (e.g., IBM ILOG CPLEX
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12.2) could be run for up to 75 agents with up to three
deferrable loads each (on a 64-bit machine with 12GB of
RAM). Beyond this size, the solver cannot model the prob-
lem in memory. This would be fine for scenarios where a cen-
tral controller has complete control over the few deferrable
loads in a building for example, it will clearly not scale to
hundreds of houses (where users might not want the cen-
tral controller to override their preferences to use electric-
ity) or for deferrable loads (and certainly not to all 26M UK
homes).

Hence, in the next section, we discuss some of main is-
sues in DSM and introduce a novel approach to tackling
this problem in a completely decentralised fashion.

5. DECENTRALISED DEMAND-SIDE MAN-
AGEMENT

Most DSM approaches involve a central controller that ad-
vises a pool of consumers to reduce their current demand
(during peak demands), often by reducing or deferring loads
subject to economic incentives. This approach has repeat-
edly been shown to be effective for relatively small pool
sizes of industrial and commercial consumers [6]. Indeed,
it constitutes the business model of a number of energy
service companies (ESCOs) that exclusively deal with De-
mand Side Management (e.g., EnergyConnect Inc. and En-
erNOC). While it remains feasible to signal a small number
of consumers and expect an immediate response, DSM at
a regional or national level (with 26M of households in the
UK) is more complex. Given this, in the next subsections,
we discuss the main issues associated with applying DSM on
a large scale (dealing with thousands and millions of homes).
First, we justify the need for a price signal to incentivise the
agents to defer their demand. Second, we show that, even
if an accurate price signal is provided according to the cri-
teria we propose, the adaptive and autonomous behaviour
of the agents in the system is the key component that can
enable significant performance benefits in the Smart Grid.
Thus, we propose a novel model of decentralised demand
side management (DDSM).

5.1 The Pricing Mechanism
The pricing mechanism that we propose involves signalling
the costs of generating electricity to the consumers. Tradi-
tionally, consumers are offered a fixed price for electricity by
their supplier. Exceptions to this include time-of-use (TOU)
pricing (e.g., Economy 7 heating or eco:2020 in the UK)
and real-time pricing (RTP) schemes. While fixed pricing
mechanisms completely hide the real-time costs of electricity
(which varies according to the type of generators used and
availability of intermittent renewable energy), TOU pricing
simply biases the real price of electricity in order to incen-
tivise users (who typically aim to maximise their savings)
to shift their loads to off-peak periods (i.e., when aggregate
demand is lower). In contrast, RTP involves providing a
price signal for the next 30 minutes time slot at the current
time. While RTP is still being evaluated in a number of
trials, it has been shown to be better than TOU pricing in
allowing users to dynamically adjust their demand to avoid
peaks when electricity is more expensive [6, 7].

To understand the effect of the different pricing schemes
on demand, consider Figure 1 where we show how 500 smart
homes12 (as described earlier) would react to the three dif-

12We implemented each smart home according to the settings
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Figure 1: Demand optimisation given the Domestic
Economy 7 tariff and the 30-min-tariff pricing mod-
els.

ferent types of pricing mechanisms (where real time prices
are provided for 30-minute time slots). As expected, a fixed
price induces a relatively high demand with large plateaus
in the morning and evening (when users are at home and
typically use their loads) since users are indifferent about
the real-time costs of generating electricity. More impor-
tantly, we can observe that when all the consumers are on
a two-tariff mechanism, they optimise their demand at the
same time (to take opportunity of off-peak prices), and thus
the ensuing demand on the grid now peaks during off-peak
times. Similarly, it can be seen that the RTP mechanism
also shifts demand to different times of the day and induces
other peaks at these times.

These results show that a more accurate signal (i.e., repre-
senting real costs) allows consumers to better optimise their
demand by reacting more often to a more accurate 30-min-
tariff pricing model. However, it is also clear that the de-
mand cannot be flattened by applying only a RTP mecha-
nism, while completely ignoring the behaviour of the agents.
This is because if the agents are signalled a low price for the
next 30-minute period, they will all switch on their devices,
which then results in a peak in demand at the next time
period. When such a mechanism is rolled out on a large
scale, such reactive behaviours can cause significant peaks.
To remedy this, in the next sub-section, we propose a novel
adaptive behaviour for the agents, which builds upon the
RTP mechanism, to allow agents, without any centralised
control, to coordinate in our DDSM model.

5.2 The Adaptive Mechanism
Our adaptive mechanism for DDSM is composed of algo-
rithms that determine how to defer the two different types
of deferrable loads present in the home (i.e., shiftable static
loads and thermal loads) and how to optimise heating. First,
we adopt the Widrow-Hoff learning mechanism [13] to grad-
ually adapt how agents defer their deferrable loads based on
predicted market prices for the next day13 (as opposed to the
next 30 minutes as in [6, 7]). Specifically, an agent i gradu-

given in the evaluation section.
13We use a weighted moving average to predict day-ahead
market prices, but more sophisticated approaches incorpo-
rating domain-specific knowledge could easily be used.

9



ally adapts its deferment parameter di
l towards the optimal

di,∗
l (as computed by the objective function in Equation (1))

as follows:

di
l(t + 1) = di

l(t) + βi(di,∗
l − di

l(t))

where βi ∈ (0, 1] defines the learning rate (i.e. how fast the
agent reacts to changing conditions).

Second, each agent’s behaviour is further modelled by how
often it readjusts its heating profile. Specifically, it reopti-
mises its thermal load profile on any particular day, with
a probability of α ∈ (0, 1). This means, it reruns the op-
timisation detailed in Section 3.3.2 with a probability of α
according to the predicted prices pt for the next day. The
expected number of agents that will optimise on any par-
ticular day is thus given by Nα, where N is the number of
agents with DSM capability. By so doing, we introduce iner-
tia into the optimisation by ensuring that all DSM-capable
agents do not reoptimse at the same time and, in the next
section, we empirically demonstrate that a stable and desir-
able outcome is reached whereby grid demand flattens when
α and β are sufficiently small. Moreover, we also show that
the agents’ best strategy (profit maximising) is to adopt an
adaptive behaviour. Thus, even though consumers are not
centrally coordinated for DSM, our mechanism ensures an
effective emergent coordination among consumers.

In general, our DDSM mechanism can be particularly at-
tractive when dealing with millions of consumers since it
does not require, apart from the price signal (which could
be directly sent to the smart meter), any other form of direct
communication between the generators and the consumers.
Moreover, the adaptive mechanism can also be modelled for
different types of consumers as discussed above. Thus, when
large populations of such consumers are simulated within
a smart grid, it is possible, with reasonable accuracy, to
predict the behaviour of the system. To this end, in the
next section, we provide simulations of populations of smart
homes (extrapolated across the grid14) and evaluate the per-
formance of our DDSM both in terms of the consumers’ ben-
efits and the grid performance. In so doing, we aim to show
how our DDSM mechanism generally aligns the incentives
of the users with the system-wide objectives, leading to a
more efficient and stable Smart Grid.

6. EMPIRICAL EVALUATION
In our experiments we consider a population of 5000 agents15

and a RTP pricing based on the macro-model of the UK
electricity market (as outlined by Vytelingum et al. [13]),
with a quadratically increasing marginal cost. We used, for
the shiftable static loads and thermal loads, data compiled
by the Department of Trade and Industry in the UK from
2008.16 This dataset shows that, while shiftable static loads

14We use a similar methodology to [13] based on real UK
Grid demand and market prices and average UK domestic
load profiles for a typical weekday in winter.

15The time taken to run our simulations grows linearly with
the number of agents and we have confirmed similar results
with populations of up to 10,000 agents. However, when
we compare to the optimal solution, we are limited to 75
agents, due to the computational complexity of the solution.
Hence, to approximate the optimal solution for 5000 agents,
we ran the global optimisation in Equation (8) 100 times for
numbers of agents from 50 to 75 and estimated the optimal
solution for 5000 agents from the trend identified.

16
http://www.berr.gov.uk/files/file11250.pdf on 20/10/2010.

(e.g., wet loads such as washing machines and dryers) are
owned by nearly the whole population, the penetration of
electrical heating is currently only around 7%. Moreover,
shiftable static loads take up on average 20% of the total
energy usage of a house while the rest of the consumption is
due to entertainment, lighting, and cooking purposes. This
setup is likely to change in the future because of a growing
need to use more efficient heating devices such as heat pumps
such that the load profile is likely to change significantly.

Given this, in this section, we also aim to show the ef-
fects of increased deferment of electrified thermal load, on
the smart grid. To this end, we create instances of the smart
home with parameters set according the dataset above. We
model two wet shiftable static loads (dryer and washing ma-
chine) with power rating of 2kW each as well as a thermal
load (with τopt= 22.5, ac = 1000, amass ∈ [1000, 2000], and
rh = 2kW). In order to generate the specified ON times for
the shiftable static loads, we use the average load profile as a
probability density function (i.e., describing the probability
of the device being set to be switched on by the user at each
half-hour period) and use a Poisson distribution Pois(λ) to
generate the number of times the devices are switched on in
a day (with λ = 2). Moreover, we generate τext as the aver-
age 5 minutes temperature readings taken over a period of 5
days from the roof-top sensor at one of our university build-
ings in January 2010 (during the cold season). Wherever
needed, we adjust the number of agents having electrified
heating (i.e., starting with the current 7%). Our experi-
ments are repeated 100 times and the results averaged and
error bars plotted to represent the 95% confidence intervals.

6.1 Performance of the Adaptive Mechanism
First, we evaluate the efficiency of our mechanism. We do
so by comparing the efficiency of the grid when using our
DDSM mechanism as opposed to a centralised system with
complete and perfect information against an optimal be-
haviour. Given our optimal solution (described in Section 4)
with an optimal load factor17 (LF) of 0.76, we can observe
that a DDSM-based grid behaviour converges to the optimal
behaviour (up from LF=0.6) when α is reasonably small as
shown in Figure 2(a). While higher values may give faster
convergence to the optimal, they do not allow the system
to settle at a more efficient equilibrium (i.e. closer to the
optimal). Furthermore, when α is too large, there is no con-
vergence as too many agents are reoptimising at the same
time such that the peaks are simply moved rather than flat-
tened. When α = 1 and every user optimises at the same
time, the system breaks down (with an LF averaging 0.55).
Thus, as we empirically showed, the system converges to
the optimal behaviour without any centralised coordination
when α is reasonably small. Specifically, for the rest of our
experiments, we set α = 0.05.

6.2 Emergent Behaviour of the Smart Grid
Given our DDSM approach with its adaptive mechanism,
we first empirically demonstrate in Figure 2(b) that as the
load factor of domestic consumers converges to the optimal
load factor at 0.76 (meaning fewer peaks in the system), the

17The load factor is the ratio of average power to peak power
and is ideally 1. A low load factor suggests large peaks
in demand. Here we computed the load factor based on
our estimation of the optimal solution as discussed in the
previous section. We validated our results on small numbers
of agents (50-75).
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Figure 2: Evaluating DDSM in the Smart Grid w.r.t. (a) learning rates, (b) Load Factor & CO2 emissions.

percentage of carbon reduction also increases up to 6% (i.e.,
electricity is produced from less polluting sources) as fewer
carbon intensive peaking plants are used.

Next, we analyse the system by considering the load du-
ration curve (LDC) of the grid. The LDC18 is used to illus-
trate the relationship between generating capacity require-
ments and capacity utilization, normalised to the current
domestic load demand in UK. Figure 3 shows the LDC of
the system (based on today’s 7% electrification of heating)
and, specifically, we can observe that particularly within the
peak-load region (which is from 100% to 80%), the curve flat-
tens when optimised, which implies a flattening of demand
peaks. Furthermore, at 100% peak demand, we observe that
the domestic load decreases by up to 17%, compared to the
unoptimised case, which implies that the grid requires 17%
less capacity to cope with domestic demand. Considering
that current domestic peak demand is in excess of 15 GW,
a 17% reduction in capacity requirement is significant and
will become increasingly vital given the high rate of increase
of domestic peak demand.

Next, we analyse the population dynamics to evaluate
whether users will be incentivised to automate their smart
meters (i.e., to give control to an agent). Specifically, we use
evolutionary game theory (EGT) techniques which allow us
to determine whether different proportions of the population
will adopt smart meters (or not) depending on how much
they can save by doing so. First, we formulate the problem
as a complex non-deterministic game where agents have a
mixed strategy xr ∈ (0, 1), i.e. a probability that they have
DDSM capability and are only motivated by financial gains,
where r ∈ S = {DDSM,¬DDSM}. By analysing how xr

changes as the payoffs of agents with and without DDSM
change for different xr (assuming agents are more likely to

18The load duration curve is computed as follows. Let 
 be a
vector of load values of the system at different time slots and

∗ be the ordered version (from high to low) of 
. The load
duration curve is then given as (f(x) ∈ X = {
∗1 , ..., 
∗M} :

x ∈ T+ = {T+
1 , ..., T+

M}), where T+
i =

∑M
j=i tj and tj is the

time slot of the jth ordered load value. The left-hand side
represents the peak loads of the system. The LDC is a useful
way of breaking down the load factor value to describe how
long peaks last for. The domestic capacity (peak load) is
given at 100% load duration.
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Figure 3: Load Duration Curve of Domestic Con-
sumers with today’s 7% electrification.

adopt the better strategy – whether or not to adopt smart
metering), we aim to analyse how the proportion of the pop-
ulation adopting smart meters and DDSM evolves using the
following equations [14]:

ẋr = [u(er, x) − u(x, x)]xr where u(x, x) =
∑
r∈S

u(er, x)xr

xnash = arg min
x∈(0,1)

∑
r∈S

(max[u(er, x) − u(x, x), 0])2

where u(x, x) is the expected payoff of any agent (whether
using DDSM or not), u(er, x) is the expected payoff of an
agent with DDSM given a proportion of the population with
DDSM of xr and, finally, xnash is the Nash Equilibrium of
the system (i.e., xr where there are no incentive for an agent
to deviate from). Figure 4 shows the payoffs of agents with
and without DDSM. Based on our EGT analysis, we deduce
that there is always an incentive for an agent to adopt DDSM
given the higher payoffs for any xr, such that ẋr is always
positive. The population dynamics eventually converges to
the Nash Equilibrium, xnash = 1. This implies that all
agents eventually adopt smart meters and DDSM.
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Figure 5: Load Duration Curve of Domestic Con-
sumers with 25% electrification.

6.3 The Effect of Electrical Heating
Finally, we analyse future scenarios where the proportion
of smart homes with thermal loads might increase. Specifi-
cally, Figure 5 shows grid performance for a potential future
of 25% electrification. Thus, if the number of smart homes
with thermal loads were to increase from 7% to 25%, the de-
mands would be much higher (by up to 31% – based on ini-
tial loads from Figure 3), with higher peaks. Using DDSM,
we demonstrate that these peaks would again be flattened
significantly (shown by the significant drop in the 100% to
80%-peak region) using our novel model of a DDSM, with a
22% decrease in peak domestic capacity.

7. CONCLUSIONS
In this paper, we have provided a model of a smart home and
presented our DDSM; a novel paradigm for mechanisms to
manage demand on a large scale in the smart grid. Through
our simulations involving 5000 homes and using average
(winter) load profiles for 26M homes in the UK, we have
shown that our DDSM mechanism can improve grid per-

formance by reducing peaks in demand by up to 17% and
carbon emissions by up to 6%. We have also predicted, using
evolutionary game theoretic techniques, that consumers will
have significant economic incentives to adopt agent-based
smart meters and will eventually all do so. Finally, we have
shown that DDSM also reduces peaks as demand grows as a
result of increased electrified heating. Future work will look
at integrating price and weather predictions for more effec-
tive DDSM mechanisms and extending these mechanisms
for commercial and industrial consumers in the smart grid.
We also aim to evaluate our mechanism in scenarios where
not all buildings are equipped with agents that can optimise
their behaviour and remain insensitive to real-time prices as
it is at present.
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ABSTRACT
Grid-Integrated Vehicles (GIVs) are plug-in Electric Drive
Vehicles (EDVs) with power-management and other controls
that allow them to respond to external commands sent by
power-grid operators, or their affiliates, when parked and
plugged-in to the grid. At a bare minimum, such GIVs
should respond to demand-management commands or pric-
ing signals to delay, reduce or switch-off the rate of charging
when the demand for electricity is high. In more advanced
cases, these GIVs might sell both power and storage capacity
back to the grid in any of the several electric power markets
— a concept known as Vehicle-to-Grid power or V2G power.

Although individual EDVs control too little power to sell
in the market at an individual level, a large group of EDVs
may form an aggregate or coalition that controls enough
power to meaningfully sell, at a profit, in these markets.
The profits made by such a coalition can then be used by
the coalition members to offset the costs of the electric vehi-
cles and batteries themselves. In this paper we describe an
implemented and deployed multi-agent system that is used
to integrate EDVs into the electricity grid managed by PJM,
the largest transmission service operator in the world. We
provide a brief introduction to GIVs and the various power
markets and discuss why multi-agent systems are a good
match for this application.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Coalition formation, Vehicle-To-Grid, Grid-Integrated-
Vehicle, Power Regulation

1. INTRODUCTION
Cite as: Deploying Power Grid-Integrated Electric Vehicles as a Multi-
Agent System, Sachin Kamboj, Willett Kempton and Keith S. Decker,
Proc. of 10th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems – Innovative Applications Track (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp.  13-20.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Plug-in Electric Drive Vehicles (EDVs), i.e. vehicles that
use electricity to power at least part of their drivetrains, are
becoming increasingly popular and offer some distinct ad-
vantages over their gasoline counterparts: they are cheaper
to drive per-mile, produce fewer tailpipe emissions and have
lower maintenance costs when compared to conventional
gasoline vehicles. Grid-Integrated Vehicles (GIVs) are plug-
in Electric Drive Vehicles (EDVs) with power-management
and other controls that allow them to respond to external
commands sent by power-grid operators, or their affiliates,
when parked and plugged-in to the grid. Electric utilities
and grid operators are interested in integrating EDVs into
the electricity grid, instead of treating them as traditional
dumb loads, because:

1. Since EDVs run on electricity, a large penetration of
EDVs in the market is likely to increase the demand for
electricity. Grid operators are concerned that this in-
creased demand might result in an increase in the peak
load, which would require them to add additional power
generation capacity to the grid [5, 7]. However by us-
ing Demand-Side Management commands or pricing sig-
nals the grid operators might be able to delay, reduce or
switch-off the rate of charging when the demand for elec-
tricity is high and push the EDVs to charge during non-
peak hours [18]. This would not only reduce the need for
new investments but also result in better utilization of
the existing power grid.

2. Electric utilities are increasingly diversifying their gen-
eration portfolio by adding large quantities of renewable
energy resources in order to mitigate climate change and
to reduce our dependence on fossil fuels. These resources
of electricity, like wind and solar power, are“intermittent”
in that the instantaneous power output of these resources
depends on the environmental conditions, such as wind
speed, at any given time. To match the instantaneous
power output of these resources with the instantaneous
power demand, the electricity grid needs some form of
storage capacity. However, our current electricity grid
has a negligible amount of storage capacity, primarily as-
sociated with hydro-electric facilities.

Since most vehicles are parked over 90% of the time, these
EDVs can be used as a large distributed battery and can
provide power storage and ancillary services to the elec-
tricity grid when they are not being driven. This concept
is known as Vehicle-To-Grid power or V2G power [11,
12]. Although individual EDVs control too little power
to sell in the market at an individual level, a large group
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Figure 1: A simplified schematic of the power flow and data
flow amongst the entities and agents in our implemented
system

of EDVs may form an aggregate or coalition that con-
trols enough power to meaningfully sell, at a profit, in
the various electricity markets (See Section 2).

In exchange for integrating with the power grid, the EDV
owners would be paid for the power services that they pro-
vide and this money can be used to offset or partially sub-
sidize the high cost of the batteries in these EDVs. This
in-turn might help to accelerate the adoption of EDVs by
price conscious consumers.

In this paper we describe an implemented and deployed
multi-agent system that is used to integrate EDVs into the
electricity grid managed by PJM. PJM is a Transmission
System Operator (TSO)1 that is responsible for (a) main-
taining the security, integrity and reliability of the power
grid; and (b) operating wholesale energy markets that en-
able the transfer of power between the market buyers (con-
sumers) and market sellers (providers). PJM is the largest
TSO in the world, servicing 13 states and 51 million cus-
tomers in the northeastern and midwest United States.

We decided to use a multiagent system because

1. In this system we are dealing with different individuals,
systems and entities all of which are self-interested and
often have conflicting goals. For example, the TSOs are
primarily concerned with the stability and integrity of the
grid, while the drivers of the cars are more interested in
ensuring that there is sufficient charge in their batteries
for whatever trips they are planning to take. These two
goals might conflict with each other.

2. Various research topics in multiagent systems, like coali-
tions, auctions and electronic markets are directly appli-
cable to this problem and offer a way of modeling the
EDVs and the power markets that they can operate in.

Our implemented system is able to successfully integrate
a group of EDVs into the power grid and is able to provide
1Alternatively known as an Independent System Operator
(ISO) or a Regional Transmission Organization (RTO). We
use the term TSO throughout this paper but other papers
might use ISO or RTO to refer to the same entity.

both demand-side management and V2G services. We have
tested the first phase of the system with 5 EDVs in the PJM
TSO providing services in the regulation market. In the next
phase, we are using what we have learned to integrate an
additional 20 EDVs with plans for an additional 50 EDVs
in Phase III.

The outline of the rest of this paper is as follows. In Sec-
tion 2, we describe the different types of power markets and
their suitability for EDVs. Then in Section 3 we describe
the agents that form our multiagent system and discuss im-
plementation details. Section 4 describes how coalition for-
mation for EDVs is different from the existing work on the
topic and Sections 5 and 6 discuss our evaluation, conclusion
and future work.

2. POWER MARKETS
There are a large number of different power markets run

by the TSOs, each with a different set of rules and mini-
mum requirements for participation. But generally, power
markets can be classified into four distinct types based on
the kind of power provided:

1. Baseload Power: The baseload power market is for the
power that must be provided round-the-clock, usually at
low costs per kWh. This kind of power is usually pro-
vided using large nuclear, coal-fired, hydroelectric and
natural-gas power plants. EDVs are unsuitable for pro-
viding baseload power because (a) EDVs have very lim-
ited battery and power capacities; and (b) most EDVs
are net consumers of power, i.e. they don’t actually pro-
duce electrical power — they simply store power in the
batteries.

2. Peak Power: Peak power is generated and purchased
at times of exceptionally high demand, usually on hot
summer afternoons. Peak power is typically provided by
gas generators that can be switched on and off for shorter
periods of time, usually 3–5 hours. Whereas EDVs with
V2G capabilities might be able to provide peak power, the
battery capacities might limit the amount of power that
can be economically provided. See [10] for more details.

3. Spinning Reserves: Spinning reserves refers to gener-
ators that are available to serve the load in case of un-
planned events like generator or transmission line failures.
They are called spinning reserves because the generators
are kept “spinning” and synchronized to the grid so that
they are readily available when needed. Since spinning
reserves are designed for contingencies, they are rarely
used. They might be used 10–20 times a year and even
then for durations ranging from 10 minutes to an hour.
Furthermore, spinning reserves are paid for the duration
they are available even if they are never used.

EDVs with V2G capabilities are highly suited for provid-
ing spinning reserves because (a) EDVs can react quickly
to contingencies when needed — they can provide power
within a couple of seconds when requested and do not
need to be kept “spinning” like traditional generators.
They just need to be parked and plugged into the grid;
and (b) since spinning reserves are rarely called into op-
eration, it does not affect the battery lifetime as much
participating in some of the other markets might do.

4. Regulation: Regulation power is used to regulate fre-
quency and voltage on the grid by matching the instanta-

14



neous power supplied by the grid with the instantaneous
power demand. To provide regulation services and to par-
ticipate in the regulation market, the participants (typi-
cally generators, but in our case, EDVs) must respond to
a frequent real-time AGC (Automatic Generation Con-
trol) signal sent by the TSO every 2–4 seconds.

There are two types of AGC or regulation signals — (a)
Regulation-Up signals are sent whenever the demand for
power exceeds the supply and are used either to request
additional power from the generators/EDVs (i.e. increase
the supply) or to switch off some load (i.e. reduce the de-
mand); and (b) Regulation-Down signals are sent when-
ever the supply for power exceeds the demand and are
used either to decrease the output of the generators or to
increase the load.

To participate in the regulation market, the regulation
service providers must first advertise a regulation capac-
ity. This advertisement usually takes the form of a bid
in an hourly auction. If the bid is accepted, the regu-
lation providers must respond to the request for specific
amounts of power from the TSO.

Some TSOs have separate markets for regulation-up and
regulation-down and generators may bid in either one or
both of these markets at the same time since the two will
never be requested simultaneously.

EDVs are particularly suited to provide regulation power
because (a) the batteries in the EDVs can respond very
quickly to changes in the regulation request — much
faster than traditional generators; and (b) EDVs can par-
ticipate in the regulation market even if back-feeding of
power (i.e. discharging the batteries and providing power
back to the grid) is disallowed, by varying the rate at
which the batteries are being charged (i.e. by varying the
demand.)

For our system, we decided to focus on the regulation
market because (a) regulation services command the highest
value in the market when compared to other ancillary (for
example, spinning reserves) and non-ancillary (for example,
peak power) services; (b) EDVs are particularly suited for
providing regulation services as discussed above; and (c) the
size of the regulation market is larger than the size of the
spinning reserve market, so even a large number of EDVs
are unlikely to saturate the market.

We worked closely with PJM Interconnection to allow our
EDVs to provide regulation services in the PJM TSO. PJM
requires a 1MW minimum capacity to bid in the regulation
market and requires symmetric advertisements. See Section
3.2 for more details about fulfilling these market require-
ments. For more information about the PJM market rules,
see [3, 19].

3. IMPLEMENTATION
Our agents have been implemented using the JADE (Java

Agent DEvelopment Framework) open-source framework [2].
Our system consists of the following agents:

3.1 VSL Agents
The VSL agents run on an embedded linux computer,

called the Vehicle Smart Link (VSL), inside the cars. The
VSL agents look after the best interests of the owner or
driver of the car. Since the primary purpose of an EDV

Initializing Contracting Reserve Charging

Driving

A A A
A

C
D

E

B

Figure 2: A simplified finite state machine for the VSL
agent. The dotted arrow are actions performed by the driver
of the EDV and are outside the control of the VSL agent.
The dark arrows show the usual progression of state transi-
tions.
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Figure 3: Computing Ts, the time to switch to V2G-
monitoring mode

is to be driven, the primary goal of a VSL agent is to ensure
that there will always be sufficient charge in the EDVs for
whatever trips the driver might want to take. The secondary
goal of the VSL agent is to integrate the EDV into the power
grid, sell grid services and make money for the driver. We
will look at both of these goals below.

The operation of this VSL agent is based on the simpli-
fied finite state machine (FSM) shown in Figure 2. In this
FSM, the dark arrows show the usual progression of state
transitions.

The VSL agent starts out in the Initializing state — in
this state the VSL agent tries to discover coalition servers
servicing the geographic location where the EDV is plugged
in. It also predicts the next trip, either by looking it up in
the owner’s calendar or by predicting it based on the past
driving behavior2.

The VSL agent then computes various times for switch-
ing between the Contracting, Reserve and Charging states,
shown by the transitions C, D and E in Figure 2. These
times are computed based on the graph shown in Figure 3.
In this figure:

2The prediction algorithms are outside the scope of this pa-
per
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Esoc = current amount of charge in the battery

En = expected charge required for the next trip

Emin = minimum reserved charge

Tc = current time

Tn = scheduled time for next trip

Tmin = time needed to charge from minimum charge

Ts = time to switch to straight charge mode

t1 = time difference between Tc and Ts

t2 = time difference between Ts and Tn

Pmax = maximum rate of charging

fc = charge factor, to account for transmission losses

Based on the above, Tmin is the time at which charg-
ing must start if the battery is at its minimum charge,
Emin, and if we are charging at the maximum possible rate,
Pmax. If Tc < Tmin, the VSL agent can safely participate in
V2G regulation without worrying about the next trip since
there will always be enough time to charge for the next trip.
Hence, whenever Tc < Tmin, the VSL agent is in the Con-
tracting state and making contracts with the coalition server.

If Tc > Tmin, the VSL agent switches to the Reserve state
and will still participate in V2G regulation. However, the
VSL agent won’t make any contracts and may switch to the
Charging state at any time depending on the current time,
Tc, and the current state of charge, Esoc. To determine
the time at which the VSL agent should switch to Charge
state, Ts, the VSL continuously monitors the current state
of charge and computes either t1 or t2 as shown in Equations
1 and 2.

t1 =
fc(Tn − Tc)

(1 + fc)
− (En − Esoc)

[Pmax(1 + fc)]
(1)

t2 =
(Tn − Tc)

(1 + fc)
+

(En − Esoc)

[Pmax(1 + fc)]
(2)

In order to sell grid services, the VSL agent must join
a coalition with other VSL agents, make contracts with an
aggregator agent and dispatch regulation power based on
requests received from the aggregator agent. The coalition
formation process is described in Section 3.2.1 and the ad-
vertisement and dispatch algorithms are described in Section
3.2.2

3.2 Aggregator Agents
The aggregator agent (also known as a coalition server) is

responsible for aggregating a group of EDVs, for abstract-
ing away the details about the individual vehicles and for
presenting them as a single resource to the TSOs. The ag-
gregator agent is needed because:

1. Individual EDVs command too little power to sell in
the power markets and TSOs have minimum require-
ments for participation in the power markets that they
run. For example, the PJM TSO requires a service
provider/generator to have a minimum power capacity
of at least 1MW to bid in the regulation market. A sin-
gle EDV, even if it is connected to the grid using a high
capacity 240V/80A power line, can only provide a maxi-
mum of 19.2kW [13]. Furthermore, EDVs can only store
power and can not generate power. This means that the

amount of power they can provide to the grid is limited by
the total capacity and the amount of charge that can be
stored in their batteries. Hence, a group of EDVs need to
aggregate and form a coalition if they are to participate
in these power markets.

2. Even if the minimum power requirements could be re-
laxed, TSOs have traditionally been set up to control
large power plants that have an output of several hundred
megawatts. To shift from controlling 100 MW power
plants to 5 kW cars would require an increase in con-
trolled nodes of 5 orders of magnitude and would require
a significant upgrade in the existing software and control
systems operated by the TSOs. Therefore, most TSOs3

want a smaller operator to manage the EDVs, and to sell
them power in 1 MW to 10 MW blocks. An aggregator
agent would represent the best interests of this smaller
operator.

3. TSOs require the power resources that bid in their mar-
kets to be predictable and reliable. A single EDV, on the
other hand, is a very dynamic and unpredictable power
resource — since a car may be unplugged and driven at
any instant. An aggregator agent is needed to convert
a group of dynamic EDVs into a reliable power resource
that can bid a predictable amount of power in the power
markets.

4. Finally, participating in the PJM regulation market re-
quires an organization to sign a contract with PJM and
become a PJM member. The aggregator agent would be
operated and controlled by this organization and would
be responsible for complying with all the TSO market
rules and regulations.

The aggregator agent is responsible for answering ques-
tions such as:

• How can a group of vehicles come together to form a
coalition?

• How much capacity can a coalition of EDVs report to the
grid operators?

• Which vehicles within the coalition should be used to ser-
vice the power requests?

• How can the money be fairly distributed amongst the
coalition participants?

In our deployed system, we have takes steps to address
each of these questions, which are described below. However,
the problem of integrating EDVs into the electricity grid is a
novel problem that opens up new avenues of research within
the multiagent community. See Section 4 for more details.

3.2.1 Coalition Formation
To enable coalition formation, the aggregator agent reg-

isters with a Directory Facilitator (DF) agent in the JADE
framework, which provides the yellow pages service. To join
a coalition, the VSL agents first contact the DF agent and
request a list of aggregator agents that provide aggregation
services for the geographic area in which the EDV is cur-
rently located. The DF agent responds with a list of aggrega-
tor agents. The VSL agent then contacts each of the aggre-
gator agents in turn and sends a request-for-contract-terms

3We have discussed this with PJM, CAISO, NEISO and a
TSO in Germany.
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message containing, among other information, the identity
of the VSL agent, the maximum regulation-up power, the
maximum regulation-down power and the battery energy
capacity of the EDV. The aggregator agents then verifies
the identity of the VSL agent4 and then responds with a
contract-terms message containing an estimate of the ex-
pected amount of money the VSL agent might hope to earn
during a 24 hour period. The VSL agent then picks the
aggregator agent with the best offer and sends it a join mes-
sage.

Once enough VSL agents have joined an aggregator agent
to allow it to place a minimum bid in the PJM regulation
market, the aggregator agent submits its bids. If a bid is ac-
cepted, it dispatches the cars by dividing the received AGC
(regulation) signal amongst the VSL agents in the coalition.

Currently we only have 5 EDVs and do not have enough
capacity to bid independently in the regulation market.
When connected to the grid using a high capacity 240V/80A
plug, our EDVs can potentially provide 19.2 kW of power in
the regulation market. If the EDVs were permanently con-
nected to the grid, we would need 53 EDVs to meet PJM’s
1MW minimum requirement. We have used simulations to
empirically determine that we need 230–300 EDVs before
an aggregator can reliably provide 1MW of power [9]. To
allow us to still participate in the PJM regulation market,
we have partnered with a 1MW stationary battery trailer
operated by AES Corp. AES Corp. bids 1MW in the reg-
ulation market and the received AGS signal is divided pro-
portionally amongst the battery trailer and whatever EDVs
are currently connected to the aggregator agent. The ag-
gregator agent is paid according to the Regulation Market
Clearing Price (RMCP) for total capacity advertised during
a particular hour.

3.2.2 Capacity Advertisement and Vehicle Selection
The amount of capacity that can be advertised by an ag-

gregator agent depends on the makeup of the EDVs that
have joined the coalition. Specifically this depends on (a)
the plug size used to connect the EDV to the grid; (b) the
size of the EDV’s battery; and (c) the predictability of the
EDV (or the probability the the EDV will actually be parked
and plugged in during the hour in which a bid is placed.)

Hence, the job of the aggregator agent is to map a pop-
ulation of VSL agents (P = {a1, a2, ..., an}) defined by the
tuple ai =< l, Pmax, Pmin, Ecap, Esoc, Emin, ρ > to a coali-
tion defined by the tuple C =< A,Rup, Rdown >, where:

• l is a label identifying a VSL agent

• Pmax is the maximum rate of discharge, in kW, permit-
ted by the plug size and the specific EDV model. We
define this quantity as the maximum rate of discharge
in order to comply with the generator conventions that
denote positive power as that flowing from the genera-
tor/EDV to the grid and negative power as flowing from
the grid to the EDV batteries. If this value is 0, the EDV
is not allowed to back-feed power back to the grid (i.e.
the EDV is not permitted to discharge power back to the
grid.)

4We use the Transport Layer Security (TLS) to allow the
VSL agents and the aggregator agents to mutually authenti-
cate each other. Hence, for security and reliability reasons,
we only allow communication between known and trusted
aggregators and VSL agents.

• Pmin is the minimum rate of discharge permitted, in kW.
The quantity will almost always be negative since EDVs
are primarily meant to be charged from the grid.

• Ecap is the battery capacity of the EDV, in kWh.

• Esoc is the current state of charge (SOC) in the battery,
in kWh.

• Emin is the minimum amount of charge needed to main-
tain a minimum driving range in the EDV and allow the
driver to take unscheduled trips.

• ρ ∈ R is a real number between 0 and 1 denoting the
aggregator agent’s measure of the predictability of this
car.

• A ⊆ P is the set of agents selected for participating in
the coalition.

• Rup is the amount of regulation up power being adver-
tised by the coalition.

• Rdown is the amount of regulation down power being ad-
vertised by the coalition.

Since the PJM TSO requires symmetric advertise-
ments/contracts, Rup must always equal Rdown. To allow
for symmetric contracts we first define a term, Preferred
Operating Point (POP) for each individual EDV. To get an
intuitive sense for the POP, think of the POP as the rate of
discharge when the regulation request is zero. (Again we de-
fine POP as the rate of discharge to comply with generator
conventions in which positive quantities indicate power flow
from the EDVs to the grid.) For example, if the POP is de-
fined to be -2kW, in the absence of a regulation request, the
EDV would be charging by drawing 2kW of power from the
grid. Now if the TSO sends a regulation request for -3kW
(i.e. regulation-down or drawing of power from the grid),
the EDV would set its charge rate to -5kW (−3 + (−2)),
i.e. it would draw 5 kW of power from the grid to charge
its batteries.) If instead the TSO sets the regulation request
to 1 kW (i.e. regulation-up or providing power to the grid),
the EDV would set its charge rate to -1kW (1 + (−2)), i.e.
the EDV would still charge at 1kW and draw power from
the grid, despite providing regulation-up.)

We determine the POP by using the effective maximum
and minimum rates of discharge, where the effective rate is
determined by both the plug size and the state of charge in
the battery. We define the POP as follows: (Note in the fol-
lowing description, we assume that δt is the amount of time
for which a coalition is required to provide the advertised
regulation request.)

POP =
E(Pmax) + E(Pmin)

2
(3)

E(Pmax) = min

„
Esoc − Emin

δt
, Pmax

«
(4)

E(Pmin) = max

„
Esoc − Ecap

δt
, Pmin

«
(5)

Note in Equation 4, if the SOC is at a minimum (i.e.
Esoc = Emin), the effective maximum rate of discharge,
E(Pmax), will be set to zero and the EDV will only be
charged. To see how E(Pmax), E(Pmin) and the POP varies
with the SOC, E(Psoc), see Figure 4. Now to compute the
amount regulation-up and regulation-down power that can
be advertised by an individual EDV, we define
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Figure 4: Graph showing the change in Preferred Operating
Point (POP) and Advertised Regulation Capacities, Pup and
Pdown with the amount of charge in the EDV battery. Note
that Ecap = 35kWh, Emin = 5kWh and δt = 1hr.

Pup = E(Pmax)− POP (6)

Pdown = E(Pmin)− POP (7)

Again the dotted lines in Figure 4 show how the ad-
vertised regulation-up (Pup) and regulation-down (Pdown)
power varies with the SOC. Now for the whole coalition, the
advertised capacities are calculated as follows:

Rup =
X

ai∈A

ρ(ai)× Pup(ai) (8)

Rdown =
X

ai∈A

ρ(ai)× Pdown(ai) (9)

where ρ(ai) is the availability of agent ai. Defining the
advertised capacity in this way ensures that Rup is always
equal to Rdown and allows us to consume all the available
capacity while bidding in symmetric markets.

Two questions remain, how do we select the subset of
agents to use for the coalition and how do we measure ρ(ai).
Currently, we use all the available agents to form the coali-
tion (that is, we always form a grand coalition). To deter-
mine ρ(ai), we maintain a discounted history of the avail-
ability of each EDV, ai for every hour of the day. Intuitively,
we want ρ(ai) to equal to the probability that a car will be
available for a given hour, when it has contracted with the
aggregator agent for that particular hour. After every con-
tract hour, we update the value of ρ(ai) by using the formula

ρ(ai)
j+i = αρ(ai)

j + (1− α)
car’s availablity in min

60
(10)

3.2.3 Fair-Payoff Division
The traditional solution concept for calculating a fair pay-

off for a coalition game is the Shapley Value [17]. Given the
characteristic function v(C) and the coalition C, the Shapley
Value of agent aj can be calculated by Eq. 11:

φj(C, v) =
1

|C|!
X

S⊆C\{aj}
|S|! (|C| − |S| − 1)! [v(S ∪ {aj})− v(S)]

(11)

As is typical in a large realistic system, calculating the
Shapley Value for each agent in this way for any feasible
coalition (i.e. a coalition with Rup and Rdown ≥ 1MW) is
clearly intractable, since even the minimal sized such coali-
tion would have 53 EDVs (at 19.2 kW power each) and re-
quire computing over 253 subsets of C.

In practice, due to the symmetry axiom of Shapley Values,
we might not need to consider every agent as unique and can
divide the agents into a set of equivalence classes. However,
the number of equivalence classes might still be very large
since the number of equivalence classes would depend on
(a) the model of the EDV and its battery size; (b) the plug
size used to connect the EDV to the grid; (c) the amount
of charge in the EDV’s battery when contacted out; and (d)
the predictability of the EDV.

Given our chosen way of advertising capacities and making
contracts, the Shapley value payoff vector will not necessar-
ily be in the core. Consider for example a grand coalition of
54 EDVs where the 54th car has a slightly smaller plug size.
While no individual car may have veto power (i.e. any 53-
car subset will gain a positive payoff), the 53 cars with the
larger plug size would be better off forming their own coali-
tion. Instead, the core is non-empty and contains at least
the payoff vector where each car gets a payoff proportional to
its own contribution, provided that there are no veto players
(cars that can scuttle the coalition on their own) and that
the coalition is feasible (meets the minimum requirements).
The experimental tendency is that the Shapley value grows
closer to the simple proportional payoff as the number of ve-
hicles becomes large (diminishing the effect of the minimum
power restriction). Hence, we decided to use a proportional
payoff for the EDVs in our system (i.e. each EDV is paid a
share proportional to its contribution in the coalition.)

3.3 TSO Agents
The TSO agents communicate with the aggregator agents

and provide a wrapper around the legacy systems used by
the TSOs. The TSO agents have two main functions — (a)
allow the aggregator agents to participate in the regulation
market; and (b) send AGC power (regulation) requests to
the aggregator agents. The TSO agents are responsible for
converting between the legacy modbus data protocols used
by the Arcom Director5 and the FIPA agent communication
language used by our agents.

3.4 EVSE Agents
EVSE is an acronym for Electric Vehicle Supply Equip-

ment and is a fancy name for an EDV battery charger. The
primary goal of the EVSE agent is to look after the best in-
terests of the owner of the recharging station (which may be
the same as the vehicle owner but might also be a completely
separate entity like a commercial business or a municipal-
ity). Since EDVs are designed to plug into a wide range
of power sources, including traditional Edison 125V/15A
plugs, the EVSE agents are optional to the operation of the
GIVs. When present, the EVSE agents communicate with
the VSL agents over a special power + network connector
(SAE J1772).

In our system, we define two levels of functionality for the
EVSE agents:

5The Arcom Director is a remote terminal unit used by
PJM.
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1. At the basic level, the EVSE agent simply communi-
cates with the VSL agent. The information sent by the
EVSE can be very comprehensive and includes informa-
tion about (a) the maximum charge rate; (b) the max-
imum discharge rate; (c) whether or not V2G (or back-
feeding of power to the grid) is permitted at this charger;
(d) meter id and transformer id of the circuit on which
this EVSE is located6; (e) the network settings the VSL
agent should use for internet access; (f) whether the VSL
should provide emergency power in the case of a power
disruption; and (g) error codes related to ground, control
and pilot faults.

2. At a more advanced level, the EVSE can negotiate charg-
ing contracts with the VSL agents. This would be useful
in situations where the EVSE are owned by a third party
such as a business or a city. (For example, there are
plans for installing EVSEs on our main street and in our
interstate service centers.) In these situations, the EVSE
agents would negotiate rates of charging and the corre-
sponding costs with the VSL agents and, in some cases,
might even allow the EDVs to charge for free as long as
the VSL agents agree to forego the revenue earned by
providing GIV services. These EVSE agents would also
be responsible for keeping records of charging events and
for billing customers appropriately for the services used.

At present we have only implemented the basic function-
ality in our EVSE agents and are working on incorporating
the more advanced functionality into future releases.

4. RESEARCH CHALLENGES
Coalition formation has been studied extensively in both

game theory [8] and multiagent systems (see [16, 6, 8, 14, 1]
for a small sampling) and has even been applied to power
transmission planning [4] and open environments [15]. We
believe there are some key differences between the existing
research on coalition formation and the kind of coalition
formation that we are interested in in this paper:

• Coalition formation for EDVs differs from iterative coali-
tion formation games in that each game is not indepen-
dent. Rather the coalition’s ability to participate in the
next game depends on the actions of the previous game.
If we use up all the charge in the EDVs in game i, we
won’t have any charged EDVs available for use in game
i + 1. Hence, what we do in one hour affects the kind
of coalition that we can form in the next hour. Further-
more, the set of agents that form the coalition is highly
unpredictable and varies from hour-to-hour.

• Most coalition games assume a fixed characteristic func-
tion that defines the payoffs received by the formed coali-
tions. However, in the case of coalition formation for
EDVs the characteristic function is not fixed. Instead
part of the problem is determining the amount of capacity
to bid in the different markets which involves determining
an appropriate characteristic function for the coalitions.

We believe these two issues need to be modeled and studied
by the multiagent community in general and we would like
to focus on modeling these issues in our future work.

6This information together with the topology of the power
grid can be used by the aggregator agent to limit the maxi-
mum load on an individual transformer.
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Figure 5: Graphs showing the performance of our five EDVs
for the first nine months of 2010.

5. EVALUATION
Since this paper describes an implemented and deployed

system, we thought the best way to evaluate our system
would be to describe its operation over the first nine months
of this year. Figure 5a shows the total capacity bid by our
EDVs in kW-h7; Figure 5b shows the number of hours that

7Since the regulation market pays for the bid regulation ca-
pacity and not for the actual power provided, the unit for
regulation capacity is kW-h. One kW-h is a unit of power
capacity meaning that one kW of regulation power capacity
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each EDV was plugged-in and providing regulation services;
and Figure 5c shows the amount of money earned by our
EDVs, in US dollars, during the same period.

As can be seen, the amount of regulation capacity offered
and the amount of money earned is directly proportional to
the number of hours plugged in. (These EDVs were mostly
plugged into 208V/50A plugs although occasionally an 80A
plug was also used.) We started out with 3 EDVs in January
and February. Since the winter months (especially Febru-
ary) were particularly severe in the northeast (in 2010), we
chose to not participate in the regulation market in order to
conserve the battery life of our EDVs. In March, we added
two more EDVs to give us a total of 5 EDVs. The amount
of regulation offered dropped significantly in the months of
June, July and the starting of August because we were mak-
ing significant upgrades to our system.

Extrapolating from our data, if an EDV is plugged-in and
providing regulation services for 15 hours a day, it can ex-
pect to make a hundred dollars a month given the current
Regulation Market Clearing Prices (RMCPs). Given that
the RMCP was twice as high as what it is right now before
the start of our current economic recession, EDVs owners
can expect to make between 100 and 200 dollars a month
or between 1,200 and 2,400 dollars a year by participating
in the regulation market. This is a significant amount of
money that can be used to offset the high costs of EDVs.

6. CONCLUSION AND FUTURE WORK
This paper describes an implemented and deployed system

for integrating a group of EDVs into the electricity grid. We
motivated the problem, described the various types of power
markets and presented an implementation of a multiagent
system that allows EDVs to participate in the regulation
market. We have also deployed 5 EDVs in the PJM TSO
that, in conjunction with a 1MW battery trailer operated
by AES Corp., has been able to bid and earn money in the
regulation market.

For our future work:

• We plan to deploy another 50 EDVs within the next two
years. Our goal is to have enough EDVs so that we may
participate independently in the PJM regulation market.
We would also like to study the scalability of our approach
to a couple of thousand EDVs.

• We would like to focus on each of the open research chal-
lenges presented in Section 4.

• We would like to lead the the effort to develop a standard
set of protocols for (a) communicating between the VSL
agents and the Vehicle Management Systems (VMSs) in-
side the EDVs; and (b) communicating between the ag-
gregator agents and the VSL agents. This latter would
involve defining a standard ontology for this application.

7. ACKNOWLEDGEMENTS
This work was supported by funding from the U.S. De-

partment of Energy, Office of Electricity Delivery and Reli-
ability (grant number DE-FC26-08NT01905, Willett Kemp-
ton, PI). We also acknowledge support on this aspect of the
V2G project from Pepco Holdings, Inc., PJM Interconnec-
tion, AC Propulsion, Inc., and AES Corporation.

was available for one hour.

8. REFERENCES
[1] Y. Bachrach and J. S. Rosenschein. Coalitional skill

games. In AAMAS ’08, pages 1023–1030.

[2] F. L. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. Wiley
Series in Agent Technology. Wiley, 2007.

[3] M. Bryson. PJM Manual 12: PJM Manual for
Balancing Operations. PJM Intercon., August 2009.

[4] J. Contreras, M. Klusch, and J. Yen. Multi-agent
coalition formation in power transmission planning: a
bilateral shapley value approach. In in In Proc. of 2nd
Intl. Conference on Practical Applications of
Multi-Agent Systems, PAAM, pages 21–23, 1998.

[5] N. DeForest et. al., Impact of Widespread Electric
Vehicle Adoption on the Electrical Utility Business –
Threats and Opportunities. Technical Report
2009.5.v.1.1, Center for Entrepreneurship and
Technology, University of California, Berkeley.

[6] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A
linear approximation method for the shapley value.
Artif. Intell., 172(14):1673–1699, 2008.

[7] K. Fell. Assessment of plug-in electric vehicle
integration with iso/rto systems. Technical report,
ISO/RTO Council, March 2010.

[8] J. P. Kahan and A. Rapoport. Theories of coalition
formation. L. Erlbaum Associates, 1984.

[9] S. Kamboj, et. al. Exploring the formation of Electric
Vehicle Coalitions for Vehicle-To-Grid Power
Regulation. AAMAS workshop on Agent Technologies
for Energy Systems (ATES 2010).

[10] W. Kempton and T. Kubo. Electric-drive vehicles for
peak power in japan. Energy Policy, 28(1):9 – 18,
2000.

[11] W. Kempton and S. Letendre. Electric vehicles as a
new source of power for electric utilities.
Transportation Research, 2(3):157–175, 1997.

[12] W. Kempton and J. Tomic. Vehicle-to-grid power
fundamentals: Calculating capacity and net revenue.
Journal of Power Sources, 144(1):268 – 279, 2005.

[13] W. Kempton and J. Tomic. Vehicle-to-grid power
implementation: From stabilizing the grid to
supporting large-scale renewable energy. Journal of
Power Sources, 144(1):280 – 294, 2005.

[14] K. Lerman and O. Shehory. Coalition formation for
large-scale electronic markets. In 4th Inter. Conf. on
MultiAgent Systems, 2000, pages 167–174, 2000.

[15] N. Ohta et. al., Anonymity-proof shapley value:
extending shapley value for coalitional games in open
environments. In AAMAS ’08, pages 927–934.

[16] T. W. Sandholm and V. R. Lesser. Coalitions among
computationally bounded agents. Artif. Intell.,
94(1-2):99–137, 1997.

[17] Y. Shoham and K. Leyton-Brown. Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2009.
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ABSTRACT
In this paper we propose a Multi-Agent version of UCT
Monte Carlo Go. We use the emergent behavior of a great
number of simple agents to increase the quality of the Monte
Carlo simulations, increasing the strength of the artificial
player as a whole. Instead of one agent playing against it-
self, different agents play in the simulation phase of the al-
gorithm, leading to a better exploration of the search space.
We could significantly overcome Fuego, a top Computer Go
software. Emergent behavior seems to be the next step of
Computer Go development.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms, Experimentation

Keywords
Emergent Behaviour, Collective Intelligence

1. INTRODUCTION
Go is a two-player turn-based strategy board game, that

is famous for being one of the main challenges in Artificial
Intelligence. A small set of simple rules1 leads to a game
amazingly complex for a human being and a search tree
that is unbearably large for a computer. There are many
reasons for this difficulty of developing a strong artificial
player. First, Go is played in a large board, 19x19, with
361 intersections, creating difficulties for tree search based
algorithms. Second, generally most of the intersections are
valid movements, increasing the number of possible states
from a given state of the board. Third, the stones interact
in complex ways during the game; one stone may influence
a distant group, for example in situations where there is a

1Available at many places, for example:
http://www.pandanet.co.jp/English

Cite as: Multi-Agent Monte Carlo Go, Leandro Soriano Marcol-
ino, and Hitoshi Matsubara, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp.  21-28.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ladder. Besides, building an evaluation function is not triv-
ial. Even end of game situations, that intuitively should be
simpler, were proved to be PSPACE-hard [31]. According
to [1], compared to the complexity of Chess (1050), the com-
plexity of Go (10160) is bigger by a factor of 10110. We can
see, therefore, how challenging it is to create an artificial
player of Go.

However, recently, with the development of evaluations
of the board state based on simulations (known as Monte
Carlo techniques), the strength of Computer Go players im-
proved significantly. Thanks to artificial players like MoGo,
Crazy Stone, Fuego, Many Faces of Go, and Zen, the best Go
programs are now considered amateur level 2 dan. Further
improvement was achieved by parallelization, as it increases
the computational power, allowing a deeper exploration of
the possible movements. In February 2009, Many Faces of
Go, running on a 32-core Xeon cluster, beat the professional
player James Kerwin, in a 19x19 board with a handicap of
7 stones. Many recent works are now investing in the par-
allelization of Monte Carlo techniques. However, there is
always a limit in the amount of speed-up that can be gained
in a parallelization design.

Generally, there are two ways to increase the strength
of an artificial player: advances in computational power,
which can be achieved by parallelization, and advances in
the theory, which can be achieved by new algorithms and
methods. Nowadays, the research in Monte Carlo techniques
seems to be focused on the parallelization of the current
approaches. However, it is always desirable to advance the
theory with the creation of better algorithms, that lead to
stronger players even when the computational power has not
necessarily increased. We believe that the next theoretical
step lies in the investigation of Multi-Agent methodologies.

Multi-Agent systems have been used to solve a great range
of problems in Artificial Intelligence. The emergent behavior
of a great number of simple agents have been applied in al-
gorithms like Ant Colony Optimization [11], Particle Swarm
Optimization [20], etc, in order to solve difficult optimiza-
tion problems. It is also notable how emergence can lead to
complex and intricate group behavior [21, 22, 23, 28].

Emergence is a powerful concept, not only in Computer
Science, but also in a variety of disciplines, like philosophy,
systems theory and art. The stock market and the Internet
are important systems to modern life that arise thanks to
the emergence of simple components. Emergence is also fun-
damental in biological systems. A notable example is an ant
colony. It is known that the queen does not order directly
the ants. Each ant is always reacting to stimuli generated
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Figure 1: Water crystals, formed by a natural emer-
gent process (taken from www.wikipedia.org).

by chemical scent from larvae, other ants, intruders, food,
waste, etc, and they leave chemical that will be used as stim-
uli to other ants. Therefore, there is no centralized control,
but the ant colonies exhibit complex behavior and are able
to solve complex problems. Another example is the forma-
tion of water crystals on glass, a natural emergent process
created by the random motion of water molecules, that leads
to a highly-organized structure (Figure 1).

However, emergence is generally not a clear concept. In
this paper we define emergence as a great number of sim-
ple iterations that occur in a system, leading to a complex
result. We can model the Monte Carlo evaluations as one
agent that repetitively plays against itself using a playout
strategy. Although the playout strategy might be simple,
the combination of a great number of games with a tree
exploration phase makes intelligent game play emerge in a
Monte Carlo Tree Search algorithm (MCTS). In this paper
we explore this further, by evaluating the effects of having
not only one, but many different agents at the playout phase
of a MCTS.

At each stage of the Go board, one agent is selected to gen-
erate a movement, leading the board to the next stage. The
agents act in turn, therefore there is no spatial organization,
but a temporal organization. However, each agent acts in
the environment that was left by the previous one, and this
interaction seems to lead to a higher playing strength. As
the interactions are simple, but they lead to something com-
plex (high-level go), we believe emergence is a good concept
to define our idea.

Our proposed algorithm is also inspired by the advantages
of diversity. It is currently believed by some social scientists
and economists that the best teams are not necessarily com-
posed of the best individuals. In order to build a team that
is effective in solving problems, it is also important to look
for diversity, to bring together people with different perspec-
tives and solution strategies [27]. By using different agents
during the simulation process, we are also exploring this
concept, but in a Multi-Agent context.

We modify Fuego [13], an open source implementation of
a powerful MCTS algorithm: UCT Monte Carlo Go. There-
fore, the contribution of this paper is to offer a new paradigm
for the exploration of Monte Carlo Go. Our experimental
analysis show that we could significantly overcome Fuego,
and produce a stronger Computer Go program.

2. RELATED WORK
A great variety of approaches have been proposed in the

literature in order to tackle with the complexity of Go. The
problem is too difficult for a conventional α-β search, forcing
the researchers to try many different methods. An interest-
ing survey of the literature can be found in [6]. Classical
works used abstractions [15] and patterns [4]. Other impor-
tant approaches that have been explored include learning [8],
cognitive modeling [5] or combinatorial game theory [24].

Generally, in the classical way to develop a Go program,
specific game knowledge has to be implemented. Therefore,
many algorithms were proposed to resolve specific subprob-
lems of the game [3]. However, the Monte Carlo approach
appeared, which originally used only the simple Go rules
to perform random simulations in order to discover good
positions to play [7]. Later, the Monte Carlo simulations
were used to evaluate leafs in tree search algorithms, and
the simulations started to use heuristics, which included
some Go knowledge, in order to improve their realism, as
in [12]. The state of the art was further advanced by the
UCT Monte Carlo algorithm [17], which contributed with
significant improvements in playing strength. The proposed
program, MoGo, won all the tournaments on the interna-
tional Kiseido Go Server2 on October and November 2006.

In order to achieve further enhancements, parallel and
distributed versions of the game started to appear on the
literature. Generally, the idea is to use a great number of
machines or processors to increase computation power. Ac-
cording to [10], three different parallelization approaches are
possible in UCT Monte Carlo: root parallelization, leaf par-
allelization and tree parallelization. In root parallelization
each thread is responsible for one tree, and when the time is
finished, the results are merged. In leaf parallelization, many
simulations are executed to evaluate a single leaf, each one
by one thread. In tree parallelization, many threads execute
in a single, shared tree. In [16] it is proposed a straight algo-
rithm for multi-core parallelization, based on shared mem-
ory, and an algorithm for cluster parallelization that uses less
messages than a simple generalization of the multi-core al-
gorithm. The multi-core algorithm achieved a 63% percent-
age of victory by doubling the computational power and the
cluster algorithm achieved 83.8% percentage of victory by
using 9 machines. Some works propose distributed systems
based on a client/server architecture in order to increase the
number of available playouts [18]. Recently, a top Computer
Go program, Zen, was run in a large cluster of computers
[19]. A similar approach is also investigated by [9], where
a percentage of victory of 70.50% could be achieved against
GnuGo, using 16 slaves. However, the results do not improve
with a higher number of slaves, and even decreased in some
cases. Root parallelization in the Fuego system was studied
by [29], where experiments with 64 cores demonstrated that
although the program gets stronger, there are limitations in
the possible performance gain.

Recently, distributed versions of the top Computer Go
programs have won against professional players in handi-
cap games. However, it is known that the overhead of the
parallelization imposes a limit to the possible improvement
in game strength. In [18], for example, in 9x9 boards the
system saturated with 7 servers, and the use of 4 servers
brought a speed-up factor of only 1.55. In [10], tree par-

2http://www.weddslist.com/kgs/past/index.html
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allelization only scaled well up to 4 threads. A lock-free
parallelization was proposed by [14], but it could not scale
beyond 7 threads.

The next step seems to be converging into Multi-Agent
System paradigms. Some works started to apply this idea,
but in order to play other games. In [25], a consultation sys-
tem to play Shogi is proposed. A set of players send their
opinion about what should be the next movement, and one
of the opinions is selected as the official movement. The
authors show that a consultation system composed of three
famous Shogi programs plays better than each software in-
dividually. In [30] the authors extend the last approach,
but this time they use the position evaluation of different
players in order to select a single movement. The number
of agents in these works was limited, though, with at most
6 agents. In [26], the authors explore a Swarm Intelligence
Algorithm, Stochastic Diffusion Search, to build an artifi-
cial Othello player. We believe that the use of Multi-Agent
Systems has to be further explored, and it can be the next
cornerstone in Computer Go development.

Some social scientists and economists currently believe
that teams of diverse people can have strong characteris-
tics for solving difficult problems [27]. By combining dif-
ferent perspectives and solution strategies, a diverse team
can explore a greater range of possible solutions for a prob-
lem; while a team with high-talented but similar individuals
might not be able to explore so many different solutions, as
each member will tend to have similar results as the other
members of the group. Therefore, a team of diverse members
might perform better than a team with the best individuals.
This concept is also an important point to be explored in the
development of Multi-Agent paradigms for Computer Go.

In this work we are going to extend the top MCTS al-
gorithm, UCT Monte Carlo Go, with a Multi-Agent Sys-
tem paradigm. Instead of showing the computational power
gains that can be obtained by parallelization or distribution,
we are going to show how the emergent properties of a great
number of simple (and diverse) agents, by itself, can enhance
the strength of an artificial Go player.

3. METHODOLOGY
First, we are going to introduce UCT Monte Carlo Go.

The algorithm is based on the multi-arm bandit problem.
A multi-arm bandit is like a traditional slot machine, but
with many arms. Each arm has a reward drawn from an
unknown probability distribution. The objective is to max-
imize the total sum of iterative plays. When choosing an
arm to play, there is a balance between selecting the best
arm found so far, or exploring other arms. In [2], it is pro-
posed a simple algorithm, called UCB1 in order to solve the
selection problem. Let’s define the K-armed bandit problem
by the random variables Xi,n, for 1 ≤ i ≤ K and n ≥ 1.
Each variable is the reward of arm i when it is played at
time n. Given a certain arm i, the rewards Xi,n are inde-
pendent for all n, and are identically distributed according
to an unknown probability distribution. The rewards across
arms are also independent, but they might not be identically
distributed.

The algorithm selects the arm j, that maximizes X̄j +q
2 log n
Tj(n)

, where n is the overall number of plays up to the

current iteration, Tj(n) is the number of times arm j has
been played after the first n plays, and X̄j is the mean of

the values obtained so far when arm j was selected . In [2],
it is also introduced a slightly more complicated algorithm,
called UCB1-TUNED, that had better experimental results.
First, they calculate an estimation of the upper bound on
the variance of arm j, by:

Vj =

 
1

Tj(n)

Tj(n)X
y=1

X2
j,y

!
− X̄2

j +

s
2 logn

Tj(n)

Then, they select the arm j that maximizes the following
equation:

X̄j +

s
logn

Tj(n)
min{1/4, Vj} (1)

In UCT Monte Carlo Go, each Go board situation is seen
as a bandit, and each possible move is seen as an arm with
unknown reward of a certain distribution. Generally, the
algorithm can be defined by two phases: tree search and
leaf evaluation (also known as playout). The tree search
phase starts at the root of the tree. At each node (Go board
situation), the child-node (possible move) that maximizes
Equation 1 (UCB1-TUNED) is selected as the next node
to be visited. This is executed recursively, always choosing
the child-node according to UCB1-TUNED. When a node is
selected that has never been visited before, the next phase
is executed: score estimation by Monte Carlo simulations,
where heuristic-driven random games are executed from the
state of the leaf until the end of the game. Generally the
heuristics are designed in a way that the end game can be
easily recognized, and the final score easily calculated. The
final score is used to estimate the value of the leaf. The
value of the nodes in the path are then updated iteratively,
from the father-node of the selected leaf to the root. Note
that the Go board states created during the Monte Carlo
simulations will not become part of the tree, they are used
only to estimate the value of the leaf. Improving the quality
of the simulations will improve the estimation of the score,
leading to a stronger player [32].

We can model the random simulations as one agent play-
ing against itself using its available heuristics (Figure 2(a)).
In this work, we investigate the effects of having not only
one, but several agents playing against each other (Figure
2(b)). Each agent has a different playing style, increasing
the range of exploration of the search space. As will be fur-
ther explained, at every stage of the simulation process, a
different agent will be selected in an agent database, and this
agent will be responsible for selecting the next movement.
Note, therefore, that (contrary to our first idea) in our ap-
proach we are not executing a tournament between different
agents, as one agent does not play a full game against an-
other.

We based our implementation on Fuego, an open source
UCT Monte Carlo Go algorithm. The Fuego system exe-
cutes several heuristics hierarchically. It starts by selecting
the first heuristic. In case it cannot generate a movement,
it proceeds by selecting the next one on the hierarchy. The
process repeats until a heuristic generates a movement. If
no heuristic can generate a movement, a random move is se-
lected from the board. Generally the heuristics are applied
in the neighborhood of the last movement. The current ver-
sion of Fuego (0.4) has mainly five heuristics: Nakade If
there is a region of three empty points, generates a move-
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(a) (b)

Figure 2: Original single-agent Monte Carlo (a) and
proposed Multi-Agent Monte Carlo (b). The colors
represent different agents, and the arrows represent
interaction.

(a) (b)

Figure 3: Original Fuego agent (a) and new agent
database (b).

ment in the center of this region; Atari Capture Captures
an Atari; Atari Defend Defends an Atari; Lowlib Move
generator for 2-liberty blocks; Pattern Uses a set of 3x3
patterns, this heuristic is applied in the neighborhood of the
two last moves.

The hierarchical order of the heuristics is fixed. A rep-
resentation of the Fuego original agent can be seen in Fig-
ure 3(a), where each symbol represents a different heuristic,
and the order of the symbols represent the order that each
heuristic will be applied. We created several new agents
in the Fuego system by changing the order of the default
heuristics of the original agent. Therefore, each agent will
give a different priority to the heuristics; which will make
each agent have a different playing style (Figure 3(b)). The
set of all agents implemented in the system form an agent
database.

Every time one movement will be generated during the
Monte Carlo simulations, one agent is randomly selected in
the agent database and this agent will be responsible for
selecting the movement. Therefore, at each step in the sim-
ulation process, a different agent is going to decide the next
movement on the board (Figure 4). This approach allows
the Monte Carlo method to explore better the search space,
using the same amount of computation time. The intuition
behind this idea is simple. Although some Go movements,
such as the capture of a stone, can seem to be quite strong for
a beginner, an experienced player knows that preferring ap-
parently “strong” movements all the time will lead to a poor
and unnatural game. Therefore, in order to simulate more
realistic Go games, it is necessary to diversify the movement
generation process.

However, although we can use 120 different agents, we em-
pirically found out that using all of them does not lead to a
stronger player (see Section 4). It is necessary to select a set
of agents that effectively lead to better playing abilities. As
testing all possible combinations of agents is very expensive,
we executed a simple greedy learning algorithm. We start

Value?

Monte Carlo
Simulation

Figure 4: Agent selection in the Monte Carlo simu-
lation process.

with only the original Fuego agent in the database. Then,
we perform a series of games against Fuego. The result (per-
centage of victory) is saved. We then add one more agent in
the database. A series of games is again performed against
Fuego. If the result is better than the best result found so
far, the agent will remain in the database. If the result gets
worse, the agent will be removed from the database, and will
not be tested anymore. The algorithm proceeds by testing
all the remaining possible agents. Note that every time a
“good agent” is found, it will be permanently inserted in the
agent database, and it will be used in all the following iter-
ations of the learning process. Also note that the original
Fuego agent will always be in the agent database, because it
is used in the first iteration.

Therefore, our algorithm is a hill climbing in the space of
agent sets: we add one agent to the set and greedily keep it
if the new set performs better. We test each agent exactly
one time. The most natural way is to generate a random
list in which all agents appear exactly once, and follow the
order of the list. However, we also manually changed the list
in one of our experiments, in order to try to achieve a better
solution. As will be seen in the next section, our simple
learning algorithm led to a significant percentage of victory
against Fuego, showing that Multi-Agent Monte Carlo Go
can effectively be used to create stronger players.

4. RESULTS
In this section we are going to present the experiments

performed to validate our approach. They were all executed
in a 9x9 board, with the same time limit for both our system
and Fuego. We used Fuego’s default time limit and default
configuration for the number of playouts per leaf (1 playout
per leaf, for a 9x9 board). We executed 500 games with our
system playing as White, and 500 games with our system
playing as Black, giving a total of 1000 games per configura-
tion. The experiments were executed in a cluster of Intel(R)
Xeon(R) CPU E5530, at 2.4GHz and with 24GB of RAM.
Note that our algorithm is not parallel, but we used a clus-
ter in order to distribute the execution of the 1000 games,
decreasing significantly the time necessary to run the exper-
iments. The cluster used is part of the InTrigger 3 platform,
a cluster of more than 13 clusters distributed across Japan.
They are intended to be used for information technology
research, both for system software and for large scale data

3http://www.intrigger.jp
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N AC AD L P
AD N AC P L
AD N P AC L
AD AC P N L
N AC P L AD

Table 1: Selected agent database.
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Figure 5: Percentage of victory for the selected
agent database.

processing researchers.
We first ran our algorithm with all the possible 120 agents.

It led to a relatively low percentage of victory: 41.20%
(±2.10%). After performing several experiments with the
database, we found out that some agents seemed to decrease,
while other agents seemed to increase the percentage of vic-
tory. Therefore, we created a simple learning algorithm,
that tries to add each agent in the database, and tests if
it increases or decreases the strength, as described in the
previous section.

First, we are going to show our results when the order in
which each agent is tested is random. Let N , AC, AD, L
and P be the Nakade, Atari Capture, Atari Defense, Lowlib
and Pattern heuristics, respectively. The agent database se-
lected by the learning algorithm is represented in Table 1,
where each line defines one agent and the columns defines
the order in which each heuristic is attempted. The first line
corresponds to the original Fuego agent. Our algorithm was
able to find a set of 5 agents that seems to increase playing
strength.

The result obtained with the addition of each new agent
can be seen in Figure 5. As can be observed, from a 48.55%
(±2.20%) percentage of victory with only Fuego’s original
agent, with 5 agents we could achieve 57.55% (±2.10%), a
gain of 9.00%. Therefore, our strategy seems to be effective
into improving the strength of Computer Go algorithms. We
performed a t−test analysis that showed that the result with
5 agents is better than the result with only Fuego’s original
agent with 99% of confidence.

The result of about 48% when our system has only the
Fuego original agent is a little bit different from the theo-
retically expected 50%. We believe this might happen be-

Agent Number Percentage of Victory
0 48.50%± 2.20%

5 (α) 52.85%± 2.15%
6 (β) 53.60%± 2.15%

64 57.30%± 2.15%
70 29.60%± 1.90%

Table 2: Percentage of victory for each individual
agent.

cause the game with only one agent is not really “Fuego” vs.
“Fuego”, it is “Fuego” vs. “Fuego with a small overhead”,
as the algorithm for agent selection and agent execution is
still there, and it is ran in every step of the Monte Carlo
simulations. As the number of simulations is very high, we
believe this overhead might be responsible for the 48.55%
result, instead of 50%.

We also executed games with our system running with
a single agent (again, against Fuego). In each execution,
we used one of the agents that were selected for the agent
database, but only that one. The objective of these experi-
ments is to see if the result of the agents as a group is better
than the result of each individual agent. We can see the per-
centage of victory obtained for each agent in Table 2, where
the Agent Number represents the position of the agent in
the list (or, in other words, the number of the iteration in
which the agent was tested). We called agent 5 as α and
agent 6 as β because they are going to appear again in our
next experiment.

Many interesting observations can be drawn from these
experiments. First, as can be seen, the result of the group
(57.55%) was better than the result of each individual agent,
though the difference between the group and the agent 64
is quite small. However, even before adding agent 64, the
group already performed quite well (56.90%), a percentage
of victory higher than each member. Second, agent 70 is
clearly much weaker than the other agents, but when it was
added in the agent database the result improved 0.35%, in-
stead of decreasing. Therefore, it seems that there is a group
phenomena that makes the algorithm stronger.

The learning graph of our algorithm can be seen in Fig-
ure 6. After adding agent 5 and 6, the system fluctuates,
and is able to escape from the local minimum (lack of im-
provement) only with the addition of agent 64. After adding
agent 70, the system fluctuates again and is not able to find
a better solution.

We ran our algorithm a second time, but now we tested the
agents in a different order. Before we developed our learning
algorithm, we had a list of 15 agents that we believed to be
strong (by intuition and trial an error experiments), and we
moved those agents to the beginning of the list. Our original
intention, when we developed the learning algorithm, was to
test this set of agents. The rest of the agents followed the
same order as the previous experiment. The agents that
compose the new solution found by the learning algorithm
can be seen in Table 3. The result obtained with the addition
of each new agent is represented in Figure 7, and the learning
graph can be seen in Figure 8. This time, we found a slightly
better result, of 59.15% (±2.10%).

We executed games with our system running with a sin-
gle agent. The percentage of victory obtained for each agent
can be seen in Table 4. The Agent Number of each agent is
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Figure 6: Learning graph, as the algorithm tries to
add each agent in the database.

N AC AD L P
AD N AC P L
AD N P AC L
AD P L N AC
AC N AD L P

Table 3: Selected agent database, in the not random
order.

different than last time, as the order changed, but agent 1
and 2 are the same as agent 5 and 6 of the last experiment,
respectively. Therefore, we named them α and β. Again,
the result of the group was better than the result of each
individual agent (although the difference between the group
and agent 3 is small). This time, the difference between the
group and the best agent seems to be higher than in the
previous experiment. And, for the second time, agents that
are weaker were able to increase the percentage of victory
when they were added to the group. Agent 42 had a per-
centage of victory of only 50.90%, but was able to increase
the percentage of victory of the system in 1.20% when it was
added in the group. Therefore, with this new agent order,
we were also able to show that we can increase the strength
of Monte Carlo Go using the emergent behavior of a group
of agents, this time with a slightly better result.

As can be seen, we could find two agent sets that perform
quite well against the original Fuego. After analyzing the
result of our experiments, we think we have strong indica-
tions that the emergent behavior of a group of agents can

Agent Number Percentage of Victory
0 48.55%± 2.20%

1 (α) 54.40%± 2.15%
2 (β) 54.55%± 2.15%

3 57.05%± 2.15%
42 50.90%± 2.20%

Table 4: Percentage of victory for each individual
agent, in the not random order.
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Figure 7: Percentage of victory for the selected
agent database, in the not random order.
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Figure 8: Learning graph in the not random or-
der, as the algorithm tries to add each agent in the
database.
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lead to higher quality simulations, creating stronger players.
It is notable that we could obtain a percentage of victory of
around 59% against Fuego, in its default configurations for
time limit and number of playouts per leaf.

5. DISCUSSION
In this paper we opened a new path for Computer Go:

emergent behavior. In our approach, different agents play in
the simulation phase of UCT Monte Carlo Go, which allows
a greater diversity, increasing the quality of the simulations,
and of the artificial player as a whole. It is possible to argue
that other MCTS programs also have emergent behavior, as
intelligent game play emerges from a playout strategy exe-
cuted repetitively by a single agent. However, this work is
the first to put Multi-Agent Systems and emergent behavior
into perspective, showing new paths that can be explored to
improve the current algorithms.

We could not achieve a significant percentage of victory
against Fuego using the set of all possible 120 agents. How-
ever, we noticed that a selected set of agents could effectively
improve the solution, and overcome Fuego. This inspired us
to create a simple greedy learning algorithm, that tests if the
presence of each agent contributes to improve the strength
or not. With this algorithm, we could find a set of agents
that won about 59% of the games. In the not random order,
the first agents that the algorithm tried were already known
to be good, and they were immediately selected. However,
we had a set of 15 agents that we believed to be strong
(when all of them were in the agent database, we obtained
a percentage of victory of about 54%), and we were sur-
prised when the learning algorithm reduced this set to only
5 agents. And also, the learning process increased the per-
centage of victory of our system in about 5%, compared to
the solution that we could find manually. Therefore, it had
a significant impact in our results.

However, even though we could significantly overcome
Fuego with our agent set, it is still not so clear if the group
performs better than the best agents, as the difference be-
tween them was small. As the number of possible combina-
tions of agent sets is quite high, we believe there might be
agent sets that perform even better, and might clearly over-
come the best agents. Therefore, it is necessary to develop
better algorithms for finding strong agent sets.

We believe that our approach is in a good direction to
improve MCTS. However, even our straight O(n) learning
algorithm, executing in 104 cores, takes about 120 hours to
finish. This happens because it is necessary to perform a
great number of games in order to reach stable results, with
low standard deviations. With the problems of sharing a
cluster, like system maintenances, queues, machine reserva-
tion schedules, jobs being killed, etc, the whole execution
took about one week and a half. Therefore, finding good
agents is a difficult, computationally intensive problem.

Even though, we believe that much can still be discovered
in that direction. An immediate future work is to regener-
ate the random list of agents, and run the learning process
again. Would it select a similar set of agents? Could it
discover an even stronger group? Another question that
should be answered is the effect of adding not one agent to
the database, but a set of agents. In other words, does each
agent by itself contribute to the solution or is there improve-
ment only when a specific set of agents are all together in
the database? If so, how can that set be found? It is impos-

sible to test all combinations of agents. One idea could be
to apply an algorithm like simulated annealing, and accept
agents that decrease the solution, in order to escape local
minima. In our experiments we could perceive that agents
that perform bad individually are able to increase the qual-
ity of a certain set, so the effect of one agent might depend
on the presence of other agents in the group. Unfortunately,
it does not seem to be possible to apply learning algorithms
like the evolutionary methods, due to the high cost of testing
each solution.

Another possible future research path is to study how to
apply Multi-Agent System paradigms in different ways. Our
system employs a great number of agents during the simula-
tions that are executed to evaluate the score of the leafs. It
is possible to experiment with different applications of the
paradigm. For example, what if different programs negotiate
about a single move, like in [25]? How can we know which is
the best movement among the ones suggested? In the case
of Shogi the number of possible movements is more limited,
and the convergence seems to be easier than in Go, allowing
the application of simple majority voting algorithms. With
the range of different possibilities allowed in a Go game,
how can we solve the selection problem? Other possible di-
rection is to try to apply Multi-Agent Systems in the tree
search phase. Which algorithms could be applied? What
benefits could we obtain? As can be seen, there is a great
range of ideas and algorithms that can be inspired by this
work.

6. CONCLUSION
In this paper we present a new paradigm to the state of the

art of Go: Multi-Agent Monte Carlo Go. In our approach,
different agents play in the simulation phase of UCT Monte
Carlo Go, increasing the realism and the quality of the sim-
ulations by their emergent behavior. We could not achieve a
significant result with all possible agents, but after selecting
a good set of agents by a learning algorithm, we could sig-
nificantly overcome the original system, Fuego. Therefore,
we effectively increased the strength of UCT Monte Carlo
Go. We present several discussions about our system, in-
cluding directions for further improvement and points that
should be better studied. We believe that our work presents
a new paradigm for Monte Carlo Go, and it can be used as
inspiration to a variety of different works.

We plan to further explore the research possibilities that
were discussed in this paper. Therefore, our future work
includes better exploring how to automatically learn good
sets of agents. After running again our learning algorithm,
but this time with different random agent lists, we plan to
explore the effect of probabilistically accepting agents that
decrease the solution, like simulated annealing algorithms.
Other directions of research can be also explored, for ex-
ample, discovering solutions of how to select the best move
when different programs cooperatively play Go. We believe
that much can still be researched, and Computer Go can
be greatly improved by exploring Multi-Agent System tech-
niques.
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ABSTRACT
Researchers in the field of multiagent sequential decision
making have commonly used the terms “weakly-coupled” and
“loosely-coupled” to qualitatively classify problems involving
agents whose interactions are limited, and to identify various
structural restrictions that yield computational advantages
to decomposing agents’ centralized planning and reasoning
into largely-decentralized planning and reasoning. Together,
these restrictions make up a heterogeneous collection of facets
of “weakly-coupled” structure that are conceptually related,
but whose purported computational benefits are hard to
compare evenhandedly. The contribution of this paper is a
unified characterization of weak coupling that brings together
three complementary aspects of agent interaction structure.
By considering these aspects in combination, we derive new
bounds on the computational complexity of optimal Dec-
POMDP planning, that together quantify the relative ben-
efits of exploiting different forms of interaction structure.
Further, we demonstrate how our characterizations can be
used to explain why existing classes of decoupled solution
algorithms perform well on some problems but poorly on
others, as well as to predict the performance of a particular
algorithm from identifiable problem attributes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems

General Terms
Theory, Performance

Keywords
Multiagent Planning, Coordination, Weak Coupling, Loose
Coupling, Locality of Interaction, Policy Abstraction, Influ-
ence, Decentralized Markov Decision Processes, POMDPs

1. INTRODUCTION
The Decentralized Partially-Observable Markov Decision

Process (Dec-POMDP) has emerged as a popular theoretical
model for planning coordinated decisions for teams of agents
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under uncertainty, but its well-established general NEXP
hardness (reviewed by Goldman [6]) has raised concerns
about its practical applicability beyond small toy problems.
In response, researchers have defined a variety of subclasses
amenable to efficient, scalable solution methods, but that
impose various constraints on problem structure [2, 11, 15].
In this paper, we endeavor to illuminate significant aspects
of Dec-POMDP interaction structure that make one prob-
lem easier than another, and to quantify the computational
advantages of exploiting these aspects in concert.

Authors in the multiagent sequential decision making liter-
ature commonly use the terms “weakly-coupled” or “loosely-
coupled” to classify problems involving agents whose interac-
tions are limited (e.g., [8, 12, 13, 22]). Intuitively, weakly-
coupled interaction structure engenders conditional indepen-
dencies among individual agents’ decisions that allow for
efficient decomposition of joint planning and reasoning. How-
ever, different authors’ uses of these terms refer to slightly
different structural conditions, and often frame the conse-
quences of the structure in slightly different algorithmic
contexts. Given the heterogeneity of structural conditions
for weak coupling, and the diverse contexts of published re-
sults, it is difficult to ascertain the computational advantages
of the various structures in relation to one another.

Here, we generalize and synthesize several elements of prob-
lem structure into a more unified characterization of weak
coupling. In particular, we highlight three complementary
aspects of weakly-coupled problem structure: agent scope
size, state factor scope domain size, and degree of influence.
Not only does our characterization highlight useful relation-
ships between these three aspects, but it also concretely
quantifies the relative computational benefits of exploiting
each. By considering these three aspects in concert, we de-
rive new bounds on the worst-case complexity of optimal
Dec-POMDP planning (the context of which we describe in
Section 2). After presenting our characterization and theo-
retical results in Section 3, we illustrate the usefulness of this
contribution in Section 4 by demonstrating that our theory
helps (1) to better explain trends observed in past work, and
(2) to predict the performance of solution algorithms based
on the degree to which test problems are weakly coupled. As
a case study, we illustrate how our theoretical results can be
used in conjunction with empirical analysis to extrapolate
the relative performance of a particular algorithm, Optimal
Influence-space Search [22], on 4-agent problems. In Sec-
tion 5, we relate our characterization to foundational and
alternative analyses from past work, and conclude with a
discussion of our results and future work in Section 6.
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2. CONTEXT
We are considering the problem of planning optimal policies

for a group of agents whose behavior is modeled as a Dec-
POMDP. To illustrate the interaction structure that we are
characterizing, we refer to several examples expressed using a
particular Dec-POMDP model called a Transition-Decoupled
POMDP (TD-POMDP) [22], whose specification emphasizes
conditional independencies among agents.

Figure 1a shows a simple problem involving a three-agent
team whose objective is to plan the coordinated executions
of tasks. Here, task interdependencies called enablements
each represent the constraint that one task must have com-
pleted with positive outcome quality before another task can
begin. The execution of each task, by the agent that owns
that task, is also constrained by a window that expresses
the task’s earliest start time and latest finish time (after
which the task will “fail” by achieving zero outcome qual-
ity). The uncertainty of each task’s execution is conveyed
by its outcome distribution, which assigns a probability (P)
to each possible duration (D) and quality (Q). In the past,
Dec-POMDP researchers have studied examples of this flavor
that were geared towards application domains such as Mars
rover control [13, 22] and disaster response [11].

2.1 Decentralized POMDP
A (finite-horizon) Dec-POMDP [1, 6, 16, 22] is specified

with a tupleM = 〈N , S,A,Ω, O,R, P, T 〉, whereN is a set of
n agents, S is a finite set of world states, with a distinguished
initial state, and A = ×i∈NAi is the joint action space,
each component of which refers to the set of actions of an
agent i ∈ N . The transition function P (s′|s, a) specifies
the probability distribution over next states given that joint
action a = 〈a1, a2, . . . , an〉 ∈ A is taken in state s ∈ S.
The reward function R (s, a, s′) specifies the immediate value
of taking joint action a in state s and arriving in state s′.
Observation function O (o′|a, s′) specifies the probability of
the joint observation o ∈ (Ω = ×i∈NΩi), observed upon
taking a and transitioning into s′.

The team’s behavior is specified with a joint policy π =
〈π1, . . . , πn〉, where each component πi (agent i’s local policy)
maps agent i’s observation history ~o ti to an action ai, thereby
encoding a deterministic decision rule for any sequence of
observations that each agent might encounter. The set of
possible joint policies Π denotes the policy space, and Πi

agent i’s local policy space. The value V (π) of a joint policy
π ∈ Π is the expected cumulative reward received by the
team (from times 1 to T ) when executing that policy from the
initial state. Finally, Dec-POMDP planning is the problem
of computing the optimal joint policy π∗, which can be
expressed as a maximization: π∗ = arg maxπ∈Π V (π).

2.2 Transition-Decoupled POMDP
The Dec-POMDP is an extremely general representation

of joint behavior, allowing for arbitrary dependencies among
agents’ observations and action consequences. As such, the
näıve Dec-POMDP specification is oblivious to any interac-
tion structure that may exist among agents. To express some
of the structure (which we find useful in Section 3) that is
present in problems like the one depicted in Figure 1a, we
turn to the TD-POMDP model [22].

The TD-POMDP assumes an inherent decomposition of
the joint model into transition-dependent local agent models.
The world state s is factored into individual state features

that are distributed among agents’ local states 〈s1, ..., sn〉 ∈
S = ×i∈NSi; however, each feature does not necessarily
reside exclusively in a single agent’s local state si. Figure 1b
depicts the decomposition of world state for the example
problem as a two-stage dynamic Bayesian network, wherein
feature “Den” (encoding whether or not Task D is enabled) is
shared among agent 1’s and agent 2’s local states, and time
is shared among all agents’ local states. These features are
referred to as mutually-modeled features, comprising set m̄.

Similarly, the TD-POMDP specifies decomposable obser-
vation functions and decomposable local rewards [22]. In
this paper, we consider TD-POMDP problems for which the
joint value function decomposes into local value functions
V (π) =

∑
i∈N Vi(π), each of which, Vi(π), is equal to one

agent i’s expected cumulative local reward. In the example
problem, local rewards account for the quality accrued when-
ever an agent finishes one of its tasks. The TD-POMDP
explicitly distinguishes features in an agent j’s local state that
are controlled by agent i as a nonlocal features n̄j , wherein
each serves as an attribute through which i can affect j’s lo-
cal state, observations, and subsequent local transitions [22].
For instance, in Figure 1b, when agent 1 completes task C,
nonlocal feature Fen (Fenabled) changes from false to true,
thereby altering how agent 3’s actions can affect feature F .

A TD-POMDP’s transition-dependent interactions may be
illustrated graphically using an agent interaction digraph [22],
examples of which are shown in Figure 2. The interaction
digraph contains a vertex for each agent, and an edge for each
nonlocal feature that connects the controlling agent with the
affected agent. For any two agents i and j, there may be
more than one edge leading from i to j, one for each nonlocal
feature controlled by i and affecting j. For the purpose of our
analysis we shall denote the digraph ancestors of an agent j
as Λj = {i 6= j| there is a directed path from i to j}, and the
set of digraph descendants of agent i as Ψi = {j 6= i| there is
a directed path from i to j}. In contrast, we shall use the
word peer to refer to “some other agent” in N without the
implication of any particular graphical relationship.

2.3 Relationship Between Dec-POMDP
Planning and Constraint Optimization

Our analysis in Section 3 makes use of a reformulation
of the Dec-POMDP planning problem into a constraint op-
timization problem (COP). The reformulation is a slight
generalization of that explored in past work [2, 15]. In re-
view, a classical COP [4] is specified as a tuple C = 〈X,D,C〉,
where X = {x1, ..., xn} is a set of n variables with possible as-
signments ā = 〈a1, ..., an〉 ∈ D = {D1, ..., Dn}, and C is a set
of constraints. Each constraint represents a cost function Ck
with a restricted (variable) scope Qk ⊆ {1, ..., n}, such that
Ck : [×i∈QkDi] 7→ {R,∞}. The restricted scopes of COP
constraints constitute graphical structure that is naturally
expressed using a constraint graph G. Illustrated in Figure 2,
there is a hyperedge for each constraint Ck that connects
those vertices (which we refer to as neighbors) corresponding
to the variables indexed by Qk.

In solving a COP, and obtaining solution ā∗, the objective
is to minimize the summation of cost values of the vari-
able assignments: ā∗ = arg minā

∑‖C‖
k=1 Ck(ā). Analogously,

the objective of Dec-POMDP planning is to maximize the
expected utility of the joint policy, which can often be de-
composed into component value functions [11, 15, 16, 22],
one for each agent in the case of the TD-POMDP.
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Figure 1: An example problem (a) and corresponding TD-POMDP specification (b).

Observation 1. A Dec-POMDP M, whose value func-
tion V (π = 〈π1, ..., πn〉) decomposes into a summation of
component value functions V (π) =

∑
k Vk(π), reduces to a

COP CM = 〈X,D,C〉 structured as follows:

• X contains exactly one variable xi for each agent i,

• the domain of xi is agent i’s local policy space: Di ≡ Πi,

• an assignment ā = 〈πi, ..., πn〉 is a joint policy,

• C consists of a single constraint Ck(ā ≡ π) = −Vk(π) for
each component Vk of M’s value function,

• and the solution ā∗ is an optimal joint policy π∗.

This reformulation gives rise to a decoupled joint policy
search methodology (such as that employed in past work [2,
14, 22]). In contrast to centralized methods that optimize all
components of the optimal joint policy at once, a decoupled
joint policy search is an iterative process where, at each step,
an each agent i computes one possible local policy, π∗i (π̄ 6=i) =
arg maxπi

V (πi, π̄6=i), referred to as a best response to
proposed local policies π̄6=i of i’s peers. Equation 1 below
reduces the computation of an optimal joint policy for a
three agent Dec-POMDP problem (such as in Figure 1) to a
series of best response calculations.

π∗= arg max
〈π1,π2,π3〉

V (π1, π2, π3)

= arg max
〈π1,π2〉

V (π1, π2, π
∗
3(π1, π2))

= arg max
π1

V (π1, π
∗
2(π1), π∗3(π1, π

∗
2(π1)))

(where π∗2(π1) = arg maxπ2
V (π1, π2, π

∗
3(π1, π2)))

(1)

The search implied by the arg max invocations in Eq. 1,
which enumerates all combinations of local policies, serves
as the basis for more advanced decoupled solution methods
cited in the next section.

3. DIMENSIONS OF WEAKLY COUPLING
Intuitively, the computational benefit of solving a problem

with a decoupled solution method instead of a centralized
method depends upon the presence of problem structure
that renders agents more or less independent of each other.
Here, we generalize and formally characterize three different
previously-studied aspects of weakly-coupled problem struc-
ture whose exploitation has been shown to be beneficial in

past work (which we review in Section 5). Our characteriza-
tion takes the form of a three-dimensional landscape that can
be used to quantify the advantage gained through exploiting
a problem’s interaction structure and, ultimately, to predict
the amount of computation needed to solve the problem. We
describe each dimension in Sections 3.1–3.3, over the course
of which we gradually refine a bound on the computational
complexity of Dec-POMDP planning, and then in Section 3.4
we bring these terms together into a unified characterization.

3.1 Agent Scope Size
The first aspect that we examine lies in the graphical

structure present in a Dec-POMDP M’s equivalent COP
constraint graph GM. The connectivity of each hyperedge is
dictated by the scope Qk of a constraint Ck, which is equal
to the agent scope [7, 16] of component value function Vk.

Definition 1. The agent scope, denoted Qk, of a (com-
ponent) value function Vk() is the subset of agents on whose
policies its value depends, such that Vk : [×i∈Qk Πi] 7→ R.

In a TD-POMDP agent, for instance, the scope Qi of an
agent i’s local value function contains all agents that can
affect i’s rewards through their actions, which are i and
its interaction digraph ancestors: Qi = {i} ∪ Λi [21]. In a
Network-Distributed POMDP (ND-POMDP), the size of the
agent scope corresponds to local neighborhood size [15].

At one extreme of the weak coupling spectrum, agents are
uncoupled : they do not interact, so the constraint graph con-
sists of n unconnected vertices. In this case, the optimal joint
policy is simply the combination of independently-computed
optimal local policies: π∗ =

〈
arg maxπi

Vi(πi), ∀i ∈ N
〉
, and

agent scope Qi = {i}, ∀i. At the opposite extreme, all agents’
decisions are affected by all other agents, and hence no agent
can optimize its local policy without considering the potential
policies of all other agents. In between these two extremes,
there exist conditional independencies that allow agents to
plan independently of some peers but not others.

Definition 2. An agent i is conditionally decision-inde-
pendent of agent j conditioned on peer agents K ⊆ (N −
{i, j}) if: ∀{πxj , πyj } ⊆ Πj ,∀π̄K ∈ (×k∈KΠk),

arg maxπi∈Πi
V
(
πi, π

x
j , π̄K

)
= arg maxπi∈Πi

V
(
πi, π

y
j , π̄K

)
.

In the example from Figure 1, agents 2 and 3 are condi-
tionally decision-independent of each other conditioned on
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Figure 2: Examples of constraint graphs (right) de-
rived from TD-POMDP interaction digraphs (left).

agent 1. Intuitively, this is because agent 2 cannot affect
the values of agent 3’s local state features nor vice versa, no
matter what actions they decide to take. Mathematically, it
is because, from the constraint graph in Figure 2 (upper-left),
agent 3’s best response π∗3(π1, π2) is independent of π2:

π∗3(π1, π2) = arg maxπ3
V (π1, π2, π3)

= arg maxπ3
[V1(π1) + V2(π1, π2) + V3(π1, π3)]

= arg maxπ3
V3(π1, π3) ≡ π∗3(π1)

and vice versa. The practical benefit of this conditional deci-
sion independence relationship is a simpler optimal solution
computation. Substituting π∗3(π1) (as well as the equivalently-
reduced π∗2(π1)) into Equation 1 significantly reduces the
combinations of local policies that need be considered:

π∗ = arg maxπ1
V (π1, π

∗
2(π1), π∗3(π1)) (2)

Whereas Equation 1 required ‖Π1‖‖Π2‖‖Π3‖ evaluations
of V(), Equation 2 requires only (‖Π1‖‖Π2‖+ ‖Π1‖‖Π3‖+
‖Π1‖) evaluations due to the reduction in the number of best
responses, given the restricted agent scopes of V2() and V3().

Using COP theory, we can generalize the computational
reduction as well as the methodology of exploiting graphical
structure beyond our simple example problem. The compu-
tation performed in Equation 2 is an instance of bucket elim-
ination (essentially, nonserial dynamic programming) [4], a
general solution methodology that performs well on sparsely-
connected constraint graphs. Dechter has proven that the
worst-case time and space complexity of bucket elimination is
O
(‖C‖‖Dmax

i ‖ω+1
)
, where ‖C‖ is the number of cost func-

tions, Dmax
i is the largest domain size of any COP variable

and ω is the induced width of the constraint graph [4].

Observation 2. The worst-case time and space complex-
ity of optimal planning for Dec-POMDP M is bounded by
O
(
n · ‖Πmax

i ‖ω+1
)
, where n is the number of component

value functions, Πmax
i is the largest local policy space, and ω

is the induced width of the equivalent constraint graph GM.

By Observation 2, a lower induced width implies an exponen-
tial reduction in worst-case computation time. However, note
that the local policy space size ‖Πmax

i ‖, at the base of the
exponent, is itself exponentially dependent on the number of

local observations histories: ‖Πmax
i ‖ = O

(
‖Ai‖‖Oi‖T

)
[14].

By Dechter’s definition [4], the induced width ω may be
calculated by taking the minimum, over all possible orderings
of vertices in GM, of the following measure: process vertices
in order from last to first, for each vertex connecting its
earlier-ordered neighbors, then return the largest number of
earlier-ordered neighbors of any vertex. Alternatively, we
can estimate ω using agent scope size. While in general,
ω ≥ (maxk ‖Qk‖ − 1) (which follows from the definitions of
ω and Qk), for a wide variety of TD-POMDP interaction
digraph topologies (some of which are shown in Figure 2),
ω = (maxk ‖Qk‖ − 1).

3.2 State Factor Scope Domain Size
The theoretical results presented thus far assume a näıve

algorithm for performing best response calculations: enu-
meration of all local policies πi ∈ Πi and explicit evaluation
of V (πi, π̄6=i) for each. In a classical COP, enumeration of
variable domains would be the only way to compute a best
response. However, the COP that we are solving involves
policy variables with structured domains. To exploit this
structure, several algorithms have been developed for comput-
ing a best response by solving a single-agent POMDP model
seeded with peers’ policy information [14, 15, 22]. Aside from
harnessing the efficiencies of state-of-the-art POMDP solvers,
a best-response model can also exploit weakly-coupled prob-
lem structure. In particular, a best-response model does not
necessarily need to represent all world state features [15, 22].

Intuitively, there may be features that have no bearing on
the value ascribed to the agent’s own behavior. For instance,
in Figure 1b, the enabling of Task F (encoded by feature Fen,
appearing in agent 1’s local state, but unobservable to agent
2) is inconsequential to agent 2 as it plans its best response
policy π∗2(π1). Using Definition 3, which we have adapted
from previous work [7, 16] to fit this context, feature Fen is
not in agent 2’s state factor scope.

Definition 3. An agent i’s state factor scope Xi is the
minimal1 set of features sufficient for modeling the (belief)
state used to compute i’s optimal best response.

Becker et al. have derived that a Transition-Independent
Dec-MDP (TI-Dec-MDP) agent i’s best response may be cal-
culated with an augmented MDP whose state space includes
only i’s local state features (but whose rewards are modified
to account for peer agent j’s proposed policy) [2]. In this case,
even though the joint utility is dependent upon features from
both agents’ local state representations, it suffices for agent
i to reason over a greatly-reduced space of features when
computing a best response. In earlier work [22], we have
developed a POMDP for computing the best response for
a TD-POMDP agent i that includes (at most) the features
from i’s local state si and the histories of mutually-modeled
features ~mi. A TD-POMDP agent i’s state factor scope is
thus Xi ⊆ {si, ~mi}.

Intuitively, the smaller the portion of the world state that
an agent observes and interacts with, the smaller its state
factor scope, and the easier its local planning and reasoning
becomes. Accounting for the sizes of the domains of features
in the state factor scope, denoted Dom(Xi), we can refine
our bound on computational complexity as follows.
1Given that multiple flavors of best response model may
be applicable [14, 22], we are most interested in those that
exploit weakly-coupled problem structure by reducing their
modeled set of features as much as possible.
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Theorem 1. The worst-case complexity of Dec-POMDP
planning is O (n · EXP(‖Dom(Xmaxi )‖) · ‖Πmax

i ‖ω), where
‖Dom(Xmaxi )‖ = maxi∈N ‖Dom(Xi)‖.

Proof Sketch. The derivation of the complexity result
from Observation 2 entails every best response computation
requiring an arg maxπi

to be taken, enumerating the local
policy space bounded by ‖Πmax

i ‖, for all combinations of
policies of ω peers, yielding complexity ‖Πmax

i ‖‖Πmax
i ‖ω

for each of the n agents. By replacing each best response
calculation with one POMDP solution, we can substitute
the first term ‖Πmax

i ‖ in our complexity computation with
the complexity of solving a finite-horizon POMDP, which is
O(EXP(‖S‖) = EXP(‖Dom(Xmaxi )‖) given that the state
space is bounded by ‖Dom(Xmaxi )‖ [21].

3.3 Degree Of Influence
Making use of Definition 2, for any two agents i and j, i

is either decision-dependent on j or decision-independent of
j (possibly conditioned on some other agents). Considering
the rich space of dependencies that may exist between the
two agents, a binary relation such as decision-independent
lacks the precision to characterize weakly-coupled problems
satisfactorily. For instance, in the example problem from
Figure 1a, agent 2 is decision-dependent on agent 1, but only
dependent on those decisions relating to the execution of
Task A. Whether agent 1 executes Task B after completing
Task A, or simply idles, cannot impact agents 2’s decisions in
any way. Moreover, any two of agent 1’s possible policies, πx1
and πy1 that differ only in the decisions made after completing
Task A induce the same best response from agent 2.

Definition 4. Two policies, πxi and πyi , of agent i are

impact-equivalent, denoted πxi
I≡ πyi , if πxi and πyi re-

sult in the same peer best responses: ∀j 6= i, ∀π̄(K=N−{i,j}),

πxi
I≡ πyi ⇔

[
arg max

πj

V (πxi , πj , π̄K) = arg max
πj

V (πyi , πj , π̄K)
]
.

Definition 5. An impact equivalence class Ei,x is a set

of impact-equivalent policies: ∀ {πxi , πyi } ∈ Ei,x, πxi
I≡ πyi .

In essence, an agent i’s local policy space can be partitioned
into disjoint equivalence classes, each of which may impact
other agents in the system in a different way, thereby (po-
tentially) inducing a different combination of best responses
from i’s peers. Definitions 4–5 elicit a spectrum of varying
degrees of agent dependence. At one end of the spectrum,
all of agent i’s policies are grouped into a single impact
equivalence class, indicating that any given peer j’s behavior
is unaffected by i’s decisions. At the opposite end of the
spectrum, agent j’s best response is highly sensitive to the
policy that i adopts, such that no two policies of agent i are
impact-equivalent, and the number of i’s impact equivalence
classes is equal to the size of its policy space ‖Πi‖.

There are several Dec-POMDP planning algorithms that
take advantage of this kind of weak agent coupling [2, 22].
Each algorithm employs what we shall call a partitioning
scheme that implicitly partitions each agent i’s local policy
space into a set of impact equivalence classes Pi = {Eix},
parameterizing each class with information representative of
the policies from that class. The key is that to compute the
optimal joint policy, it suffices for each agent j to compute a
best response to just one of the local policies from each of

agent i’s ‖Pi‖ impact equivalence classes. This set of best
responses is referred to as agent j’s optimal coverage set [2]
because it sufficiently covers every possible policy of agent i.

Definition 6. For a given problem, the degree of influ-
ence dP, afforded by a partitioning P, is the maximum ratio
of impact equivalence classes to local policies:

dP = max
i∈N

‖Pi‖
‖Πi‖ . (3)

By Definition 6, if a very coarse partitioning is found
for a particular problem, wherein partitions contain large
numbers of local policies, a low degree of influence dP has
been achieved. All else being equal, problems with a low
degree of influence should be easier to solve than problems
with a high degree of influence because of the reduction,
from ‖Πi‖ to ‖Pi‖, in the number of necessary best responses
per step of a distributed joint policy search. However, the
computational benefit of a coarse partitioning could be offset
by the computational overhead required to partition each
agent’s local policy space, whose worst case we denote CP.

3.4 Unified Characterization
In the past three subsections, we have quantified three

problem characteristics associated with the degree of coupling.
Conceptually, agent scope size refers to the number of agents
in the system that are affecting each others’ decisions, state
factor scope domain size refers to the portion of state feature
values that must be considered by each individual agent when
coordinating its decisions, and degree of influence refers to the
proportion of unique ways that agents can impact each others’
decisions (subject to a given partitioning scheme). Each
aspect manifests itself in a different set of problem attributes,
and each affects the overall complexity in a different manner.
However, we can formally characterize the combination of
their effects as follows:

Theorem 2. The worst-case time and space complexity
of Dec-POMDP planning, using a decoupled solution method
that partitions agents’ policy spaces, is bounded by:

O (n · EXP(‖Dom(Xmaxi )‖) · (dP‖Πmax
i ‖)ω + n·CP) (4)

where n denotes the number of component value functions,
Dom(Xmaxi ) denotes the largest domain of any agent’s state
factor scope (Def. 3), dP denotes the degree of influence
(Def. 6) given partitioning P, CP is the worst-case complexity
of computing P, Πmax

i denotes the largest local policy space,
and ω is the induced width.

Proof Sketch. Equation 4 is straightforwardly derived
by manipulating the bound from Theorem 1. The base of the
exponent is replaced with dP due to the worst-case reduction
in the number of best response computations afforded by P.
Next, a second term is added accounting for the accumulation
of computation required by the partitioning process.

Parameters {ω,Xmax
i , dP} can be thought of as separate

dimensions whose combination provides a concrete measure
of the weakness (or strength) of coupling of a problem. A
problem’s worst-case complexity depends on where it lies
along the spectra of agent scope size, state factor scope do-
main size, and degree of influence. For any two problems, we
can now compare their worst case complexities by estimating
the values of the three parameters and positioning each in the
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3-dimensional space. Given a factored representation of Dec-
POMDP problem structure (such as a TD-POMDP [22], ND-
POMDP [15], or a more general factored Dec-POMDP [16]),
the first two parameters, ω and Xmax

i , can be evaluated di-
rectly from the problem specification. The third dimension,
dP, is not readily assessable from any Dec-POMDP problem
specification that we are aware of. Moreover, dP is inher-
ently tied to the partitioning scheme used by the solution
algorithm. Thus, for any given algorithm, we propose to
estimate dP through empirical profiling of the partitioning
scheme (as we demonstrate in Section 4.2).

4. EVALUATION
A significant contribution of the theory we presented in

Section 3 lies in its explanatory and predictive power, a
claim which we now defend (anecdotally in Section 4.1, and
empirically in Section 4.2).

4.1 Explaining Trends
Researchers have developed a number of different algo-

rithms for exploiting the kinds weakly-coupled problem struc-
tured formalized above [2, 9, 10, 13, 14, 15, 16, 22]. Our
unified characterization can explain some of the trends ob-
served in the performance of these algorithms that are not
easily explained without considering combinations of dimen-
sions of agent coupling.

For instance, the successes of a family of ND-POMDP algo-
rithms [9, 15] in scaling to many agents has been attributed to
the reduced agent scope associated with ND-POMDP agents’
local neighborhoods [9, 10, 15]. That is, as long as the agent
scope remains small, these algorithms are expected to be
practical. However, a generalized version of one of these algo-
rithms (JESP [14]) has recently been reported as intractable
for a test set of Distributed POMDPs with Coordination
Locales (DPCLs) containing just two agents, even when gen-
erating an approximate solution [20]. A likely explanation
for this phenomenon is contained within Equation 4, which
suggests that it was not the agent scope of the problems
that foiled JESP but instead the cost of JESP’s best re-
sponse calculation. Whereas ND-POMDP problems have an
inherently restricted state factor scope due to the strict sep-
aration of transition-independent agents’ local states, DPCL
problems involve transition-dependent agents that need to
reason about each others’ state variables in order to compute
optimal best responses (which JESP employs in computing
approximate solutions), making the DPCL more strongly
coupled even in its two-agent incarnation.

Transition dependence alone does not make a problem
strongly coupled, however. In earlier work, we demonstrated
the capability of an algorithm inspired by JESP, Optimal
Influence-Space search (OIS), to scale optimally to sets of TD-
POMDP problems with four transition-dependent agents [22].
At the time, little was understood about the structure of
these problems that OIS was exploiting, especially given
the wide range of OIS runtimes reported for a single set of
problems. The theory developed in Section 3 leads us to
attribute the successes of OIS to a low degree of influence
in the test problems, a claim that is supported by empirical
evidence presented in Section 4.2.1.

4.2 Predicting Performance of OIS
Our theory can also be used to make detailed predic-

tions about the computational overhead of algorithms such

as OIS that exploit weakly-coupled problem structure. In-
stead of presenting a comprehensive empirical analysis of all
the dimensions of weak coupling, we use the limited space
here to illustrate how to use Equation 4 to predict the rel-
ative computation time taken by OIS to solve variations
of two example problems, named fanout and fanin, whose
interaction digraphs are shown in Figure 2 (bottom). The
two examples differ in their topology, but both include four
agents connected by three enablement features, each linking
randomly-selected tasks from the task sets of the correspond-
ing agents. Each agent’s task set contains three tasks, each
with three randomly-selected outcomes whose qualities are
random integers ∈ (1, 10) and whose durations are random
integers ∈ (1, 5) selected without replacement.

Aside from demonstrating how to make empirically-guided
theory-driven predictions, this experiment serves to elucidate
the relationship between the window sizes of agents’ tasks
(examples of which appear in Figure 1a) and the computation
time of OIS that we observed in an earlier analysis [22]. As
such, we have generated sets of problems (of both the fanin
and fanout flavors) whose task window sizes were fixed at
{1, 2, 3, 4, and 5} and whose earliest start time and latest
end times were selected so as to position the task’s fixed-size
window uniformly randomly in the interval (0, 5).

4.2.1 Profiling Partitioner and Best-Response Solver
Whereas Equation 4 conveys a general bound, OIS em-

ploys a specific form of impact equivalence partitioning. In
order to estimate the degree of influence dP and partitioning
complexity CP that OIS will achieve on fanin and fanout, we
profile OIS’s partitioner and best response solver on two sets
of smaller 2-agent enabler-enablee problems, one in which
the enabler controls a single enablement (as do the enablers
in fanin), and one in which the enabler controls three enable-
ments (as does the enabler in fanout).

Figure 3 (top-left) shows dP‖Πmax
i ‖ plotted as a function

of window size. Each point represents the mean value of
20 randomly-generated profiling problems. Both flavors of
problems exhibit an exponential trend in the number of equiv-
alence classes, which explains why, in previously-reported
results [22], OIS appeared to compute optimal solutions in
exponentially less time as the window size was decreased.
However, a striking feature of these plots is the high vari-
ance2 (indicated by the error bars). This suggests that, in
addition to window size, there are other factors at play that
have a significant effect on the degree of influence. We ran an
additional experiment in which we held the window size con-
stant at 3 and varied the earliest start time of one enabling
task, the results of which are shown in Figure 3 (top-right).
From this plot, it appears that the temporal placement of
agents’ interactions is also a good predictor of the degree of
influence, though analysis beyond the scope of this paper is
required to verify this supposition.

Upon measuring the computation time taken by the enabler
to perform its impact equivalence partitioning (represented
as CP in Eq. 4), we observed that it did not consume more
than 70 percent of the total solve time on any given problem.
We thereby deduced that for this particular suite of prob-
lems, the first term of Equation 4, n ·EXP(‖Dom(Xmaxi )‖) ·
(dP‖Πmax

i ‖)ω, would be just as strong a predictor of OIS’s

2To verify that the means were not simply driven up by
outliers, we also examined the medians (not shown here),
and observed the same exponential trend.
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Figure 3: Profiling: dP‖Πi‖ (top-left), dP‖Πi‖ vs. ear-
liest start time (top-right), ‖Dom(Xmaxi )‖ (bottom-
left), and best-response comp. time (bottom-right).

relative computation time as the sum of both terms.
Whereas EXP(‖Dom(Xmaxi )‖) in Equation 4 is a worst-

case bound on the complexity that makes no assumptions
about the POMDP solver, OIS uses a particular solver whose
computation time we measured on the problems in our pro-
filing set. Figure 3 (bottom-left) plots the state factor scope
domain size (‖Dom(Xi)‖), measured as the actual size of the
state space of the best-response model, as well as the mean
computation time per best response (bottom-right). Note
that, due to their topologies, the “3 enablement” problem
profiles the best response computation of fanin, whereas the
“1 enablement” problem profiles that of fanout. For both
flavors, we observe a slight increase in both state factor scope
domain size and best response computation time (which
for these problems appear to be linearly, not exponentially,
related in practice).

4.2.2 Predicting Relative Computation Time
Next, we evaluated n ·EXP(‖Dom(Xmaxi )‖) ·(dP‖Πmax

i ‖)ω
for both fanin and fanout across all window sizes, replacing
EXP(‖Dom(Xmaxi )‖) with the profiled best response compu-
tation time shown in Figure 3 (bottom-right) and dP‖Πmax

i ‖
with its profiled value (top-left). For fanin problems, ω was
set to 3, and for fanout, 1; for all problems, n = 4. Figure 4
shows the computation time predicted by our theory (left),
and the mean values of actual runtime of OIS (right) on 20
random fanin and fanout problems per window size.

1 2 3 4 5
100

101

102

103

104

105

106

window size

se
co

nd
s

Predicted Runtime

 

 

fanin
fanout

1 2 3 4 5
100

101

102

103

104

105

106

window size

m
ea

n 
# 

se
co

nd
s

Actual Runtime

 

 

fanin
fanout

Student Version of MATLAB

Figure 4: Predicted (left) and actual (right) OIS
computation time vs. window size.

At a high level, the trend we predicted using our theoret-
ical characterization matches the trend observed in actual
data: for weakly-coupled problems that have a low degree of
influence (because of their small task windows), the agent
scope size has little effect on the computation time. How-
ever, as the window size increases, the size of the agent scope
makes exponentially more difference. Such a prediction could
not have been made, nor this trend well understood, without
taking into account two different aspects of weak coupling:
degree of influence and agent scope size. While our predicted
runtimes appear to overestimate the actual runtimes in both
cases, we do not expect the actual runtimes to precisely
match predictions made using worst-case complexity bounds.
For instance, Equation 4 does not account for the fact that
in fanin problems, only a single agent is computing a best
response. (In general, ω = 3 topologies would require that
all agents compute best responses.)

5. RELATED WORK
The first author’s dissertation [21] includes a more rigor-

ous, though less general, treatment of the theory presented
in Sections 2–3. Compared to other treatments of weak cou-
pling in multiagent sequential decision making, the primary
distinctions of our analysis are (1) its synthesis of three as-
pects of weak coupling into a single unified characterization,
and (2) its quantification of the computational benefits of
exploiting weakly-coupled structure in a general context of
optimal Dec-POMDP planning. Each of these aspects has
appeared in the literature in some shape or form. For exam-
ple, the work of Guestrin et al. [7] on exploiting restricted
state factor scope and agent scope (both of which have also
been referred to under the heading locality of interaction [9,
15, 16]) in factored value functions, though limited in context
to approximate solution computation, plays a foundational
role in our analysis.

The effect of restricted agent scope on problem hardness
has been previously explored in MMDPs [5] (assuming fully-
jointly-observable state), and also in ND-POMDPs [9, 10,
15] (assuming transition and observation independence). In
the latter, Kumar and Zilberstein [10] make an explicit con-
nection between induced width and complexity. Oliehoek et
al. [16] analyze the stage-by-stage dynamics of state factor
scope and agent scope in factored Dec-POMDPs, treating
the planning problem as a series of collaborative graphical
Bayesian games. Degree of influence, is grounded in the work
of Becker et al. [2], who identify the coverage set as a subset of
local policies that need be considered in a joint policy search,
and the works of Rathnasabapathy et al. [18] and Pynadath
and Marsella [17], who define behavior(al) equivalence over
candidate models of an agent’s peers. Our earlier work [22]
on influence-based abstraction can be viewed as a means of
partitioning the policy space into impact equivalence classes,
each of which is summarized by an influence.

Aside from the three aspects on which our characteriza-
tion concentrates, researchers have analyzed the relationships
between other forms of interaction structure and problem
hardness. For instance, Goldman and Zilberstein [6] charac-
terize the complexity of various Dec-POMDP subclasses by
classifying agents’ direct communication and indirect sharing
of information through observation. Shen et al. [19] charac-
terize complexity of optimal Dec-MDP planning according
to the complexity of the minimal encoding of agents’ local
policies. Allen and Zilberstein [1] develop an information-
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theoretic metric, influence gap, that quantifies the difference
in the degree to which each agent can affect world state
transitions and joint rewards in a two-agent Dec-POMDP.
Though the semantics of influence in Allen and Zilberstein’s
work differ substantially from ours, their results express the
same general sentiment that varying levels of impact result
in varying problem hardness.

Lastly, there is a strong connection between our analysis
and that of Brafman and Domshlak [3], who transform the
classical planning problem into one of constraint satisfaction.
As in our analysis of joint policy computation as constraint
optimization, they incorporate a parameter ω corresponding
to the induced width of the constraint graph.

6. CONCLUSIONS AND FUTURE WORK
This paper takes an important step towards gaining a bet-

ter understanding of what makes some Dec-POMDP prob-
lems so much harder to solve than others. We have jointly
characterized three aspects of the weakly-coupled problem
structure that, when exploited, accommodate quantifiable
computational gains. By studying these aspects in a unified
context, we have derived new bounds on the complexity of
optimal multiagent planning.

Our theoretical results complement the abundance of recent
algorithmic development geared towards solving problems
with structured agent interactions [2, 9, 10, 13, 14, 15, 16,
22], by providing a gauge of problem difficulty based upon
the degree to which a problem is weakly-coupled. We have
demonstrated that our theory can explain observations about
algorithm performance, as well as predict the relative compu-
tational overhead of algorithms that exploit some or all of the
elements of weakly-coupled problem structure that we have
characterized. These explanations and predictions could not
have been formed without considering the combination of
different aspects of weakly-coupled structure.

In the process of predicting the computation time of one
such algorithm, OIS [22], our empirical analysis illustrated
that OIS’s past success was due, in part, to its exploitation of
structure in problems with a low degree of influence. However,
our analysis also exposed the need for a better understanding
of the identifiable problem attributes that affect degree of
influence, whose underlying structure is less discernible than
that of state factor scope domain size and agent scope size.
Moreover, in the future, we hope to find other advantageous
structural aspects that would improve the predictive power of
our characterization. Such a pursuit could not only expand
our understanding of the performance of existing algorithms,
but guide the design of better algorithms.
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ABSTRACT
Building on research previously reported at AAMAS conferences,
this paper describes an innovative application of a novel game-
theoretic approach for a national scale security deployment. Work-
ing with the United States Transportation Security Administration
(TSA), we have developed a new application called GUARDS to
assist in resource allocation tasks for airport protection at over 400
United States airports. In contrast with previous efforts such as AR-
MOR and IRIS, which focused on one-off tailored applications and
one security activity (e.g. canine patrol or checkpoints) per applica-
tion, GUARDS faces three key issues: (i) reasoning about hundreds
of heterogeneous security activities; (ii) reasoning over diverse po-
tential threats; (iii) developing a system designed for hundreds of
end-users. Since a national deployment precludes tailoring to spe-
cific airports, our key ideas are: (i) creating a new game-theoretic
framework that allows for heterogeneous defender activities and
compact modeling of a large number of threats; (ii) developing
an efficient solution technique based on general purpose Stackel-
berg game solvers; (iii) taking a partially centralized approach for
knowledge acquisition and development of the system. In doing so
we develop a software scheduling assistant, GUARDS, designed to
reason over two agents — the TSA and a potential adversary —
and allocate the TSA’s limited resources across hundreds of secu-
rity activities in order to provide protection within airports.

The scheduling assistant has been delivered to the TSA and is
currently under evaluation and testing for scheduling practices at
an undisclosed airport. If successful, the TSA intends to incorpo-
rate the system into their unpredictable scheduling practices nation-
wide. In this paper we discuss the design choices and challenges
encountered during the implementation of GUARDS. GUARDS
represents promising potential for transitioning years of academic
research into a nationally deployed system.
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1. INTRODUCTION
The United States Transportation Security Administration (TSA)

is tasked with protecting the nation’s transportation systems [2].
These systems are often large in scale and require many personnel
and security activities to protect them. One set of systems in partic-
ular is the over 400 airports [2]. These airports serve approximately
28,000 commercial flights per day and up to approximately 87,000
total flights [1]. To protect this large transportation network, the
TSA employs approximately 48,000 Transportation Security Offi-
cers [2]. These Security Officers are responsible for implementing
security activities at each individual airport in order to provide se-
curity for the transportation network.

While many people are aware of common security activities,
such as individual passenger screening, this is just one of many
security layers TSA personnel implement to help prevent potential
threats [2]. These layers can involve hundreds of heterogeneous
security activities executed by limited TSA personnel leading to a
complex resource allocation challenge. Unfortunately, TSA cannot
possibly run every security activity all the time and thus must de-
cide how to appropriately allocate its resources among the layers of
security to protect against a number of potential threats.

To aid the TSA in scheduling resources in a risk-based manner,
we take a multi-agent game-theoretic approach. Motivated by ad-
vantages of such an approach reported at AAMAS conferences (see
Section 2.2), we utilize Stackelberg games where one agent (the
leader) must commit to some strategy first and a second agent (the
follower) can make his decision with knowledge of this commit-
ment. Here, the TSA acts as a defender (i.e. the leader) who has
a set of targets to protect, a number of security activities to protect
each target, and a limited number of resources to assign to these se-
curity activities. This approach then models a motivated attacker’s
ability to observe the TSA’s resource allocations before choosing
a potential threat to execute in an attempt to attack an airport tar-
get. The advantage of our approach is in finding the optimal mixed
strategy for the TSA to commit to in order to provide them with
a risk-based, randomized schedule for allocating their limited re-
sources. From the perspective of the underlying game-theoretic
model, a crucial difference of our novel approach and previous ap-
proaches is this: we allow for both heterogeneous security activi-
ties and threats whereas previous “security games” approaches re-
ported at AAMAS [14, 15] are only able to consider homogeneous
security activities and threats, leading to a new game model called
“Security Circumvention Games” (SCGs).
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In conjunction with TSA subject matter experts, we developed
a software system, Game-theoretic Unpredictable and Randomly
Deployed Security (GUARDS), that utilizes a Stackelberg frame-
work to aid in protecting the airport transportation network. From
an application perspective, the fundamental novelty in GUARDS,
compared to previous applications [14, 15] of such game-theoretic
approaches, is the potential national scale deployment at over 400
airports. Given that previous approaches only dealt with a single
standalone location, this scale raises three new issues. The first is-
sue is in appropriately modeling the TSA’s security challenges in
order to achieve the best security policies (mixed strategy). Due to
the complex nature of TSA’s security challenges, traditional models
of security games [17] are no longer appropriate models. Specif-
ically, the TSA’s domain has the following additional features be-
yond traditional security games: (i) heterogeneous security activ-
ities for each potential target; (ii) heterogeneous threats for each
potential target; (iii) unique security activities for individual air-
ports. The second issue is in efficiently solving the model we devel-
oped where, because we consider a national deployment, a special-
purpose solver may not be appropriate. In fact, previous solution
techniques [8, 9] for traditional security games are no longer di-
rectly applicable. The final issue is in knowledge acquisition for
the many variables involved in TSA’s security challenges.

In consideration of national deployment for the TSA, we face
two unique constraints. First, headquarters cannot do centralized
planning where they create a single optimal mixed strategy (secu-
rity policy) that will be applicable to all airports. Each airport is
unique and thus will require its own individual security policy. Sec-
ond, TSA wants to maintain a common standard of security among
airports. This precludes an entirely decentralized approach where
each individual airport is completely in charge of creating their se-
curity policy. Even so, due to the possibility of over 400 end-users,
it is not practical to sit down with each location and tailor the sys-
tem to their individual needs. This presents a challenge in acquir-
ing the necessary domain knowledge for such a large network of
airports to appropriately model their security challenge.

To address these issues, we developed both a new formal model
of security games and techniques to solve this class of games. We
also had to incorporate a new methodology for knowledge acqui-
sition. To appropriately model the TSA’s security challenges we
created a novel game-theoretic model, which is referred to as Secu-
rity Circumvention Games (SCGs), and cast the TSA’s challenges
within this model. In the creation of SCGs we provide the follow-
ing contributions: (i) the ability for defenders to guard targets with
more than one type of security activity (heterogeneous activities);
(ii) the ability for attackers to choose threats designed to circum-
vent specific security activities. Given our new model, we designed
an efficient solution technique in which we create a compact repre-
sentation of SCGs. This allows us to avoid using a tailored Stackel-
berg solver and instead utilize a general purpose Stackelberg solver
to compute solutions efficiently. Finally, we took a partially cen-
tralized approach to knowledge acquisition for the TSA domain.
We integrated a two phase knowledge acquisition process in which
we acquire common information, standards, and practices directly
from TSA headquarters and then developed the GUARDS system
itself to acquire the necessary information that is unique to individ-
ual airports.

These key issues present a novel and exciting problem in transi-
tioning years of research from the AAMAS conference to a highly
complex domain [9, 12, 14, 15, 17]. GUARDS is currently under
evaluation by the TSA with the goal of incorporating its scheduling
practices into their unpredictable security programs across airports
nationwide.

2. BACKGROUND
Game theory is well known to be a useful foundation in multi-

agent systems to reason about multiple agents each pursuing their
own interests [7]. Game-theoretic approaches, specifically based
on Stackelberg games, have recently become popular as approaches
to address security problems (e.g. assigning checkpoints, air mar-
shals, or canine patrols). These approaches reason about two agents
pursuing opposing interests (i.e. a security force and an adversary)
in an attempt to optimize the security force’s goals. Specifically,
they model the commitment a security force must make in provid-
ing security and the attacker’s capability of observing this commit-
ment before attacking. The objective is to find the optimal mixed
strategy to commit to given that an attacker will optimize his reward
after observing this strategy. At this point we will describe how se-
curity games, as defined in [17], fit into the Stackelberg paradigm.
In Section 3.1 we will define SCGs to account for the challenges
that the TSA faces.

2.1 Security Games
In a security game there are two agents – the defender (security

force) and an attacker – who act as the leader and the follower in
a Stackelberg game. There are also a set of targets, which the de-
fender is trying to protect. Each of these targets has a unique reward
and penalty to both the defender and attacker. Thus, some targets
may be more valuable to the defender then others. To protect these
targets the defender has a number, K, of resources at her disposal.
There is a single security activity being considered and these re-
sources can be allocated to execute this activity on any target. Once
a resource is allocated to a target it is marked as covered, otherwise
it is marked as uncovered. If the attacker attacks an uncovered tar-
get he gets his reward and the defender her corresponding penalty
else vice versa. The defender’s goal is to maximize her reward
given that the attacker will attack with knowledge of the defensive
strategy the defender has chosen. In most cases, the optimal strat-
egy for the defender is a randomized strategy in which she chooses
a mixed strategy over all her possible resource assignments.

There exist a number of algorithms and techniques for solving
security games [6, 8, 9, 12]. DOBSS, a mixed-integer linear pro-
gram, and the Multiple Linear Programs methods are the most gen-
eral and are capable of solving any Stackelberg game optimally [6,
12]. The other algorithms are tailored to security games specifically
and are much faster in practice for these games.

2.2 Assistants for Security Games
A number of tools have been designed to assist in security prob-

lems that fall under the security game paradigm. ARMOR and
IRIS are two such tools which take a game-theoretic approach for
scheduling checkpoints and canine patrols (ARMOR) and Federal
Air Marshals (IRIS). In fact, ARMOR and IRIS have been de-
ployed to aid with security operations for the Los Angeles World
Airport Police at Los Angeles International airport and for the Fed-
eral Air Marshals Service respectively [14, 15]. These systems of-
fer two sets of advantages. The first set of advantages deal with
solution quality: (i) they provide an optimal mixed strategy for
the single security activity they consider such as assigning check-
points or air marshals; (ii) the randomized solutions produced both
avoid deterministic strategies that are easily exploitable and remove
the human element in randomization since humans are well known
to be poor randomizers [16]; (iii) they reason over difficult prob-
lems that are often impossible for humans to reason over optimally.
These advantages are useful for any tool being utilized in the field
to help with randomized resource allocation in security problems
and we incorporate them into GUARDS as well.
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The second set of advantages are specific to the problems they
address: (i) they develop unique and useful preference elicitation
systems and knowledge acquisition techniques for the specific prob-
lem they address; (ii) based on practical requirements, they apply
state of the art algorithms tailored to solving the Stackelberg games
they consider efficiently. Unfortunately, previous methods are too
specific to the standalone location they consider and thus cannot
directly be applied in GUARDS; indeed GUARDS requires us to
address a novel set of challenges described in the next section.

3. NATIONAL DEPLOYMENT
CHALLENGES

We now describe in detail the three major issues in potentially
deploying game-theoretic randomization for airport security on a
national scale, including modeling, computational, and knowledge
acquisition challenges and our solutions to them.

3.1 Modeling the TSA Resource Allocation
Challenges

While we are motivated by an existing model of security games
[17], there are three critical aspects of the new TSA domain that
raise new challenges. First, the defender now reasons over het-
erogeneous security activities for each potential area within an air-
port1. For example, airports have ticketing areas, waiting areas,
and cargo holding areas. Within each of these areas, TSA has a
number of security activities to choose from such as perimeter pa-
trols, screening cargo, screening employees and many others. Sec-
ond, given the multiple possible security activities, the defender
may allocate more than one resource per area (i.e. areas are no
longer covered or uncovered). Finally, the defender now considers
an adversary who can execute heterogeneous attacks on an area.
The TSA must reason about a large number of potential threats in
each area such as chemical weapons, active shooters, and bombs.
The key challenge is then how to allocate limited TSA security re-
sources to specific activities in particular areas, taking into account
an attacker’s response.

To address this challenge it is necessary to create a more ex-
pressive model than outlined in security games; one that is able
to reason over the numerous areas, security activities, and threats
within an individual airport. We refer to this new class of security
games as Security Circumvention Games (SCGs). SCGs are more
expressive than traditional security games and thus can represent
both traditional security games and the games we considered for
the TSA. In SCGs, the TSA must choose some combination of se-
curity activities to execute within each area and the attacker must
reason over both which area to attack and which method of attack to
execute based on the defender’s strategy. At this time we elaborate
on the defender’s and attacker’s possible strategies.

3.1.1 Defender Strategies
We denote the defender by Θ, and the set of defender’s pure

strategies by σΘ ∈ ΣΘ. The TSA is able to execute a variety of
security activities, which we denote by S = {s1, . . . , sm}. Each
security activity has two components. The first is the type of ac-
tivity it represents, and the second is the area where the activity is
performed. We denote the set of areas by A = {a1, . . . , an}.

The defender has K resources available and thus can run any
K security activities. The TSA’s task is to consider how to allo-
cate these resources among security activities in order to provide
the optimal protection to their potential areas. An assignment of
1Due to the nature of the TSA’s security challenge, we will refer to
targets in the TSA’s domain as areas henceforth.

K resources to K security activities represents a single strategy
σΘ ∈ ΣΘ. For example, if there are three security activities,
S = {s1, s2, s3} and two resources available, one possible pure
strategy for the defender is to assign these two resources to s1 and
s3. Given that the number of possible combinations of K security
activities at an airport can be on the order of 1013 or greater for the
TSA, we develop a compact representation of the possible strate-
gies that we present in Section 3.2. The defender’s mixed strategies
δΘ ∈ ∆Θ are the possible probability distributions over ΣΘ. Sim-
ilar to previous work, a mixed strategy (randomized solution) is
typically the optimal strategy.

3.1.2 Attacker Actions
Defending a target against terrorist attacks is complicated by the

diversity of the potential threats. For example, an attacker may try
to use a vehicle borne explosive device, an active shooter, a suitcase
bomb, and many others in any given area. Not all methods of attack
would make sense in all areas. For example, using a vehicle borne
explosive device in the checked baggage screening area in some
airport configurations would not be a viable method of attack. We
denote the attacker by Ψ, and the set of pure strategies for the at-
tacker is given by σΨ ∈ ΣΨ. Each pure strategy for the attacker
corresponds to selecting a single area ai ∈ A to attack, and a spe-
cific mode of attack. However, given that each airport considers its
own potential threats, enumerating all threats for each individual
airport through the software may not be practical. To handle the
national deployment challenge we face and avoid this difficulty, we
developed a novel way to represent threats for TSA’s domain that
we describe in Section 3.2.1.

3.2 Compact Representation for Efficiency
While we have developed a model that appropriately captures the

TSA’s security challenge, one issue with this model is that both the
attacker and defender strategy spaces grow combinatorially as the
number of defender security activities increases. Also, listing such
a large number of potential threats would lead to extreme mem-
ory and runtime inefficiencies. Furthermore, existing solution tech-
niques that have been developed for security games [8, 9] are not
directly applicable to Security Circumvention Games (SCGs).

With this in mind, we looked at an alternate approach to finding
optimal solutions efficiently. Specifically, we looked at represent-
ing threats in a more intelligent manner and creating a compact
representation for the defender strategy space. By utilizing both of
these techniques, we achieved large reductions in run-time. We uti-
lized a general Stackelberg solver known as DOBSS [12] to solve
our compact representation and avoided creating a tailored algo-
rithm for each specific airport. At this time we will explain both
how we model threats and how we achieve a compact representa-
tion of the defender’s full strategy space.

3.2.1 Threat Modeling for TSA
While it is important that we reason over all the security activ-

ities that are available to an individual airport, enumerating all of
the large number of potential threats they face can lead to severe
memory and runtime inefficiencies. Thus, the problem we face is
how to model attack methods in a way that limits the number of
threats GUARDS needs to reason over, but appropriately captures
both an attacker’s capabilities and his goals. In particular, we au-
tomatically generate attack methods for the adversary that capture
two key goals: (i) an attacker wants to avoid the security activities
that are in place; (ii) an attacker wants to cause maximal damage
with minimum cost.

In order to achieve these goals an intelligent adversary will ob-
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serve security over time and design his attack method based on his
observations. The attacker’s plan will be designed to avoid security
activities that he believes will be in place. We will refer to this as
circumventing security activities. For example, imagine there is a
single area with three security activities such as passenger screen-
ing, luggage screening, and perimeter patrol. In this example, TSA
only has one resource available and thus can only execute one of
these activities at a time. While passenger screening may have the
highest probability of success, if TSA never screens luggage or pa-
trols the perimeter, the adversary can choose an attack path that
avoids passenger screening such as utilizing a suitcase bomb or an
attack from the perimeter.

On the defender side, we know that dedicating more resources to
security activities in an area increases the security afforded to that
area. However, even with more resources, we want to avoid being
predictable since attackers can exploit this predictability; avoiding
the security activities they know will be in place. Thus, we needed
to represent threats in a way that accounts for the attacker’s ability
to observe security in advance and avoid specific security activities,
but still represents the benefit of dedicating more resources.

A naïve approach is to represent only a single threat per area and
decrease the likelihood of success for that threat as more security
activities are put in place. This captures the increase in security
for additional security activities, however, it does not account for
the attacker’s ability to circumvent security activities. With this
method you would simply choose security activities in the order of
their relative success making it predictable and exploitable.

The alternative that we chose is to create a list of potential threats
that circumvent different combinations of specific security activi-
ties. By basing threats on circumventing particular combinations
of security activities, we avoid the issue of enumerating all the pos-
sible potential threats. Instead the threats are automatically created
based on the security activities in an area. However, we also in-
corporate a cost to the attacker for circumventing more activities to
capture the idea of causing maximal damage at minimal cost. Each
individual activity has a specific circumvention cost associated with
it and more activities circumvented leads to a higher circumvention
cost. This cost reflects the additional difficultly of executing an
attack against increased security. This difficulty could be due to
requiring additional resources, time and other factors for execut-
ing an attack. Since attackers can now actively circumvent specific
security activities, randomization becomes a key factor in the solu-
tions that are produced because any deterministic strategies can be
circumvented.

3.2.2 Compact Representation
We introduce a compact representation that exploits similarities

in defender security activities to reduce the number of strategies
that must be enumerated and considered when finding an optimal
solution to SCGs. First, we identify security activities that provide
coverage to the same areas, and have the same circumvention costs
(i.e. have identical properties). Let γi ∈ Γ represent the sets of
security activities that can be grouped together because they have
identical properties. Now, instead of reasoning over individual se-
curity activities, we reason about groups of identical security activ-
ities γi ∈ Γ. A strategy σΘ ∈ ΣΘ is represented by the number of
resources assigned to each set of identical security activities γi.

To illustrate this new representation, we provide a concrete ex-
ample of the full representation versus the compact representation
in Tables 1 and 2. In this example there are 4 security activities and
2 resources. Here, s1 and s2 have identical circumvention costs
and affect a1 while s3 and s4 have identical circumvention costs
and affect a2. Table 1 presents the full representation with corre-

sponding payoffs and Table 2 represents the compact form of the
same where γ1 represents the group s1 and s2 and γ2 represents
the group s3 and s4. In both tables, each row represents a single
pure strategy for the defender and each column the same for the
attacker. Notice in Table 1 each strategy σΘ ∈ ΣΘ is represented
by the exact security activities being executed while in Table 2 it is
only which set γi ∈ Γ each resource has been allocated to.

The key to the compact representation is that each of the secu-
rity activities from a set γi ∈ Γ will have the same effect on the
payoffs. Therefore, it is optimal for the defender to distribute prob-
ability uniformly at random across all security activities within a
set γi, so that all security activities are chosen with equal proba-
bility in the solution. Given that the defender strategy uniformly
distributes resources among all security activities sj ∈ γi we also
know that it does not matter which specific security activities the
attacker chooses to circumvent from the set γi. For any given num-
ber of security activities circumvented, the expected payoff to the
attacker is identical regardless of which specific activities within
the set are chosen. This is because we are selecting security activi-
ties uniformly at random within the set γi. Therefore, we can use a
similar compact representation for the attacker strategy space as for
the defender, reasoning only over the aggregate number of security
activities of each type rather than specific security activities.

Given this, we only need to know how many security activities
are selected from each set in order to compute the expected payoffs
for each player in the compact representation. For example, exam-
ining the second row and second column of Table 2 we see that the
reward to the defender is -2 and the reward to the attacker is 0. In
this case, the defender strategy is to assign 1 resource to activities
in γ1 and 1 resource to activities in γ2. Given that she is uniformly
distributing these resources, it follows that she will execute s1 half
of the time and s2 the other half. On the attacker side, we know that
the attacker is circumventing one security activity from the set γ1.
If he circumvents either s1 or s2 he will only succeed half of the
time. Thus, half of the time the defender receives 4 and the other
half -8 for an expectation of -2 (4 ∗ .5 + (−8) ∗ .5). We compute
the attacker’s reward in the same manner.

a1 : ∅ a1 : s1 a1 : s2 a2 : ∅ a2 : s3 a2 : s4
s1, s2 2, -1 4, -3 4, -3 -20, 10 -17, 7 -17, 7
s1, s3 2, -1 -8, 3 4, -3 5, -5 -17, 7 8, -8
s1, s4 2, -1 -8, 3 4, -3 5, -5 8, -8 -17, 7
s2, s3 2, -1 4, -3 -8, 3 5, -5 -17, 7 8, -8
s2, s4 2, -1 4, -3 -8, 3 5, -5 8, -8 -17, 7
s3, s4 -10, 5 -8, 3 -8, 3 5, -5 8, -8 8, -8

Table 1: Example payoffs for sample game.

a1 : ∅ a1 : γ1 a2 : ∅ a2 : γ2

γ1, γ1 2, -1 4, -3 -20, 10 -17, 7
γ1, γ2 2, -1 -2, 0 5, -5 -4.5, -5
γ2, γ2 -10, 5 -8, 3 5, -5 8, -8

Table 2: Example compact version of sample game.

Given this compact representation for both the defender and at-
tacker, we can compute an optimal mixed strategy of assigning re-
sources over Γ. Once we have this mixed strategy, we will need
to determine an actual strategy for the TSA to execute by sampling
one of the possible strategies from the mixed strategy we have de-
termined for our compact representation (e.g. one sample may be
γ2γ2). Once sampled, we will know exactly how many resources
are available to each set γi ∈ Γ. Given this resource assignment,
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we can then sample security activities by selecting k uniformly at
random where k is the number of resources assigned to γi ∈ Γ.
This specific set of security activities for each area under the cur-
rent resource assignment is a full strategy for the TSA to execute.

3.3 Knowledge Acquisition
One of the most difficult issues we faced from a potential na-

tional deployment perspective was in acquiring the appropriate knowl-
edge for the security challenge being considered. In the past, tools
such as ARMOR and IRIS [14, 15] have been developed to be used
for a single security activity in a standalone location. That approach
gave the advantage of being able to sit down with domain experts
who will be using the system and develop a knowledge acquisition
process for the specific domain at hand. Unfortunately, with hun-
dreds of airports to consider, it is not possible to sit down at each
location and acquire the exact needs for each of them. To over-
come this obstacle, in close collaboration with TSA headquarters
we developed a two phase knowledge acquisition process.

In phase one, we take an approach similar to previous central-
ized approaches. In particular, we met with domain experts to ac-
quire knowledge that is common among all airports. This included
area definitions, defining security activities, and determining re-
source capabilities among others. In collaboration with headquar-
ters, we then decided how individual airports can customize these
components in their individual games while maintaining standards
set forth by headquarters (as discussed below). Additionally, we
collaborated with headquarters to limit the amount of customiza-
tion inputs so users at individual airports are not overwhelmed – a
key to organizational acceptance as discussed in Section 6.

In phase two of our knowledge acquisition, we took a decentral-
ized approach where it is the responsibility of individual airports to
input customized information. For this phase we could not create a
rigid system that was designed with one specific game instance in
mind for a single airport. Instead, we rely on SCGs and developed
a system in collaboration with headquarters that allows individual
airports to manipulate specific components within this framework
to create unique game instances. These inputs are designed to en-
sure that individual airports maintain standards set forth by head-
quarters in phase one. For example, individual airports are respon-
sible for determining the unique reward and penalty associated with
each area for the defender and attacker given a successful or unsuc-
cessful attack. However, TSA headquarters requires a standardized
method for determining these values to ensure that resources are
being appropriately distributed. To this end, we designed an input
module within GUARDS to reflect a risk evaluation process de-
veloped by the TSA where a series of quantifiable questions are
answered for each area by individual airports. These questions in-
clude such things as the number of fatalities that may result from an
attack in an area, whether the area has access control, and others.
The answers to these questions are then combined in a mathemat-
ical formula to decide the values for a particular area for both the
defender and attacker2. This input process ensures that airports are
appropriately valuing the areas they protect within an airport ac-
cording to headquarters guidelines. In general, using the customiz-
able input airports generate, we can then create the unique game
instance for that particular airport.

Our two phase knowledge acquisition process follows a partially
centralized approach and provides the following advantages: (i) it
allows domain experts from TSA headquarters to assure that the
system meets the required needs of the challenge being considered;

2Previous work [14, 15, 17] has shown that security problems are
not necessarily zero-sum for a number of potential reasons. In
GUARDS, for similar reasons, games are not necessarily zero-sum.

(ii) it focuses on creating customizable inputs instead of a system
tailored to a highly specific problem instance; (iii) it allows TSA
headquarters control while still enabling individual airports to cus-
tomize the system to meet their individual needs. For the third ad-
vantage, there is an important trade-off between system customiza-
tion and standardization among airports. Determining this trade-off
is an important part of the first phase in this two phase knowledge
acquisition process.

4. SYSTEM ARCHITECTURE
The GUARDS system consists of three modules. First, there

is an input module designed to acquire the necessary information
for one unique instance of the complex security game we consider.
Second, there is a back-end module that is designed to both create
and solve the unique game instance based on the inputs. Finally,
there is a display/output module that presents a sample schedule to
TSA officials based on the optimal solution. We now describe each
individual module and its operations in TSA’s airport domain.

Input Module: The input module is composed of three classes
of inputs that are required by the system in order to generate a rep-
resentative Stackelberg game and create an optimal allocation of
resources. All inputs are quantifiable and tangible so that headquar-
ters is able to maintain standards and guidelines on the way security
policies are created. The first input is the area data. First, airports
must input each of their potential areas. Second, for each area the
airport must go through the risk evaluation process (see Section
3.3) which involves answering a series of quantifiable questions.
The second set of input is the security activities data. For each area
the airport must list all of the security activities that are available
to execute in that area. While there is a standard list of activities
airports can select from, they are also able to input new security
activities that may be unique to that airport. The third input is the
resource data. This includes the number of days to create a sched-
ule for and the number of resources available each day.

Back-end Module: The back-end module has three primary
components. These are generating the game, solving the game,
and returning one sample schedule for TSA’s use. First, based on
the inputs from the input module, there is a component that creates
a compact representation of the specific game instance the system
is considering. This game instance is based on the compact form
of the model we presented in Section 3.1. Second, we compute
the solution to the Stackelberg game model using DOBSS, a gen-
eral Stackelberg solver [12]. This produces a solution, which is
a mixed strategy over the possible action space as defined in Sec-
tion 3.2. Finally, using the optimal mixed strategy we sample one
possible resource assignment that can be implemented by TSA.

Display/Output Module: The actual resource assignment se-
lected is presented to the user via the display/output module. The
schedule created is shown in the interface first as a summary of the
number of resources assigned to each area similar to the mockup in
Figure 13. Once the schedule is created, TSA personnel can pro-
ceed to a more in depth report of the schedule. This report lists
each of the specific security activities that were chosen for each lo-
cation along with specific details of these security activities. After
reviewing the report, TSA personnel can also choose to examine the
distribution of resources over areas that the optimal mixed strategy
provides as in Figure 2.

5. EVALUATION
3We are unable to show actual screen shots from our system due
to security concerns. For the remainder of this paper we will show
only basic visual representations of what GUARDS displays.
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Figure 1: Summary of sample schedule

Figure 2: Summary of probability distribution over areas

When evaluating a system like GUARDS there are two important
issues that are raised. The first issue is with scalability and run-
times. To be useful in practice, the system needs to be able to solve
real world challenges. The second issue is evaluating the value of
the security policies generated against alternative approaches. In
the following sections we present each of these evaluations.

5.1 Run-time Analysis
We present simulation results focusing on the computational ef-

ficiency of our compact method versus the full representation. All
experiments are run on a system with an Intel 2 GHz processor and
1 GB of RAM. We used a publicly available linear programming
package called GLPK to solve optimization problems as specified
in the original DOBSS procedure. For the compact version we use
a slightly altered version of DOBSS that is designed specifically for
efficiency in the compact representation. The solver was allowed
to use up to 700 MB of memory during the solution process. For
larger game instances, solving the problem with the full represen-
tation runs out of memory and solutions cannot be found. In the
results presented below we exclude results for cases where the full
representation was not able to produce a result using the allotted
memory. We also note that in all experiments both the solution
found by the full representation and the solution found by the com-
pact representation are optimal.

To test the solution methods we generated random game instances
by randomly selecting payoff values from 1 to 50 and circumven-
tion costs from 1 to 5 for each area. For each experiment we gen-
erated 20 random game instances and averaged the results (there
is little variance in the run-times for different problem instances).
We considered three different scenarios. The first scenario presents
results for the case where there is an increasing number of areas,
and each area has exactly 3 security activities associated with it.
There are 5 resources available for the defender, and each secu-
rity activity has identical properties (i.e. no security activity has a
higher cost for circumvention or higher probability of success) for
the area it is associated with. Given the M possible areas, for the
full representation there are

�
3∗M

5

�
possible defender pure strate-

gies and 8 ∗M possible attacker pure strategies. Thus, in the 10
area case there are 142,506 defender pure strategies and 80 attacker

pure strategies. Examining Figure 3 (a), we show the improvement
in run-time of our compact representation over the full representa-
tion. For more than 4 areas, the full representation failed to achieve
a solution within the memory bounds. For 4 areas, the compact
representation runs much faster than the full representation, with a
run-time of less than 1 second versus the 177 seconds required by
the full representation. In fact, for 10 areas, the compact represen-
tation has an average run-time of approximately 1 second, which
is still much faster than the full representation for only 4 areas.
Even if the number of security activities associated with each area
is a relatively small constant our compact representation provides
substantial benefits. As the number of similar security activities
associated with an area increases, this advantage grows.

In our second scenario, we considered a situation where security
activities are distributed randomly across possible areas. The total
number of security activities is set similarly to the previous exper-
iment, in that that the total number of security activities is three
times the number of areas. However, we randomly assigned secu-
rity activities to areas (with each area having at least one security
activity) so the number is no longer uniform across areas. Once
again the defender has 5 resources available and security activities
have identical properties within an area. It follows that in the full
representation, the number of defender pure strategies and attacker
pure strategies are identical to the previous scenario. However, the
number of strategies in the compact representation for both the de-
fender and attacker may vary. Looking at Figure 3 (b), we see
similar benefits for the compact representation in this case as in the
previous experiment with a uniform distribution of activities.

In the final scenario, we considered a situation in which there
are 10 areas to protect, each area has 3 identical security activities,
and we increased the number of resources available to distribute
between these areas. Thus, in the full representation, assuming
there areK resources available, the defender has

�
30
K

�
possible pure

strategies and the attacker has 80 possible pure strategies. In Figure
4, we increase the number of resources available along the x-axis
and show the time to compute a solution in seconds on the y-axis.
The full representation is unable to compute a solution for more
than 4 resources under these conditions within the allotted mem-
ory. On the other hand, the compact representation is able to arrive
at a solution for 10 available resources in less than 30 seconds.

These results show the benefits of our compact representation in
terms of efficiency. We obtained further efficiency gains by caching
results: specifically, the inputs into the game do not change on a
daily basis. Thus, we can cache the resulting mixed strategy, and
present results from sampling this mixed strategy, as long as the
program users have not changed the inputs. When they do change
inputs, we resolve the game using our compact representation.

(a) Three activities per area (b) Random activities per area

Figure 3: X-axis: Areas, Y-axis: Run-time

5.2 Security Policy Analysis
For this analysis we examined the security policies generated by

our game representation against two other possible solution strate-
gies. The first strategy is a solution concept where resources are
distributed uniformly among areas (uniformly random), an approach

42



Figure 4: Run-time: Increasing resources for 10 areas with 3
security activities per area

sometimes used in lieu of a game-theoretic approach. The second
strategy uses our new representation, however, it does not allow
attackers to circumvent security activities (SCGs without circum-
vention). That is, we allow the attacker only a single attack strategy
per area and simply reduce the value of that strategy as the number
of security activities increases. This is a simplified model of an at-
tacker as mentioned in Section 3.2.1. Finally, we included our new
representation and allow an intelligent attacker to circumvent spe-
cific security activities when planning his mode of attack (SCGs).

We generated 20 random game instances with 10 areas and 3 se-
curity activities per area. In each game instance the payoff value
of each area for both the defender and attacker are randomly se-
lected from 1 to 50 and the circumvention costs are similarly se-
lected from 1 to 5. We then calculated the optimal solution under
the current solution strategy (i.e. uniformly random, SCGs with-
out circumvention, and SCGs). After finding the optimal solution,
we determined the expected reward for each solution given the as-
sumptions made in SCGs (i.e. attackers are allowed to circumvent
specific security activities when planning their attack). For each
game instance, we computed the optimal solution varying the num-
ber of resources available from 1 to 10 as seen on the x-axis of
Figure 5. On the y-axis, we present the average expected reward
obtained by each solution strategy across all 20 game instances. In
Figure 5 we see that the uniform policy is outperformed by both
game-theoretic approaches with the approach accounting for cir-
cumvention strategies performing the best. In fact, an approach that
accounts for circumvention strategies is the only one that was able
to obtain a positive reward for the defender in the 20 randomly gen-
erated game instances and in the 10 resource case obtains a 200%
improvement in reward over any other strategy. This shows the
benefits of reasoning about an intelligent attacker who will research
and exploit deterministic security activities.

Figure 5: Policy Analysis: Increasing resources for 10 areas
with 3 security activities per area

6. LESSONS IN TRANSITIONING
RESEARCH INTO PRACTICE

GUARDS is the result of a unique collaboration where university
researchers worked directly with a security agency for the purpose

of creating a useful product to potentially deploy outcomes of re-
search on a national scale. This collaboration to transition research
to such a large-scale deployment has presented valuable lessons.
This section outlines the three areas of insights we have gained in
the process: (i) acceptance of GUARDS at headquarters; (ii) accep-
tance of GUARDS by a variety of end-users at numerous airports;
(iii) obtaining correct input from users. Some of these insights are
contrary to accepted wisdom in the research community.

In a large organization like the TSA, it is important that they
are able to provide quality guarantees. A key implication is that
a system such as GUARDS must be very clear-cut in terms of
its assumptions and its solution quality guarantees based on these
assumptions. Researchers often assume that speedy heuristic so-
lutions that are on average high quality may be adequate “in the
field”, but we have learned in contrast that when dealing with secu-
rity agencies it is important that we provide guarantees on this so-
lution quality. More importantly, these guarantees may even be re-
quired to be optimal (i.e. even if we can guarantee solutions within
some bound of the optimal solution it may not be enough). Without
guarantees, the TSA may be unable to justify the use of any partic-
ular security strategy. In accordance with this requirement, we use
a solver known as DOBSS, which provides game-theoretic optimal
solutions in Stackelberg games.

With respect to acceptance of GUARDS at individual airports,
one major lesson learned is bridging the culture gap in academic
research and real-world operations. Indeed, what researchers may
consider small uninteresting issues may nullify all their major re-
search advances. For example, in an initial version of GUARDS,
we displayed the final probabilities of our mixed strategies, but
truncated the presentation of real numbers (i.e. truncating all dec-
imal values). Unfortunately, this single display issue turned out to
be a major headache for users who assumed incorrectness on part
of GUARDS when the distribution of resources appeared to be less
than 100%. Specifically, instead of considering the truncation of all
real values, users might assume that some resources were not being
utilized. A second major lesson learned is the continued need for
efficiency of game-theoretic algorithms. While significant research
has gone into speeding up these algorithms, we are still not able
to get off-the shelf algorithms and deploy; GUARDS required the
use of new compact representations. We have outlined our key ad-
vances in this regard in Section 5.1; including the need for caching.

A third lesson learned in user acceptance is careful design of the
user interface so as to reduce the amount of user workload to pro-
vide inputs: this must be kept at a manageable level. For instance,
if users are required to directly enter values into the generated game
matrix it can require thousands of inputs. Instead, it is important to
provide a user-friendly method of conveying the necessary infor-
mation. We used a simple interface where users are only required
to input the base information that is then used to generate the larger
game matrix. By base information, we mean such things as the ar-
eas and security activities. This is information that they have direct
access to and can easily be input by the individual airports.

Finally, in any collaboration, it is important that researchers are
able to obtain the appropriate input from their collaborators. This
includes understanding what information is available versus what
is not and accounting for this in modeling of the problem. For
the available information, often end-users will not understand the
techniques being applied and thus are prone to providing vague or
incorrect information. For example, when asking a security agency
such as the TSA to provide a utility for an attacker and for them-
selves as a defender on a successful attack, they may always say
that is it very bad for themselves and very good for the attacker.
Specifically, if there are 5 areas and they provide a utility for each
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on a 10 point scale, they may always claim that it is -10 for the
defender and 10 for the attacker. In practice, this feedback may
not be useful because attacks on different areas may actually have
very different impact in terms of economic damage, casualties, and
many other factors. To aid in preventing this scenario, it is impor-
tant to convey the impact that inputs will have on outputs; aiding
their understanding of how their inputs will affect the results.

7. RELATED WORK AND SUMMARY
To the best of our knowledge, this paper presents the first-ever ef-

fort to transition any research reported at AAMAS conferences to
an application designed for potential national scale deployment to
hundreds of locations. This contrasts with previous efforts, includ-
ing efforts that focus on application of game-theoretic approaches
such as ARMOR and IRIS [14, 15], as detailed earlier in the pa-
per. It also contrasts alternative models based on Markov Decision
Processes (MDPs), queuing theory, or game theoretic approaches
that would enumerate all possible defender actions and attacker
threats [11, 13]. To accomplish this transition, we outlined novel
contributions to game modeling and compact representations of
games, because of the scale-up in defender and attacker strategies.
This research complements other solution techniques for Stackel-
berg games [5, 10], which have traditionally not focused on such
a scale-up. Our work also complements research actually applied
to randomize patrolling strategies in robot patrol [3, 4], given our
emphasis on modeling adversaries in a game-theoretic setting.

TSA is charged with protecting over 400 airports in the US.
The key challenge is how to intelligently deploy limited security
resources to unpredictable security activities within the airport in
a risk-based manner to provide the maximum possible protection.
These decisions may be made on a daily basis, based on the local
information available at each airport.

This paper describes a scheduling assistant for TSA, GUARDS,
which takes a game-theoretic approach to this resource allocation
task. In creating GUARDS, we address three key issues that arise
from a potential national deployment case. These issues are: (i)
knowledge acquisition for hundreds of end-users under one orga-
nization; (ii) appropriately modeling TSA’s security challenge to
achieve the best security policies; (iii) efficiently finding solutions
to the problem we consider. We addressed the first challenge by
using a two phase knowledge acquisition process in which we ac-
quire common information, standards, and practices directly from
TSA headquarters. We then constructed the GUARDS system it-
self to reflect a risk evaluation process designed by TSA to acquire
the necessary information that is unique to individual airports. To
address the second challenge we developed a novel game-theoretic
model, which we refer to as Security Circumvention Games (SCGs),
and cast TSA’s security challenge within this model. In creating
this model we provided the following contributions: (i) the ability
for defenders to guard targets with more than one type of secu-
rity activity (heterogeneous activities); (ii) the ability for attackers
to choose threats designed to mitigate specific security activities.
Finally, we designed an efficient solution technique for reasoning
over our new game model where we rely on creating a compact
representation of each game instance and solving it using a general
purpose Stackelberg solver. This is in contrast to tailored algo-
rithms of the past that are designed for specific problem instances
for standalone locations. To conclude, we present results demon-
strating the benefits of our contributions along with lessons learned
in creating GUARDS. The scheduling assistant has been delivered
to the TSA and is currently under evaluation and testing for unpre-
dictable scheduling practices at an undisclosed airport.
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ABSTRACT
In recent years, several bilateral protocols regulating the ex-
change of arguments between agents have been proposed.
When dealing with persuasion, the objective is to arbitrate
among conflicting viewpoints. Often, these debates are not
entirely predetermined from the initial situation, which means
that agents have a chance to influence the outcome in a way
that fits their individual preferences. This paper introduces
a simple and intuitive protocol for multiparty argumenta-
tion, in which several (more than two) agents are equipped
with argumentation systems. We further assume that they
focus on a (unique) argument (or issue) —thus making the
debate two-sided— but do not coordinate. We study what
outcomes can (or will) be reached if agents follow this proto-
col. We investigate in particular under which conditions the
debate is pre-determined or not, and whether the outcome
coincides with the result obtained by merging the argumen-
tation systems.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Theory

Keywords
Argumentation, persuasion protocols, multiagent systems

1. INTRODUCTION
Protocols for persuasion [11] regulate the exchange of ar-

guments to arbitrate among conflicting viewpoints. Depend-
ing on the underlying objective, such protocols can be more
or less flexible. When conceived as argument games (or dis-
putes) between a proponent and an opponent, proof theo-
retical counterparts of argumentation semantics must leave
no room for uncertainty in the result. On the other hand,
when the ambition is to regulate some interaction between
different agents, it is often desirable that the outcome of
the dialogue is not entirely predetermined from the initial

Cite as: On the Outcomes of Multiparty Persuasion, E. Bonzon and N.
Maudet, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.  47-54.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

situation [7, 8]. This means that agents have a chance to
influence the outcome of the game depending on how they
play.

Recently, different properties of these protocols have been
studied with the help of game-theoretical concepts (see [13]
for a survey). This paper follows this line of work, and
develops an analysis which builds on very similar assump-
tions. In particular, we shall take for granted, as [12] do for
instance, that agents’ argument moves should immediately
improve their satisfaction with respect to the current situ-
ation of the debate. This work however departs from these
previous proposals, in the sense that we address a case of
multiparty argumentation. In this context, a number (n > 2)
of agents exchange arguments on a common gameboard. No
central computation of the whole system takes place, and
no coordination between agents is assumed (even if they
share the same view). The motivating applications we have
in mind are for example online platforms allowing users to
asynchronously modify the content of a collective debate.
We want to study what outcomes will be reached with these
type of interactions. This situation has received so far little
attention and there are good reasons for that (see [4] for a
discussion on the challenges raised by multiparty dialogues,
and [16] for a recent study of multiparty persuasion in a spe-
cific framework). Firstly, it is not obvious to identify what
would be the “correct” collective outcome in this case. In
this paper we rely on a specific (natural in our case) merged
solution [3] to assess the quality of the outcome. Secondly,
the design of these protocols is made very difficult by the
number of parameters to consider (think of several agents
focused on possibly different issues), and renders the analy-
sis of their formal properties challenging.

To keep things as simple as possible in this study, the fol-
lowing assumptions are made: (i) all the agents are focused
on the same single issue (argument) of the debate (that is,
agents evaluate how good is a state of the debate on the
sole basis of the status of this specific argument); (ii) all the
agents make use of the same argumentation semantics to
evaluate both their private argumentation system and the
situation on the common gameboard (specifically, we rely
on Dung’s grounded semantics [5]); and (iii) all the agents
share the same set of arguments, but they may have different
views on the attack relations between these arguments (this
may result, e.g., from agents being equipped with value-
based argumentation systems [1] and ranking differently the
values). While these restrictions are arguably severe, we will
see that the resulting framework is already sufficiently rich
to illustrate the variety of results that may be derived in the
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study of multiparty argumentation protocols.
The remainder of this paper is as follows. In the next sec-

tion we provide the necessary background on argumentation
semantics. Section 3 sets up the basic elements of our frame-
work. The properties of the proposed protocol are studied
in Section 4. Finally, Section 5 discusses related works and
concludes, discussing possible extensions of the preliminary
study proposed here.

2. BACKGROUND

2.1 Argumentation Systems
In this section, we briefly recall some key elements of ab-

stract argumentation frameworks as proposed by Dung [5].
The exact content of arguments is left unspecified here. In-
stead, a (finite) set of arguments is given, as well as the
different conflicts among them.

Definition 1. An argumentation system (AS) is a
pair 〈A,R〉 of a set A of arguments and a binary relation
R on A called the attack relation. ∀a, b ∈ A, aRb (or
(a, b) ∈ R) means that a attacks b (or b is attacked by a).
An AS may be represented by a directed graph, called the
argumentation graph, whose nodes are arguments and
edges represent the attack relation.

From this argumentation graph, we can introduce some
notions related to graph theory in order to characterize some
properties of the argumentation system.

Definition 2. Let AS be an argumentation system, and
G be the argumentation graph associated. A path in G is
a sequence of nodes such that from each node there is an
edge to the next node in the sequence. A finite path has a
first and a last node. An edge (b, c) is an attack edge (resp.
defense edge) for an argument a iff there is an even-length
(resp. odd-length) path from c to a.

Note that an edge can be both an attack and a defense
edge. In Dung’s framework, the acceptability of an argument
depends on its membership to some sets, called extensions.
These extensions characterize collective acceptability.

Definition 3. Let AS = 〈A,R〉 be an argumentation
system. Let S ⊆ A. S is conflict-free for AS iff there
exists no a, b in S such that aRb. S collectively defends
an argument a iff ∀b ∈ A such that bRa, ∃c ∈ S such that
cRb.

A set of arguments is admissible when it is conflict-free
and each argument of the set is collectively defended by
the set itself. Several semantics for acceptability have been
defined in [5]. In what follows, we concentrate on the notion
of grounded semantics which can be defined as follows:

Definition 4. Let AS = 〈A,R〉 be an argumentation
system. Let S ⊆ A. S is a grounded extension of AS
iff S is the least fixed point of the characteristic function of
AS (F : 2A → 2A with F (S) = {a such that S collectively
defends a}).

Intuitively, a grounded extension contains all arguments
which are not attacked, as well as the arguments which
are defended (directly or not) by non-attacked arguments.
There always exists a unique grounded extension. We shall
denote by E(AS) the grounded extension of the system AS.

2.2 Merged Argumentation System
We now consider a set N of n agents. Each agent holds

an argumentation system ASi = 〈A,R(i)〉, sharing the same
arguments A, but with possible conflicting views on attack
relations between arguments (coming for instance from dif-
ferent underlying preferences). What should be the collec-
tive view in that case? To tackle this problem, we rely on the
notion of a merged argumentation system [3]. In the specific
case we discuss here, it turns out that a meaningful way to
merge is to take the majority argumentation system where
attacks supported by a majority of agents are kept (this
corresponds to minimizing the sum of the edit distances be-
tween the ASi and the merged system, see Prop. 41 in [3]).
Assuming, on top of that, that ties are broken in favour of
the absence of an attack allows to ensure the existence of a
single such merged argumentation system, that we denote
MASN .

Definition 5. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. The ma-
jority argumentation system is MASN = 〈A,M〉 where
M ⊆ A × A and xMy when |{i ∈ N |(x, y) ∈ Ri}| > |{i ∈
N |(x, y) 6∈ Ri}|}.

The corresponding merged outcome is denoted by E(MASN ).

3. A PROTOCOL FOR FOCUSED AGENTS
We now turn to the following question: supposing that the

agents of the system would not report to a central authority
their whole argumentation system but instead contribute
step-by-step in the debate, guided by their individual as-
sessment of the current state of the discussion, and without
coordination with other agents, what would be the outcome
they would reach? For instance, can we guarantee that the
merged outcome would always be reachable? To be able to
formally answer this problem, we need of course to design
a specific protocol and to make some assumption regarding
agents’ preferences regarding the outcome.

3.1 Agents’ Preferences
We assume that agents are focused [14], that is, they con-

centrate their attention on a specific (same for all) argument.
This argument is referred to as the issue d of the debate
[11]. Unsurprisingly, agents want to see the acceptability
status (under the grounded semantics) of the issue coincide
in the debate and in their individual system. Thus we can
see the debate as opposing two groups of agents: CON =
{ai ∈ N |d 6∈ E(ASi)} and PRO = {ai ∈ N |d ∈ E(ASi)}. If
X = PRO (resp. CON), we have X = CON (resp. PRO).

3.2 The Gameboard
Agents will exchange arguments via a common gameboard.

The issue will be assumed to be present on this gameboard
when the debate begins. The “common” argument system
is therefore a weighted argumentation system [6] where the
weight is simply a number equal in the difference between
the number of agents who asserted a given attack and the
number of agents who opposed it. We denote by xRαy the
fact that the attack has a weight α. Let A(GB) be the
set of all the arguments present on the gameboard. The
collective outcome is obtained by applying the semantics
used on the argumentation system 〈A(GB),M〉 where M ⊆
A(GB) × A(GB) and xMy = {xRαy|α > 0}. In words, we
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only retain those attacks supported by a (strict) majority of
agents having expressed their view on this relation. Observe
that following our tie-breaking policy we require the num-
ber of agents supporting the relation to strictly overweight
the number of agents who oppose it (i.e in case of tie, the
relation does not hold).

3.3 A Relevance-based Protocol
We now introduce our simple protocol which allows agents

to exchange their arguments in order to agree on the sta-
tus of a specific argument d, the issue of the dialogue. Let
ASt(GB), At(GB) and Rt(GB) be respectively the argu-
mentation system, the set of arguments and the set of at-
tack relations on the gameboard after round t. The proto-
col indeed proceeds in rounds which alternate between the
two groups of agents (PRO and CON). Within these groups
though, no coordination takes place: the agents may for in-
stance play asynchronously and the authority simply picks
the first permitted and relevant move before returning the
token to the other side. Permitted moves are simply positive
assertions of attacks xRy (with y ∈ At(GB)), or contradic-
tion of (already introduced) attacks (with (x, y) ∈ Rt(GB)).
Note that arguments are progressively added on the game-
board via these attacks, and that it may not contain the
whole set of arguments when the debate concludes. A move
is relevant [10] at round t for a PRO agent (resp. CON
agent) if it puts the issue back in (resp. drops the issue
from) E(ASt(GB)). Furthermore, the protocol prevents the
repetition of similar moves from the same agent. To ac-
count for this, each agent ai is equipped with a set RP ti ⊆
{(x, y)|x, y ∈ A} which contains the attack relations or the
non-attack relation he has added on the gameboard at time
t, in order to prevent him from adding twice the same rela-
tion. The proposed protocol is as follows:

(1) Agents report their individual view on the issue to the
central authority, which then assign (privately) each
agent to PRO or CON.

(2) The first round starts with the issue on the gameboard
and the turn given to CON.

(3) Until a group of agents cannot move, we have:

(a) agents independently propose moves to the cen-
tral authority;

(b) the central authority picks the first (or at random)
relevant move from the group of agents whose
turn is active, update the gameboard, and passes
the turn to the other group

When a (relevant) move is played on the gameboard, the
following update operation takes place:

(1) after an assertion xRy

• if xRαy ∈ Rt(GB) then α := α+ 1

• if xRαy 6∈ Rt(GB) and x, y ∈ At(GB), then the
edge is created with α := 1

• otherwise (x is not present), then the node of the
new argument is created and the edge is created
with α := 1

(2) after a contradiction of xRy, we have α := α− 1

Note the asymetry here: introducing a new argument can
only be done via a positive assertion, since it can never be
relevant to contradict an attack refering to an argument that
was not introduced already. The reader may remark that
the value of α is binary if agents obey this protocol; how-
ever we discuss in Section 4.3 an extension where this is not
necessarily the case.

When (after a sequence σ of moves) a group of agents
cannot move, we say that the gameboard is stable and we
refer to E(AS(GBσt→∞)) (or simply E(AS(GB)) when clear
from the context) as the outcome of the debate.

3.4 Properties
The outcome E(AS(GBσt→∞)) resulting from a specific se-

quence of moves σ obeying this protocol will typically be
compared with the result which would be obtained by merg-
ing the argumentation systems (E(MAS)). We may want to
ensure different properties, but we typically have:

• Termination— trivially guaranteed by assuming finite
argument systems and preventing move repetition.

• Guaranteed convergence to the merged outcome— re-
quires all possible sequences of moves (in particular,
regardless of the specific choice of the agent and of
the move to pick, when several relevant moves are pro-
posed to the authority) to converge to the merged out-
come, that is ∀σ d ∈ E(AS(GBσt→∞))↔ d ∈ E(MASN )

• Reachability of the merged outcome— requires at least
one possible sequence of moves to reach the merged
outcome, that is ∃σ d ∈ E(AS(GBσt→∞))↔ d ∈ E(MASN )

Example 1. Let three agents with their argumentation
systems, and the following merged argumentation framework:

a b c

E(AS1) = {a}
a1

a b c

E(AS2) = {a, c}
a2

a b c

E(AS3) = {a, b}
a3

a b c

E(MAS) = {a, c}

The issue of the dialogue is the argument c. We have
CON = {a1, a3}, PRO = {a2}. At the begining, we have
RP 0

1 = RP 0
2 = RP 0

3 = { }, AS0(GB) = 〈{c}, { }〉 and
E(AS0(GB)) = {c}.

A sequence of moves allowed by the protocol is the follow-
ing:

t = 1 - a1 plays for CON: RP 1
1 = {(a, c)}

a c

t = 2 - a2: RP 2
2 = {(a, c)}

a c

t = 3 - a3 plays for CON: RP 3
3 = {(b, c)}

a b c

t = 4 - a2: RP 4
2 = {(a, b), (a, c)}

a b c

t = 5 - a3: RP 5
3 = {(b, c), (a, b)}

a b c

t = 6 - a2 cannot add c in the extension
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The game board is stable, we obtain E(AS(GB)) = {a, b}.
The first interesting thing to observe on this simple ex-

ample is the fact than the status of an issue in the merged
argumentation system can contradict the opinion of the ma-
jority. This is discussed in [3]: if agents vote on extensions,
the attack relations from which extensions are characterized
are not taken into consideration, and a lot of significant in-
formation is not exploited.

Another important thing to note in this example is that
PRO agents cannot ensure c in E(AS(GB)). It is then im-
possible to guarantee convergence to the status of the issue
obtained in the merged argumentation system. This is due
to the fact that agent a1 has no interest to play the attack
relation (a, b), which appears in the MAS. As studied in a
different context by [12], this can be seen as a strategic ma-
nipulation by witholding an argument or an attack between
arguments. But is it even possible to reach the merged out-
come in this case? We leave it to the reader to check that
this is not the case here. One may then think that the group
with the highest number of agents will always win with our
protocol. It is not the case, as shown by the fairly simple
following example.

Example 2. Let three agents with their argumentation
systems, and the following merged argumentation framework:

a b c

E(AS1) = {a, b}
a1

a b c

E(AS2) = {a, b, c}
a2

a b c

E(AS3) = {a, b}
a3

a b c

E(MAS) = {a, b, c}

The issue of the dialogue is the argument c. We have
CON = {a1, a3}, PRO = {a2}. Agents in CON can attack
c in two ways: either a1 can play bRc; or a3 can play aRc.
But a2 will be able to remove either attack, and CON agents
will not have the possibility to counter-attack. We will obtain
E(AS(GB)) = {a, b, c}.

The two previous examples show that the characterization
of the result obtained by debates following this protocol is
not as simple as one can believe at first glance. We now
introduce some useful and more sophisticated notions.

3.5 Global arguments-control graph
In order to characterize the status of the issue obtained

by our protocol we will need the notion of global arguments-
control graph (ACG). The idea here is to gather the attacks
of all agents in the same argumentation graph, and then
determine which group, PRO or CON, have the control over
some path of this graph, and thus a possible way to reach
its preferred outcome. To do so, we first need to define the
notion of control over an attack relation:

Definition 6. Let N be a set of agents, 〈AS1 . . . ASn〉
be the collection of their argumentation systems, and L =
∪i∈1...nR(i) be the union of all attack relations. Let X ∈
{CON, PRO}. Finally, let add(a,b) = {ai ∈ N |(a, b) ⊆
R(i)}, and rem(a,b) = {ai ∈ N |(a, b) 6⊆ R(i)}.

• X has the constructive control of (a, b) ∈ L, de-
noted by X+(a, b), iff |add(a,b) ∩X| > |rem(a,b) ∩X|,
that is if the number of agents in X who can add (a, b)
is greater than the number of agents in X who can
remove it.

• X has the destructive control of (a, b) ∈ L, denoted
by X−(a, b), iff |rem(a,b) ∩X| ≥ |add(a,b) ∩X|, that is
if the number of agents in X who can remove (a, b) is
greater or equal than the number of agents in X who
can add it.

The following remarks are simple but useful: (1) It is

impossible to have both X+(a, b) and X
−

(a, b); (2) It is
possible to have both X+(a, b) and X−(a, b); (3) A minority
group cannot have constructive and destructive control of an
edge: if |X| < |X|, it is impossible to have both X+(a, b)
and X−(a, b); (4) If there is not X−(a, b) (resp. X+(a, b)),

then there is X
+

(a, b) (resp. X
−

(a, b)).
Observe that the notion of destructive control intuitively

says that a group has the control to overweight any possible
attempt to establish a given relation. This of course vacu-
ously holds when no agent from the other group supports
the relation at all, in which case the relation is not even
playable.

Definition 7. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. We will say
that (a, b) ∈ ∪1...nR(i) is playable by a X ∈ {PRO,CON},
denoted by X•(a, b), iff there is an ai ∈ X such that (a, b) ∈
R(i).

For the sake of readability, we will only specify the infor-
mation about playability when it is relevant.

Definition 8. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. The global
arguments-control graph is ACGN = 〈A,L〉 is constructed
as follow: (1) L = ∪i∈1...nR(i) (2) Label each (a, b) ∈ L by
the information about control and playability for each group
X ∈ {PRO,CON}.

Example 3. Five agents have the following argumenta-
tion systems:

a b

c

d

agent 1

a b

c

d

agent 2

a b

c

d

agent 3

a b

c

d

agent 4

a b

c

d

agent 5

The issue of the dialogue is the argument c. We have
CON = {a1, a2, a3}, PRO = {a4, a5}. The global arguments-
control graph is the following:

a b

c

d
CON+,−

• , PRO• CON+
• , PRO+

•

CON+
• PRO+

• CON−• , PRO−CON−• , PRO−
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4. PROPERTIES
We now discuss three distinct properties that we wish to

analyze on the basis of the ACG: (i) who wins the debate?,
(ii) does the outcome of the debate coincide with that of the
merged system?, and (iii) is it useful to allow moves that
reinforce previous moves?

4.1 Who wins the debate?
The first question that we address is whether an omni-

scient observer would know a priori which group of the de-
bate could possibly or necessarily win the debate, in particu-
lar whether some debates are“open”(i.e. not pre-determined
[8]).

Definition 9. We will say that the issue of the debate
is a possible outcome for a group X if this group has a
possibility to set the acceptability status of this argument to
coincide in the debate and in their individual system. The
issue is a necessary outcome for X iff this issue is not a
possible outcome for X.

Definition 10. A path for d controlled by CON is
an odd-length path from x to d such that (i) CON has con-
structive control on all the attack edges for d, and (ii) CON
has destructive control on all the defense edges for d attack-
ing x.

Note that condition (ii) covers in particular the case where
the first node x is not attacked. Controlling a path is not
enough since alternative defenses may exist. By extension,
we then define the notion of a tree controlled by CON .

Definition 11. A tree for d controlled by CON is a
tree such that (i) d is the root, (ii) all the paths from the
leaves to d are controlled by CON , and (iii) for any attack
edge yRx of the tree, it contains all the defense edges zRy
such that PRO+(z, y).

This gives us a condition guaranteeing that a favourable
outcome can be attained by CON.

Proposition 4.1. If there exists a tree for d controlled
by CON, then the issue d is a possible outcome for CON .

Proof. (Sketch.) Observe that because we have a tree
no edge can be played both as an attack and a defense edge.
Then CON can certainly win by making sure that all the
attack moves of the tree are placed, since it can respond
to any possible defense edge of the tree on which PRO has
constructive control, and it can certainly remove any other
defense edge which could be played by PRO (because it
must hold the destructive control on these edges). �

A couple of remarks are in order here. If the ACG itself
happens to be a tree, then the above condition is necessary
and sufficient to guarantee that the outcome is necessary
for CON . However, in general, things turn out to be much
more involved. First this condition is not necessary for the
outcome to be possible for CON : this group of agents may
win in absence of such a tree (in fact, even in absence of a
single path controlled by himself). This may look counter-
intuitive, but the reason lies on the fact that the control of
an edge may be gained during the debate in specific circum-
stances. We do not elaborate on this point here but a related

observation is developed in Section 4.3. Secondly, this con-
dition is not strong enough to guarantee that the issue is a
necessary outcome for CON . Indeed, in absence of coordi-
nation, agents of CON may not play the moves of the tree
only. And there are cases where this may make d a possible
outcome for PRO. To see why this may be the case, recall
that an edge may be both an attack and a defense edge for
the same issue d, as it may appear on several distinct paths.
When that happens, this edge may be used as an attack
edge, preventing the deployment of the path controlled by
CON. The following notions of switch captures this.

Definition 12. An edge (x, y) on a path P is a switch
for d if (i) it is a defense for d on P , (ii) it is playable
by CON , (iii) there exists an even-length path from y to
d such that all the attack edges are playable by CON and
all the defense edges are playable by PRO. So it is also a
potential attack for d via a different path.

Essentially, what this definition says is that there is a
possibility that this edge (x, y) may be played as an attack
by CON . As mentioned before this may harm CON own
line of attack. Following this, we say that there exists a
switch for path P for d controlled by CON if there exists a
defense edge for d attacking x (the first node of P ) that is a
switch. Each path in which a switch for P is an attack edge
is called a switch path of P .

We are now in a position to informally state some con-
ditions under which d may not be a necessary outcome for
CON despite the existence of a tree controlled by himself.
In fact it is the case when there exists a set of switches S
such that: (i) for any tree t for d controlled by CON, there
exists a switch belonging to S for a path (of t) for d con-
trolled by CON ; (ii) there must exist a sequence of moves
such that (1) all the switches in S are actually played, and
(2) PRO has the destructive control over an attack edge of
each resulting switch path; (iii) there must exist a sequence
of moves such that all the switches in S are maintained.

It may not be immediately clear to the reader why the
mere existence of switches —Cond (i)— does not imply the
fact that they can be played —Cond (ii.1): after all, the
definition requires a path of playable moves reaching the
switch to exist. The subtlety lies on the fact that these
paths may interact when they share some arguments. In
this case, the existence of a path may preclude other paths
to be played. Intuitively, Cond (iii) caters for the fact that a
switch may be “patched” by CON if he manages to append
an odd-length path right behind the switch.

The next question is whether these conditions can be sim-
ply expressed on the basis of the ACG. For (i) and (ii.2)
this is obvious. For (ii.1) and (iii) this is more challenging
because the definition refers to possible sequences of moves.
We will rely instead on sufficient conditions:

Proposition 4.2. The issue d may not be a necessary
outcome for CON if there exists a set of switches S such
that: (i) for any tree t for d controlled by CON there exists
a switch belonging to S for a path (of t) for d controlled by
CON ; (ii) there exists a set of switch paths P for S such
that these paths do not share any arguments (except d), and
PRO has destructive control over an attack edge of each of
these paths; (iii) for all switches (x, y) ∈ S, there does not
exist any even-length path P reaching d meeting x, such that
[x, d] constitutes an odd-path length, and such that CON has
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the constructive control on all attack edges, and PRO has
the constructive control on all the defense edges.

Proof. (Sketch.) Cond (i) ensures that at least an at-
tack path of each tree controlled by CON can be potentially
switched. Cond (ii) suffices to guarantee that the switch
paths are independent, so all the switches can actually be
played, and the switch paths subsequently cut. As for (iii),
observe that there are two ways to render a switch (xRy)
ineffective. Either by simply removing it, but this necessar-
ily requires a path (leading to the issue) to meet the node
y of the switch (so that playing xRy would be relevant).
This is impossible. Or by appending an odd-length path (a
“patch”) on x of the switch, such that a move meeting the
node y of the switch could now be played. This can only
happen when there exists an even-length path reaching d
meeting x, such that [x, d] constitutes an odd-path length,
and such that CON has the constructive control on all attack
edges, and PRO has the constructive control on all the de-
fense edges; otherwise there is necessarily a possibility that
this path does not reach x. �

Note that for (ii) it may be the case that switch paths,
even interacting, allow the switch to be played. For (iii) it
may be the case, on the other hand, that even if such paths
leading to patches do exist, they could not be played because
they are interacting in a way that makes them mutually ex-
clusive. What this discussion suggests is that obtaining a
full characterization of outcomes is certainly very challeng-
ing in the general case. It provides however a simple way to
construct examples of debates that are indeed open.

Example 3 cont. We easily see that the issue c is a
possible outcome for the agents in CON: CON can attack
c with b. Then, the only possible move for PRO is to defend
d with aRb. However, CON can remove this attack, and
PRO has no other move.

But c is also a possible outcome for PRO: CON can
start with dRc, which is playable by a1. Then, a5 will defend
with bRd, and a1 counter-attack with aRb. If the next move
of PRO is to remove dRc, then CON has no other move left:
it cannot add the attack bRc, as it is defended by a; and it
cannot remove the edge (a, b) as it does not drop c from the
extension. In this case, (a, b) is a switch and the merged
outcome is then (only) reachable.

4.2 Does it coincide with the MAS?
The next step here is to characterize the convergence and/or

the reachability of the merged outcome. We have already
seen that the merged outcome is not always reachable, but
is it possible to find some case for which it is? To answer
this question, we first need the following lemma.

Lemma 1. Let N be a set of agents, ACGN = 〈A,L〉 be
the global arguments-control graph and MASN = 〈A,M〉 be
the merged argumentation system. If there is no edge (a, b) ∈
L such that a group X ∈ {CON, PRO} has the constructive
and destructive control of (a, b), then all the edges controlled
constructively in the ACG belong to the MAS, whereas all
the edges controlled destructively in the ACG do not belong
to the MAS.

Proof. By remark (4), we know that either X+(a, b) and

X
+

(a, b), or X−(a, b) and X
−

(a, b). Take the case of con-
structive control: we have |add(a,b)∩X| > |rem(a,b)∩X| and

|rem(a,b) ∩ X| < |add(a,b) ∩ X|. As X ∩ X = { }, we have
|add(a,b)| > |rem(a,b)|. Then, by definition of the merged ar-
gumentation system, we know that (a, b) ∈M (that is (a, b)
is an edge of the MAS). The case of destructive control is
similar. �

This lemma leads to the following proposition.

Proposition 4.3. Let N be a set of agents, and ACGN =
〈A,L〉. If there is no edge (a, b) ∈ L such that X+,−(a, b),
then the merged outcome is reachable.

Proof. We know from Lemma 1 that all the edges con-
trolled constructively in theACG belong to theMAS, whereas
all the edges controlled destructively in the ACG do not be-
long to the MAS. Let d be the issue of the debate.

(1) Let us assume that d ∈ E(MAS). Thus, for all x ∈ A
such that xMd, there is an even-length path P =
(x1, x2, . . . , x, d) which defends d. As all these edges
belong to the MAS, we know from Lemma 1 that they
belong to the ACG, and that they are controlled con-
structively by PRO and by CON. Thus, CON can play
all the attack edges of P , whereas PRO can defend d
by adding all the defense edges of P . As x1 is not at-
tacked in the MAS, there are two possibilities in the
ACG:

• Either x1 is not attacked in the ACG. In this
case, CON can not attack x1, and then has no
possibility to drop d from E(AS(GB)).

• Or there is an attack edge (y, x1) in the ACG.
As this edge is not in the MAS, we know that
PRO−(y, x1). So, PRO can remove this edge and
then ensure that d ∈ E(AS(GB))

As this reasonment holds for all defense path in the
MAS, and is playable with our protocol, d is reachable.

(2) Let us assume now that d 6∈ E(MAS). So, there is
an odd-length path P = (x1, x2, . . . , x, d) in the MAS
which attacks d. As all these edges belong to theMAS,
we know from Lemma 1 that they belong to the ACG,
and that they are controlled constructively by PRO
and by CON. Thus, CON can play all the attack edges
of P , whereas PRO can defend d by adding all the
defense edges of P . As x1 is not attacked in the MAS,
there are two possibilities in the ACG:

• Either x1 is not attacked in the ACG. In this
case, PRO can not attack x1, and then has no
possibility to put d in E(AS(GB)).

• Or there is an attack edge (y, x1) in the ACG.
As this edge is not in the MAS, we know that
CON−(y, x1). So, CON can remove this edge
and then ensure that d 6∈ E(AS(GB))

As this path is playable with our protocol, we know
that d is reachable.

�

Note that we can only ensure the reachability. The fol-
lowing example shows that we do not have guaranteed con-
vergence.
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Example 4. Consider the following global arguments-control
graph and merged argumentation systems, where c is the is-
sue.

a b

c

de
CON+

• , PRO+
• CON+

• , PRO+
•

CON+
• , PRO+

• CON−• , PRO−

CON+
• , PRO+

•

From Lemma 1, we know that the graph of the merged
argumentation system is the following:

a b

c

de

Thus, c 6∈ E(MAS). However, if we suppose that the edge
(d, c) is playable for CON, c is a possible outcome for PRO:
CON can start by adding dRc. Then, PRO will defend with
bRd, and CON counter-attack with aRb. If the next move of
PRO is to remove the attack dRc, then CON has no other
move left: it cannot add the attack bRc, as it is defended by
a; and it cannot remove the edge aRb as it does not drop
c from the extension. But c is also a possible outcome for
CON: the merged outcome is (only) reachable.

Another important remark is that the converse of Propo-
sition 4.3 is false: as shown by the following example, it
is possible for a group to have constructive and destructive
control of an edge of the global arguments-control graph,
and to ensure the reachibility of the merged outcome.

Example 5. Consider the following global arguments-control
graph, where c is the issue.

ACG

a b c

CON+,−
•

CON+,−
•

MAS

a b c

In this graph, CON has the constructive and destructive
control over two edges, and the merged outcome is reachable:
the outcome is necessary for CON, and c 6∈ E(MAS).

4.3 Is it useful to allow reinforcement?
A natural extension is to consider that a move may also

be relevant as long as it reinforce (or symmetrically weak-
ens) an edge which, if deleted and all other things being
equal, would change the status of the issue. Essentially, be-
sides the relevant moves as defined in the previous section,
this would allow agents to augment the weight of an exist-
ing attack, and we refer to this as a reinforcement move.
Symetrically, agents may weaken an attack even if its does
not directly delete it, and we refer to this as a weakening
move. This extended protocol would allow any number of
such relevant moves during a group’s turn, but (as before)
would only switch to the other side after a change of the
current status of the issue. However, the following propo-
sition tells us that it is not beneficial for an agent to play
reinforcement moves. Worse, and rather counter-intuitively,
it can actually be damaging for agents to do so.

Proposition 4.4. Let D1 be sequences where no agent
plays reinforcement or weakening moves, and D2 be sequences
such that X only may play reinforcement moves (but X may
play weakening moves).

If X = PRO (resp. CON), then (i) for any σ2 ∈ D2 with
d ∈ E(AS(GBσ2

t→∞)) (resp. d 6∈ E(AS(GBσ2
t→∞))), there ex-

ists σ1 ∈ D1 such that AS(GBσ1
t→∞) = AS(GBσ2

t→∞). Fur-
ther (ii) there exists σ2 ∈ D2 with d 6∈ E(AS(GBσ2

t→∞))
(resp. d ∈ E(AS(GBσ2

t→∞))), such that for any σ1 ∈ D1 it
is not the case that AS(GBσ1

t→∞) = AS(GBσ2
t→∞).

Proof. (Sketch.) We show (ii) by constructing an exam-
ple where an agent loses some destructive control by using
reinforcement. It involves 6 agents.

ab

ec

d f

agent a1

ab

ec

d f

agent a2

ab

ec

d f

agent a3 + a4

ab

ec

d f

agent a5

ab

ec

d f

agent a6

The issue of the debate is a. There are four agents PRO and
two agents CON. The key to the analysis is to see that PRO
agents initially hold constructive and destructive control on
(c, b). Now compare the following sequences of moves. In
the first one, a5 plays bRa. Then a1 plays cRb and a2 re-
inforces this move. At this point, PRO loses its destructive
control on (c, b). Assume a CON agent plays dRc. a1 can
remove bRa. Then a5 can play eRa, a3 can defend with
bRe. Now, with a CON agent playing fRd, the debate is
doomed with the issue out. In the alternative case where no
reinforcement is played, we are in the case discussed in the
first protocol: PRO can remove the attack cRb, and win the
debate. �

This result tells us that in the absence of coordination,
agents are better off employing moves that are directly rele-
vant, hence adopting a “wait and see” approach. Still, using
reinforcement moves may prove useful in practice, in con-
texts where the debate is limited: for instance, agents may
be impressed by seemingly large majorities and avoid these
issues to concentrate on some other ones.

5. RELATED WORKS AND CONCLUSION
As already mentioned, our work is close in spirit to the

work of Rahwan and Larsson [12]. An important differ-
ence with our approach though is that agents control the
arguments they can advance in the debate, but that no dis-
agreement takes place regarding the attack relations between
these arguments. Another recent proposal of great interest is
that of Caminada and Pigozzi [2]. The authors propose dif-
ferent procedures to aggregate different labellings for a given
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argumentation system into a collective one. The property
they want to ensure is that the obtained collective outcome
is in some sense compatible with the individual ones. A re-
lated contribution of Rahwan and Tohmé [14], which inves-
tigates the same question and derives general conclusions on
the possibility (or impossibility) to perform such an aggre-
gation, under classical assumptions. As mentioned already,
these approaches assume that agents agree on the underly-
ing argumentation system, even though they may have dif-
ferent views on the preferred labelling. Finally, a multiparty
protocol for agents equipped with defeasible logic reasoning
abilities is investigated in [9]. Each agent initially puts for-
ward an initial claim and the protocol lets iteratively each
agent defend his claim or attack the claim of opposing agents
(by relying on a sophisticated technique to identify the most
effective counter-arguments).

In our proposal, a multiagent protocol regulates the ex-
change of arguments among focused agents on the basis of
the relevance of the moves as proposed by [10]. Although
all the agents share the same set of arguments, they may
have different views on the attack relations among these ar-
guments. In case of discrepancy on a relation we have opted
for a majoritarian approach: the side supported by the high-
est number of agents wins (more sophisticated approaches
are discussed in [15]). Furthermore, even though agents ex-
change arguments on a common gameboard, it is important
to note that no central authority gets to know the whole
argumentation system of each agent. We have investigated
some formal properties of this protocol. In particular, we
have shown that there are cases where the outcome is not
entirely pre-determined from the initial situation, and dis-
cussed non-trivial circumstances which may give rise to such
debates (based on different notions of control of attacks by
a group of agents). We have also given conditions under
which the merged outcome can be reached, and discussed
a natural extension of the protocol where moves can be re-
inforced (but showed that agents can only be worse off by
using these extended set of moves).

A natural follow-up of this work would be to provide some
insights regarding how often the debate is indeed open or
how often coincidence with merged outcome is observed.
Experiments could prove instructive in this respect. As for
possible extensions of this work, it is clear that any relax-
ations of these assumptions brings about some complexity.
If agents do not focus on a single issue, among other things,
we may not simply distinguish two groups PRO and CON,
and it becomes necessary to specify complex preferences over
combinations of issues. If we relax the assumption of the set
of arguments being shared, we then need to deal (see [3])
with the complex problem of how agents would react in the
presence of arguments they were not aware of before. In the
perspective of modeling practical debate platforms as men-
tioned in the introduction, all these aspects will require of
course careful study.
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ABSTRACT
Overlapping Coalition Formation (OCF) games [3, 4] are coop-
erative games where the players can simultaneously participate in
several coalitions. Capturing the notion of stability in OCF games
is a difficult task: a player may deviate by abandoning some, but
not all of the coalitions he is involved in, and the crucial ques-
tion is whether he then gets to keep his payoff from the unaffected
coalitions. In [4] the authors introduce three stability concepts for
OCF games—the conservative, refined, and optimistic core—that
are based on different answers to this question. In this paper, we
propose a unified framework for the study of stability in the OCF
setting, which encompasses the concepts considered in [4] as well
as a wide variety of alternative stability concepts. Our approach is
based on the notion of an arbitrator, which can be thought of as an
external party that determines payoff to deviators. We give a com-
plete characterization of outcomes that are stable under arbitration.
In particular, our results provide a criterion for the outcome to be
in the refined or optimistic core, thus complementing the results
in [4] for the conservative core, and answering questions left open
in [4]. We also introduce a notion of the nucleolus for arbitrated
OCF games, and argue that it is non–empty. Finally, we extend the
definition of the Shapley value [12] to the OCF setting, and provide
an axiomatic characterization for it.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Theory

Keywords
Overlapping Coalition Formation, Core, Nucleolus, Shapley Value

1. INTRODUCTION
Cooperation among agents plays a crucial role in the functioning of
multi-agent systems. Therefore, developing a better understanding
of coalition formation processes is an important research agenda in
the multiagent community, and a lot of recent research effort has
been spent on the design and analysis of cooperation mechanisms

Cite as: Arbitrators in Overlapping Coalition Formation Games, Yair Zick
and Edith Elkind, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.  55-62.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

for realistic multi-agent environments [15, 10, 5, 14, 8]. In such en-
vironments, agents are often selfish, and therefore need to be given
incentives to act together and share the benefits of cooperation in a
fair manner. Cooperative game theory [9, 18] provides the theoret-
ical underpinnings for the study of such settings. Traditionally, it
models a multiagent system as a (transferable-utility) game. Such
a game can be described by its characteristic function, which for
every set of agents specifies the profit that these agents can attain
by working together. The agents are expected to split into teams,
i.e., form a coalition structure; the profits of each team are then
distributed among its members.

Remarkably, the traditional model assumes that each agent par-
ticipates in exactly one coalition. However, this is often not the
case in real-life settings, where agents form multiple coalitions on
the fly in order to perform a specific task and only devote part of
their attention and resources to each such coalition. Indeed, She-
hory and Kraus in their seminal paper [14] already mention that
agents can benefit from forming overlapping coalitions, and pro-
pose algorithms for iterative formation of an overlapping coalition
structure for their setting. This line of work has been continued
by Dang et al. [5], where the authors consider overlapping coali-
tion formation in sensor networks. However, these papers assume
that agents are fully cooperative, and will always form the socially
optimal (overlapping) coalition structure. While this assumption is
appropriate for the specific scenarios considered in these papers,
in general, agents may want to maximize their own welfare, and a
fully expressive model for overlapping coalition formation should
take incentive issues into account.

Recently, Chalkiadakis et al. [3, 4] addressed this problem by
proposing a game-theoretic model for overlapping coalition forma-
tion. In their model, each agent is endowed with a certain amount
of resources, which he is free to distribute across multiple coali-
tions. The value of such (partial) coalition is determined both by
the identities of agents that participate in it and the amount of re-
sources that they contribute. Chalkiadakis et al. [3, 4] focus on the
study of stability in their model. Compared to the non-overlapping
setting, the stability of an overlapping coalition structure is a del-
icate issue: if an agent is participating in several projects at once
and decides to withdraw all or some of her contributions from one
of them, can she expect to continue to receive the payoff from the
coalitions that were not harmed by the deviation? In [4], the au-
thors propose three different stability concepts—the conservative
core, the refined core, and the optimistic core—that correspond to
three possible ways of answering this question. Briefly, under the
conservative core the deviators do not expect to get any payoffs
from their coalitions with non-deviators. In contrast, in the refined
core they continue to get payoffs from coalitions not affected by
the deviation. Finally, in the optimistic core the deviators may get
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some payoffs from an affected coalition, as long as they continue
to contribute to it, and the members of that coalition were able to
regroup and and focus on a different task so that each non-deviator
still gets as much profit as before from that coalition.

While the three concepts of the core proposed in [4] all corre-
spond to reasonable reactions to deviation, this list is by no means
exhaustive. For instance, a player may want to punish the devia-
tors and refuse to cooperate with them altogether as soon as they
lower the value of one of the coalitions he is involved in, even if
other coalitions between that player and the deviator remain unaf-
fected. Alternatively, the players may form a social network, and
stop collaborating with a deviator if his behavior harmed one of
their friends. Yet another possibility is that a central authority im-
poses a fine on each of the deviators, making the deviation costly.

In this paper, we propose a stability concept that captures all
of the scenarios considered above. Our approach is based on the
notion of an arbitrator: a function that takes the description of
a deviation as an argument and returns the payoff that the devia-
tors receive from each coalition. Different arbitrators correspond
to different sets of stable outcomes, or arbitrated cores. We show
that the three core concepts proposed in [4] can be viewed as spe-
cial cases of our model. Further, paper [4] characterizes the set
of outcomes that belong to the conservative core. We extend this
characterization to all arbitrated cores. In particular, this allows us
to characterize the outcomes in the refined core and the optimistic
core, thus answering the open question proposed in [4].

Now, while the core is an attractive stability concept, it is known
that some games have an empty core. This is true even in the
overlapping model for most realistic arbitrators. Thus, it is de-
sirable to have a solution concept that identifies “the most stable”
(overlapping) coalitions, yet is guaranteed to be non-empty. In the
non-overlapping setting, this role is fulfilled by the nucleolus [11].
Motivated by this intuition, we introduce a concept of nucleolus
for the OCF setting, and demonstrate that it is always non-empty.
However, in contrast to the traditional model, we show that in OCF
games the nucleolus may contain more than one outcome.

Finally, we extend the definition of the Shapley value [12] to the
OCF setting. Just as in the classic case, we present a set of natural
axioms, and demonstrate that our variant of the OCF Shapley value
is characterized by these axioms.

The rest of this paper is organized as follows. After presenting
the necessary background material in Section 2, we introduce the
notion of arbitration and arbitrated core in Section 3, and present
our characterization of the outcome in the arbitrated core in Sec-
tion 4. Section 5 focuses on the nucleolus for OCF games, and
Section 6 describes our extension of the Shapley value to the OCF
setting. Section 7 presents our conclusions and suggests directions
for future work.

2. PRELIMINARIES
We begin by describing our notation and the formal model of OCF
games. Our definitions mostly follow those in [4]. We, however,
describe deviation in a manner more conducive to our analysis.

Notation Throughout the paper, we write N = {1, . . . , n}. Given
a vector x = (x1, . . . , xn) ∈ Rn and a set S ⊆ N , we write
x(S) =

∑
i∈S x

i, x|S equals x on the S coordinates and is 0
otherwise, and eS is the indicator vector of S.

Classic TU Cooperative Games A transferable utility (TU) coop-
erative game is defined by a set of players N and a characteristic
function u : 2N → R with u(∅) = 0. The set of feasible pay-
offs for a game G = (N,u) is the set of all vectors x ∈ Rn such
that x(N) = u(N). A solution concept is a function that assigns

every TU game G = (N,u) a set of feasible payoff vectors. A
solution concept that assigns G a single point is called a value. For
a detailed discussion of solution concepts and their axiomatization
see [9], Section 2.3, pp. 19–25.
OCF Games Let N = {1 . . . n} be a set of agents. A partial
coalition of players in S ⊆ N is a vector c ∈ [0, 1]n, where ci = 0
for all i 6∈ S. That is, each player in S may contribute a fraction
of their resources to c. In what follows, we will omit the word
“partial”, and refer to vectors in [0, 1]n as coalitions.

DEFINITION 2.1. An OCF game G = (N, v) is given by a set
of players N and a characteristic function v : [0, 1]n → R assign-
ing a real value to each partial coalition; we require v((0)n) = 0.

A coalition structure overN is a n×k matrix CS = (c1, . . . , ck),
where k is the number of coalitions. We require that for all i ∈ N
it holds that

∑k
j=1 c

i
j ≤ 1. This means that CS is a valid division

of players’ resources. Coalition structures over subsets of N are
defined in a similar manner. Throughout the paper, we will assume
that v is monotone; thus, we can assume that all players would
want to invest all their resources, i.e.

∑k
j=1 c

i
j = 1; such coalition

structures are called efficient. We denote the set of all possible
coalition structures over S as CSS . We also overload notation and
define v(CS) =

∑k
j=1 v(cj). Two coalition structures CS =

(c1, . . . , ck) and CS ′ = (d1, . . . ,dk) are equivalent if there is
some permutation σ such that for all 1 ≤ j ≤ k, cj = dσ(j).

Similarly to [4], we would sometimes like to limit the maximum
number of coalitions players can form; indeed, oftentimes an agent
who gives less than a certain fraction of her resources to a coalition
can no longer contribute to a coalition. If the number of coalitions
is limited by U ∈ N we say that the game G is U -finite.

For any CS ∈ CSS , we call the vector w(CS) =
∑k
j=1 cj the

weight vector of CS . Note that w(CS) ∈ [0, 1]n, and if CS is
efficient then w(CS) is the indicator vector for the set S.

For each S ⊆ N we denote by v∗(S) the maximum value achiev-
able by S: v∗(S) = sup{v(CS) | CS ∈ CSS}. Note that (N, v∗)
can be viewed as a classic TU cooperative game; we will refer to
(N, v∗) as the crisp analogue of G. We extend the function v∗ to
partial coalitions by setting v∗(c) = sup{v(CS) | w(CS) ≤ c};
v∗ is the superadditive cover of v. Note that v∗(eJ) = v∗(J).
We remark that we borrow the term “crisp” from Aubin, who intro-
duced the concept of fuzzy games (and their crisp analogues) in [1].
Like OCF games, fuzzy games are also defined by functions from
[0, 1]n to R. However, they are based on very different intuition,
and, in particular, employ a very different notion of stability. We
refer the reader to [4] for a detailed discussion of the differences
between OCF games and fuzzy games.

It is often useful to think of the agents as using their resources to
complete a given set of tasks. Such games are described in [4] and
are called Threshold Task Games (TTGs). A TTG comprises of a
finite list of tasks, T = {t1, ..., tk}, each tl requires some weight
w(tl) ≥ 0 for its completion, and gives a certain payoff p(tl) ≥ 0.
Each player i has some weight wi ≥ 0 that he may allocate to the
completion of any task. The worth of a coalition is

v(c) = max{p(tl) : w(tl) ≤
n∑
i=1

ciwi}.

We say that a function v has Efficient Coalition Structure (ECS)
property if for any J ⊆ N and any wJ ≤ eJ there exists a coalition
structure CSJ ∈ CSJ such that v∗(wJ) = v(CSJ). All U-finite
continuous functions have the ECS property, since the set of all
coalition structures with weight less than wJ is compact (due to
U-finiteness); v is continuous and hence achieves a maximum over
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a compact set. TTGs also have the ECS property, as well as games
with superadditive valuations.

We now define how agents share their payoffs. The set of payoff
vectors X∗(G) of a game G = (N, v) is the set of all feasible
payoff vectors for its crisp analogue:

X∗(G) = {x ∈ Rn+ |
n∑
i=1

xi ≤ v∗(N)}.

An OCF solution concept is a function that assigns every OCF
game a subset of its payoff vectors. Note that the definition of a
payoff vector allows transfers between different partial coalitions.
However, usually we want to divide payoffs in a way that respects
the coalition structure. The next definition paves the way for this.

DEFINITION 2.2. An imputation for a coalition structure CS =
(c1, ..., ck) ∈ CSN is a n×k matrix x = (x1, ...,xk) ∈Mn×k(R+)
that satisfies:

• Individual Rationality:
∑k
j=1 x

i
j ≥ v∗({i}) for all i ∈ N .

• Payoff Distribution: for all 1 ≤ j ≤ k we have
∑n
i=1 x

i
j ≤

v(cj), and if cij = 0 then xij = 0.

An imputation is a way for members of each partial coalition to di-
vide profits among themselves; observe that inter-coalitional trans-
fers are not allowed. We call a tuple (CS ,x) of a coalition structure
and an imputation a feasible outcome, let I(CS) denote the set of
all matrices x such that (CS ,x) is a feasible outcome, and letF(S)
denote the set of all feasible outcomes over S.

Let (CS ,x) ∈ F(N) be a feasible outcome. We define the
payoff to an agent i ∈ N as pi(CS ,x) =

∑k
j=1 x

i
j . This is

the total payoff of i from all coalitions in CS . Similarly, the to-
tal payoff to a set J is pJ(CS ,x) =

∑
i∈J pi(CS ,x). Note

that the vector (p1(CS ,x), ..., pn(CS ,x)) is a payoff vector for
G, since pN (CS ,x) =

∑n
i=1 pi(CS ,x) =

∑n
i=1

∑k
j=1 x

i
j =∑k

j=1

∑n
i=1 x

i
j ≤

∑k
j=1 v(cj) = v(CS) ≤ v∗(N).

The support of a coalition c ∈ [0, 1]n is the set of all players who
devote their resources to c. They are "interested parties" that may
be hurt by any change to c; we write supp(c) = {i ∈ N | ci > 0}.

Given a coalition structure CS = (c1, . . . , ck) and some M ⊆
{1, . . . , k}, the coalitions whose indices are in M form a coalition
structure; this coalition structure is denoted R(CS ,M).

Given a set J ⊆ N , we denote KJ = {j ∈ {1, . . . , k} |
supp(cj) ⊆ J}.

DEFINITION 2.3. The coalition structure CS reduced to J is
defined as

CS |J = R(CS ,KJ).

These are all coalitions that are supported only by members of J .
We let CS |J denote the complement of CS |J in CS ; CS |J is the
coalition structure consisting of all coalitions in CS that have non–
J members in their support.

DEFINITION 2.4. A coalition structure CS ′ is a deviation of J
from CS if:

(1) CS |J = (c1 . . . cm), CS ′|J = (d1 . . .dm) and there is
some permutation of m elements, σ, such that for all 1 ≤
l ≤ m:

∀i /∈ J : dil = ciσ(l) and ∀i ∈ J : dil ≤ ciσ(l)

(2) w(CS ′|J) = w(CS |J) +
∑k
l=1(cσ(l) − dl).

Note that if we assume that CS ′ is efficient, then condition (1)
implies condition (2). The deviation CS ′ describes how a set J
retracts resources from some coalitions and uses them in order to
maximize its own welfare. Given a deviation CS ′ of J from CS ,
we define v∗(CS , J,CS ′) to be v∗(w(CS ′|J)); if J withdraws all
of its resources from CS|J , then the total weight available to J
is eJ , and v∗(CS , J,CS ′) = v∗(J). For brevity, given some cl
in CS |J that J deviated from, we refer to the coalition after the
deviation as devCS ′(cl).

3. THE ARBITRATION FUNCTION
To discuss stability in OCF games, we need to describe how agents
react if some J deviates from (CS ,x). Paper [4] presents three
different alternatives for such a reaction. The conservative devi-
ation, or c-deviation, completely denies payoffs to J , even from
coalitions that J did not affect. A relaxation of this approach leads
to the notion of a refined deviation, or r-deviation. Under this devi-
ation rule, deviators receive their share of the profit from all coali-
tions that were unaffected by the deviation, i.e. if no member of the
deviating subset J changed his contribution to a coalition c, then
J’s payoff from c is the same as before the deviation. Under the
optimistic deviation, or o-deviation, the players in J receive their
share of the profits from any coalition in which all non-deviators
can still earn the same payoff as before the deviation. Paper [4]
defines three notions of the core that correspond to the deviations.

One could easily think of many other reactions to deviation; J
receives only half of its original payoffs in all coalitions outside
of J’s support, J receives payoff only from those agents who are
not worse off after the deviation, and many others. Note that all
such rules can be thought of as a payoff function that is given the
original coalition structure and J’s deviation, and then decides on
an appropriate payoff to J . We call this function an arbitration
function or an arbitrator. This function decides how much J gets
from each coalition, given the nature of its deviation.

3.1 Arbitration Functions
Suppose that we are given an outcome (CS ,x) ∈ F(N), a set of
agents J ⊆ N and a deviation CS ′ of J from CS . Set CS |J =

(c1 . . . cm) and CS ′|J = (d1 . . .dm).

DEFINITION 3.1. The arbitration function is a mapping that as-
signs a real value to each coalition in CS |J .

A(CS ,x, J,CS ′) =
(
φl(CS ,x, J,CS ′)

)m
l=1

where φl is a function that determines how much the coalition cl
is willing to give J given its deviation. We require φl to satisfy the
following constraints:

(1) φl is non–negative.

(2) φl(CS ,x, J,CS ′) is only distributable between J∩supp(cl).

(3) If v(devCS ′(cl))−pN\J(cl,x) ≥ 0, then φl(CS ,x, J,CS ′) ≤
v(devCS ′(cl))−pN\J(cl,x), otherwise φl(CS ,x,CS ′) =
0.

(4) φl is deviation-monotone: If K ⊆ J withdraws less re-
sources from cl, then its payoff from φl is higher.

Condition (2) means that members of J that were not entitled to
payoffs from cl before the deviation are not entitled to payoffs after
deviating; condition (3) states that a deviating set J must ensure
that all members of N\J in the support of cl are paid what they
received under x if it hopes to receive any profit from cl; condition
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(4) guarantees that the arbitrator behaves in a reasonable manner:
agents know that their payoff from cl is inversely proportional to
the degree to which they hurt cl. We illustrate the logic behind the
concept of an arbitrator in the following example.

EXAMPLE 3.2. Consider a two-player TTG where there are
three tasks: t1, t2, t3 with w(t1) = 5, w(t2) = 3, w(t3) = 2
and p(t1) = 10, p(t2) = 7, p(t3) = 4. We have two agents:
Alice, who has weight 4, and Bob, who has weight 1. The total
weight of Alice and Bob is 5; they can complete t2 and t3 together
and earn a total of 11. However, for the sake of our discussion,
suppose that Alice and Bob agree on completing t1 using all of their
weight, and dividing the payoff between them so that Alice receives
6 and Bob receives 4. The corresponding outcome is: (( 1

1 ) , ( 6
4 )).

Consider the following deviation by Alice; she withdraws 2 units
of weight in order to complete t3 on her own. This means that she
still contributes 1 unit of weight to working with Bob, and they can
still complete t2, earning 7. According to condition (3) Bob must
receive at least what he did before the deviation. Therefore, the
most that Alice can expect to get from t2 is 3, under any arbitrator.

REMARK 3.3. We can allow the arbitrator more flexibility by
permitting it to collect fines/make additional payments to the devi-
ating subset. This can be captured by adding a freely distributable
value, or a function Ψ(CS ,x, J,CS ′) to the arbitrator, where Ψ is
also deviation-monotone. This model is more general as Ψ can be
distributed among all members of J in any way they wish, while φl
may only be distributed among the members of J ∩ supp(cl). Ψ
can be, for example, a constant arbitration fee that must be paid by
a deviating set. This fee is not related to any specific coalition, so
the cost can be distributed between the agents in J in any way they
see fit. All proofs in our paper go through for this more general
model.

DEFINITION 3.4. The arbitration value of A is

v∗(CS , J,CS ′) +

m∑
l=1

φl(CS ,x, J,CS ′)

and denoted val(A,CS ,x, J,CS ′).

The arbitration value is the total payoff to a deviating set J given
its deviation. The payoff is comprised of the most that J can make
on its own plus the total payoff J receives from the coalitions it
formed with non-J members; the greater the arbitration value, the
higher the incentive to deviate.

3.2 The Arbitrated Core
In the spirit of the definition given in [3], we now define a profitable
deviation of a subset in an arbitrated game.

DEFINITION 3.5. LetA be an arbitrator overG. AnA-profitable
deviation of J from an outcome (CS ,x) is an outcome (CS ′,y),
where

1. CS ′ is a deviation of J from CS .

2. For all cl in CS |J , pJ({devCS ′(cl)},y) ≤ φl(CS ,x,CS ′).

3. For all cl in CS |J , if φl(CS ,x,CS ′) > 0, then for all i ∈
N\J , the payoff to i from the coalition devCS ′(cl) is equal
to her payoff under cl.

4. v(CS ′|J) = v∗(CS , J,CS ′) and y reduced to the coalitions
in CS ′|J is an imputation over J .

5. For any j ∈ J , pj(CS ′,y) > pj(CS,x).

Condition 3 implies that a coalition cl agrees to pay a deviating J
only if each non–J member gets the same payoff it received under
x.

DEFINITION 3.6. The A-core of G = (N, v) is the set of all
feasible outcomes in F(N) that no subset of agents has an A-
profitable deviation from. The A-core is denoted C(A, G).

EXAMPLE 3.7. The arbitration function for the c-core is φl ≡
0. The arbitration function for the r-core is pJ(cl,x) if cl is the
same after the deviation and is 0 otherwise. The arbitration function
for the o-core is max{0, v(devCS ′(cl)) − pN\J(cl,x)}. We can
define other forms of arbitrators. Set

N ′ = {i ∈ N : i /∈ J and ∃cl, i ∈ supp(cl), devCS ′(cl) 6= cl}.
N ′ is the set of all non-members of J who were hurt in some way
by J’s deviation. One could naturally assume that players in N ′

would not like to pay members of J anymore in any coalition. In
this case, the arbitration function would be pJ(cl,x) if supp(cl)∩
N ′ = ∅ and 0 otherwise. We denote the core that corresponds to
this arbitrator the sensitive core.

Note that if J can A1-profitably deviate using some deviation CS ′

and A1(CS ,x, J,CS ′) ≤ A2(CS ,x, J,CS ′) (coordinate-wise),
then J canA2-profitably deviate from (CS ,x). This implies that if
for all outcomes (CS ,x) and all deviations CS ′ of any J ⊆ N we
have A1(CS ,x, J,CS ′) ≤ A2(CS ,x, J,CS ′), then C(A2, G) ⊆
C(A1, G). Particularly we have

o-core ⊆ r-core ⊆ sensitive-core ⊆ c-core

This is a generalization of the result shown in [4].

4. CHARACTERIZATION OF THE ARBI-
TRATED CORE

We now give a general characterization of the core under some
arbitration function A. Our proof method is similar to the proof of
the characterization result given in [4].

THEOREM 4.1. If G = (N, v) has the ECS property, then an
outcome (CS ,x) ∈ F(N) is in C(A, G) if and only if for any J ⊆
N and deviation CS ′ we have pJ(CS ,x) ≥ val(A,CS ,x, J,CS ′).

Simply put, an outcome is stable if and only if for any coalition J
and any deviation proposed by J , the payoff that the members of J
can obtain under A does not exceed their current payoff.

PROOF. Suppose first that for every J ⊆ N and every deviation
CS ′ of J from CS we have pJ(CS ,x) ≥ val(A,CS ,x, J,CS ′).
Therefore, for all y ∈ I(CS ′),

pJ(CS ′,y) ≤ val(A,CS ,x, J,CS ′) ≤ pJ(CS ,x).

Hence, there exists a player j ∈ J that does not strictly benefit
from (CS ′,y), and J cannot A-profitably deviate from (CS ,x).

Conversely, suppose that for some nonempty J ⊆ N there exists
a deviation CS ′ such that pJ(CS ,x) < val(A,CS ,x, J,CS ′).
We show that (CS ,x) is not in the A-core of G. Let CS |J =
(c1 . . . cm). For all j ∈ J let pj = pj(CS ,x) and for all cl in
CS |J , let rl = φl(CS ,x, J,CS ′). As v has the ECS property,
v∗(CS , J,CS ′) = v(CSM ) for some coalition structure CSM ∈
CSJ .

val(A,CS ,x, J,CS ′) = v(CSM ) +
∑m
l=1 rl, which is strictly

greater than pJ(CS ,x); while J can strictly gain by deviating, it
is possible that the members of J cannot divide the payoffs from
the deviation in a manner that strictly benefits all of them. We now
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show that there is a subset of J that can profitably deviate. Recall
that rl may only be distributed among Jl = supp(cl) ∩ J . Given
rl, we define the set of all viable payoff divisions of rl among the
members of Jl as

∆l = {ρ ∈ Rn+ |
n∑
i=1

ρi = rl and ρi = 0 for all i /∈ Jl}.

Note that ∆l is compact. Given (CS ,x), we define its total loss
function

TL(CS,x) : I(CSM )×
m∏
l=1

∆l → R.

Given an imputation y ∈ I(CSM ) and (ρl)
m
l=1 ∈

∏m
l=1 ∆l, we

define the total payoff to player j ∈ J as

qj = pj(CSM ,y) +

m∑
l=1

ρjl .

The total loss of a payoff division is

TL(CS,x)(y, (ρl)
m
l=1) =

∑
j∈J|pj>qj

pj − qj .

TL(CS,x) is a continuous, real valued function over a compact
set, so there is some payoff division (y, (ρl)

m
l=1) that minimizes

TL(CS,x). Given a loss–minimizing payoff division (y, (ρl)
m
l=1),

we construct a directed graph Γ = (V,E) where V = J , and there
is a directed edge from i ∈ J to j ∈ J if and only if i can legally
transfer payments to j; this can happen if an only if both i and j are
in the support of some coalition c and i receives a positive payoff
from c. We color the vertices of the graph as follows: a vertex j
is green if pj < qj , white if pj = qj , and red if pj > qj . Since∑
j∈J qj > pJ(CS , x), the graph has at least one green vertex. If

all vertices are green, then pj < qj for all j ∈ J , i.e., CS′ is a
profitable deviation for all players in J , and we are done. We now
assume that there is at least one non–green vertex.

Note that if g ∈ J is green, then if there is an edge from g to
some j, then g can transfer a small amount of payoff 0 < δ <
qg − pg to j. If δ is small enough, then the resulting outcome is
still a viable imputation. Similarly, j can legally transfer the same
amount to any vertex that j is connected to. Therefore, if there is
a path from a green vertex g to some j, then g can transfer a small
amount δ to j while remaining green. Following [4], we observe
that since we chose a payoff distribution that minimizes TL(CS,x),
if there is a path from a green vertex g to some vertex i, then i
is not red. Thus, we can assume w.l.o.g. that if a vertex i is not
green, then there is no path from a green vertex to i. Let GJ be
the set of all green vertices; we claim that GJ can A-profitably
deviate. Indeed, note that making J\GJ return to their original
contributions according to CS will not negatively affect GJ (here
we use the fact that A is deviation–monotone); if GJ decides to
deviate from CS , without having J\GJ deviate as well, its payoffs
cannot decrease. Therefore,GJ canA-profitably deviate from CS ,
and we are done.

4.1 The Refined and Optimistic Cores
Theorem 4.1 immediately implies the characterization of the con-

servative core given in [4]. Let Ac denote the conservative arbitra-
tor; under Ac we have φl(CS ,x, J,CS ′) ≡ 0, so any deviating
set should not leave any of its resources in any coalition, but rather
devote all of its resources to maximize v∗(CS , J,CS ′). Therefore,

sup
CS ′
{val(Ac,CS ,x, J,CS ′)} = sup

CS ′
{v∗(CS , J,CS ′)} = v∗(J).

Our characterization result indeed shows that (CS ,x) is c-stable if
and only if for all J ⊆ N , pJ(CS ,x) ≥ v∗(J).

Theorem 4.1 also gives an intuitive characterization of the re-
fined and optimistic cores; under the refined arbitrator, denoted
Ar , a deviating subset J can expect payoff only from coalitions
it did not change. Thus, if J decides to deviate from a coalition,
it should withdraw all of its resources from that coalition. The
arbitration value of Ar is v∗(CS , J,CS ′) + pJ(U,x), where U
is a matrix whose columns are the coalitions unchanged by J’s
deviation. Consequently, an outcome (CS ,x) is in the r-core if
and only if for all J ⊆ N and any deviation of J , CS ′, we have
pJ(CS ,x) ≥ v∗(CS , J,CS ′) + pJ(U,x). To conclude, an out-
come (CS ,x) is in the r-core if and only if for any J ⊆ N and any
matrix Q whose column vectors are coalitions in CS|J we have

pJ(CS |J ,x) + pJ(Q,x) ≥ v∗(w(CS |J) + w(Q)|J).

Note that if Q = CS |J , we get the c-core condition.
Under the optimistic arbitrator, denotedAo, J can expect payoff

from a coalition c if all non-J members of c get the payoff they re-
ceived under x. Thus, the payoff available to J is v(devCS ′(cl))−
pN\J(cl,x). Let us denote by P (CS) the coalitions from which
J can expect payoff if it makes the deviation CS ′, and by P (CS ′)
the same coalitions after J’s deviation. We define N(CS) to be
the coalitions that will not pay J . By Theorem 4.1 we have that
(CS ,x) ∈ C(Ao, G) if and only if

pJ(CS ,x) ≥ v∗(CS , J,CS ′) + v(P (CS ′))− pN\J(P (CS),x).

Since pN (P (CS),x) = v(P (CS)), it follows that (CS ,x) ∈
C(Ao, G) if and only if

pJ(N(CS),x) ≥ v∗(CS , J,CS ′) + v(P (CS ′))− v(P (CS)).

Note that if we only consider deviations where J withdraws all of
its resources from N(CS) and does not change its contribution to
P (CS), then we get the characterization of the r-core. Also note
that checking if an outcome is in the r-core or c-core can be done
by considering a finite number of deviations, but for o-core this is
not the case.

5. THE NUCLEOLUS OF AN ARBITRATED
OCF GAME

Although the core of a game is a useful solution concept, it may
be empty in some cases; it is desirable to have a solution concept
that is more robust, and, in particular, is guaranteed to be non-
empty for all (reasonable) OCF games. In the non-overlapping
setting, this role is fulfilled by the nucleolus [11]. We extend the
notion of nucleolus to OCF games, and show that it exhibits many
of the desirable properties of its non-OCF counterpart.

LetA∗(CS ,x, J) denote the most that J ⊆ N can receive from
an arbitrator given an outcome (CS ,x). In this section, we only
consider OCF games for which A∗(CS ,x, J) is a well–defined
real value for any CS , x and J .

DEFINITION 5.1. Given an outcome (CS ,x), the excess of J ⊆
N is defined as e(CS ,x, J) = A∗(CS ,x, J)− pJ(CS ,x).

The excess is a measure of a subset’s “unhappiness” with a given
outcome: the lower the excess, the happier the subset. Note also
that Theorem 4.1 states that (CS ,x) ∈ C(A, G) if and only if
e(CS ,x, J) ≤ 0 for all J ⊆ N . Given an outcome (CS ,x), we
define its excess vector as

θ(CS ,x) = (e(CS ,x, S1), e(CS ,x, S2), ..., e(CS ,x, S2n),
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where e(CS ,x, S1) ≥ ... ≥ e(CS ,x, S2n). We write (CS ,x) �L
(CS ′,y) if θ(CS ,x) is lexicographically smaller than θ(CS ′,y).

We point out that Definition 5.1 coincides with the definition of
excess for classic TU cooperative games; given a classic TU game
(N,u), the most that the set J can get is simply u(J), and the
excess is defined as the difference between u(J) and the payoff to
J . This analogous definition gives rise to an analogous definition
of an arbitrated nucleolus.

Given an OCF game G = (N, v) arbitrated byA, the arbitrated
nucleolus of G, denoted N (A, G), is the set of all outcomes in
F(N) that are minimal with respect to �L. Observe that just like
in the non-overlapping case, if C(A, G) 6= ∅, then N (A, G) ⊆
C(A, G).

5.1 Non-Emptiness of the Nucleolus
Unlike the arbitrated core, the nucleolus is never empty as long

as A∗(CS ,x, J) is continuous with respect to (CS ,x). In fact, it
suffices that the excess of a set be achievable by using some devi-
ation from a given outcome. This is true for the arbitrators defined
above, assuming that v has the ECS property.

THEOREM 5.2. If v has the ECS property andA∗(CS ,x, J) is
continuous w.r.t (CS ,x), thenN (A, G) 6= ∅

PROOF. First, we would like to note that the excess vector is
comprised of continuous functions over F(N). Indeed, observe
that for any outcome (CS ,x) and any k = 1, . . . , 2n we have

θk(CS ,x) = max
S1,...,Sk⊆N

{min{e(CS ,x, S1), ..., e(CS ,x, Sk)}},

where all S1, ..., Sk are different subsets ofN . SinceA∗(CS ,x, J)
is continuous, so is the excess. Thus, θk is obtained by combining
continuous functions using a finite number of min and max opera-
tions, and therefore it is continuous as well.

Set X1 = {(CS ,x) = argmin(CS ′,y)∈F(N){θ1(CS ′,y)}},
and for every k = 2, . . . , 2n, let

Xk = {(CS ,x) = argmin(CS ′,y)∈Xk−1
{θk(CS ′,y)}}.

X2n ⊆ N (A, G), since if (CS ,x) ∈ Xk then θk(CS ,x) ≤
θk(CS ′,y) for every k = 1, ..., 2n. Thus, it remains to show that
X2n is non-empty. Now, the set F(N) is compact and non-empty.
From elementary calculus, we know that ifC ⊆ Rm is a non-empty
compact set, and f : C → R is a continuous function, then the set
X = {x ∈ C | f(x) = miny∈C{f(y)}} is a non-empty compact
set. Hence, X1 is compact and non-empty, and inductively so is
X2n . Consequently,N (A, G) 6= ∅.

5.2 Properties of the Nucleolus
The nucleolus in the non-overlapping setting exhibits some at-

tractive properties. For example, in the non-overlapping setting,
the nucleolus is a single point [9, 18]. In the arbitrated OCF set-
ting, however, the nucleolus may have a richer structure.

EXAMPLE 5.3. Consider the following TTG: N = {1, 2}.
Both players have weight of 1 and there is one task t with w(t) =
2, p(t) = 20. Assume that G is arbitrated by the refined arbitrator.
The r-core of the game is not empty and the only coalition struc-
ture that is in the r-core is CS = ( 1

1 ). Let us consider a payoff
distribution where player 1 gets 10 − ε and player 2 gets 10 + ε
where 0 < ε < 10. The maximum value that can be provided to
player 1 under the refined arbitrator is if he offers CS as his ob-
jection; any other deviation will leave him with nothing. Indeed,
A∗(CS ,x, {1}) = p1(CS ,x) = 10− ε, thus his excess is 0. One
can verify that all nucleolus outcomes have excess of 0 for all sets

in this game. However, if the same game is arbitrated by the conser-
vative arbitrator, then the excess of player 1 is 0−(10−ε) = ε−10,
which will make him sensitive to the fact that he is being cheated.

Example 5.3 demonstrates that outcomes in N (A, G) need not
be unique, nor distribute payoff among players in the same manner.
However, it turns out that if A∗(CS ,x, J) is convex as a func-
tion of x when J and CS are fixed, then for any two outcomes in
the nucleolus that have the same coalition structure, each subset of
players has the same excess under both of these outcomes. First,
we need the following technical lemma:

LEMMA 5.4. If (CS ,x), (CS ,y) ∈ N (A, G) and z = x+y
2

,
then (CS , z) ∈ N (A, G).

PROOF. Suppose that (CS ,x), (CS ,y) ∈ N (A, G). Both out-
comes must have the same excess vector, i.e. θ(CS ,x) = θ(CS ,y).
Set z = x+y

2
. Since I(CS) is convex, z ∈ I(CS). Consider

θ(CS , z). Denote

θ(CS ,x) = (e(CS ,x, J1), ..., e(CS ,x, J2n)),

θ(CS ,y) = (e(CS ,y,K1), ..., e(CS ,y,K2n)),

θ(CS , z) = (e(CS , z, L1), ..., e(CS , z, L2n)).

Given a deviation CS ′ of J from CS , we have

A∗(CS , z, J) ≤ A
∗(CS ,x, J) +A∗(CS ,y, J)

2
,

since A∗ is convex. Since the payoffs to J are linear in the impu-
tations, we conclude that

e(CS , z, J) ≤ 1

2
e(CS ,x, J) +

1

2
e(CS ,y, J).

Denote e(CS ,x, Jl) = e(CS ,y,Kl) = Vl. We get

e(CS , z, L1) ≤ e(CS ,x, L1) + e(CS ,y, L1)

2
≤ V1.

If at any point the inequality is strict, e(CS , z, L1) < V1 and
θ(CS , z) is strictly smaller lexicographically than θ(CS ,x), a con-
tradiction. We similarly conclude that e(CS , z, Lk) = Vk for all
k = 1, . . . , 2n. Therefore θ(CS , z) = θ(CS ,x) = θ(CS ,y), and
(CS , z) ∈ N (A, G).

THEOREM 5.5. Let G = (N, v) be a game arbitrated by some
convex arbitratorA. If (CS ,x), (CS ,y) ∈ N (A, G) then for any
J ⊆ N we have e(CS ,x, J) = e(CS ,y, J).

PROOF. The proof scheme is somewhat similar to the proof that
the nucleolus for non-OCF games is unique [18, 9]. Let (CS ,x)
and (CS ,y) be in N (A, G). Set z = x+y

2
. Using the same no-

tation as in Lemma 5.4, we know that e(CS ,x, J1) is equal to
e(CS ,y,K1) and e(CS , z, L1), so

e(CS ,x, J1) + e(CS ,y,K1) = 2e(CS , z, L1).

As shown in Lemma 5.4,

2e(CS , z, L1) ≤ e(CS ,x, L1) + e(CS ,y, L1).

By definition of J1, e(CS ,x, L1) ≤ e(CS ,x, J1) and similarly,
e(CS ,y, L1) ≤ e(CS ,y,K1). This implies that

e(CS ,y,K1) = e(CS ,y, L1) = e(CS ,x, J1) = e(CS ,x, L1).

We can swap L1 with J1 in the excess ordering of (CS ,x) without
changing the excess vector. This can be done inductively for any
Lk. We conclude that if (CS ,x), (CS ,y) ∈ N (A, G) then all sets
have the same excess in both outcomes.
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The conservative arbitrator is constant at v∗(J), and thus convex.
This allows us to use Theorem 5.5 to show that for the conservative
arbitration function any two outcomes in the nucleolus correspond
to identical payoff vectors.

COROLLARY 5.6. If G is arbitrated by the conservative arbi-
trator, then for any (CS ,x), (CS ,y) ∈ N (Ac, G) and any i ∈ N ,
pi(CS ,x) = pi(CS ,y).

PROOF. Consider two outcomes (CS ,x), (CS ,y) ∈ N (Ac, G)
and a player i. By Theorem 5.5, Ac∗(CS ,x, J) − pi(CS ,x) =
Ac∗(CS ,x, J)−pi(CS ,y). On the other hand,Ac∗(CS ,x, J) =
Ac∗(CS ,y, J) = v∗({i}), so pi(CS ,x) must equal pi(CS ,y).

We remark that one can also show that the refined arbitrator is con-
vex. However, as illustrated by Example 5.3, the conclusion of
Corollary 5.6 does not hold for the refined arbitrator, since the value
of A∗r(CS , z, J) may depend on the vector z.

6. THE SHAPLEY VALUE OF OCF GAMES
Introduced by L.S. Shapley in [12], the Shapley value is a cen-

tral solution concept in classic cooperative game theory. We offer
two possible extensions of the Shapley value to OCF games; one
assumes a fixed coalition structure and is somewhat similar to the
Shapley value for coalition structures defined in [2], while the other
takes into account the ability of sets to maximize their profits us-
ing coalition structures and is similar to the classic notion defined
in [12]. We show that both values are unique with regard to spe-
cific sets of axioms1. In this section, we denote the Shapley value
for crisp games by sv .

Our first definition assumes that the coalition structure CS is
given; it is possible that the agents have agreed on some division
of labor, or one was assigned to them by a central authority. The
following definition of a value provides an axiomatic method of
assessing the contribution of each player to CS . Given a game
G = (N, v) and a coalition c ∈ [0, 1]n we set forth the following
axioms for a value (Φ1(N, v, c), . . . ,Φn(N, v, c)).

(1) Coalitional Efficiency:
∑n
i=1 Φi(N, v, c) = v(c).

(2) Symmetry: Two players i, j ∈ N are OCF-symmetric if
for all x ∈ [0, 1]n, v(x) = v(xi∼j), where xi∼j is x with
the i-th and j-th coordinates exchanged. If i, j are OCF-
symmetric, then Φi(N, v, c) = Φj(N, v, c).

(3) Dummy Player: Set c−i to be c with the ith coordinate set
to 0. If v(c−i) = v(c) then Φi(N, v, c) = 0.

(4) Additivity: Φi(N, v, c) + Φi(N,u, c) = Φi(N,u+ v, c).

We define αv : [0, 1]n × 2N → R as αv(c, S) = v(c|S). Given
a coalition c, the coalitional OCF Shapley value of c, denoted
SV i(N, v, c), is sv i(αv(c, ·)). One can verify that

• αv(c, N) = v(c);

• if two players are OCF-symmetric then they are symmetric
in αv(c, ·);

• if i is a dummy thenαv(c, S∪{i}) = v(cS∪{i}) = v(cS) =
αv(c, S), hence i is dummy in αv(c, ·);

• αu(c, S) + αv(c, S) = u(cS) + v(cS) = (u + v)(cS) =
αu+v(c, S).

1For the axiomatization of the classic Shapley value, see [9] chapter
8, pp. 151-179, as well as the detailed review in [16]

This shows that the OCF properties described above naturally trans-
late to their equivalents in non–OCF games. Hence, the coali-
tional OCF Shapley value satisfies properties (1)–(4). To show
uniqueness, we use the following construction: given a function
u : 2N → R, define v : [0, 1]n → R by setting v(x) = u(S) if
x = cS for some S ⊆ N and v(x) = 0 otherwise. Clearly, we
have αv(c, S) = u(S) for any S ⊆ N . Therefore, uniqueness of
the coalitional OCF Shapley value follows from the uniqueness of
the classic Shapley value. The coalitional OCF Shapley value can
be extended to coalition structures by setting SV i(N, v,CS) =∑k
j=1 SV i(N, v, cj), where CS = (c1 . . . ck). It is immediate

that SV (N, v,CS) is efficient, i.e., the sum of the players’ values
is v(CS), and the value of each coalition is distributed only among
those who support it.

An alternative approach for measuring power does not assume
a preexisting coalition structure, but rather measures the a–priori
marginal contribution of a player, as all players try to maximize
social welfare by forming coalition structures. Young [17] gives
a characterization of the Shapley value using the notion of strong
monotonicity; we use a similar notion for a value. We begin by
setting forth the desirable axioms.

(1) Strong Monotonicity: if for some u, v : [0, 1]n → R and
some i ∈ N we have v∗(c)− v∗(c−i) ≥ u∗(c)− u∗(c−i)
for all c ∈ [0, 1]n, then Φi(N, v) ≥ Φi(N,u).

(2) Symmetry: A value Φ is symmetric if for any two symmetric
players i, j: Φi(N, v) = Φj(N, v).

(3) Efficiency:
∑n
i=1 Φi(N, v) = v∗(N).

Axiom (1) states that if a player i has higher marginal contribution
to v∗(c) than to u∗(c) for any c, then her value in v should be
higher; this is a generalization of strong monotonicity as defined
in [17]. Also note that if two players are OCF-symmetric, then
they are symmetric as players in the crisp analogue of the game.
Finally, these notions are only well–defined assuming that the game
G has the ECS property. We define the OCF Shapley value, denoted
SV ∗(N, v), as

SV ∗i (N, v) = sv i(N, v
∗).

Strong monotonicity, efficiency and symmetry are inherited from
their classic counterparts for sv(N, v∗). Note also that the class of
crisp analogues of OCF games corresponds to the class of superad-
ditive games. Recall that a function u : 2N → R is called super-
additive if for all disjoint S, T ⊆ N it holds that v(S) + v(T ) ≤
v(S ∪T ). One can verify that the crisp analogue of any OCF game
is superadditive. Moreover, given a superadditive u : 2N → R,
one can define the function v : [0, 1] → R to be v(eS) = u(S)
and 0 otherwise; for all S ⊆ N , v∗(S) = u(S). Therefore, the
uniqueness of the Shapley value for superadditive games implies
its uniqueness for the class of crisp analogues, which in turn im-
plies its uniqueness for OCF games.

The two notions of Shapley value for OCF games considered
above do not, in general, coincide, even if the coalition structure
for which we compute the coalitional OCF Shapley value is socially
optimal.

EXAMPLE 6.1. Consider a 3-player TTG with w1 = 5, w2 =
2, w3 = 1, and two tasks, t1, t2, with p(t1) = 6, p(t2) = 12 and
w(t1) = 4, w(t2) = 8. Let us compute SV ∗(N, v). When player
1 is first or second he has marginal contribution of 6. When he is
last, his marginal contribution is 12. Therefore, SV ∗1(N, v) = 8,
and, by efficiency and symmetry, SV ∗2(N, v) = SV ∗3(N, v) = 2.
However, consider a coalition structure where players work on two
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copies of t1, and each of them contributes half of his resources
to each copy. Then any player has non-zero marginal contribu-
tion only if he is last, in which case he contributes 12. Therefore
SV 1(N, v,CS) = SV 2(N, v,CS) = SV 3(N, v,CS) = 4.

In Example 6.1, player 1 can contribute significantly more than
the other players, but his coalitional OCF Shapley value is equal to
theirs in CS . This is because in the specific coalition structure CS ,
his marginal contribution is the same as his peers’; if any one of
them leaves a coalition, the value of the remaining coalition struc-
ture becomes zero.

Note also that if two players in a TTG have wi = wj , then
SV ∗i (N, v) = SV ∗j (N, v). However, this is not necessarily true
for the coalitional Shapley value.

EXAMPLE 6.2. Consider a 2-player TTG where both players
have weight w ≥ 2, and there are two tasks; w(t1) = 2w −
1, w(t2) = 1 and p(t1) = M,p(t2) = x, where (2w − 1)x ≤
M . We form CS so that player 1 contributes all of her weight to
t1, while player 2 contributes w − 1 to t1, and completes t2 by
herself. When player 1 is first, then v(( 1

0 )) = x, while under
the current coalition structure, player 2 can gain 2x on her own.
SV 1(N, v,CS) = 1

2
(x + M + x − 2x) = M

2
, and by efficiency

SV 2(N, v,CS) = M+2x
2

.

Example 6.2 implies that the difference between SV ∗i (N, v) and
SV i(N, v,CS) can be arbitrarily large.

7. CONCLUSIONS AND FUTURE WORK
Our work shows significant similarity between concepts from

classic cooperative game theory and their OCF counterparts. We
can also generalize the notion of the bargaining set [6] to OCF
games; the resulting notion shares many properties with the bar-
gaining set in crisp games. We omit these results due to space
constraints. Other solution concepts, such as the ε-core, can be
described using the arbitration function itself, using the freely dis-
tributable component mentioned in Remark 3.3.

The arbitrated OCF model is far from being fully explored. We
would like to point out a few promising directions for further re-
search. First, it is shown in [13] that the Shapley value is in the
core of a convex game. We would like to see if this result extends
to the OCF setting. While [4] define convex OCF games and show
that their c-core is not empty, it is not clear if there is an outcome
in the c-core of a convex game such that each player is paid ex-
actly her OCF Shapley value. In order to do so, we must find some
coalition structure that corresponds to such a payoff scheme.

Another promising direction is exploring processes of overlap-
ping coalition formation. While some work has been done on over-
lapping coalition formation algorithms [8], coalitional stability is
yet to be fully explored. Our work assumes that an outcome is ex-
ogenously determined, and does not describe a process under which
a stable outcome may arise. While [4] proposes a coalition forma-
tion procedure for convex OCF games, it is not clear how to extend
it to the general case. A decentralized coalition formation algo-
rithm, where agents repeatedly form and dissolve coalitions until
a stable coalition structure and payoff division are agreed upon,
would be useful in many multi-agent scenarios. The notion of ar-
bitrators may play a significant role in such a process, as the arbi-
tration function can effectively control the degree to which agents
will be inclined to deviate.

Finally, we would like to investigate the algorithmic properties
of the solution concepts defined in this paper. For example, it is
clear that it is generally hard to compute the OCF Shapley value,

even when one can compute v∗ in polynomial time. However, it
would be interesting to identify natural classes of games where the
Shapley value is tractable.
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ABSTRACT
Online digital goods auctions are settings where a seller with
an unlimited supply of goods (e.g. music or movie down-
loads) interacts with a stream of potential buyers. In the
posted price setting, the seller makes a take-it-or-leave-it of-
fer to each arriving buyer. We study the seller’s revenue
maximization problem in posted-price auctions of digital
goods. We find that algorithms from the multi-armed bandit
literature like UCB, which come with good regret bounds,
can be slow to converge. We propose and study two alterna-
tives: (1) a scheme based on using Gittins indices with priors
that make appropriate use of domain knowledge; (2) a new
learning algorithm, LLVD, that assumes a linear demand
curve, and maintains a Beta prior over the free parameter
using a moment-matching approximation. LLVD is not only
(approximately) optimal for linear demand, but also learns
fast and performs well when the linearity assumption is vi-
olated, for example in the cases of two natural valuation
distributions, exponential and log-normal.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics

Keywords
Electronic markets, Economically-motivated agents, Single
agent learning

1. INTRODUCTION
Digital goods auctions are those where a seller with an

unlimited supply of identical goods interacts with a popu-
lation of buyers who desire one unit of that good [12, 11].
These are typically thought of as digital goods which can be
produced at negligible cost, for example, rights to watch a
movie broadcast, or to download an audio file.

Consider the problem faced by a company that has the
rights to a piece of music, and wants to market it to con-
sumers. There is some underlying valuation distribution on

Cite as: Learning the Demand Curve in Posted-Price Digital Goods Auc-
tions, Meenal Chhabra and Sanmay Das, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp.  63-70.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the potential population of buyers, reflecting how much each
potential buyer values that piece. However, the seller is not
aware of this distribution, and can only learn it through in-
teraction with buyers. The seller’s goal is to maximize her
own revenue. While such problems have typically been dealt
with by using a few discrete possible prices and estimating
popularity, this has mostly been due to the transaction costs
associated with regularly changing prices. Dynamic pricing
mechanisms, on the other hand, are increasingly available
to sellers, and it is now practical to consider strategies that
change prices online [13]. The typical interaction will be
that the user searches a music database for the piece, sees a
price, and decides whether or not to buy.

In this kind of posted-price mechanism [15, 3], the seller
offers a single price, and an arriving buyer has the option to
either complete the purchase at that price, or not go through
with it. If the seller knew the distribution of valuations, the
pricing problem for revenue maximization would be simple
to solve, yielding a single fixed price to be offered to all the
buyers (under the assumption that the seller has no way of
discriminating between buyers, or finding out their individ-
ual valuations). This distribution can also be thought of as
the demand curve, because an arriving buyer will only buy
if her valuation exceeds the posted price being offered.

Posted price mechanisms have also received attention in
the context of limited supply auctions [4]. There has been
work in economics on learning the demand curve in posted
price auctions when the seller has a single unit of the item to
sell [5], and also on learning the demand curve using buyers’
bidding behavior in non-posted price settings [19].

Posted price auctions in which the seller must learn the
demand curve are a natural application for the tools of
dynamic programming and reinforcement learning because
they exhibit a classic exploration-exploitation dilemma. The
quoted price serves as both a profit-seeking mechanism (ex-
ploitation) as well as an information-gathering one (explo-
ration). In the context of two-sided posted-price mecha-
nisms in finance where a “market maker” offers to both buy
and sell a security at some price, Das and Magdon-Ismail [7]
use dynamic programming techniques to show that there are
times when it is optimal to make significant losses in order
to learn the valuation distribution more quickly. In digital
goods auctions the seller does not make a loss, but may lose
out on potentially higher revenue instead.

Given the exploration-exploitation dilemma inherent in
the problem, it is natural that many of the algorithms an-
alyzed for posted price selling with unknown demand have
been based on the multi-armed bandit literature. Several of
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these schemes have been shown to possess good properties
in terms of asymptotic regret for the seller’s revenue maxi-
mization problem in the unlimited supply setting. Blum et
al [3] discuss the application of Auer et al ’s [2] EXP3 al-
gorithm for the adversarial multi-armed bandit problem to
posted price mechanisms, showing a worst-case adversarial
bound. Kleinberg and Leighton [15] derive regret bounds
for Auer et al ’s [1] UCB1 bandit algorithm for i.i.d. settings
in the posted price context. UCB1 is intended to minimize
regret even in finite-horizon contexts, so we would expect it
to perform relatively well. However, these algorithms rarely
perform very well in terms of utility received in even simu-
lated posted price auction settings – for example, in Conitzer
and Garera’s comparison of EXP3 with gradient ascent and
Bayesian methods [6], or even in different applications, as
found by Vermorel and Mohri on an artificially generated
dataset and a networking dataset [20]. Conitzer and Gar-
era’s Bayesian methods are a relevant comparison to the
algorithms we develop here, but they make a “correct prior”
assumption, mostly focusing on learning when the model is
known but the parameters unknown (for example, when the
valuation distribution is uniform or exponential with known
probabilities and a set of possible parameters with finite sup-
port for each type of distribution).

Contributions.
In this paper, we study the problem of revenue maximiza-

tion in posted-price auctions of digital goods from the per-
spective of reinforcement learning and maximizing flow util-
ity, rather than trying to achieve asymptotic regret bounds.
We evaluate algorithms on simulated buying populations,
with valuations distributed uniformly, exponentially, and
log-normally. We find that regret-minimization algorithms
from the multi-armed bandit literature are slow to learn in
practice, and hence impractical, even for simple distribu-
tions of valuations in the buying population. We propose
two alternatives: (1) a scheme based on Gittins indices that
starts with different priors on the arms based on the knowl-
edge that purchases at higher prices are less likely, and (2) a
new reinforcement learning algorithm for the problem, called
LLVD, that is based on a plausible linearity assumption on
the structure of the demand curve. LLVD maintains a Beta
distribution as the seller’s belief state, updating it using a
moment-matching approximation. LLVD is (approximately)
optimal when the linearity assumption holds, and empiri-
cally performs well for several families of valuation distribu-
tions that violate the linearity assumption.

2. THE POSTED PRICE MODEL
We start by introducing the model and assumptions that

we will use. Buyers arrive in a stream, each with an i.i.d.
valuation v of the good from an unknown underlying distri-
bution fV . fV can have support on [0,∞), At each instant
in time, the seller quotes a price qt ∈ [0, ∞), a potential
buyer arrives with vt ∼ fV , and chooses to buy if vt ≥ qt and
not to buy otherwise. The seller has access to the history of
her own pricing decisions, as well as the purchase decisions
made by each arriving buyer. Her goal is to sequentially set
qt so as to maximize (discounted) expected total long-term
revenue (we assume an infinite horizon model).

2.1 Learning the Demand Curve
For any given distribution of buyer valuations fV , under

the assumption that buyer valuations are I.I.D. draws from
fV at each point in time, there is a single optimal price qOPT

that maximizes the seller’s expected revenue. When fV is
unknown, there are several different possible design goals.
In this work we seek to design an algorithm that maximizes
flow utility, rather than an algorithm with the explicit goal
of asymptotically correct or regret-bounded learning. There-
fore, we focus on a dynamic programming approach that
maximizes flow utility under a probabilistic model. This is
a problem that falls within the domain of dynamic program-
ming, reinforcement learning, and optimal experimentation,
because the seller’s actions, corresponding to posted prices,
have both a profit role (exploitation) and an informational
role (exploration; conveying information about the true de-
mand curve). The first problem with designing such a model
is that the seller’s state space is itself a probability distribu-
tion over possible probability distributions (of valuations),
so without restricting the space of possibilities it is difficult
to get any traction. It is useful to consider a simple example.

“Linear” Demand.
Assume that buyer valuations are distributed uniformly

on [0, B]. The probability of an arriving buyer choosing to
buy at price q, P (q) is (B− q)/B, or 1− γq where γ = 1/B.
This entails a linear form for the probability of a sale at price
q, so we refer to this (loosely) as the case of linear demand.

Now consider a particularly simple example. Suppose the
seller knows with certainty that the demand function is ei-
ther F , corresponding to γ1, or G, corresponding to γ2. Let
α denote the probability the seller associates with demand
function F . Then the state space is entirely parameter-
ized by α. The expected discounted revenue is given by
π(αt) =

∑∞
k=t δ

k−t(αkqkPF (qk) + (1− αk)qkPG(qk)).
A revenue maximizing policy is a mapping from α to q

that maximizes π. The states α = 0 and α = 1 have
no uncertainty associated with them, and the problem re-
duces to a simple maximization. When α = 1, we maximize

maxq
∑∞
k=0 δ

k(qPF (q)) = maxq
qPF (q)
(1−δ) .

For this example we assume q ∈ [0, 1]. So if the optimal
q is theoretically greater than 1, the item is priced at 1.
The function itself is increasing up to a maximum at q =
1/2γ1, so the maximum within our domain q ∈ [0, 1] is at
q = min(1/2γ1, 1) if α = 1. Similarly if α = 0, then the
optimal price is q = min(1/2γ2, 1).

For general α, the seller sets a price q (since we are dis-
cussing optimal actions in a situation that is not explicitly
time dependent, we suppress any dependence on t) Depend-
ing on the action of an arriving buyer, the seller updates α.

If the buyer buys, then α
′

= αPF (q)
αPF (q)+(1−α)PG(q)

. For our

particular model, α
′

= α−γ1αq
1+((γ2−γ1)α−γ2)q

. If the buyer does

not buy, the state update is α
′′

= α(1−PF (q))
α(1−PF (q))+(1−α)(1−PG(q))

.

Again, for our particular model, α
′′

= γ1α
(γ1−γ2)α+γ2

. This

latter equation is of particular interest, since there is, sur-
prisingly, no dependence on q.

The relevant probabilities of buying and not buying, given
a (state, action) pair consisting of α and q are given by
Pr(Buy|α, q) = αPF (q)+(1−α)PG(q), and Pr(¬Buy|α, q) =
α(1− PF (q)) + (1− α)(1− PG(q)).
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Figure 1: The value function for γ1 = 0.25, γ2 = 0.9
and discount factors δ = 0.2 and δ = 0.95. Note how
the value function for high δ is almost linear.

Now we can write down the Bellman equation:

V (α) = αqPF (q) + (1− α)qPG(q) + δV ′ (1)

where V ′ = Pr(Buy|α, q)V (α
′
) + Pr(¬Buy|α, q)V (α

′′
).

We now know the dynamics of the system. We can solve
by discretizing α (we know α ∈ [0, 1]) and using value iter-
ation for any particular values of γ1 and γ2. Figure 1 shows
the value function for two different values of δ.

Computing the value function in this case leads to an in-
teresting observation. When δ is high, the value function is
almost linear in α. We can approximate the value function
by V = bα + c to get an analytical approximate solution.
Substituting in Equation 1 and finding b and c by equating

coefficients, we find V = Zq2+q
1−δ where Z = (γ2 − γ1)α− γ2.

This equation implies that the optimal choice for q is the
same as the myopically optimal choice! The linearity of the
value function and the approximate optimality of a myopic
strategy arise in part because, regardless of the strategy for
setting q, good information is received by whether or not a
buyer buys, allowing us to distinguish the populations, and
α converges to either 0 or 1 quickly. This is partly a function
of the fact that only one of the two possible future states α′

and α′′ depends in any way on q. In fact, the myopic ap-
proximation continues to be an excellent approximation to
the optimal strategy even for lower values of δ, because at
lower values immediate revenue dominates future revenue in
the value function anyhow.

More General Settings.
The example discussed above is analytically tractable be-

cause of the restriction to two possible distributions, reduc-
ing our state space to a single continuous variable. This
restriction is too onerous for any realistic application. The
simplest way to remove this restriction without sending trac-
tability overboard is to consider the whole space of linear
demand functions with γ ∈ [0, 1] (the restriction to γ ≤ 1 is
not restrictive, because the effect could be achieved through
rescaling of the valuations). We approach this problem by
maintaining a probability distribution over γ.

3. ALGORITHMS
Here we describe the three algorithms we compare for this

problem: (1) our new parametric algorithm, LLVD; (2) a
Gittins-index based strategy with appropriately chosen pri-
ors; (3) UCB, a regret-minimizing algorithm from the multi-
armed bandit literature.

3.1 The LLVD Algorithm
Our main assumption is that it is reasonable to model

the probability of an arriving buyer choosing to go through
with a purchase at quoted price q as a linear function of q,
Pr(Buy|q) = 1 − γq. This gives rise to our learning algo-
rithm, which we call “Linear Learning of Valuation Distri-
butions” (LLVD).

Under the linearity assumption we want to maximize to-
tal expected (discounted) revenue. The seller’s state space
is now the space of distributions over γ. In order to make
this a tractable state space to work with, we enforce that
the seller always represents her beliefs as a Beta distribu-
tion (γ ∈ [0, 1]). The state space can then be parametrized
by the two parameters of the Beta distribution. We need
to derive the state space transition model and the reward
model in order to solve for the seller’s optimal policy. In
the following, f(γ;α, β) represents the density function for
the Beta distribution. F (γ;α, β) represents the c.d.f for the
Beta distribution, and Fk(γ) represents F (γ;α+ k, β).

Transition Model.
An arriving buyer is quoted a price q and decides whether

or not to buy at that price. She will buy if her valuation is
less than equal to the price quoted. The seller updates her
own distribution over γ based on whether or not the arriving
buyer bought the good. Consider the Bayesian updates in
two cases:
1. Buyer does not buy:

f(γ|¬Buy) =
f(γ;α, β)(γq)∫ 1/q

0
f(γ;α, β)(γq)dγ

=
γα(1− γ)β−1∫ 1/q

0
γα(1− γ)β−1dγ

=
f(γ;α+ 1, β)

F (1/q, α, β)
=
f(γ;α+ 1, β)

F0(1/q)

For q < 1, the normalizing constant is 1 and the true
posterior is Beta. When q > 1 the posterior need not be
Beta, so we compute the Beta distribution that matches the
first and second moment of the true posterior. This yields
a pair of simultaneous equations for αt+1 and βt+1 (in the
equations below Fk represents Fk(1/qt)):

αt+1

αt+1 + βt+1
=
qtE(γ2)F2 + E(γ)(1− F1)

(qtE(γ)F1 + 1− F0)

αt+1(αt+1 + 1)

(αt+1 + βt+1)(αt+1 + βt+1 + 1)
=
qtE(γ3)F3 + E(γ2)(1− F2)

(qtE(γ)F1 + 1− F0)

2. Buyer buys:

f(γ|Buy) =
f(γ;α, β)(1− γq)∫ 1/q

0
f(γ;α, β)(1− γq)dγ

=
f(γ;α, β)(1− γq)

(F (1/q, α, β)− qE(γ)F (1/q, α+ 1, β))

=
f(γ;α, β)(1− γq)

(F0(1/q)− qE(γ)F1(1/q))
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Again, we approximate the true posterior with a Beta dis-
tribution by matching the first and second moments.

αt+1

αt+1 + βt+1
=

E(γ)F1 − qtF2E(γ2)

F0 − qtE(γ)F1

αt+1(αt+1 + 1)

(αt+1 + βt+1)(αt+1 + βt+1 + 1)
=

E(γ2)F2 − qtE(γ3)F3

F0 − qtE(γ)F1

Let M and S represent first and second order moments
respectively. Solving these equations yields update rules

αt+1 = MS−M2

M2−S and βt+1 =
(1−M)αt+1

M
.

Reward Model.
Let π denote the discounted long-term revenue and δ the

discount factor. Let P (q) = Pr(Buy|q). Then π = q0P (q0)+∑∞
t=1 qtP (qt). The first term, π0 = q0P (q0) is the expected

reward at this particular instant, from the next action. We
can compute the expected value of this term:

P (q) =

∫ 1/q

0

(1− γq)f(γ;α, β)dγ

= F (1/q;α, β)− qE(γ)F (1/q;α+ 1, β)

= F (1/q;α, β)− qµF (1/q, α+ 1, β) (2)

where µ = α/(α+ β).

π0 = q0(F (1/q0;α, β)− q0E(γ)F (1/q0;α+ 1, β))

= q0(F (1/q0;α, β)− q0µF (1/q0, α+ 1, β)) (3)

The Bellman Equation.
In a risk-neutral framework, we can similarly take expec-

tations over γ and derive the appropriate Bellman equation:
V (αt, βt) = maxq qP (q) + δV ′, where

V ′ = P (q)V (αt+1, βt+1|Buy)+(1−P (q))V (αt+1, βt+1|¬Buy)

Obviously, if γ were known to the seller, the optimal action
would be the optimal myopic action, and it would yield a
discounted expected revenue of:

π = max
q

(q(1− γq) +

∞∑
t=1

δtq(1− γq))

= max
q

q(1− γq)
1− δ = max

q

q(1− γq)
1− δ (4)

This equation is maximized at q = 1
2γ

, in our environment,

yielding V = 1
4γ(1−δ) .

Solving for the optimal policy.
Various issues arise in trying to solve such a system. A

value-iteration type method would rely on a reasonable func-
tional approximation of the value function in order to con-
verge to a correct estimate. We use a different approach by
first restricting the problem to a space where table-based
value iteration can be applied, and then extrapolating to
the complete space. We start by restricting to values of q
between 0 and 1.

The q < 1 case: Equation 2 reduces to P (q) = (1− µq),
therefore Equation 3 reduces to π0 = q0(1 − µq0) because
F (1/q) = 1 for the Beta distribution as q < 1. Equation 4 is
maximized at q = min(1, 1

2µ
), in our environment, yielding

V = min( 1
4µ(1−δ) ,

1−µ
1−δ ). Since the transition model is known
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Figure 2: Comparison of the regression line with
data from the value iteration table for different val-
ues of α + β. Note the very tight match in the do-
main where the optimal q would be expected to be
less than 1. The regression function allows LLVD to
generalize this to the entire space (notice the differ-
ence between the line and the data points for lower
values of µ, which correspond to higher optimal val-
ues of q).

(the fact that the true posterior is Beta when the buyer
buys for q < 1 is helpful in efficient implementation), all
that remains in order to discretize and apply value iteration
is to specify some boundary conditions on the model. The
boundary conditions correspond to having a high degree of
certainty about the value of γ. We assume that when the
variance of the Beta distribution becomes less than 0.001,
γ can be assumed to be known to the seller, and it is then
equal to µ. In order for this technique to be consistent, we
need to show that once the variance is sufficiently low, it will
not be the case that it again starts increasing. We can show
that in expectation the variance decreases in every iteration
for q < 1; the proof is omitted due to space considerations.

This yields the final algorithm: we use value iteration to
solve for the value function on a grid for α, β ∈ [0.1, 200], but
we pre-fill all spaces where α, β are such that the variance
of the distribution is less than 0.001. Figure 3 (V1) shows
the value function for δ = 0.95, as a function of α and β.

Extending to q > 1: We expect the value function
computed using table-based value iteration to closely ap-
proximate the universally“correct”one for regions where the
optimal value of q is less than 1. Therefore, we fit a regres-
sion line using values from the value function matrix where
µ > 0.6 (implying that the optimal q is probably lower than
0.85). Empirically, we find that the value function is close
to linear in 1

µ
and 1

α+β
(see Figure 2). So we approximate

the value function for the whole space as

V (α, β) = a1
α+ β

α
+ a2

1

α+ β
(5)

Figure 3 shows that this is a good approximation over the
entire space. Now, at any time T = t, with the belief state
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V1: Table-based value function V2: Value function using regression V3: Value function extrapolated using regression

Figure 3: V1 is the value function computed using table-based value iteration with q < 1 (the maximum value
of V is 20). V2 is the value function computed using regression (see Equation 5), showing the similarity to
V1 where the value function is less than 20 (the flat maroon region shows where V ≥ 20, where the value
functions would be expected to differ, and q > 1). V3 shows some more of the structure of the value function
computed using regression (Equation 5) in the region where it attains values between 20 and 30.

(α, β) we can find the q which maximizes the given equation.

π = max
qt

V (α, β) + δ(Pr(Buy|qt)V (α′, β′|Buy)

+ (1− Pr(Buy|qt))V (α′′, β′′|¬Buy))

Here α′, β′, α′′ and β′′ are functions of qt,α and β, price
offered at time T=t. These values can be calculated as dis-
cussed above by comparing the first two moments.

Implementation notes: In our experiments, we com-
pute the value function using δ = 0.95. The best fit re-
gression line is obtained for a1 = 4.99 and a2 = 1.5147; for
convenience we use a1 = 5 and a2 = 1.5. The LLVD based
seller then learns online, constantly updating her belief on
γ (starting from α = β = 1), and choosing the price that
maximizes the value function at any instant.

3.2 Bandit Schemes
Multi-armed bandit algorithms are often applied to Dy-

namic pricing [16]. The different pricing options are the
arms of the bandit and the goal is to find the arm that max-
imizes infinite horizon discounted reward. The downside of
such approaches is that one needs to have fixed arms, and
there is no “information sharing” between arms. How to dis-
cretize the space into arms is an interesting problem. For the
purposes of this paper, we discretize the space from [0.5 2q∗]
in 20 steps, where q∗ is the (analytically computed) optimal
price for the specific valuation distribution. While reason-
able for evaluation, there may be situations where the need
to find a reasonable interval is a downside for bandit-based
methods. We discuss two algorithms.

A Gittins Index Scheme With Smart Priors.
Gittins and Jones introduced dynamic allocation indices

as the Bayes optimal solution to the exploration-exploitation
dilemma in the standard multi-armed bandit context [10, 8,
9]. In the context of “yes/no” rewards, a particularly useful,
computable scheme is to maintain a Beta prior on each arm.
This takes advantage of the conjugate nature of the Beta dis-
tribution for Bernoulli observations. The distribution β(a, b)
is updated to β(a+ 1, b) upon success and β(a, b+ 1) upon
failure. For every pair (a, b) we can calculate the Gittins in-
dex G(a, b). For simplicity we assume that when a+b ≥ 500,
the mean a

a+b
represents the correct probability of success

for that arm. We choose the arm to play next by multiplying

Parameters: Price Q ∈ [0.5, 2q∗]K , Matrix G of Gittins
Indices.
Initialization: n = 0 (# buyers so far) , Divide Q in 4
regions in increasing order of magnitude. Initialize state S
for each of the K arms according to the region they lie in:
from lower to higher: (4,1),(3,2),(2,3),(1,4)

For each k in Buyers do:

1. Price the item at Qj which maximizes Qj .G[Sj ]. De-
note the chosen price by Qj∗.

2. If the buyer buys, set Sj(a) = Sj(a) + 1 else set
Sj(b) = Sj(b) + 1

Table 1: A Gittins-Index Based Algorithm. The K
parameter governs the discretization of the space
(we use K = 20).

the Gittins index for each arm with its payoff if the arm is
successful, Si = qiG(ai, bi) and choosing the arm with high-
est Si. This is equivalent to maintaining Gittins indices on
arms with two payoffs, 0 and qi [16].

The standard approach of initializing all the arms with the
same prior is inappropriate in this case, because we know
that the probability of a buyer buying at a higher price is
lower. Thus we arrange the arms in increasing order of their
weights and divide them in 4 region. We initialize arms
in the region with lowest weight with a Beta (4, 1) prior,
the next lowest with a Beta (3, 2) prior, next with (2, 3)
and the remaining with (1, 4). As expected, this weighting
of the priors significantly outperforms uniform priors on all
the arms. Table 1 shows the final algorithm in detail.

UCB1.
Much work on digital goods auctions has focused on al-

gorithms with good regret bounds. Two of these that are
based on algorithms for multi-armed bandit problems have
gained particular attention, namely the EXP3 algorithm [2,
3] and the UCB1 algorithm [1, 15]. Kleinberg discusses a
“continuum armed” bandit algorithm called CAB1, which is
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Parameters: Price Q ∈ [0.5, 2q∗]K , Number of buyers:
nob.
Initialization: n = 0 (# buyers so far)

For each k in first K buyers do:

1. Price the item at Qk

2. nk = 1;n = n+ 1

3. If the buyer buys then xk = Qk else xk = 0

For the remaining buyers at each time instant t do:

1. Price the item at Qj which maximizes
xj

nj
+

√
2 lnn
nj

.

Denote the chosen price by Qj∗.

2. nj∗ = nj∗ + 1;n = n+ 1

3. If the buyer buys, set xj∗ = xj∗ + Qj∗ and update
total profit

Table 2: Algorithm UCB1, adapted to our setting.
The K parameter governs the discretization of the
space (we use K = 20).

a wrapper around algorithms like UCB1 or EXP3 for con-
tinuous spaces [14]. We perform extensive empirical tests
on all these algorithms, adapted to our setting. UCB1 and
EXP3 discretize the action space and treat each possible
price as a unique possible action (or “arm” in bandit lan-
guage). The EXP3 and UCB1 algorithms are specifically
designed for adversarial and I.I.D scenarios respectively. As
expected, we find that EXP3 is outperformed (or equaled
in performance) by UCB1 in all our I.I.D. scenarios, so we
do not report results from EXP3. While one would expect
CAB1 to perform well, since it is designed for continuous
action spaces, it is geared more towards producing useful
regret bounds, and does not take advantage of the struc-
ture of the search space, instead using doubling processes to
efficiently scan a potentially large continuum. It is outper-
formed by UCB1. The specific form of the UCB1 algorithm
we use is shown in Table 2.

4. EXPERIMENTAL RESULTS
We consider various different distributions that generate

demand. We restrict ourselves to I.I.D. assumptions rather
than considering adversarial scenarios.

Choice of distributions.
We consider three sets of valuation distributions that gen-

erate a wide range of optimal prices:

1. Uniform on [0, B] where B is 4, 2.5, 1.5.

2. Exponential with rate (λ) parameters 1.75, 0.8, 0.5.

3. Log-normal with location (µ) and scale (σ) parameters
(1, 1), (1, 0.75) and (1, 0.5).

Analysis of Results.
Each simulation consists of a stream of n buyers, arriving

one after the other, each buyer has a valuation v that is
sampled at random from the valuation distribution. The
seller chooses a price q to offer, and if v ≥ q the buyer
goes through with the purchase, otherwise she turns down
the offer. In Figure 4 we report results averaged over 1000
simulations of the process, each consisting of 500 time steps.

In addition to comparing the algorithms, in cases where
the linearity assumption of LLVD is violated (exponential
and log-normal valuation distributions), we are interested in
quantifying how much of the regret of the algorithm can be
attributed to the linearity assumption itself, and how much
may be due to not learning the best possible linear func-
tion. In order to study this, we also report the analytical
profit that would be achieved by using the linear function
of the form 1− γq to model the probability of buying, when
γ is chosen so that the functional distance between the uni-
form distribution on [0, 1/γ] and the true target valuation
distribution is minimized. We evaluate functional distance
between the two distributions as the sum of squared differ-
ence between their c.d.f (square of L2-Norm of the difference
of the c.d.f). Let F (x) and G(x) be the two distributions

fd = L2-Norm =

√∫ ∞
0

(F (x)−G(x))2 dx

In our case where F (x) is the uniform distribution in the
interval [0, B] where B = 1/γ.

D = fd
2 =

∫ B

0

(F (x)−G(x))2 dx+

∫ ∞
B

G2(x) dx

Further details are in Appendix A.
Uniform valuation distributions (linear demand) As
expected, LLVD always learns the correct distribution rapidly
in these cases, significantly outperforming UCB1 and the
Gittins-index based scheme.
Exponential valuation distributions In this case,
Pr(Buyer Buys|q) = e−λq, where λ is the rate parameter.
LLVD performs either better than or as well as the Gittins-
index based scheme in these cases, and significantly outper-
forms UCB1.
Log-normal valuation distributions For the log-normal,
Pr(Buyer Buys|q) = 1−φ( ln q−µ

σ
), where µ and σ are the lo-

cation and scale parameters for the log-normal distribution.
While LLVD dominates UCB1, the Gittins-index based sch-
eme is competitive, sometimes performing better and some-
times worse. LLVD may have trouble with these cases be-
cause the log-normal distribution is harder to approximate
with a linear function, or because the learning process is
thrown off. In some cases LLVD even outperforms the“best”
linear function (indicating that the fit over the entire dis-
tribution is not necessarily the best measure when profit-
seeking behavior is determined by only a portion of the dis-
tribution), providing evidence for the latter explanation.

A note about long-term learning.
It is worth noting that in the long-term, when the LLVD

algorithm converges to a suboptimal price, it remains sub-
optimal, whereas bandit-based algorithms keep learning and
slowly improving their performance over time. In some cases
(like exponential distributions with λ = 0.5, 0.8) where LLVD
and the Gittins index scheme perform similarly, the perfor-
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Figure 4: Main experimental results: Each graph shows the time-averaged profit received at any time,
averaged over 1000 simulations and the 95% confidence interval. The top row shows uniform valuation
distributions, corresponding to the model LLVD is based on. The second row shows exponential valuation
distributions, and the bottom row log-normal ones. All values are represented as fraction of optimal profit.

mance of the Gittins index scheme continues to improve over
time, eventually exceeding that of LLVD. Our primary in-
terest is in maximizing revenue in the initial stages, because
we assume that over time the distribution can be learned
anyhow, perhaps in an “off-policy” manner.

5. DISCUSSION
As dynamic pricing becomes a reality with intelligent age-

nts making rapid pricing decisions on the Internet, the field
of algorithmic pricing has developed rapidly. While there
has been continuing work on revenue management and in-
ventory issues in operations research, the study of posted
price mechanisms for digital goods auctions has mostly been
confined to theoretical computer science, inspired by devel-
opments from computational learning theory. As a result,
the focus has mostly been on deriving regret bounds rather
than developing and analyzing algorithms that could prove

useful in practice. In the spirit of Vermorel and Mohri’s
empirical analysis of algorithms for bandit problems [20],
we believe that it is important to test algorithms in simu-
lation, and ideally in real-world environments, or at least
using real-world data. This paper starts exploring this path
with simulation experiments.

We find that the UCB1 algorithm, which has some desir-
able theoretical properties for posted price auctions with un-
limited supply, can be slow to learn in simple simulated en-
vironments; further, choosing the right number of arms can
have a significant effect on performance (we experimented
with several different numbers of arms to come up with a
good number, reported in this paper). Theoretical exten-
sions to spaces with a continuum of actions, like CAB1, fare
no better. However, there are two promising directions: (1)
an algorithm based on making a linearity assumption about
the demand curve performs well, even when the true model
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is not linear. Additionally, our experimental results and the-
oretical analysis of the linearity assumption indicate that it
may be a very useful approximation, far beyond just for
truly linear models. (2) Using simple but appropriate priors
in a Gittins-index based scheme also shows promise. There
is still scope to further improve performance by enabling
better information sharing between arms. One possibility
is to apply knowledge gradient techniques [18, 17] to the
pricing problem, but current state-of-the-art KG techniques
also do not account for correlation between arms. Exist-
ing extensions typically consider multivariate normal priors,
though, which are not appropriate for monotonic functions
like demand. This is a fruitful area for future work.
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APPENDIX
A. FUNCTIONAL DISTANCE

Let F (x) = x
B

represent the c.d.f of Uniform distribution
over the interval [0 B] and G(x) be the c.d.f be the actual
valuation distribution. L2-Norm for the difference between
the two distributions is given by:

fd =

√∫ ∞
0

(F (x)−G(x))2 dx

For convenience we consider D = fd
2, written as

D = fd
2 =

∫ ∞
0

((1−G(x))− (1− F (x)))2 dx

Let F1(x) = 1− F (x) and G1(x) = 1−G(x). Then

D =

∫ B

0

F 2
1 (x) dx− 2

∫ B

0

G1(x)F1(x) dx+

∫ ∞
0

G2
1(x) dx

=
B

3
− 2

∫ B

0

G1(x)F1(x) dx+

∫ ∞
0

G2
1(x) dx

differentiating w.r.t B and setting to 0 to calculate minima,
we find

1

3
− 2

∫ B

0

qG1(x)

B2
dx = 0

This equation can easily be solved numerically for G(x) ex-
ponential and lognormal respectively, and it can be verified

that d2D
dB2 > 0 for minima.
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ABSTRACT
In their groundbreaking paper, Bartholdi, Tovey and Trick [1] ar-
gued that many well-known voting rules, such as Plurality, Borda,
Copeland and Maximin are easy to manipulate. An important as-
sumption made in that paper is that the manipulator’s goal is to
ensure that his preferred candidate is among the candidates with
the maximum score, or, equivalently, that ties are broken in favor
of the manipulator’s preferred candidate. In this paper, we exam-
ine the role of this assumption in the easiness results of [1]. We
observe that the algorithm presented in [1] extends to all rules that
break ties according to a fixed ordering over the candidates. We
then show that all scoring rules are easy to manipulate if the win-
ner is selected from all tied candidates uniformly at random. This
result extends to Maximin under an additional assumption on the
manipulator’s utility function that is inspired by the original model
of [1]. In contrast, we show that manipulation becomes hard when
arbitrary polynomial-time tie-breaking rules are allowed, both for
the rules considered in [1], and for a large class of scoring rules.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
voting, manipulation, tie-breaking rules, complexity

1. INTRODUCTION
Computational social choice is an actively growing subarea of

multiagent systems that provides theoretical foundations for pref-
erence aggregation and collective decision-making in multiagent
domains. One of the most influential early contributions to this
area is the paper by Bartholdi, Tovey, and Trick entitled “The com-
putational difficulty of manipulating an election” [1]. In this paper,
the authors suggested that computational complexity can serve as
a barrier to dishonest behavior by the voters, and proposed clas-
sifying voting rules according to how difficult it is to manipulate
Cite as: Ties Matter: Complexity of Voting Manipulation Revisited,
S. Obraztsova, E. Elkind, N. Hazon, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
71-78.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

them. In particular, they argued that such well-known voting rules
as Plurality, Borda, Copeland and Maximin are easy to manipulate,
yet a variant of the Copeland rule known as second-order Copeland
is computationally resistant to manipulation. In a subsequent pa-
per, Bartholdi and Orlin [2] showed that another well-known voting
rule, namely, STV, is NP-hard to manipulate as well.

Since then, the computational complexity of manipulation under
various voting rules, either by a single voter or by a coalition of
voters, received considerable attention in the literature, both from
the theoretical and from the experimental perspective (see, in par-
ticular, [20, 19] and the recent survey [9] for the former, and [17, 5]
for the latter). While it has been argued that worst-case complex-
ity does not provide adequate protection against malicious behavior
(see, e.g. [15, 18, 10, 13]), determining whether a given voting rule
is NP-hard to manipulate is still a natural first step in evaluating its
resistance to manipulation in realistic scenarios.

An important property of the voting rules discussed in [1] is that
they may produce multiple winners, i.e., they are, in fact, voting
correspondences (see Section 2 for the formal definitions). It is
not immediately clear what it means for manipulation to be suc-
cessful in such a case. Bartholdi, Tovey and Trick take a rather
liberal approach in their paper: they define a manipulation to be
successful if, as a result, the manipulator’s preferred candidate is
one of the election winners. This approach is equivalent to assum-
ing that ties are broken in favor of the manipulator. Now, a careful
examination of the algorithm in [1] shows that it works as long as
ties are broken either adversarially to the manipulator or accord-
ing to an arbitrary fixed lexicographic order over the candidates.
However, in real-life settings, when an election ends in a tie, it
is not uncommon to choose the winner using a tie-breaking rule
that is non-lexicographic in nature. Indeed, perhaps the most com-
mon approach is to toss a coin, i.e., select the winner uniformly at
random among all tied alternatives. A more sophisticated exam-
ple is provided by the second-order Copeland rule studied in [1],
which is effectively the Copeland rule combined with a rather in-
volved tie-breaking method. Despite its apparent complexity, the
second-order Copeland is the voting rule of choice for several or-
ganizations [1]. Thus, it is natural to ask under what conditions on
the tie-breaking rule the voting correspondences considered in [1]
remain easy to manipulate.

In this paper, we make two contributions towards answering this
question. We first consider the randomized tie-breaking rule, which
chooses the winner uniformly at random among all tied candidates.
Now, to formalize the notion of a successful manipulation under
this rule, we need additional information about the manipulator’s
preferences: knowing the manipulator’s preference order is insuffi-
cient for determining whether he prefers a tie between his top can-
didate and his least favorite candidate to his second choice becom-
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ing the unique winner. Thus, following [6], we endow the manip-
ulator with utilities for all candidates, and seek a manipulation that
maximizes his expected utility, where the expectation is taken over
the random bits used to select the winner. We demonstrate that for
all scoring rules such a manipulation can be found in polynomial
time. This is also true for Maximin as long as the manipulator’s
utility function has a special form that is inspired by the notion of
manipulation employed in [1]: namely, the manipulator values one
of the candidates at 1 and the rest of the candidates at 0.

Given these easiness results, it is natural to ask whether all (ef-
ficiently computable) tie-breaking rules produce easily manipula-
ble rules when combined with the voting correspondences consid-
ered in [1]. Now, paper [1] shows that for Copeland this is not the
case, by proving that the second-order Copeland rule is hard to ma-
nipulate. However, prior to our work, no such result was known
for other rules considered in [1]. Our second contribution is in
demonstrating that Maximin and Borda, as well as many families
of scoring rules, become hard to manipulate if we allow arbitrary
polynomial-time tie-breaking rules. This holds even if we require
that the tie-breaking rule only depends on the set of the tied al-
ternatives, rather than the voters’ preferences over them; we will
refer to such tie-breaking rules as simple. Our proof also works
for Copeland, thus strengthening the hardness result of [1] to sim-
ple tie-breaking rules. One can view these results as a continua-
tion of the line of work suggested in [3, 7], namely, identifying
minor tweaks to voting rules that make them hard to manipulate.
Indeed, here we propose to “tweak” a voting rule by combining it
with an appropriate tie-breaking rule; arguably, such a tweak af-
fects the original rule less than the modifications proposed in [3]
and [7] (i.e., combining a voting rule with a preround or taking a
“hybrid” of the rule with itself or another rule). We remark, how-
ever, that our hardness result is not universal: Plurality and other
scoring rules that correspond to scoring vectors with a bounded
number of non-zero coordinates are easy to manipulate under any
polynomial-time simple tie-breaking rule, However, if non-simple
tie-breaking rules are allowed, Plurality can be shown to be hard to
manipulate as well.

The rest of the paper is organized as follows. We cover the pre-
liminaries and introduce the necessary notation in Section 2. Sec-
tion 3 discusses the algorithm and the formal model of [1]. We
describe the algorithms for scoring rules and Maximin under ran-
domized tie-breaking in Section 4, and prove our hardness results
in Section 5. Section 6 concludes.

2. PRELIMINARIES
An election is specified by a set of candidatesC, |C| = m, and a

set of voters V = {v1, . . . , vn}, where each voter vi is associated
with a linear order Ri over the candidates in C; this order is called
vi’s preference order. We denote the space of all linear orderings
over C by L(C). For readability, we will sometimes denote Ri by
�i. When a �i b for some a, b ∈ C, we say that voter vi prefers
a to b. The vector R = (R1, . . . , Rn), where each Ri is a linear
order over C, is called a preference profile. A voting rule F is a
mapping that, given a preference profile R over C outputs a candi-
date c ∈ C; we write c = F(R). Many classic voting rules, such
as the ones defined below, are, in fact, voting correspondences, i.e.,
they map a preference profile R to a non-empty subset S of C.
Voting correspondences can be transformed into voting rules using
tie-breaking rules. A tie-breaking rule for an election (C, V ) is a
mapping T = T (R, S) that for any S ⊆ C, S 6= ∅, outputs a can-
didate c ∈ S. A tie-breaking rule T is called simple if it does not
depend on R, i.e., the value of T (R, S) is uniquely determined by
S. Such rules have the attractive property that if a manipulator can-

not change the set of tied candidates, he cannot affect the outcome
of the election. Further, we say that T is lexicographic with respect
to a preference ordering � over C if for any preference profile R
over C and any S ⊆ C it selects the most preferred candidate from
S with respect to �, i.e., we have T (S) = c if and only if c � a
for all a ∈ S \ {c}.

A composition of a voting correspondence F and a tie-breaking
rule T is a voting rule T ◦ F that, given a preference profile R
over C, outputs T (R,F(R)). Clearly, T ◦ F is a voting rule and
T ◦ F(R) ∈ F(R).

We will now describe the voting rules (correspondences) consid-
ered in this paper. All these rules assign scores to candidates; the
winners are the candidates with the highest scores.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm with α1 ≥
· · · ≥ αm defines a scoring rule Fα. Under this rule, each voter
grants αi points to the candidate it ranks in the i-th position; the
score of a candidate is the sum of the scores it receives from all
voters. The vector α is called a scoring vector. A scoring rule is
said to be faithful if α1 > · · · > αm. We are interested in scoring
rules that are succinctly representable; therefore, throughout this
paper we assume that the coordinates of α are nonnegative inte-
gers given in binary. We remark that scoring rules are defined for a
fixed number of candidates. Therefore, we will often consider fam-
ilies of scoring rules, i.e., collections of the form (αm)∞m=1, where
αm = (αm

1 , . . . , α
m
m). We require such families to be polynomial-

time computable, i.e., we only consider families of voting rules
(αm)∞m=1 for which there exists a polynomial-time algorithm that
given an m ∈ N outputs αm

1 , . . . , α
m
m. Two well-known exam-

ples of polynomial-time computable families of scoring rules are
Borda, given by αm = (m − 1, . . . , 1, 0), and k-approval, given
by αm

i = 1 if i ≤ k, αm
i = 0 if i > k. 1-approval is also known

as Plurality.
Copeland We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly half
of the voters prefer a to b, then a is said to tie his pairwise election
against b. Given a rational value α ∈ [0, 1], under the Copelandα

rule each candidate gets 1 point for each pairwise election he wins
and α points for each pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is equal to
the number of votes he gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.

Given a preference profile R over a set of candidates C, for
any preference order L over C we denote by (R−i, L) the pref-
erence profile obtained from R by replacing Ri with L. We say
that a voter vi can successfully manipulate an election (C, V ) with
a preference profile (R1, . . . , Rn) with respect to a voting rule F
if F(R−i, L) �i F(R). We will now define the computational
problem that corresponds to this notion.

An instance of the F -MANIPULATION problem is given by a set
of candidates C, a set of voters V , a preference profile R, and the
manipulating voter vi. It is a “yes”-instance if there exists a vote L
such that F(R−i, L) �i F(R) and a “no”-instance otherwise.

3. THE MODEL AND THE ALGORITHM
OF BARTHOLDI, TOVEY AND TRICK

Before we describe the algorithm presented in [1], we remark
that the definition of successful manipulation given in [1] differs
from our definition of F -MANIPULATION (which is modeled after
the standard social choice definition, see, e.g. [12, 16]), even if we
assume that F is a voting rule rather than a voting correspondence.
Specifically, in [1] it is assumed that the manipulator has a pre-
ferred candidate p, and his goal is to make p elected; we will refer
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to this problem asF -MANIPULATION(p). However, a polynomial-
time algorithm for F -MANIPULATION(p) can be converted into a
polynomial-time algorithm for F -MANIPULATION: we can sim-
ply run F -MANIPULATION(p) on all candidates ranked by the ma-
nipulator above the current winner, and pick the best among the
candidates for which F -MANIPULATION(p) outputs “yes”. Thus,
if F -MANIPULATION is hard, F -MANIPULATION(p) is hard, too.
Moreover, all of our hardness reductions directly show hardness of
both variants of the problem.

The algorithm for F -MANIPULATION(p) proposed in [1] as-
sumes that the voting rule assigns scores to all candidates, and the
winners are the candidates with the highest scores. Let v be the
manipulator, and let p be her preferred candidate. The algorithm
places p first, and then fills in the remaining positions in the vote
from top to bottom, searching for a candidate that can be placed in
the next available position in v’s vote so that his score does not ex-
ceed that of p. This approach works as long as the rule is monotone
and we can determine a candidate’s final score given his position
in v’s vote and the identities of the candidates that v ranks above
him. It is not hard to show that Plurality and Borda (and, in fact, all
scoring rules), as well as Copeland and Maximin have this property.

We can easily modify this algorithm for the setting where the ties
are broken adversarially to the manipulator: in that case, when the
manipulator fills a position i in his vote, i > 1, he needs to ensure
that the score of the candidate in that position is strictly less than
that of p. Generally, if ties are broken according to a lexicographic
ordering � over the candidates, when placing a candidate c with
c � p, the manipulator needs to make sure that c’s score is less
than that of p, and when placing a candidate c with c ≺ p, he needs
to make sure that c’s score does not exceed that of p.

4. RANDOMIZED TIE-BREAKING RULES
In this section, we consider a very common approach to tie-

breaking, namely, choosing the winner uniformly at random among
all tied candidates. In this case, knowing the manipulator’s prefer-
ence ordering is not sufficient to determine his optimal strategy.
For example, suppose that voter v prefers a to b to c, and by voting
strategically he can change the output of the voting correspondence
from b to {a, c}. It is not immediately clear if this manipulation is
beneficial. Indeed, if v strongly prefers a, but is essentially indif-
ferent between b and c, then the answer is probably positive, but if
v strongly dislikes c and slightly prefers a to b, the answer is likely
to be negative (of course, this also depends on v’s risk attitude).

Thus, to model this situation appropriately, we need to know the
utilities that the manipulator assigns to all candidates. Under the
natural assumption of risk neutrality, the manipulator’s utility for a
set of candidates is equal to his expected utility when the candidate
is drawn from this set uniformly at random, or, equivalently, to his
average utility for a candidate in this set. Since we are interested
in computational issues, it is reasonable to assume that all utilities
are rational numbers; by scaling, we can assume that all utilities are
positive integers given in binary.

Formally, given a set of candidates C, we assume that the ma-
nipulator is endowed with a utility function u : C → N. This
function can be extended to sets of candidates by setting u(S) =
1
|S|
P

c∈S u(c) for any S ⊆ C. Given a voting correspondence
F and an election (C, V ) with a preference profile R, we say
that a vote L is optimal for a voter vi ∈ V with a utility func-
tion ui : C → N with respect to F combined with the random-
ized tie-breaking rule if ui(F(R−i, L)) ≥ ui(F(R−i), L

′) for all
L′ ∈ L(C). We say that vi has a successful manipulation if his op-
timal vote L satisfies ui(F(R−i, L)) > ui(F(R)). In the rest of

this section, we will explore the complexity of finding an optimal
vote with respect to scoring rules and Maximin.

4.1 Scoring rules
All scoring rules turn out to be easy to manipulate under ran-

domized tie-breaking.

THEOREM 4.1. For any election E = (C, V ) with |C| = m,
any voter v ∈ V with a utility function u : C → N, and any
scoring vector α = (α1, . . . , αm), we can find in polynomial time
an optimal vote for v with respect to the scoring rule Fα combined
with the randomized tie-breaking rule.

PROOF. Fix a voter v ∈ V with a utility function u, and let R′

denote the preference profile consisting of all other voters’ pref-
erences. Let si denote the score of candidate ci after all voters
other than v have cast their vote. Let us renumber the candidates
in order of increasing score, and, within each group with the same
score, in order of decreasing utility. That is, under the new order-
ing we have s1 ≤ · · · ≤ sm and if si = sj for some i < j then
u(ci) ≥ u(cj). We say that two candidates ci, cj with si = sj

belong to the same level. Thus, all candidates are partitioned into
h ≤ m levels H1, . . . , Hh, so that if ci ∈ Hk and cj ∈ H`, k < `,
then si < sj .

Consider first the vote L0 given by c1 � . . . � cm, and let T
be the number of points obtained by the winner(s) in (R′, L0). We
claim that for any L ∈ L(C), in the preference profile (R′, L)
the winner(s) will get at least T points. Indeed, let ci be the last
candidate to get T points in (R′, L0), and suppose that there exists
a vote L such that ci gets less than T points in (R′, L). By the
pigeonhole principle, this means that L assigns at least αi points to
some cj with j > i, and we have sj +αi ≥ si +αi = T , i.e., some
other candidate gets at least T points, as claimed. We will say that
a vote L is conservative if the winners’ score in (R′, L) is T .

We will now argue that ifLmaximizes v’s utility, then eitherL is
conservative or it can be chosen so thatFα has a unique winner un-
der (R′, L). Indeed, suppose that this is not the case, i.e., any vote
L that maximizes v’s utility is such that the set S = Fα(R′, L) is
of size at least 2, and all candidates in S get T ′ > T points. Let
ci be v’s most preferred candidate in S; we have u(ci) ≥ u(S).
Suppose that L grants αj points to ci. Since we have ci +αj > T ,
it follows that j < i. Now, consider the vote obtained from L0

by swapping ci and cj . Clearly, all candidates in C \ {ci, cj} get
at most T points, and ci gets T ′ > T points. Further, cj gets
sj + αi ≤ sj + αj ≤ T points. Thus, in this case ci is a unique
winner and u(ci) ≥ u(S), a contradiction.

Therefore, to find an optimal manipulation, it suffices to (i) check
for each candidate c ∈ C whether c can be made the unique winner
with a score that exceeds T and (ii) find an optimal conservative
vote. The optimal manipulation can then be selected from the ones
found in (i) and (ii).

Step (i) is easy to implement. Indeed, a candidate ci can be
made the unique winner with a score that exceeds T if and only
if si + α1 > T . To see this, observe that if si + α1 > T , we can
swap c1 and ci in L0: ci will get more than T points, and all other
candidates will get at most T points. Conversely, if si + α1 ≤ T ,
then the score of ci is at most T no matter how v votes.

Thus, it remains to show how to implement (ii). Intuitively, our
algorithm proceeds as follows. We start with the set of winners
produced by L0; we will later show that this set is minimal, in
the sense that if it contains x candidates from some level, then for
any vote the set of winners will contain at least x candidates from
that level. Note also that due to the ordering of the candidates we
select the best candidates from each level at this step. We then try
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to increase the average utility of the winners’ set. To this end, we
order the remaining candidates by their utility, and try to add them
to the set of winners one by one as long as this increases its average
utility. We will now give a formal description of our algorithm and
its proof of correctness.

Let S0 = Fα(R′, L0). We initialize S and L by setting S = S0,
L = L0. Let �∗ be some ordering of the set C that ranks the can-
didates in S0 first, followed by the candidates in C \S0 in the order
of decreasing utility, breaking ties arbitrarily. We order the can-
didates from C \ S0 according to �∗, and process the candidates
in this ordering one by one. For each candidate ci, we check if
u(ci) > u(S); if this is not the case, we terminate, as all subse-
quent candidates have even lower utility. Otherwise, we check if
we can swap ci with another candidate that is currently not in S
and receives T − si points from L (so that ci gets T points in the
resulting vote). If this is the case, we update L by performing the
swap and set S = S ∪ {ci}. We then proceed to the next candidate
on the list.

We claim that the vote L obtained in the end of this process is
optimal for the manipulator, among all conservative votes. We re-
mark that at any point in time S is exactly the set of candidates that
get T points in (R′, L). Thus, we claim that any conservative vote
L̂ satisfies u(Fα(R′, L̂)) ≤ u(S).

Assume that this is not the case. Among all optimal conservative
votes, we will select one that is most “similar” to L in order to
obtain a contradiction. Formally, let L0 be the set of all optimal
conservative votes, and let L1 be the subset of L0 that consists
of all votes L′ that maximize the size of the set Fα(R′, L′) ∩ S.
The ordering�∗ induces a lexicographic ordering on the subsets of
C. Let L̂ be the vote such that the set Fα(R′, L̂) is minimal with
respect to this ordering, over all votes in L1. Set Ŝ = Fα(R′, L̂);
by our assumption we have u(Ŝ) > u(S).

Observe first that our algorithm never removes a candidate from
S: when we want to add ci to S and search for an appropriate swap,
we only consider candidates that have not been added to S yet.
Also, at each step of our algorithm the utility of the set S strictly
increases. These observations will be important for the analysis of
our algorithm.

We will first show that Ŝ \ S is empty.

LEMMA 4.2. We have Ŝ \ S = ∅.

PROOF. Suppose that the lemma is not true, and let ci be a can-
didate in Ŝ \ S. Suppose that ci appears in the j-th position in
our ordering of C \ S0. If our algorithm terminated at or be-
fore the j-th step, we have u(ci) < u(S) < u(Ŝ), and hence
u(Ŝ \ {ci}) > u(Ŝ), a contradiction with the optimality of L̂.

Thus, when our algorithm considered ci, it could not find a suit-
able swap. Since ci ∈ Ŝ, it has to be the case that there exists an
entry of the scoring vector that equals T − si; however, when our
algorithm processed ci it was unable to place ci in a position that
grants T − si points. This could only happen if all candidates that
were receiving T − si points from L at that point were in S at that
time; denote the set of all such candidates by Bi. Note that all can-
didates in Bi belong to the same level as ci. Also, all candidates
in Bi ∩ S0 have the same or higher utility than ci, because initially
we order the candidates at the same level by their utility, so that
L0 grants a higher score to the best candidates at each level. On the
other hand, all candidates inBi\S0 were added to S at some point,
which means that they have been processed before ci. Since at this
stage of the algorithm we order the candidates by their utility, it
means that they, too, have the same or higher utility than ci.

Now, since L̂ grants T −si points to ci, it grants less than T −si

points to one of the candidates inBi. Let ck be any such candidate,

and consider the vote L̂′ obtained from L̂ by swapping ci and ck.
Let Ŝ′ = Fα(R′, L̂′); we have Ŝ′ = (Ŝ \ {ci}) ∪ {ck}. By the
argument above, we have either u(ck) > u(ci) or u(ck) = u(ci).
In the former case, we get u(Ŝ′) > u(Ŝ). In the latter case, we get
u(Ŝ′) = u(Ŝ) and |Ŝ′ ∩ S| > |Ŝ ∩ S|. In both cases, we obtain a
contradiction with our choice of L̂.

Thus, we have Ŝ ⊆ S, and it remains to show that S ⊆ Ŝ. We
will first show that Ŝ contains all candidates in S0.

LEMMA 4.3. We have S0 ⊆ Ŝ.

PROOF. Suppose that |S0 ∩ Hk| = mk for k = 1, . . . , h. We
will first show that |Ŝ ∩Hk| ≥ mk for k = 1, . . . , h. Indeed, fix
a k ≤ h, and suppose that the first candidate in the k-th level is
ci. Then in (R′, L0) the scores of the candidates in Hk are si +
αi, . . . , si + αj for some j ≥ i. If si + αi < T , then mk = 0
and our claim is trivially true for this value of k. Otherwise, by the
pigeonhole principle, if it holds that in (R′, L̂) less than mk voters
in Hk get T points, it has to be the case that at least one candidate
in Hk+1 ∪ · · · ∪Hh receives at least αi points from L̂. However,
for any c` ∈ Hk+1 ∪ · · · ∪Hh we have s` > si, so s` + αi > T ,
a contradiction with our choice of L̂.

Now, suppose that S0 ∩ Hk 6⊆ Ŝ ∩ Hk for some k ≤ h, and
consider a candidate c` ∈ (S0 ∩Hk) \ (Ŝ ∩Hk). Since we have
argued that |Ŝ ∩ Hk| ≥ mk, it must be the case that there also
exists a candidate cj ∈ (Ŝ ∩Hk) \ (S0 ∩Hk). It is easy to see that
S0 contains the mk best candidates from Hk, so u(c`) ≥ u(cj).
The rest of the proof is similar to that of Lemma 4.2: Consider
the vote L̂′ obtained from L̂ by swapping c` and cj and let Ŝ′ =

Fα(R′, L̂′). Since c` and cj belong to the same level, we have
Ŝ′ = (Ŝ \ {c`}) ∪ {ck}. Thus, either u(Ŝ′) > u(Ŝ) or u(Ŝ′) =

u(Ŝ) and |Ŝ′ ∩S| > |Ŝ ∩S|. In both cases we get a contradiction.
Thus, we have S0∩Hk ⊆ Ŝ∩Hk. Since this holds for every value
of k, the proof is complete.

Given Lemma 4.2 and Lemma 4.3, it is easy to complete the
proof. Suppose that Ŝ is a strict subset of S. Observe first that for
any subset S′ of S there is a vote L′ such that Fα(R′, L′) = S′:
we can simply ignore the candidates that are not members of S′

when running our algorithm, as this only increases the number of
“available” swaps at each step. Now, order the candidates inC \S0

according to �∗. Let ci be the first candidate in this order that
appears in S, but not in Ŝ. If there is a candidate cj that appears
later in the sequence and is contained in both S and Ŝ, consider
the set S′ = Ŝ \ {cj} ∪ {ci}. As argued above, there is a vote
L′ such that Fα(R′, L′) = S′. Now, if u(ci) > u(cj), this set
has a higher average utility that Ŝ. Thus, this is a contradiction
with our choice of L̂. On the other hand, if u(cj) = u(ci), then
we have u(S′) = u(Ŝ), |S ∩ S′| = |S ∩ Ŝ|, and S′ precedes Ŝ
is the lexicographic ordering induced by �∗, a contradiction with
the choice of L̂ again. Therefore, none of the candidates in S that
appear after ci in the ordering belongs to Ŝ. Now, when we added
ci to S, we did so because its utility was higher than the average
utility of S at that point. However, by construction, the latter is
exactly equal to u(Ŝ). Thus, u(Ŝ ∪ {ci}) > u(Ŝ), a contradiction
again. Therefore, the proof is complete.

4.2 Maximin
For Maximin with randomized tie-breaking, we have not been

able to design an efficient algorithm for finding an optimal manip-
ulation in the general utility model. However, we will now present a
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polynomial-time algorithm for this problem assuming that the ma-
nipulator’s utility function has a special structure. Specifically, re-
call that in the model of [1] the manipulator’s goal is to make a
specific candidate p a winner. This suggests that the manipula-
tor’s utility can be modeled by setting u(p) = 1, u(c) = 0 for all
c ∈ C \ {p}. We will now show that for such utilities there exists
a poly-time algorithm for finding an optimal manipulation under
Maximin combined with the randomized tie-breaking rule.

THEOREM 4.4. If the manipulator’s utility function is given by
u(p) = 1, u(c) = 0 for c ∈ C \ {p}, the problem of finding an op-
timal manipulation under Maximin combined with the randomized
tie-breaking rule is in P.

PROOF. Consider an election E = (C, V ) with the candidate
set C = {c1, . . . , cm} and the voter set V = {v1, . . . , vn}, and let
vn be the manipulating voter. In this proof, we denote by s(ci) the
Maximin score of a candidate ci ∈ C in the electionE′ = (C, V ′),
where V ′ = {v1, . . . , vn−1}. Let s = maxci∈C s(ci).

For any ci ∈ C, the manipulator’s vote increases the score of
ci either by 0 or by 1. Thus, if s(p) < s − 1, the utility of the
manipulator will be 0 irrespective of how he votes.

Now, suppose that s(p) = s − 1. The manipulator can increase
the score of p by 1 by ranking p first. Thus, his goal is to ensure
that after he votes (a) no other candidate gets s + 1 point and (b)
the number of candidates in C \ {p} with s points is as small as
possible. Similarly, if s(p) = s, the manipulator can ensure that
p gets s + 1 points by ranking him first, so his goal is to rank the
remaining candidates so that in C \ {p} the number of candidates
with s + 1 points is as small as possible. We will now describe an
algorithm that works for both of these cases.

We construct a directed graph G with the vertex set C that cap-
tures the relationship among the candidates. Namely, we have an
edge from ci to cj if there are s(cj) voters in V ′ that rank cj above
ci. Observe that, by construction, each vertex in G has at least one
incoming edge. We say that ci is a parent of cj in G whenever
there is an edge from ci to cj . We remark that if the manipula-
tor ranks one of the parents of cj above cj in his vote, then cj’s
score does not increase. We say that a vertex ci of G is purple if
s(ci) = s(p) + 1, red if s(ci) = s(p) and ci 6= p, and green oth-
erwise; note that by construction p is green. Observe also that if
s(p) = s, there are no purple vertices in the graph. We will say
that a candidate cj is dominated in an ordering L (with respect to
G) if at least one of cj’s parents in G appears before cj in L. Thus,
our goal is to ensure that the set of dominated candidates includes
all purple candidates and as many red candidates as possible.

Our algorithm is based on a recursive procedure A, which takes
as its input a graph H with a vertex set U ⊆ C together with a
coloring of U into green, red and purple; intuitively, U is the set of
currently unranked candidates. It returns “no” if the candidates in
U cannot be ranked so that all purple candidates inU are dominated
by other candidates inU with respect toH . Otherwise, it returns an
ordered list L of the candidates in U in which all purple candidates
are dominated, and a set S consisting of all red candidates in U that
remain undominated in L with respect to H .

To initialize the algorithm, we call A(G). The procedure A(H)
is described below.

1. Set L = ∅.

2. If H contains p, set L = [p], and remove p from H .

3. While H contains a candidate c that is green or has a parent
that has already been ranked, set L :: [c] (where :: denotes
the list concatenation operation) and remove c from H .

4. If H is empty, return (L, ∅).

5. If there is a purple candidate in H with no parents in H ,
return “no”.

6. If there is a red candidate c inH with no parents inH , letH ′

be the graph obtained from H by coloring c green. Compute
A(H ′). If A(H ′) returns “no”, return “no”. Otherwise, if
A(H ′) returns (L′, S′), return (L :: L′, S′ ∪ {c}).

7. At this point in the algorithm, each vertex of H has a par-
ent. Hence, H contains a cycle. Let T be some such cycle.
Collapse T , i.e., (a) replace T with a single vertex t, and (b)
for each y 6∈ T , add an edge (t, y) if H contained an edge
(x, y) for some x ∈ T and add an edge (y, t) if H contained
a vertex z with (y, z) ∈ H . Color t red if T contains at least
one red vertex, and purple otherwise. LetH ′ be the resulting
graph and call A(H ′). If A(H ′) returns “no”, return “no”.
Now, suppose that A(H ′) returns (L′, S′).

Suppose that t ∈ S′. At any point in the algorithm, we only
put a vertex in S if it is red, so t must be red, and hence T
contains a red vertex. Let c be some red vertex in T , and let
L̂ be an ordering of the vertices in T that starts with c and
follows the edges of T . Let L′′ be the list obtained from L′

by replacing t with L̂ (i.e., if L′ = L1 :: [t] :: L2, then
L′′ = L1 :: L̂ :: L2). Return (L :: L′′, (S′ \ {t}) ∪ {c}).

If t 6∈ S′, then by Lemma 4.5 (see below) t is dominated
in H ′. Let a be a parent of t that precedes it in L′. Then
T contains a child of a. Let c be some such child, and let
L̂ be an ordering of the vertices in T that starts with c and
follows the edges of T . Let L′′ be the list obtained from L′

by replacing t wish L̂. Return (L :: L′′, S′).

We will now argue that our algorithm outputs “no” if and only if
no matter how vn votes, some candidate in C \ {p} gets s(p) + 2
points. Moreover, if A(G) = (L, S) and the set S contains r red
candidates, then whenever vn votes so that after his vote all other
candidates have at most s(p) + 1 points, there are at least r red
candidates with s(p) + 1 points.

We will split the proof into several lemmas.

LEMMA 4.5. At any point in the execution of the algorithm, if
A(H) = (L, S), then each candidate in U \ S is dominated in H .

PROOF. The proof is by induction on the recursion depth. Con-
sider a candidate x ∈ U \S. Clearly, if there are no recursive calls,
A ranks x at Step 3, and the claim is obviously true.

For the induction step, suppose that the claim is true if we have d
nested recursive calls, and consider an execution that makes d + 1
nested calls. Again, consider a candidate x ∈ U \S. As in the base
case, if x has been ranked in Step 3 the claim is clearly true. If x
was ranked in Step 6, it follows that x 6∈ S′, and the claim follows
by the inductive assumption. Now, suppose that x was ranked in
Step 7 when we collapsed some cycle T . If x 6∈ T , then x 6∈ S′

and the claim follows by the inductive assumption. In particular, if
x was ranked after t before the expansion, there is some vertex y in
T such that H contains the edge (y, x), so after expansion x will
be dominated by y.

Now, suppose that x ∈ T . If t was in S′, but x was not added
to S, it means that x was not the first vertex of T to appear in the
ranking, i.e., x was ranked after its predecessor in T . If t was not in
S′, then by the inductive assumption t was ranked after its parent
in H ′, i.e., there is a z ∈ H ′ \ {t} such that z is ranked before t
in L′ and there is an edge (z, t) in H ′. By construction of t, this
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means that there is a vertex y ∈ T such that there is an edge (z, y)
in H . Thus, when we expanded t into T , the first vertex of T to be
ranked was placed after its parent, and all subsequent vertices of T
were placed after their predecessors in T . Thus, all vertices in T
and, in particular, x, are dominated.

We are now ready to prove that our algorithm correctly deter-
mines whether the manipulator can ensure that no candidate gets
more than s(p) + 1 points.

LEMMA 4.6. The algorithm outputs “no” if and only if for any
vote L there is a purple candidate that is undominated.

PROOF. Observe that the algorithm only outputs “no” if it finds
a purple candidate with no parents. Let c be some such candidate.
Now, in the original graph G each vertex has a parent. Further, if
there was an edge from some x to c, and we collapsed a cycle T
that contains x, but not c, there is still an edge from the resulting
vertex t to c. Thus, the only way to obtain a purple vertex with
no incoming edges is by collapsing a cycle T such that T contains
purple vertices only, and no vertex of T has an incoming edge. By
induction on the execution of the algorithm, it is easy to see that if
we obtained a purple vertex with no incoming edges at some point,
then in the original graph there was a group of purple vertices such
that there was no edge from any red or green vertex to any of the
vertices in the group. Now, in any ordering on C one of the candi-
dates in this group would have to be ranked first. By construction,
this candidate would be ranked before all its parents, so it is un-
dominated.

Conversely, suppose that the algorithm does not answer “no”,
and outputs a pair (L, S) instead. We have observed that S consists
of red vertices only. Thus, by Lemma 4.5 each purple vertex is
dominated.

It remains to show that the set S output by the algorithm contains
as few candidates as possible.

LEMMA 4.7. At any point in the execution of the algorithm, if
A(H) = (L, S), then in any ordering of the candidates in U in
which each purple vertex inU is dominated, at least |S| red vertices
in U are undominated.

PROOF. The proof is by induction on the recursion depth. Sup-
pose first that we make no recursive calls. Then our algorithm out-
puts S = ∅, and our claim is trivially true. Now, suppose that our
claim is true if we make d nested calls. Consider an execution of
A which makes d + 1 nested call, and suppose that when we call
A(H ′) within this execution, it returns (L′, S′).

Suppose first that we made the recursive call in Step 6 of the
algorithm, and therefore set S = S′ ∪ {c}. Suppose for the sake
of contradiction that there exists a ranking of the candidates in U
such that at most |S| − 1 candidate is undominated. Since c has
no parents in H , there are at most |S| − 2 other red candidates
that are undominated. In other words, if we recolor c green, in
the resulting instance (which is exactly the instance passed to A
during the recursive call), there are at most |S| − 2 undominated
red candidates. Since |S′| = |S| − 1, this is a contradiction with
the inductive assumption.

Now, suppose that we made the recursive call in Step 7 of the al-
gorithm, and collapsed a cycle T into a vertex t. Again, assume for
the sake of contradiction that there exists a ranking L̄ of the candi-
dates in U such that at most |S| − 1 candidates are undominated.
Let c be the first vertex of T to appear in L̄. Consider the ranking
of U ′ obtained by removing all vertices of T \ {c} from L̄ and re-
placing c with t; denote this ranking by L̄′. We claim that in L̄′ at

most |S| − 1 vertices of H ′ are undominated. Indeed, any parent
of c in H is a parent of t in H ′, so t is undominated if and only if
c was. On the other hand, if for some vertex x the only parent that
preceded it in L̄ was a vertex y ∈ T \ {c}, then in H ′ there is an
edge from t to x, i.e., x is preceded by its parent t in L̄′. For all
other vertices, if they were preceded by some parent z in L̄, they
are preceded by the same parent in L̄′. Since |S| = |S′|, we have
shown that U ′ can be ordered so that at most |S′| − 1 vertices are
undominated, a contradiction with the inductive assumption.

Combining Lemma 4.6 and Lemma 4.7, we conclude that if our
algorithm outputs (L, S), then L is the optimal vote for vn and if
our algorithm outputs “no”, then the manipulator’s utility is 0 no
matter how he votes. Also, it is not hard to see that the algorithm
runs in polynomial time. Thus, the proof is complete.

5. HARDNESS RESULTS
We will now demonstrate that if we allow arbitrary polynomi-

al-time tie-breaking rules, the algorithmic results presented in the
previous sections no longer hold. In fact the problem of finding a
beneficial manipulation becomes NP-hard. We will first present a
specific simple tie-breaking rule T . We will then show that ma-
nipulating the composition of this rule with Borda, Copeland or
Maximin is NP-hard.

Recall that an instance C of 3-SAT is given by a set of s variables
X = {x1, . . . , xs} and a collection of t clauses Cl = {c1, . . . , ct},
where each clause ci ∈ Cl is a disjunction of three literals over X ,
i.e., variables or their negations; we denote the negation of xi by xi.
It is a “yes”-instance if there is a truth assignment for the variables
in X such that all clauses in Cl are satisfied, and a “no”-instance
otherwise. This problem is known to be hard even if we assume
that all literals in each clause are distinct, so from now on we as-
sume that this is the case. Now, given s variables x1, . . . , xs, there
are exactly ` =

`
2s
3

´
3-literal clauses that can be formed from these

variables (this includes clauses of the form x1∧x1∧x2). Ordering
the literals as x1 < x1 < · · · < xs < xs induces a lexicographic
ordering over all 3-literal clauses. Let φi denote the i-th clause in
this ordering. Thus, we can encode an instance C of 3-SAT with s
variables as a binary string σ(C) of length `, where the i-th bit of
σ(C) is 1 if and only if φi appears in C.

We are ready to describe T . Given a set S ⊆ C of candidates,
where |C| = m, T first checks if m = ` + 2s + 4 for some
s > 0 and ` =

`
2s
3

´
. If this is not the case, it outputs the lexi-

cographically first candidate in S and stops. Otherwise, it checks
whether cm ∈ S and for every i = 1, . . . , s, the set S satisfies
|S ∩ {c`+2i−1, c`+2i}| = 1. If this is not the case, it outputs
the lexicographically first candidate in S and stops. If the condi-
tions above are satisfied, it constructs an instance C = (X,Cl)
of 3-SAT by setting X = {x1, . . . , xs}, Cl = {φi | 1 ≤ i ≤
`, ci ∈ S}. Next, it constructs a truth assignment (ξ1, . . . , ξs) for
C by setting ξi = > if c`+2i−1 ∈ S, c`+2i 6∈ S and ξi = ⊥
if c`+2i−1 6∈ S, c`+2i ∈ S. Finally, if C(ξ1, . . . , ξs) = >, it
outputs cm and otherwise it outputs the lexicographically first can-
didate in S. Clearly, T is simple and polynomial-time computable,
and hence the problem T ◦ F-MANIPULATION is in NP for any
polynomial-time computable rule F (and, in particular, for Borda,
Maximin and Copeland). In the rest of this section, we will show
that T ◦ F -MANIPULATION is NP-hard for all these rules.

5.1 Borda and other scoring rules
We will first consider the Borda rule. We will then show that

essentially the same proof works for a large class of scoring rules.
To simplify notation, in the proof of Lemma 5.1 and Theorem 5.2
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we will denote the Borda score of a candidate x in a preference
profile R by s(R, x).

LEMMA 5.1. For any set of candidatesC = {c1, . . . , cm} with
m ≥ 4 and any vector (β1, . . . , βm−1) with βi ∈ {0, 1, . . . ,m}
for i = 1, . . . ,m − 1 and β1 > 0, we can efficiently construct a
preference profile R = (R1, . . . , Rn) with n = m(m − 1) voters
such that for some K ≥ m2 + m + 1 and some u ≤ m(m − 1)
the Borda scores of all candidates satisfy s(R, ci) = K + βi for
i = 1, . . . ,m− 1 and s(R, cm) = u.

The proof of Lemma 5.1 is similar to that of Theorem 3.1 in [5] and
is omitted due to space constraints.

THEOREM 5.2. T ◦ Borda-MANIPULATION is NP-hard.

PROOF. Suppose that we are given an instance C of 3-SAT with
s variables. Note that this instance can be encoded by a binary
vector (σ1, . . . , σ`), where ` =

`
2s
3

´
, as described in the construc-

tion of T : σi = 1 if and only if C contains the i-th 3-variable
clause with respect to the lexicographic order. We will now con-
struct an instance of our problem with m = `+ 2s+ 4 candidates
c1, c2, . . . , cm. For readability, we will also denote the first ` can-
didates by u1, . . . , u`, the next 2s candidates by x1, y1, . . . , xs, ys,
and the last four candidates by d1, d2, w, and c.

Let U = {u1, . . . , u`}, let Q = {ci ∈ U | σi = 1}, and let
q = |Q|. For convenience, we renumber the candidates in U so
that Q = {u1, . . . , uq}.

We will now use Lemma 5.1 to construct a preference profile
R = (R1, . . . , Rn) with the following scores:

• s(R, w) = K +m, s(R, c) = K + 1;
• s(R, ui) = K +m− i for i = 1, . . . , q;
• s(R, ui) = K for i = q + 1, . . . , `;
• s(R, xi) = s(R, yi) = K + i+ 1 for i = 1, . . . , s;
• s(R, d1) = K, s(R, d2) = u,

where K > m2 +m+ 1 and u ≤ m(m− 1).
Now, consider an election with the set of candidates C and a set

of voters V = {v1, . . . , vn+1}, where for i ≤ n the preferences of
the i-th voter are given by Ri, and the preferences of the last voter
(who is also the manipulating voter) are given by

c � w � x1 � y1 � . . . � xs � ys � u1 � . . . � u` � d1 � d2.

Observe that if vn+1 votes truthfully,w wins. Thus, a manipulation
is successful if and only if vn+1 manages to vote so that c gets
elected.

Suppose first that we have started with a “yes”-instance of 3-
SAT, and let (ξ1, . . . , ξs) ∈ {>,⊥}s be the corresponding truth
assignment. For i = 1, . . . , s, set zi = xi if ξi = > and zi = yi

if ξi = ⊥. Suppose that vn+1 submits a vote L in which he ranks
c, z1, . . . , zs in the top s+1 positions (in this order), uq, . . . , u1, w
in the bottom q+1 positions (in this order), and all other candidates
in the remaining positions in between.

It is not hard to see that in this case the candidates c,w, z1, . . . , zs

and all candidates in Q get K + m points, while all other candi-
dates get less than K +m points. Thus, the set of tied candidates
S is Q ∪ {c, w, z1, . . . , zs}. Therefore, given the set S, our tie-
breaking rule will reconstruct C, check whether z1, . . . , zs encode
a satisfying truth assignment for C (which is indeed the case), and
output cm = c. Thus, in this case L is a successful manipulation.

Conversely, suppose that vn+1 submits a vote L so that c gets
elected. Since we have s(R, w) − s(R, c) = m − 1, it follows
that L ranks c first and w last, and hence both of them get K +m

points. Similarly, we can show by induction on i that for all i =
1, . . . , q it holds that vn+1 ranks ui in the (m − i)-th position;
thus, each candidate in Q also gets K + m points. Moreover, all
other candidates in U \ Q get less than K + m points, i.e, the
manipulator cannot change the formula encoded by the set of tied
candidates. Let S be the set of all candidates with the top score.
Since c wins the election, it has to be the case that the set S ∩
{x1, y1, . . . , xs, ys} encodes a satisfying truth assignment for C,
i.e., C is satisfiable. Thus, the proof is complete.

Theorem 5.2 can be generalized to other families of scoring rules,
including k-approval, where k is polynomially related to m (i.e.,
m = poly(k)). Note, however, that we cannot hope to prove an
analogue of Theorem 5.2 for all scoring rules as long as we in-
sist that the tie-breaking rule is simple: we have to require that the
scoring vector has a superlogarithmic number of non-zero coordi-
nates. Indeed, if the number of non-zero coordinates k satisfies
k = O(logm), the manipulator can simply try all possible place-
ments of the candidates into the top k positions in polynomial time.
This strategy works for any simple polynomial-time tie-breaking
rule, since the set of tied candidates only depends on the top k po-
sitions in the manipulator’s vote. On the other hand, if we drop the
simplicity requirement, there are tie-breaking rules for which even
Plurality is hard to manipulate.

THEOREM 5.3. There exists a tie-breaking rule T ′ such that
T ′ ◦ Plurality-MANIPULATION is NP-complete.

We omit the formal proof of Theorem 5.3 due to space constraints;
intuitively, we can consider a tie-breaking rule T ′ that interprets the
set of winners as a boolean formula and views the manipulator’s
vote as a truth assignment.

5.2 Copeland and Maximin
We will now show that T ◦ Copeland and T ◦ Maximin are

hard to manipulate using essentially the same construction as in the
proof of the Theorem 5.2.

THEOREM 5.4. T ◦Maximin-MANIPULATION is NP-hard.

PROOF. Given a 3-SAT formula C, we construct an election
E = (C, V ) where C, U , Q and q are as in the proof of Theo-
rem 5.2.

We can encode an election over a set of candidates C as a matrix
{a(i, j)}i,j∈C , where for all i 6= j the entry a(i, j) equals the
number of voters that prefer i to j. By McGarvey’s theorem [14],
for some n = poly(m) we can efficiently construct a preference
profile R = (R1, . . . , Rn) corresponding to the following matrix:

• a(ui, ui+1) = b+ 1 for i = 1, . . . , q;

• a(ui, ui+1) = b− 1 for i = q + 1, . . . , `;

• a(xi, yi) = a(yi, ui) = b for i = 1, . . . , s;

• a(c, w) = a(d1, c) = b, a(w, d1) = b+ 1;

• a(c, d2) = g + 1;

• a(x, y) = g+ b−a(y, x) if a(y, x) has been defined above;

• a(x, y) = b+g
2

for all other pairs (x, y) ∈ C × C,

where u`+1 := u1, b < m, g > 2m, and b + g = n. Now,
consider an election with the set of candidates C and a set of voters
V = {v1, . . . , vn+1}, where for i ≤ n the preferences of the i-th
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voter are given by Ri, and the preferences of the last voter (who is
also the manipulating voter) are given by

c � w � d1 � d2 � x1 � y1 � . . . � xs � ys � u` . . . � u1.

Observe that if vn+1 votes truthfully, then a(w, d1) = b + 2,
a(w, x) > b + 2 for all x ∈ C \ {d1}, while the Maximin score
of any other candidate is at most b+ 1, so w is the election winner.
Hence, a manipulation is successful if and only if vn+1 manages
to vote so that c gets elected. It can be shown that this is possible
if and only if we have started with a “yes”-instance of 3-SAT; we
omit the proof due to lack of space.

THEOREM 5.5. T ◦ Copelandα-MANIPULATION is NP-hard
for any α ∈ [0, 1].

PROOF. Given a 3-SAT formula C, we construct an election
E = (C, V ) where C, U , Q and q are the same as in the proof
of the Theorem 5.2. We say that x safely wins a pairwise election
against y (and y safely loses a pairwise election against x) if at least
n
2

+ 2 voters prefer x to y. For any candidate x ∈ C, let SW(x)
and SL(x) denote the number of pairwise elections that x safely
wins and safely loses, respectively. By McGarvey’s theorem [14],
we can construct a preference profile R = (R1, . . . , Rn) with the
following properties:

• SW(ui) = m+1
2

, SL(ui) = m−3
2

for i = 1, . . . , q;
• SW(ui) = m−1

2
, SL(ui) = m−1

2
for i = q + 1, . . . , `;

• SW(xi) = SW(yi) = m−1
2

for i = 1, . . . , s;
• SL(xi) = SL(yi) = m−3

2
for i = 1, . . . , s;

• SW(c) = m−1
2

, SL(c) = m−3
2

;
• SW(w) = m+1

2
, SL(w) = m−9

2
;

• SW(d1) =
¨

`−q+s−1
2

˝
, SL(d1) =

˚
`+q+3s+5

2

ˇ
;

• SW(d2) =
˚

`−q+s−1
2

ˇ
, SL(d2) =

¨
`+q+3s+5

2

˝
;

• there is a tie between c and w, w and d1, w and d2, and xi

and yi for i = 1, . . . , s.

It is easy to check that for each candidate the total number of wins,
losses and ties that involve him equals m−1; in particular, `− q+
s−1 and `+q+3s+5 have the same parity, so SW(d1)+SL(d1) =
SW(d2) + SL(d2) = ` + 2s + 2 = m − 2. Moreover, the total
number of wins equals the total number of losses. Thus, such a
profile can indeed be constructed.

Now, consider an election with the set of candidates C and a set
of voters V = {v1, . . . , vn+1}, where for i ≤ n the preferences of
the i-th voter are given by Ri, and the preferences of the last voter
(who is also the manipulating voter) are given by

c � w � d1 � d2 � x1 � y1 � . . . � xs � ys � u` . . . � u1.

If vn+1 votes truthfully, w wins. Hence, a manipulation is success-
ful if and only if vn+1 manages to vote so that c gets elected. It can
be shown that this is possible if and only if we started with a “yes”-
instance of 3-SAT; we omit the proof due to lack of space.

6. CONCLUSIONS AND FUTURE WORK
We have explored the complexity of manipulating many com-

mon voting rules under randomized tie-breaking as well as under
arbitrary polynomial-time tie-breaking procedures. Our results for
randomized tie-breaking are far from complete, and a natural re-
search direction is to extend them to other voting rules, such as
Copeland or Bucklin, as well as to the Maximin rule with general
utilities. Other interesting questions include identifying natural tie-
breaking rules that make manipulation hard and extending our re-
sults to multi-winner elections.
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ABSTRACT
Boolean games are a natural, compact, and expressive class of logic-
based games, in which each player exercises unique control over
some set of Boolean variables, and has some logical goal formula
that it desires to be achieved. A player’s strategy set is the set of all
possible valuations that may be made to its variables. A player’s
goal formula may contain variables controlled by other agents, and
in this case, it must reason strategically about how best to assign
values to its variables. In the present paper, we consider the pos-
sibility of overlaying Boolean games with taxation schemes. A
taxation scheme imposes a cost on every possible assignment an
agent can make. By designing a taxation scheme appropriately, it
is possible to perturb the preferences of the agents within a society,
so that agents are rationally incentivised to choose some socially
desirable equilibrium that would not otherwise be chosen, or in-
centivised to rule out some socially undesirable equilibria. After
formally presenting the model, we explore some issues surround-
ing it (e.g., the complexity of finding a taxation scheme that imple-
ments some socially desirable outcome), and then discuss possible
desirable properties of taxation schemes.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
boolean games, incentives, taxation

1. INTRODUCTION
The computational aspects of game-theoretic mechanism design
have received a great deal of attention over the past decade [11].
Particular attention has been paid to the Vickrey-Clarke-Groves
(VCG) mechanism, which can be used to incentivise rational agents
to truthfully report their private preferences in settings such as com-
binatorial auctions [5, 10]. The key point of interest of the VCG
mechanism is that, because it incentivises agents to report their

Cite as: Designing Incentives for Boolean Games, U. Endriss, S. Kraus,
J. Lang, and M. Wooldridge, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Tumer, Yolum, So-
nenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.  79-86.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

preferences truthfully, it allows us to compute outcomes that max-
imise social welfare, which would not in general be possible if
agents could benefit from misrepresenting their preferences.

Ultimately, the VCG mechanism is a taxation scheme. Taxation
schemes are used in human societies for several purposes. First,
they are used to incentivise certain socially desirable behaviours,
in much the same way that the VCG mechanism is used – for ex-
ample, a government may tax car driving to encourage the use of
environmentally friendly public transport. Second, they are used to
raise revenue, typically with the intention that this revenue is then
used to fund socially desirable projects (education, healthcare, etc).
And finally, of course, they may be used for a combination of these
purposes. Our aim in the present paper is to study the design of tax-
ation schemes for incentivising behaviours in multi-agent systems.
It is important to note that our focus in the present paper is not on
the design of incentive compatible (truth-telling) mechanisms, and
in this key respect, our work differs from the large body of work
on computational and algorithmic mechanism design [11, 5, 10].
Of course, this is not to say that incentive compatibility is not im-
portant, or in any way to diminish the significance and value of the
VCG mechanism; we are simply focussing on scenarios in which
the preferences and actions of agents are known.

The setting for our study is the domain of Boolean games [6, 2,
4]. Boolean games are a natural, expressive, and compact class of
games, based on propositional logic. Boolean games were intro-
duced in [6], and their computational and logical properties have
subsequently been studied by several researchers [2, 4]. In such
a game, each agent i is assumed to have a goal, represented as a
propositional formula γi over some set of variables Φ. In addition,
each agent i is allocated some subset Φi of the variables Φ, with
the idea being that the variables Φi are under the unique control of
agent i. The choices, or strategies, available to i correspond to all
the possible allocations of truth or falsity to the variables Φi. An
agent will try to choose an allocation so as to satisfy its goal γi.
Strategic concerns arise because whether i’s goal is in fact satisfied
will depend on the choices made by others.

In the present paper, we introduce the idea of imposing taxa-
tion schemes on Boolean games, so that various possible choices
are taxed in different ways. Taxation schemes are designed by an
agent external to the system known as the principal. The ability to
impose taxation schemes enables the principal to perturb the pref-
erences of the players in certain ways: all other things being equal,
an agent will prefer to make a choice that minimises taxes. As dis-
cussed above, the principal is assumed to be introducing a taxation
scheme so as to incentivise agents to achieve a certain socially de-
sirable outcome; or to incentivise agents to rule out certain socially
undesirable outcomes. We represent the outcome that the principal
desires to achieve via a propositional formula Υ: thus, the idea is
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that the principal will impose a taxation scheme so that agents are
rationally incentivised to make individual choices so as to collec-
tively satisfy Υ. However, a fundamentally important assumption
in what follows is that taxes do not give us absolute control over
an agent’s preferences. To assume that we were able to completely
control an agent’s preferences by imposing taxes would be unreal-
istic: to pick a perhaps rather morbid and slightly tongue in cheek
example, no matter how much you propose to tax me, I would still
choose to achieve my goal of being alive rather than otherwise. If
we did have complete control over agents’ preferences through tax-
ation, then the problems we consider in this paper would indeed be
rather trivial. In our setting specifically, it is assumed that no matter
what the level of taxes, an agent would still prefer to have its goal
achieved than not. This imposes a fundamental limit on the extent
to which an agent’s preferences can be perturbed by taxation.

We begin in the following section by introducing the model of
Boolean games that we use throughout the remainder of the pa-
per. We then introduce taxation schemes, and the incentive design
problem. After investigating some properties of the incentive de-
sign problem, we go on to consider socially equitable properties of
taxation schemes (such as minimising the total tax burden, etc). We
conclude with a discussion and future work.

2. BOOLEAN GAMES
In this section, we introduce the model of Boolean games that we
work with throughout the remainder of this paper. This model
slightly generalises previous models of Boolean games [6, 2, 4],
in that it explicitly represents the costs of each action. In what fol-
lows, we let R≥ denote the set of real numbers greater than or equal
to 0.

Propositional Logic: Throughout the paper, we make use of clas-
sical propositional logic, and for completeness, we thus begin by
recalling the technical framework of this logic. Let B = {>,⊥}
be the set of Boolean truth values, with “>” being truth and “⊥”
being falsity. We will abuse notation a little by using > and ⊥ to
denote both the syntactic constants for truth and falsity respectively,
as well as their semantic counterparts (i.e., the respective truth val-
ues). Let Φ = {p, q, . . .} be a (finite, fixed, non-empty) vocabulary
of Boolean variables, and let L denote the set of (well-formed) for-
mulae of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as well
as the truth constants “>” and “⊥”. We assume a conventional
semantic consequence relation “|=” for propositional logic. A val-
uation is a total function v : Φ → B, assigning truth or falsity to
every Boolean variable. We write v |= ϕ to mean that ϕ is true un-
der, or satisfied by, valuation v, where the satisfaction relation “|=”
is defined in the standard way. Let V denote the set of all valuations
over Φ.

We write |= ϕ to mean that ϕ is a tautology, i.e., is satisfied
by every valuation. We denote the fact that formulae ϕ,ψ ∈ L are
logically equivalent by ϕ⇔ ψ; thus ϕ⇔ ψ means that |= ϕ↔ ψ.
Note that “⇔” is a meta-language relation symbol, which should
not be confused with the object-language bi-conditional operator
“↔”.

Agents, Goals, and Controlled Variables: The games we con-
sider are populated by a set Ag = {1, . . . , n} of agents – the players
of the game. Each agent is assumed to have a goal, characterised by
an L-formula: we write γi to denote the goal of agent i ∈ Ag. Each
agent i ∈ Ag controls a (possibly empty) subset Φi of the overall
set of Boolean variables (cf. [14]). By “control”, we mean that i
has the unique ability within the game to set the value (either > or
⊥) of each variable p ∈ Φi. We will require that Φ1, . . . ,Φn forms

a partition of Φ, i.e., every variable is controlled by some agent and
no variable is controlled by more than one agent (Φi ∩ Φj = ∅ for
i 6= j). Where i ∈ Ag, a choice for agent i is defined by a function
vi : Φi → B, i.e., an allocation of truth or falsity to all the variables
under i’s control. Let Vi denote the set of choices for agent i. The
intuitive interpretation we give to Vi is that it defines the actions or
strategies available to agent i; the choices available to the agent.

An outcome, (v1, . . . , vn) ∈ V1 × · · · × Vn, is a collection of
choices, one for each agent. Clearly, every outcome uniquely de-
fines a valuation, and we will often think of outcomes as valuations,
for example writing (v1, . . . , vn) |= ϕ to mean that the valuation
defined by the outcome (v1, . . . , vn) satisfies formula ϕ ∈ L. Let
ϕ(v1,...,vn) denote the formula that uniquely characterises the out-
come (v1, . . . , vn):

ϕ(v1,...,vn) =

 ∧
p∈Φ

(v1,...,vn)|=p

p

 ∧
 ∧

q∈Φ
(v1,...,vn)6|=q

¬q


Let succ(v1, . . . , vn) denote the set of agents who have their goal

achieved by outcome (v1, . . . , vn), i.e.,:

succ(v1, . . . , vn) = {i ∈ Ag | (v1, . . . , vn) |= γi}.

Costs: Intuitively, the actions available to agents correspond to set-
ting variables true or false. We assume that these actions have costs,
defined by a cost function c : Φ × B → R≥, so that c(p, b) is the
marginal cost of assigning variable p ∈ Φ the value b ∈ B. We let
c0 denote the cost function that assigns zero cost to all assignments.

This notion of a cost function represents an obvious generalisa-
tion of previous presentations of Boolean games: costs were not
considered in the original presentation of Boolean games [6, 2],
and while costs were introduced in [4], it was assumed that only
the action of setting a variable to > would incur a cost. (In fact, as
we shall see later, costs are, in a technical sense, not required in our
framework; we can capture the key strategic issues at stake without
them. However, it is natural from the point of view of modelling
to have costs for actions, and to think about costs as being imposed
from within the game, and taxes, (defined below), as being imposed
from without.)

Boolean Games: Collecting these components together, a Boolean
game, G, is a (2n + 3)-tuple:

G = 〈Ag,Φ, c, γ1, . . . , γn,Φ1, . . . ,Φn〉,
where Ag = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is a
finite set of Boolean variables, c : Φ× B→ R≥ is a cost function,
γi ∈ L is the goal of agent i ∈ Ag, and Φ1, . . . ,Φn is a partition
of Φ over Ag, with the intended interpretation that Φi is the set of
Boolean variables under the unique control of i ∈ Ag. We will say
a game is cost free if it has cost function c0.

When playing a Boolean game, the primary aim of an agent i will
be to choose an assignment of values for the variables Φi under its
control so as to satisfy its goal γi. The difficulty is that γi may
contain variables controlled by other agents j 6= i, who will also be
trying to choose values for their variables Φj so as to get their goals
satisfied; and their goals in turn may be dependent on the variables
Φi. Note that if an agent has multiple ways of gettings its goal
achieved, then it will prefer to choose one that minimises costs; and
if an agent cannot get its goal achieved, then it simply chooses to
minimise costs. These considerations are what give Boolean games
their strategic character. For the moment, we will postpone the
formal definition of the utility functions and preferences associated
with our games.
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3. DESIGNING INCENTIVES
We can now describe in more detail the overall problem that we
consider in the remainder of the paper. Imagine a society populated
by agents Ag, with each agent i ∈ Ag having a goal γi ∈ L and
actions corresponding to valuations to Φi. We assume an external
principal has some goal Υ ∈ L that it wants the society to achieve,
and to this end, wants to incentivise the agents Ag to act collectively
so as to bring about Υ. Incentives in our model are provided by
taxation schemes.

Taxation Schemes: A taxation scheme defines additional (imposed)
costs on actions, over and above those given by the marginal cost
function c. While the cost function c is fixed and immutable for
any given Boolean game, the principal is assumed to be at liberty
to define a taxation scheme as they see fit. Agents will seek to min-
imise their overall costs, and so by assigning different levels of tax-
ation to different actions, the principal can incentivise agents away
from performing some actions and towards performing others; if
the principal designs the taxation scheme correctly, then agents are
incentivised to choose valuations (v1, . . . , vn) so as to satisfy Υ
(i.e., so that (v1, . . . , vn) |= Υ).

How exactly should we model taxation schemes? One very gen-
eral approach would be to levy taxes on the basis of outcomes. We
could model such taxes by a function τ : Ag×V1×· · ·×Vn → R≥,
with the intended interpretation that τ(i, v1, . . . , vn) is the amount
of tax that would be imposed on agent i if the outcome (v1, . . . , vn)
was selected. However, for the purposes of the present paper, we
choose a simpler, additive model of taxes, the idea being that taxes
are levied on individual actions, and the total tax imposed on an
agent i is the sum of the taxes on individual choices (assignments
of truth or falsity to a variable) made in the outcome vi chosen by i.

Formally, we therefore model a taxation scheme as a function
τ : Φ×B→ R≥, where the intended interpretation is that τ(p, b) is
the tax that would be imposed on the agent controlling p if the value
b was assigned to the Boolean variable p. The total tax paid by an
agent i in choosing a valuation vi ∈ Vi will be

∑
p∈Φi

τ(p, vi(p)).
We let τ0 denote the taxation scheme that applies no taxes to

any choice, i.e., ∀x ∈ Φ and b ∈ B, τ0(x, b) = 0. Let T (G) de-
note the set of taxation schemes over G. We make one technical
assumption in what follows, relating to the space requirements for
taxation schemes in T (G). Unless otherwise stated explicitly, we
will assume that we are restricting our attention to taxation schemes
whose values can be represented with a space requirement that is
bounded by a polynomial in the size of the game. This seems a
reasonable requirement: realistically, taxation schemes requiring
space exponential in the size of the game at hand could not be ma-
nipulated. It is important to note that this requirement relates to
the space requirements for taxes, and not to the size of taxes them-
selves: for a polynomial function f : N→ N, the value 2f (n) can be
represented using only a polynomial number of bits (i.e., f (n) bits).

Utilities and Preferences: One important assumption we make
is that while taxation schemes can influence the decision making
of rational agents, they cannot, ultimately, change the goals of an
agent. That is, if an agent has a chance to achieve its goal, it will
take it, no matter what the taxation incentives are to do otherwise.
To understand this point, and to see formally how incentives work,
we need to formally define the utility functions for agents, and
for this we require some further auxiliary definitions. First, with
a slight abuse of notation, we extend cost and taxation functions to
partial valuations as follows:

ci(vi) =
∑
p∈Φi

c(p, vi(p))

τi(vi) =
∑
p∈Φi

τ(p, vi(p))

Next, let ve
i denote the most expensive possible course of action for

agent i:

ve
i ∈ arg max

vi∈Vi
(ci(vi) + τi(vi)).

Let µi denote the cost to i of its most expensive course of action:

µi = ci(ve
i ) + τi(ve

i ).

Given these definitions, we define the utility to agent i of an out-
come (v1, . . . , vn), as follows:

ui(v1, . . . , vn) =

{
1 + µi − (ci(vi) + τi(vi)) if (v1, . . . , vn) |= γi

−(ci(vi) + τi(vi)) otherwise.

Thus utility for agent i will range from 1+µi (the best outcome for
i, where it gets its goal achieved by performing actions that have
no tax or other cost) down to −µi (where i does not get its goal
achieved but makes its most expensive choice). This definition has
the following properties:

• an agent prefers all outcomes that satisfy its goal over all
those that do not satisfy it;

• between two outcomes that satisfy its goal, an agent prefers
the one that minimises total expense (= marginal costs +
taxes); and

• between two valuations that do not satisfy its goal, an agent
prefers to minimise total expense.

It is important to note that while utility functions provide a conve-
nient numeric representation of preference relations, utility is not
transferable in our settings.

Solution Concepts: Given this formal definition of utility, we can
define solution concepts in the standard game-theoretic way [12].
In this paper, we focus on (pure) Nash equilibrium. (Of course,
other solution concepts, such as dominant strategy equilibria, might
also be considered, but for simplicity, in this paper we focus on
Nash equilibria.) We say an outcome (v1, . . . , vi, . . . , vn) is a Nash
equilibrium if for all agents i ∈ Ag, there is no v′i ∈ Vi such
that ui(v1, . . . , v′i , . . . , vn) > ui(v1, . . . , vi, . . . , vn). Let NE(G, τ)
denote the set of all Nash equilibria of the game G with taxation
scheme τ .

Before proceeding, let us consider some properties of Nash equi-
librium outcomes. First, observe that an unsuccessful agent will
choose a least cost course of action in any Nash equilibrium.

PROPOSITION 1. Suppose (v∗1, . . . , v
∗
i , . . . , v

∗
n ) ∈ NE(G, τ) is

such that i 6∈ succ(v∗1, . . . , v
∗
i , . . . , v

∗
n ). Then

v∗i ∈ arg min
vi∈Vi

ci(vi) + τi(vi)

PROOF. Agent i cannot make a choice v′i that (v∗1, . . . , v
′
i , . . . , v

∗
n ) |=

γi, otherwise ui(v∗1, . . . , v
′
i , . . . , v

∗
n ) > ui(v∗1, . . . , v

∗
i , . . . , v

∗
n ), in

which case (v∗1, . . . , v
∗
i , . . . , v

∗
n ) 6∈ NE(G, τ). So, the only way i

could profitably deviate would be by making an alternative choice
v′i that reduced costs compared to v∗i . But by definition, v∗i min-
imises i’s costs.
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The following is an obvious decision problem:

NASH OUTCOME VERIFICATION:
Instance: Boolean game G, taxation scheme τ , and
outcome (v1, . . . , vn).
Question: Is (v1, . . . , vn) ∈ NE(G, τ)?

PROPOSITION 2. NASH OUTCOME VERIFICATION is co-NP-
complete, even for two player games with τ = τ0 and where c
assigns no costs.

PROOF. Membership is immediate. For hardness, we reduce
SAT to the complement problem. Given an instance ϕ of SAT over
variables x1, . . . , xk, define a game G with Ag = {1, 2}, Φ =
{x1, . . . , xk, z}, (where z does not occur in ϕ), Φ1 = {x1, . . . , xk},
Φ2 = {z}, γ1 = ϕ, γ2 = z, let v1(y) = ⊥ for all y ∈ Φ1, and
let v2(z) = >. We claim (v1, v2) 6∈ NE(G, τ0) iff ϕ is satisfiable.
(→) Suppose (v1, v2) 6∈ NE(G, τ0). Then either agent 1 or agent
2 can benefit by deviating. Clearly agent 2 cannot benefit, since it
gets its goal achieved through v2 at no cost, which is optimal for 2.
So 1 must be able to benefit by deviating. Since it incurs no cost
through v1, the only way agent 1 could benefit would be by achiev-
ing its goal, which would imply ϕ was satisfiable. (←) Suppose ϕ
is satisfiable. Then player 1 could benefit by choosing a valuation
v′1 6= v1 satisfying ϕ. Hence (v1, v2) 6∈ NE(G, τ0).

Next, note that while being able to model costs in games explicitly
is attractive from a modelling perspective, it is, in a sense, unnec-
essary from a purely technical point of view: we can always design
a taxation scheme that simulates the costs and thus gives rise to the
same set of Nash equilibria.

PROPOSITION 3. Let G be a game with cost function c and let
τ be a taxation scheme for G. Then there exists a taxation scheme
τ ′ such that NE(G, τ) = NE(G′, τ ′) for the game G′ we obtain by
replacing c with c0 in G.

PROOF. Let τ ′(p, b) = τ(p, b) + c(p, b) for all p ∈ Φ and all
b ∈ B. Then the utility functions for (G′, τ ′) are identical to those
for (G, τ), and thus the Nash equilibria must coincide as well.

Moreover, we can show that, for the analysis of Nash equilibria,
it suffices to consider taxation schemes that only impose taxes on
making a variable true (rather than false). Call a taxation scheme τ
positive if τ(p,⊥) = 0 for all p ∈ Φ. Now consider two zero cost
games G and G′1. We call G′ a variant of G if G′ is the same as G,
except that for some p ∈ Φ all occurrences of p in the agents’ goals
γi have been replaced by ¬p (but Υ has not been changed).

PROPOSITION 4. Let G be a zero cost game and let τ be a tax-
ation scheme for that game. Then there exists a variant G′ of G and
a positive taxation scheme τ ′ such that NE(G, τ) = NE(G′, τ ′).

PROOF. We have to define G′ and τ ′ with respect to each p ∈ Φ.
For all variables p we will have τ ′(p,⊥) = 0 (as τ ′ should be
positive). So we have to define the values τ ′(p,>) and we have to
specify whether p should occur in the goal formulas in G′ as in G,
or whether p should get flipped (i.e., whether it should get rewritten
as ¬p).

1. If τ(p,>) = τ(p,⊥), then we set τ ′(p,>) = 0 and we leave
p untouched in the game.

1This restriction to games with zero cost is not required, but it does
simplify exposition; and we have just seen that for the analysis of
Nash equilibria it suffices to consider zero cost games.

2. If τ(p,>) > τ(p,⊥), then we set τ ′(p,>) = τ(p,>) −
τ(p,⊥) and we again leave p untouched in the game.

3. If τ(p,>) < τ(p,⊥), then we set τ ′(p,>) = τ(p,⊥) −
τ(p,>) and we flip p in the game.

The crucial feature of this construction is that the difference in tax
between making p true or false remains |τ(p,>)− τ(p,⊥)| in the
new game, and the new taxation scheme still “pushes in the same
direction” as before. Therefore, the utility functions for (G′, τ ′)
are identical to those for (G, τ), and thus the Nash equilibria must
coincide as well.

Incentive Design: We now come to the main problems that we
consider in the remainder of the paper. Suppose we have an agent,
which we will call the principal, who is external to a game G. The
principal is at liberty to impose taxation schemes on the game G. It
will not do this for no reason, however: it does it because it wants
to provide incentives for the agents in G to choose certain collective
outcomes. Specifically, the principal wants to incentivise the play-
ers in G to choose rationally a collective outcome that satisfies an
objective, which is represented as a propositional formula Υ over
the variables Φ of G. We refer to this general problem – trying to
find a taxation scheme that will incentivise players to choose ratio-
nally a collective outcome that satisfies a propositional formula Υ –
as the implementation problem. It inherits concepts from the theory
of Nash implementation in mechanism design [7], although our use
of Boolean games, taxation schemes, and propositional formulae to
represent objectives is quite different.

3.1 Weak Implementation
LetWI(G,Υ) denote the set of taxation schemes over G that sat-
isfy a propositional objective Υ in at least one Nash equilibrium
outcome:

WI(G,Υ) =
{τ ∈ T (G) | ∃(v1, . . . , vn) ∈ NE(G, τ) s.t. (v1, . . . , vn) |= Υ}. .

Given this definition, we can state the first basic decision prob-
lem that we consider in the remainder of the paper:

WEAK IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case thatWI(G,Υ) 6= ∅?

If the answer to the WEAK IMPLEMENTATION problem (G,Υ) is
“yes”, then we say that Υ can be weakly implemented in Nash equi-
librium (or simply: Υ can be weakly implemented in G). Let us see
an example.

EXAMPLE 1. Define a game G as follows: Ag = {1, 2}, Φ =
{p1, p2}, Φi = {pi}, γ1 = p1, γ2 = ¬p1 ∧ ¬p2, c(p1, b) = 0
for all b ∈ B, while c(p2,>) = 1 and c(p2,⊥) = 0. Define an
objective Υ = p1 ∧ p2. Now, without any taxes (i.e., with taxation
scheme τ0), there is a single Nash equilibrium, (v∗1, v

∗
2), which sat-

isfies p1 ∧ ¬p2. Agent 1 gets its goal achieved, while agent 2 does
not; and moreover (v∗1, v

∗
2) 6|= Υ. However, if we adjust τ so that

τ(p2,⊥) = 10, then we find a Nash equilibrium outcome (v′1, v
′
2)

such that (v′1, v
′
2) |= p1 ∧ p2, i.e., (v′1, v

′
2) |= Υ. Here, agent 2 is

not able to get its goal achieved, but it can, nevertheless, be incen-
tivised by taxation to make a choice that ensures the achievement
of the objective Υ.

So, what objectives Υ can be weakly implemented? At first sight, it
might appear that the satisfiability of Υ is a sufficient condition for
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implementability. Consider the following naive approach for con-
structing taxation schemes with the aim of implementing satisfiable
objectives Υ:

(*) Find a valuation v such that v |= Υ (such a valu-
ation will exist since Υ is satisfiable). Then define a
taxation scheme τ such that τ(p, b) = 0 if b = v(p)
and τ(p, b) = k otherwise, where k is a suitably large
number.

Thus, the idea is simply to make all choices other than selecting an
outcome that satisfies Υ too expensive to be rational. In fact, this
approach does not work, because of an important subtlety of the
definition of utility. In designing a taxation scheme, the principal
can perturb an agent’s choices between different valuations, but it
cannot perturb them in such a way that an agent would prefer an
outcome that does not satisfy it’s goal over an outcome that does.
We have:

PROPOSITION 5. There exist instances of the WEAK IMPLE-
MENTATION problem with satisfiable objectives Υ that cannot be
weakly implemented.

PROOF. Consider the following example. Define a game G as
follows: Ag = {1}, Φ = Φ1 = {p}, γ1 = p, c(p, b) = 0 for all
b ∈ B. Let Υ = ¬p. Suppose there is a taxation scheme τ such that
∃v1 ∈ NE(G, τ) and v1 |= Υ. Clearly, v1(p) = ⊥, so v1 6|= γ1 and
thus u1(v) = −(c1(v1) + τ(v1)) = 0. But consider the valuation
v′1(p) = >, which since v′1 |= γ1 would yield u1(v′1) = 1 + µ1 −
(c1(v′1) + τ1(v′1)) = 1. Thus u1(v′1) > u1(v1); contradiction.

What about tautologous objectives, i.e., objectives Υ such that Υ⇔
>? Again, we might be tempted to assume that tautologies are triv-
ially implementable. This is not in fact the case, however, as it may
be that NE(G, τ) = ∅ for all taxation schemes τ :

PROPOSITION 6. There exist instances of the WEAK IMPLE-
MENTATION problem with tautologous objectives Υ that cannot be
implemented.

PROOF. Define a game G with Ag = {1, 2}, Φ = {p, q}, Φ1 =
{p}, Φ2 = {q}, γ1 = (p ↔ q), γ2 = ¬(p ↔ q), and c assigns
zero cost to all actions. Clearly NE(G, τ) = ∅. For example, in
the outcome (v1, v2) in which v1(p) = > and v2(q) = >, agent
1 would prefer to change its valuation to v′2(q) = >. There is, in
fact, no taxation scheme τ such that NE(G, τ) 6= ∅.
Tautologous objectives might appear to be of little interest, but we
argue that this is not the case. Suppose we have a game G such
that NE(G, τ0) = ∅. Then, in its unmodified condition, this game
is unstable: it has no equilibria. Thus, we will refer to the prob-
lem of implementing > (= checking for the existence of a taxation
scheme that would ensure at least one Nash equilibrium outcome),
as the STABILISATION problem. The following example illustrates
STABILISATION.

EXAMPLE 2. Let Ag = {1, 2, 3}, with ϕ = {p, q, r}, Φ1 =
{p}, Φ2 = {q}, Φ3 = {r}, γ1 = >, γ2 = (q ∧ ¬p) ∨ (q ↔ r),
γ3 = (r ∧ ¬p) ∨ ¬(q ↔ r), c(p,>) = 0, c(p,⊥) = 1, and all
other costs are 0. For any outcome in which p = ⊥, agent 1 would
prefer to set p = >, so no such outcome can be stable. So, consider
outcomes (v1, v2, v3) in which p = >. Here if (v1, v2, v3) |= q↔ r
then agent 3 would prefer to deviate, while if (v1, v2, v3) 6|= q↔ r
then agent 2 would prefer to deviate. Now, consider a taxation
scheme with τ(p,>) = 10 and τ(p,⊥) = 0 and all other taxes
are 0. With this scheme, the outcome in which all variables are set
to ⊥ is a Nash equilibrium. Hence this taxation scheme stabilises
the system.

Returning to the weak implementation problem, we can derive a
sufficient condition for weak implementation, as follows.

PROPOSITION 7. For all games G and objectives Υ, if the for-
mula Υ′ is satisfiable:

Υ′ = Υ ∧
∧

i∈Ag

γi

thenWI(G,Υ) 6= ∅.
PROOF. Assume Υ′ = Υ ∧ ∧i∈Ag γi is satisfiable. Let v be a

valuation such that v |= Υ′. The basic idea is to use the approach
(*), described above, to build a taxation scheme ensuring that the
valuation v is a rational choice. For all i ∈ Ag, x ∈ Φi and b ∈ B,
define:

τ(x, b) =

{
0 if b = v(x)
1 + ci(ve

i ) otherwise.

(Recall that ve
i is the choice for i that has the highest marginal cost.)

Let (v∗1, . . . , v
∗
n ) be the outcome corresponding to the valuation

v. Obviously, (v∗1, . . . , v
∗
n ) |= Υ. We claim that (v∗1, . . . , v

∗
n ) ∈

NE(G, τ). For suppose that (v∗1, . . . , v
∗
n ) is not a Nash equilibrium.

Then some agent i can benefit by deviating. Since by construction
(v∗1, . . . , v

∗
n ) |= γi, then i can only benefit from a choice that would

decrease its overall costs. But the construction of τ ensures that
any other choice would increase taxes more than any benefit gained
by decreasing marginal costs. So, i cannot benefit by changing its
choice, and so (v∗1, . . . , v

∗
n ) is a Nash equilibrium.

We know from [2] that the problem of checking for the existence
of pure strategy Nash equilibria in cost-free Boolean games is Σp

2-
complete. It turns out that the IMPLEMENTATION problem is no
harder:

PROPOSITION 8. The STABILISATION problem is Σp
2-complete,

even if taxes are 0-bounded. As a consequence, the WEAK IMPLE-
MENTATION problem is also Σp

2-complete.
PROOF. Membership requires evaluating the following condi-

tion:
∃τ ∈ T (G),∃(v1, . . . , vn) ∈ V1 × · · · × Vn,

(v1, . . . , vn) ∈ NE(G, τ)︸ ︷︷ ︸
(∗∗)

.

Notice that the condition (∗∗) is a co-NP predicate, and that the
existential quantifiers can be computed in NP (recall that we as-
sume taxation schemes in T (G) require space at most polynomial
in the size of G, and hence guessed in non-deterministic polynomial
time). Thus the problem is in Σp

2. For hardness, we can trivially
reduce the problem of checking for the existence of pure strategy
Nash equilibria in cost-free Boolean games, which was proved Σp

2-
complete in [2, Proposition 5]. Given a cost free game as in [2], we
construct an instance of one of our games directly, setting all costs
to 0; we then ask whether the system can be stabilised with a tax
bound of 0. Clearly, the answer is “yes” iff the given Boolean game
instance has a pure strategy Nash equilibrium.

3.2 (Strong) Implementation
The fact that WI(G,Υ) 6= ∅ is good news of a kind – it tells us
that we can impose a taxation scheme such that at least one rational
(NE) outcome of the game satisfies Υ. However, it could be that
there are many taxation schemes, and only one of them satisfies Υ.
This motivates us to consider the strong implementation (or sim-
ply implementation) problem. Strong implementation corresponds
closely to the notion of Nash implementation in the mechanism de-
sign literature [7]. Let SI(G,Υ) denote the set of taxation schemes
τ over G such that:
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1. G, τ has at least one Nash equilibrium outcome;

2. all Nash equilibrium outcomes of G, τ satisfy Υ.

Formally:

SI(G,Υ) =
{τ ∈ T (G) |

NE(G, τ) 6= ∅ &
∀(v1, . . . , vn) ∈ NE(G, τ) : (v1, . . . , vn) |= Υ}.

.

This gives us the following decision problem:

IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case that SI(G,Υ) 6= ∅?

It turns out that strong implementation is no harder than weak im-
plementation:

PROPOSITION 9. IMPLEMENTATION is Σp
2-complete.

PROOF. Observe that the problem involves evaluating the fol-
lowing condition: is it the case that ∃τ ∈ T (G) : NE(G, τ) 6= ∅
and ∀(v1, . . . , vn) ∈ NE(G, τ) we have (v1, . . . , vn) |= Υ? Ex-
panding out and re-arranging, it can be seen that this is equiva-
lent to asking whether ∃τ ∈ T (G),∃(v1, . . . , vn) ∈ V1 × · · · ×
Vn, ∀(v′1, . . . , v

′
n) ∈ V1×· · ·×Vn, we have (v1, . . . , vn) ∈ NE(G, τ)

and if (v′1, . . . , v
′
n) ∈ NE(G, τ) we have (v′1, . . . , v

′
n) |= Υ. Clearly

this is a Σp
2 predicate. For hardness, we can reduce the STABILI-

SATION problem as in Proposition 8.

How areWI(G,Υ) and SI(G,Υ) related? It turns out that weak
and strong implementation are indeed different:

PROPOSITION 10.

1. For all games G and objectives Υ we have:

SI(G,Υ) ⊆ WI(G,Υ).

2. There exist games G and objectives Υ s.t.:

WI(G,Υ) 6⊆ SI(G,Υ).

PROOF. Item (1) is immediate: if a taxation scheme strongly
implements Υ in G then it weakly implements it. For item (2), we
give an example of an game and objective such that the objective
can be weakly, but not strongly implemented. Let Ag = {1, 2},
with Φ = {p, q}, Φ1 = {p},Φ2 = {q}, γ1 = γ2 = (p ↔ q),
with cost function c0. Finally, let Υ = p ∧ q. Now, the taxation
function τ0 with zero taxes will weakly implement Υ: there will be
two Nash equilibria, one satisfying p ∧ q and the other satisfying
¬(p ∨ q). However, Υ = p ∧ q cannot be strongly implemented,
because the outcome satisfying ¬(p∨q) will be a Nash equilibrium
for all taxation schemes τ . To see this, observe that for it not to be
a Nash equilibrium, one agent would benefit by deviating; but by
definition of the utility functions, such a deviation would involve
an agent moving from positive to negative utility.

Thus, to show that an objective Υ cannot be strongly implemented,
it suffices to show that it cannot be weakly implemented.

One interesting question relates to the size of taxes required to
for implementation. In some cases, it turns out that we only require
very small amounts of tax:

PROPOSITION 11. Let ε << 1 be any arbitrarily small posi-
tive number. If G is cost-free (i.e., with cost function c0) then Υ is
implementable (respectively, weakly implementable) in G iff Υ is
implementable by a taxation scheme bounded by ε.

PROOF. We first claim that for any arbitrarily small ε and any
cost-free Boolean game G there is a cost-free Boolean game such
that the taxation scheme is bounded by ε and the sets of Nash equi-
libria of the two games coincide. The idea is to define a new tax-
ation scheme τ ′ by using ε to systematically scale down taxation
values from τ . The transformation from (G, τ) to (G, τ ′) preserves
the relative order on utilities, that is, uG,τ

i (vi) ≥ uG,τ
i (v′i ) if and

only if uG,τ ′
i (vi) ≥ uG,τ ′

i (v′i ). Therefore, v = (v1, . . . , vn) is a
Nash equilibrium of (G, τ) if and only if it is a Nash equilibrium
of (G, τ ′). As a consequence, Υ is implementable (respectively,
weakly implementable) in G by taxation scheme τ if and only if it
is implementable (resp. weakly implementable) in G by τ ′.

4. TAXATION AND SOCIAL WELFARE
In attempting to design a taxation scheme τ for a Boolean game G,
the primary aim of a principal is to design the scheme so that agents
are rationally motivated to choose an outcome satisfying the objec-
tive Υ. However, if it is possible to incentivise agents to satisfy Υ,
then there will, in general, be multiple possible taxation schemes
that incentivise the agents in this way, and not all of these taxation
schemes will be equally desirable from the point of view of soci-
ety. In this section, therefore, we consider different societal criteria
that might be considered by a principal when choosing a taxation
scheme; our discussion here is inspired by the literature on axioms
for cooperative decision-making [9].

Utilitarian Social Welfare: The first idea we consider is the very
well-known concept of maximising utilitarian social welfare. For-
mally, the social welfare of an outcome (v1, . . . , vn) is denoted
sw(v1, . . . , vn):

usw(v1, . . . , vn) =
∑
i∈Ag

ui(v1, . . . , vn).

An outcome (vusw
1 , . . . , vusw

n ) that maximises utilitarian social wel-
fare is thus one satisfying:

(vusw
1 , . . . , vusw

n ) ∈ arg max
(v1,...,vn)

usw(v1, . . . , vn).

Of course, simply finding an outcome that maximises social wel-
fare in itself is not much use if agents are rationally motivated to
choose another outcome, which does not maximise social welfare.
We therefore say a taxation scheme τ weakly implements utilitarian
social welfare maximisation in a game G if

∃(v′1, . . . , v
′
n) ∈ NE(G, τ) s.t.

(v′1, . . . , v
′
n) ∈ arg max(v1,...,vn) usw(v1, . . . , vn).

We can define strong implementation in the expected way. With a
slight abuse of notation, letWI(G, usw) denote the set of taxation
schemes that weakly implement utilitarian social welfare maximi-
sation, and let SI(G, usw) denote the set of taxation schemes that
strongly implement utilitarian social welfare maximisation. Can
we always implement utilitarian social welfare maximisation? No:

PROPOSITION 12. There are games G in which utilitarian so-
cial welfare maximisation cannot be weakly implemented (and hence
cannot be strongly implemented).

PROOF. Define a game G with Ag = {1, 2, 3}, Φ = {p1, p2, p3},
Φi = {pi}, and γ1 = p1 ∨ (p2 ∧ p3), γ2 = ¬p2, γ3 = ¬p3,
c(p1,>) = 20, c(p1,⊥) = 1, c(p2,>) = 2, c(p2,⊥) = 1,
c(p3,>) = 2, c(p3,⊥) = 1. Now, with taxation scheme τ0,
there is a unique Nash equilibrium (v∗1, v

∗
2, v
∗
3) in which agent 1

sets p1 = >, agent 2 sets p2 = ⊥, agent 3 sets p3 = ⊥. We have
u1(v∗1, v

∗
2, v
∗
3) = 1 + 20−20 = 1, u2(v∗1, v

∗
2, v
∗
3) = 1 + 2−1 = 2,
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and u3(v∗1, v
∗
2, v
∗
3) = 1 + 2 − 1 = 2, and so usw(v∗1, v

∗
2, v
∗
3) =

1 + 2 + 2 = 5. Now consider the outcome (v1, v2, v3) that sat-
isfies (¬p1) ∧ p2 ∧ p3. Observe that (v1, v2, v3) |= γ1, while
(v1, v2, v3) 6|= (γ2∨γ3) We have u1(v) = 1+20−1 = 20, u2(v) =
−2, and u3(v) = −2. Thus usw(v1, v2, v3) = 20+(−2)+(−2) =
16. Clearly, outcome (v1, v2, v3) maximises social welfare, but no
taxation scheme can weakly implement this outcome: agents 2 and
3 will always prefer to get their goal achieved.

This example also illustrates that maximising utilitarian social wel-
fare is not the same as maximising the number of agents that get
their goal achieved.

Notice that because we represent objectives Υ as logical formula,
and these logical formula can completely characterise outcomes,
we can directly model the problem of implementing utilitarian so-
cial welfare maximisation as a WEAK IMPLEMENTATION problem.
The following is immediate:

PROPOSITION 13. It is possible to weakly (respectively, strongly)
implement utilitarian social welfare maximisation in game G iff
WI(G,Υusw) 6= ∅ (respectively, SI(G,Υusw) 6= ∅), where:

Υusw =
∨

(v∗1 ,...,v∗n )∈arg max(v1,...,vn)∈V1×···×Vn usw(v1,...,vn)

ϕ(v∗1 ,...,v∗n ).

From the point of view of a principal, of course, the main con-
cern is to implement an objective Υ; maximising utilitarian social
welfare is a secondary concern. A very natural aim of the principal
will therefore be to design a taxation scheme that implements an
objective while at the same time maximises the worst case utilitar-
ian social welfare of all possible Nash equilibrium outcomes. This
yields the following decision problem,

USW IMPLEMENTATION:
Instance: Boolean game G, objective Υ, social welfare
measure w ∈ R.
Question: Does there exist a taxation scheme τ ∈
SI(G,Υ) such that min{usw(v, . . . , vn) | (v1, . . . , vn) ∈
NE(G, τ)} ≥ w?

PROPOSITION 14. The USW IMPLEMENTATION problem is Σp
2-

complete.

PROOF. We reduce WEAK IMPLEMENTATION. Where G,Υ be
an instance of WEAK IMPLEMENTATION, we create an instance
G,Υ,w of USW IMPLEMENTATION with a value for w that is guar-
anteed to be below the worst case utilitarian social welfare of any
outcome.

The corresponding function problem is to compute a taxation scheme
maximising the worst case utilitarian social welfare of a Nash equi-
librium outcome satisfying Υ. We will denote such a taxation
scheme by τusw(G,Υ):

τusw(G,Υ) ∈
arg maxτ∈SI(G,Υ)

min{usw(v, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}.
Notice that in the case Υ ≡ >, finding τusw(G,Υ) reduces to

simply implementing utilitarian social welfare maximisation.

Egalitarian Social Welfare: A standard criticism of utilitarian so-
cial welfare is that it does not consider how utility is distributed
amongst members of a society; it may allocate all utility to one
agent, leaving all others with no utility. Egalitarian social welfare
provides an alternative metric: it looks at how well off the least

well off member of society is. The function esw(· · · ) gives the
egalitarian social welfare of an outcome:

esw(v1, . . . , vn) = min{ui(v1, . . . , vn) | i ∈ Ag}.
The taxation scheme implementing Υ while maximising egalitar-
ian social welfare in G is denoted τesw(G,Υ):

τesw(G,Υ) ∈
arg maxτ∈SI(G,Υ)

min{esw(v, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}.
Minimising the Total Tax Burden: An alternative to measuring
social welfare is to consider developing a taxation scheme that im-
plements objective Υ while imposing the lowest possible tax bur-
den on society. Broadly, we can think of this approach as min-
imising the degree of intervention of the principal in the operation
of society. The function tb(· · · ) gives the total tax burden of an
outcome:

tb(v1, . . . , vn) =
∑
i∈Ag

τ(vi).

We define τtb in the obvious way:

τtb ∈
arg minτ∈SI(G,Υ) max{tb(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}
It is easy to construct examples showing that minimising the total

tax burden may result in socially undesirable outcomes (but never-
theless, it seems such “least intervention” approaches are relatively
popular in human societies).

5. TAXATION AND EQUITY
It is, of course, well-known that an outcome which maximises (for
example) utilitarian social welfare may in fact be extremely unde-
sirable from the point of view of the majority of agents in a system.
For example, the social welfare maximising outcome might allo-
cate all the utility in the system to one agent, leaving all others with
none. This motivates us to consider a range of possible other no-
tions of equity with respect to taxation schemes, inspired to some
extent by the economics literature on taxation [3].

Minimising the Difference in Taxes: One very obvious (although
arguably naive) notion of taxation equity is to simply try to ensure
that agents are taxed at broadly the same level, i.e., to minimise
the maximum difference in taxes levied on different agents. Let
md(v1, . . . , vn) give the maximum difference in taxes between any
two agents in outcome (v1, . . . , vn):

md(v1, . . . , vn) =
max{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag}

where abs(x) denotes the absolute value of x. Let τmd denote a
taxation scheme that minimises this value over all possible Nash
equilibria of taxation schemes that implement Υ in G:

τmd ∈
arg minτ∈SI(G,Υ) max{md(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

Horizontal Equity: Simply aiming to apply the same level of taxes
across an entire society may appear to be equitable, but on closer
examination, it has some definite drawbacks. In particular, it does
not distinguish between agents that have their goals achieved and
those that do not. In the literature on taxation, the term horizontal
equity is used to describe the idea that those in the same circum-
stances should be taxed at the same level [3]. One could formalise
this notion in several different ways for our model, but we will fo-
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cus on the following idea: in any outcome, we have two “classes”
of agents: those that get their goal achieved and those that do not.
Thus, when looking at the differences in taxes paid, we only com-
pare the taxes of agents that get their goal achieved against other
agents that get their goal achieved, and we compare only compare
agents that do not get their goal achieved against agents that do not
get their goal achieved. The function he(· · · ) denote the maximum
difference in tax paid between agents in the same equivalence class:

he(v1, . . . , vn) =
max({abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= γi ∧ γj} ∪
{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= ¬(γi ∨ γj)})

Then τhe will denote an outcome that maximises horizontal equity
(i.e., minimises the difference in taxes paid by agents in the same
circumstances).

τmd ∈
arg minτ∈SI(G,Υ) max{he(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

6. CONCLUSIONS & FUTURE WORK
Taxation schemes, in the form of the VCG mechanism and varia-
tions thereof, have received an enormous amount of attention in the
computer science literature over the past two decades [11]. Much
of the current interest stems from the possibility, provided by VCG,
of having inventive compatible mechanisms, i.e., mechanisms that
incentivise agents to truthfully report their preferences, thereby al-
lowing the computation of outcomes that maximise social welfare.
There are, however, fundamental limits to what can be achieved
with incentive compatible mechanisms, and it therefore seems worth
considering the design of taxation schemes to incentivise behaviours
in non incentive compatible settings. After all, taxation schemes
in the real world are rarely incentive compatible. In the present
paper, we have studied the use of taxation schemes to incentivise
behaviours in Boolean games: a natural, expressive, and compact
class of logic-based games. We showed how a principal could per-
turb the preferences of agents in a Boolean game by imposing a
taxation scheme, and in so doing, how it could, in certain circum-
stances, incentivise agents to choose outcomes to satisfy some so-
cial objective Υ, represented as a Boolean formula. However, we
saw that while an agent’s preferences can be perturbed, they are
not completely malleable: no matter what the taxation scheme, an
agent would always prefer to get its goal achieved than otherwise.
This means there are limits on the extent to which preferences can
be perturbed by taxation, and hence limits on what objectives Υ
can be achieved. We studied a number of questions around the
question of implementing objectives Υ via taxation schemes, and
also discussed some issues surrounding equitable taxation.

Our work relates to a number of other topics in the multi-agent
systems community and beyond. Some consideration has been
given to how a principal can change the equilibrium strategies of
specific games by introducing penalties (a form of taxation) on
some actions of the players. Interesting applications include in-
formation security [13] and analyzing the TCP protocol. In the
multi-agent systems community, Monderer and Tennenholtz pro-
posed the notion of k implementation [8], whereby a principal can
make payments to players (negative taxes) to incentivise players
to choose certain outcomes. The setting for k-implementation is
one of payments, in contrast to the present paper, and our use of
Boolean games and logical objectives Υ is rather different. A re-
lated idea is discussed in [1], which considers how much compen-
sation would have to be paid to players in a cooperative game in
order for certain outcomes to become core stable.

We believe the results of the present paper strongly indicate that
there are important and interesting theoretical and practical ques-
tions relating to non-incentive compatible taxation schemes. Fu-
ture work might consider, for example: a complete characterisation
of the conditions under which an objective Υ can be implemented
in a game G; consideration of the computation of taxation schemes
τ for objectives Υ; and the use of taxation schemes to incentivise
behaviour in other settings, beyond the Boolean games considered
in the present paper.
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ABSTRACT
A common decision problem in multi-robot applications involves
deciding on which robot, out of a group of N robots, should travel
to a goal location, to carry out a task there. Trivially, this deci-
sion problem can be solved greedily, by selecting the robot with
the shortest expected travel time. However, this ignores the in-
herent uncertainty in path traversal times; we may prefer a robot
that is slower (but always takes the same time), over a robot that is
expected to reach the goal faster, but on occasion takes a very long
time to arrive. We make several contributions that address this chal-
lenge. First, we bring to bear economic decision-making theory, to
distinguish between different selection policies, based on risk (risk
averse, risk seeking, etc.). Second, we introduce social regret (the
difference between the actual travel time by the selected robot, and
the hypothetical time of other robots) to augment decision-making
in practice. Then, we carry out experiments in simulation and with
real robots, to demonstrate the usefulness of the selection proce-
dures under real-world settings, and find that travel-time distribu-
tions have repeating characteristics.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Economics, Performance, Experimentation

Keywords
Multi-Robot Systems, Decision-Making, Regret

1. INTRODUCTION
A common decision problem in multi-robot settings involves de-

ciding on which robot, out of a group of N robots, should travel to
a goal location, to carry out a task there. This decision repeats in
many applications: in multi-robot exploration (e.g., deciding who
should go to explore a new frontier), in package delivery robots
(e.g., deciding who should go to pick up a package), and in other
service robotics applications (e.g., in hospitals). In all of these,
robots can plan a path to reach their destination, in an environment
that is—for the most part—known to them. Thus, in principle, they
can analytically predict their travel time to any location.
Cite as: Who Goes There? Selecting a Robot to Reach a Goal, Meytal
Traub, Gal A. Kaminka and Noa Agmon, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Yolum,
Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
 91-98.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Trivially, this decision problem can be solved greedily, by select-
ing the robot with the shortest predicted travel time [12], or using
a market-based allocation scheme (see [4]). However, this ignores
the inherent variance in the actual path traversal times, due both to
motion and sensing errors, as well as multiple factors that affect a
robot’s velocity (e.g., battery level, unknown obstacles). Solutions
that have been proposed to address these challenges include using
machine learning to better predict actual travel times under vary-
ing conditions [7, 14, 8], or other path-generation techniques that
provide estimates [3, 2].

A common thread through previous work is that it focuses on
scalar predictions; a single number that denotes the expected travel-
time for each robot. Unfortunately, scalar predictions hide impor-
tant information about the uncertainty in the predictions. In partic-
ular, a scalar denoting expected cost ignores information about the
distribution of possible costs, best- and worst-case costs, etc. As a
result, guarantees on the cost of task execution are not possible.

For instance, supposed that we must send one of two robots to a
target location X . RobotA’s path toX takes 100 seconds, through
a free corridor. But if the corridor is busy with traffic (a rare occur-
rence), it may take up to 200. In contrast, robot B’s travel time is
always 150 seconds, through a specialized service way. Since the
corridor is normally clear, we might choose robot A for the task.
But if we wanted to absolutely guarantee delivery within 150 sec-
onds, we would choose robot B. Note that if we only know the
expected (i.e., mean) travel time, we cannot make the necessary
distinction that allows this decision.

In this paper, we make several contributions that address the
challenge involved in selecting a robot to go to a target location,
given that each robot has a distribution over predicted travel times:
First, we bring to bear economic decision theory that distinguishes
between different selection policies, based on risk: risk averse, risk
seeking, risk neutral, and bounded-risk selection. Second, we show
that under some conditions, the selected robot may still not be a
reasonable choice in practice. We thus introduce the use of so-
cial regret (the difference between the actual travel time by the se-
lected robot, and the hypothetical time of another robot) to augment
decision-making. Social regret is inspired by economic notions of
regret, though the definitions differ.

Then, we carry out experiments in simulation and with real
robots, to demonstrate the usefulness of the selection procedures
under real-world settings. We empirically demonstrate that even
under static conditions of the environment, when it is completely
known to the robots, sensor and actuator errors leads to significant
variance in the execution of path-following tasks. This variance
leads to non-trivial distribution of costs, which in turn necessitates
reasoning about the different optimization criteria when making the
selection between robots. Finally, we show empirically that travel
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time distributions have repeating characteristics (specifically, they
fit extreme value distributions).

2. BACKGROUND
There have been several investigations that attempt to predict

travel time or related costs. To the best of our knowledge, none
addressed complete distributions.

Heero et al. [8] present a method for learning the shortest path in
a partially-known environment by using a rectangular grid-based
map. For each path they saved four parameters: number of re-
plans, travel time, travel distance and deviation from the originally
pre-planned path. Chaudhry [3] presented an algorithm for gener-
ating paths using matrix representation of the robot’s previous path
traversals. New paths are created by applying transformations to
the matrix, given the new path requirements. Both investigations
use previous experiences to generate travel time predictions.

Sofman et al. [13] demonstrated an approach for learning Gaus-
sian distributions associated with the local environments of the
robot, to improve navigation and the travel speed. They use the
models to generalize to new environments. They do not learn travel
time distributions, and in any case as we show, travel time distribu-
tions are not Gaussian.

A related—though inverse—problem to ours is the problem of
choosing a path, out of k possible paths, for a single robot to reach
a goal location. Haigh and Veloso developed ROGUE [7]. It learns
situation-dependent rules based on the success or failure in carrying
out its tasks, and in particular, learns to take different paths depend-
ing on the time of day, expected use of the corridor, etc. ROUGE
learns these situated-dependent cost predictions by examining the
mean costs of travel for given locations. Thurn et al. developed
MINERVA, an interactive tour guide robot for the Smithsonian mu-
seum [14]. It used POMDP methods to learn and plan its motion.
The use of POMDP is similar to the risk-neutral policy, one of a
number we present in this paper.

Our notion of regret is inspired by—but different than—notions
of regret in economics. Economic regret were introduced by
Bell [1] and by Loomes and Sugden [10], who concluded that peo-
ple do not necessarily maximize their expected utility, but also con-
sider the possible loss they are willing to accept from making a
choice. They defined regret as a symmetric function with respect
to two choices: choosing A rather than B minus the gain/loss from
choosing B rather than A. In our case we calculate the regret with
respect to all other choices, yet the comparison between the sym-
metric cases is done after the calculation (hence our regret function
is asymmetric). Foster and Vohra [5] discussed regret in online
decision-making, distinguishing between internal and external re-
gret. Our definition of regret is similar to the definition of inter-
nal regret, however we evaluate with respect to the probabilities of
costs, rather than on a limited history over time.

Market-based methods are sometimes used to assigning robots
to tasks (e.g., a goal location to be reached; see [4] for a survey). In
general, these methods rely on scalar cost estimates, and do not uti-
lize information about travel cost distributions. However, they do
address self-interest on the part of the robots, while in our work we
assume robots are cooperative and truthful. Koenig et al. [9] uses a
regret function, different from ours, to improve such auctions.

3. SELECTING A ROBOT
The problem is to select a robot Ri, out of a group of N robots

R1, . . . RN , to carry out a task, while minimizing the cost. We
assume that each robot can estimate its cost of task execution with
some discrete probability distribution over k cost values c1, . . . , ck.

Each robot Ri has a vector of size k, < pi1, p
i
2, . . . , p

i
k > such that

pij is the probability that the cost of task execution (travel time,
in our case) by robot Ri is cj and

Pk
j=1 p

i
j = 1 (note that pij

can be equal to 0). We use this discrete distribution formalization
for simplicity, in lieu of the continuous distribution case which is
more natural for estimated travel times. Note also that each robot’s
travel time is an independent random variable, i.e., the probability
of robot Ri having actual cost of cj does not depend on the proba-
bility of some other robot having this or other cost.

Figure 1: Three robots in ex-
ploration task. Map was gener-
ated using laser-based SLAM.

We use the following run-
ning example throughout this
section. Figure 1 shows three
robots {R1, R2, R3}. One of
these robots is to be sent to
explore a new frontier, F1,
shown in the bottom right cor-
ner (circled). Each robot con-
structs a path (not shown) to
the new location, and reports
a distribution over estimated
travel times. As we show in
the experiments (Section 4.1),
even in a completely static en-
vironment (let alone in dynamic environments), sensor and motion
uncertainties cause some variance in this distribution.

Suppose the travel time distributions reported by the 3 robots are
as given in Table 1. Each row shows the distribution of a differ-
ent robot, with different columns denoting different costs. The last
column shows the mean (expected) cost for each robot. Given dif-
ferent decision objectives, we would choose different robots to go
to F1. For instance, R2 is most likely to reach F1 faster (has a 87%
chance of reaching F1 in 86 seconds). But R2 may also take up to
134 seconds for the same path. If we wanted to guarantee arrival
within 2 minutes, we would choose R3.

c1 =
86

c2 =
98

c3 =
110

c4 =
122

c5 =
134

E(C)

R1 p1
1 =

0
p1

2 =
0.6

p1
3 =

0.23
p1

4 =
0.17

p1
5 =

0
104.84

R2 p2
1 =

0.87
p2

2 =
0.03

p2
3 =

0
p2

4 =
0

p2
5 =

0.1
91.16

R3 p3
1 =

0.6
p3

2 =
0.22

p3
3 =

0.1
p3

4 =
0.08

p3
5 =

0
93.92

Table 1: Possible cost distribution for R1,2,3 for arriving to F1.

3.1 Risk-based selection
Choosing the robot Rc ∈ {R1, . . . , RN} to perform the given

task is dependent on a decision policy, which prefers robots—all
else being equal—based on the risk involved. For instance, if we
have a fixed amount of time to explore a given area, we may want
to select a robot that will definitely reach its target within the time
allotted. On the other hand, we may decide to take more risks,
hoping to reach the target faster than expected.

Such decision policies are well known in economic decision the-
ory. We distinguish four well-defined policies, and outline the se-
lection algorithm for each:

1. Minimize the expected travel time (risk neutral selection).

2. Minimize the expected maximal travel time (risk averse se-
lection).
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3. maximize the expected minimal travel time (risk seeking se-
lection).

4. Bound the travel time by a constant A (bounded risk).

Risk-Neutral Selection. Risk-neutral selection implies that
we select the robot that minimizes the expected (mean) travel time.
To do this, we compute the mean of every robot’s distribution, and
choose the robot whose mean is minimal

MinExpC = argmin
1≤a≤N

{
kX
i=1

pai ci}

where in case of a tie, we choose arbitrarily.

Risk-Averse Selection. In some cases we want to make sure
that the worst-case scenario is addressed first, and that we have an
absolute guarantee that the task will be carried out within a given
amount of time. To do this, we need to look at the robots whose
greatest time of arrival is minimal. Of course, the probability of
actually taking this long time must also be taken into account. Thus
what we want is to find the robot which minimizes the expected
maximal cost. This is done in Algorithm 1.

Algorithm 1 MinExpMaxCost(R)
Require: C = {c1, c2, . . . , ck}, R = {R1, R2 . . . , Rn}
v ← k
Robotslist ← {R1, R2, . . . , Rn}
while ∃pjv = phv , Rj , Rh ∈ Robotslist do
Robotslist ← argminRi∈Robotslist{piv}
v ← v − 1

return : argminRi∈Robotslist
{pi

v}

Note that ties can be broken in different ways. For instance, we
can choose the robot with the lower expected time among those that
are returned.

We use Table 1 to illustrate. The algorithm creates a list of all the
robots that available to execute the task {R1, R2, R3}, and starts
the run with the highest cost (134). It looks for two robots with
the same probability to arrive the goal in cost 134. In this example
R1 and R3 have the same probability (p1

5 = p3
5 = 0), so the loop

will be entered. The algorithm choose the robots with the minimal
probability to execute the task in cost 134 by argmin. By doing it,
all the robots with probability higher than 0 will be removed from
the list, i.e. robotR2. The algorithm then examines the next highest
cost, 122. While looking on the remaining robots {R1, R3}, their
probability to arrive the target is different, therefor the loop will not
be entered and the robot with the lowest probability to use this cost
will be returned: R3 (p1

4 = 0.17 > p3
4 = 0.08).

Risk Seeking Selection. The opposite policy to being risk
averse is to be risk seeking; to hope for the best possible travel time
of any of the robots. Here the selection is exactly the inverse of the
above: We select the robot that maximizes the expected minimal
cost. Algorithm 2 is thus the inversion of Algorithm 1.

We again use Table 1 to illustrate. The algorithm starts the run
with the lowest cost, i.e. 86. It looks for two robots with the same
probability to arrive the goal in cost 86. In this example, there is
no two such robots, and so it does not enter the loop and return the
robot with the highest probability to arrive the goal in this cost, R2

(p1
1 = 0 < p3

1 = 0.6 < p2
1 = 0.87).

Algorithm 2 MaxExpMinCost(R)
Require: C = {c1, c2, . . . , ck}, R = {R1, R2 . . . , Rn}
v ← 1
Robotslist ← {R1, R2, . . . , Rn}
while ∃pjv = phv , Rj , Rh ∈ Robotslist do
Robotslist ← argmaxRi∈Robotslist{piv}
v ← v + 1

return : argmaxRi∈Robotslist
{pi

v}

Bounded-Risk Selection. Finally, we may want to choose the
robot that maximizes the probability of reaching the target within
some limited amount of time. This is different from guaranteeing
arrival within this time; it would still be possible that in the worst
case, travel time will be longer. Nevertheless, we want to improve
its chances of success within the time allotted.

Suppose we are given a time limit T . We can then calculate for
each robot the cumulative probability that its travel time be smaller
than T , and choose the robot that maximizes this probability.

For each robot Ra, we will calculate the following probability:

P [C <= T ] =
X

ci<=T,ci∈C
pai ci

We will choose the robot that maximize the result of this equation.
Note, that if only one robot have distribution of cost bellow the con-
stant, then it will be chosen with probability of 1. If there is more
than one robot that fits this, then we can select based on any of the
other criteria (e.g., the best risk-seeking robot out of the candidates
that fit the bound T ).

3.2 Regretting the Selection
Despite the economic elegance of the selection policies de-

scribed above, choosing the robot according to the risk type will
not always give us a reasonable selection in practice. To see this,
consider the following case (Table 2). Here, we apply the risk-
averse policy, and select R2: It is guaranteed to reach the goal in
199 seconds. However, unless this risk-averseness is somehow ex-
tremely strict, R1 would have been a more reasonable choice: 90%
of the time it would have reached the goal in 1 second. And even
when it fails, it would do it in 200 seconds, a mere 1 second more
than R2.

c1 = 1 c2 = 199 c3 = 200 E(C) ESoR
R1 p1

1 = 0.9 p1
2 = 0 p1

3 = 0.1 20.9 0.1
R2 p2

1 = 0 p2
2 = 1 p2

3 = 0 199 178.2

Table 2: Robots distributions of costs to arrive at a goal. Ex-
pected cost and expected SoR are shown. Selecting R1 over R2

makes sense in practice.

Note that this is not always the case: It depends very much
on the values ci. If the ci would have been 1, 2, 200 rather than
1, 199, 200, our deliberation would not have reached the same con-
clusion, and the selection of R2 would have held.

To conduct this deliberation formally, we define the social re-
gret function, which measures, intuitively, the post-hoc payment
(in travel time) that we make, given the selected robot.

Social Regret SoR is defined as the difference between the actual
cost cr of the task executed by robot Ra and the minimal cost of
task execution in case some other robot would have executed the
task in lower cost. In other words, looking at it from the team’s
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perspective: How bad did the team do by choosing robot Ra to
perform the task, given Ra’s actual cost was cr . Formally, SoR of
robot Ra executing a task with actual cost cr is SoR(Ra, cr) =
maxj 6=i(cr − cj , r > j).

Since we do not know SoR for any specific selection (it is by def-
inition hypothetical), we compute the expected SoR for each robot
Ra, given all other robots, and all possible outcomes. The expected
social regret from choosing Ra, ESoR(Ra), is the probability that
some other robot will execute the task with lower cost multiplied
by the difference between the costs. We denote the probability that
the actual minimal cost of task execution by some robot other than
Ra is ci by PMi(Ra). Note that by minimal cost we mean that
there is no other robot that executed the task with cost cj , j < i,
and that at least one robot executed the task with cost ci. There-
fore, ESoR(Ra) = pa1 × 0 + pa2 × PM1(Ra)(c2 − c1) + pa3 ×
[PM1(Ra)(c3 − c1) + PM2(Ra)(c3 − c2)] + . . ., and formally

ESoR(Ra) =

kX
i=2

pai ×
i−1X
j=1

PMj(Ra)(ci − cj)

In order to complete the definition, it is necessary to determine
PMj(Ra), i.e., the probability that some robot Ro, 1 ≤ o ≤ N ,
o 6= a will have minimal cost of cj . This is the probability that all
robots have minimal cost higher than cj−1 minus the probability
that all robots have minimal cost higher than cj , i.e., ESoR(Ra) =

kX
i=2

pai {
i−1X
j=1

(ci − cj)[
N,h6=aY
h=1

(

kX
l=j

phl )−
N,h6=aY
h=1

(

kX
l=j+1

phl )]}

3.2.1 When Should We Overrule The Selection?
Intuitively, ESoR(Ra) measures the potential cost of selecting

Ra to carry out a task, given the estimated costs of its peers. Sup-
pose that we have two robots Ri andRj . What we want, is to com-
pare the difference in the expected SoR of the two robots, to the
gain from choosing one over the other. If this gain is smaller than
the difference in expected SoR, then we should consider switching
between them.

To illustrate, suppose Ri has been selected by some policy, and
has a predicted travel time ci (this is, for instance, its maximal
time). Suppose we want to consider switching to a different robot
Rj , with predicted cost cj . In order to compute the profit form
switching two robots we will calculate the distance between the
expected SoR of Ri and Rj , ESoR(Ri) − ESoR(Rj). We com-
pare this value to the difference in costs between Ri andRj , which
is (cj − ci), using the following function.

The Switch function SwF is defined as follows:

SwF =


1 if (ESoR(Ri)− ESoR(Rj)) > (cj − ci)
0 otherwise

If the SwF is 1, the social regret of using Ri is greater than the
expected gain of using it, and we should consider switching our se-
lection to Rj instead. We examine this in different selection poli-
cies below.

Minimize the expected maximal cost. Table 2 above de-
scribes the cost distributions for two robots, R1 and R2. As pre-
viously discussed, strict risk-averse policy would select R2 for the
task, since it is guaranteed to reach the target in 199 seconds. How-
ever, by risking just one additional second, we actually have much
better average performance if we choose R1.

SwF identifies this opportunity. The difference between c3 (R1’s
cost) and c2 (R2’s cost) is 1, while the distance between the

ESoR(R2) and ESoR(R1) is 178.1. Thus SwF is 1, and we should
consider switching our selection to the other robot.

Switching in the case of a bounded risk. Using a bounded-
risk policy, we normally select the path that is most likely to carry
out the task within the time allotted. But by bounding the cost, we
are not bounding the regret function. In other words, choosing the
best robot given the bound T , does not reduce our expected SoR for
the bounded cost, and we can still choose to switch based on SwF.

For example, table 3.2.1 shows distributions of costs of two
robots, R1 and R2. A bound of T = 7, yields selection R1 (with
cumulative likelihood 0.2), over R2 (cumulative likelihood 0). But
the expected SoR of R1 is much higher that the expected SoR of
R2. Indeed, using the SwF we might consider to change the con-
stant T to be higher. By changing the constant T from 7 to 10,
R2 will have higher probability than R1 to execute the task under
the new bound. We will pay 3 in the bound but gain 70.6 in the
expected regret (ESoR((R1)) − ESoR(R2)). The SwF will be 1
(70.6 > 3).

c1 = 1 c2 = 5 c3 = 10 c4 = 100 ESoR
R1 p1

1 = 0.1 p1
2 = 0.1 p1

3 = 0 p1
4 = 0.8 72

R2 p2
1 = 0 p2

2 = 0 p2
3 = 1 p2

4 = 0 1.4

Table 3: The bounded cost does not minimizes the expected
SoR. When should we replace

3.2.2 Minimal Expected Cost is Safe Selection
For one of the policies we introduced, it turns out that we do not

need to consider regret. We prove that by minimizing the expected
cost, the expected social regret function, SoR, is minimized as well,
and thus we would not want to switch to a different robot.

First, we show in Lemma 1 that for a pair of robots, minimizing
the expected cost leads to minimization of the expected SoR. We
then complete the proof for N robots in Theorem 2.

LEMMA 1. For two robotsR1 andR2 with discrete probability
distribution {p1

1, p
1
2, . . . , p

1
k} and {p2

1, p
2
2, . . . , p

2
k} (respectively)

over possible costs c1, . . . , ck of a given task , ci < ci+1, if the
robot minimizing the expected cost of the task execution is chosen,
then the expected social regret function SoR is minimized.

PROOF. Assume, without loss of generality, that robot R1 min-
imizes the expected cost of the task execution, i.e.,

Pk
i=1 p

1
i ci <Pk

i=1 p
2
i ci, i.e.,

Pk
i=1 cip

2
i −cip2

i > 0. We therefore need to show
that ESoR(R2)− ESoR(R1) > 0.

First, note that since N = 2 then PMj(R1) = p2
j ,

and similarly PMj(R2) = p1
j , therefore ESoR(R2) =Pk

i=2 p
2
i ×
Pi−1
j=1 p

1
j (ci− cj) (similarly ESoR(R1) =

Pk
i=2 p

1
i ×Pi−1

j=1 p
2
j (ci − cj) ).

By opening the formula of ESoR(R2) we get that
ESoR(R2) = p2

2{p1
1(c2−c1)}+p2

3{p1
1(c3−c1)+p1

2(c3−c2)}+

p2
4{p1

1(c4 − c1) + p1
2(c4 − c2) + p2

3(c4 − c3)}+ . . .
= c1{−p1

1p
2
2 − p1

1p
2
3 − p1

1p
2
4 − . . .}+ c2{p1

1p
2
2 − p1

2p
2
3 − p1

2p
2
4 −

. . .}+ c3{p1
1p

2
3 + p1

2p
2
3 − p1

3p
2
4 − . . .}+ . . .

ThereforeESoR(R2) can be represented as
Pk
j=1 cj [

Pj
i=1 p

2
jp

1
i−Pk

i=j+1 p
2
i p

1
j ] =

Pk
j=1 cj [

Pj
i=1 p

2
jp

1
i − p1

j (1 −
Pj
i=1 p

2
i )]

= −Pk
j=1 cjp

1
j +

Pk
j=1 cj [

Pj
i=1(p2

jp
1
i + p1

jp
2
i )]. Similarly,

ESoR(R1) = −Pk
j=1 cjp

2
j +

Pk
j=1 cj [

Pj
i=1(p1

jp
2
i + p2

jp
1
i )],

therefore ESoR(R2) − ESoR(R1) =
Pk
j=1(cjp

2
j − cjp

1
j ) +
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Pk
j=1 cj [

Pj
i=1(p2

jp
1
i + p1

jp
2
i )− (p1

jp
2
i + p2

jp
1
i )] =

Pk
j=1(cjp

2
j −

cjp
1
j ) and by initial assumption this is greater than 0, which com-

pletes the proof.

THEOREM 2. Given a team of N robots {R1, . . . , RN}
each with a discrete probability distribution over possible costs
v1, . . . , vk for a given task, if we choose a robot Rc that mini-
mizes the expected cost for the task, then the expected social regret
function SoR is minimized.

PROOF. (Sketch). By induction on the number of robots N .
Assume, without loss of generality, that robot R1 minimizes the
expected cost of the task execution. For the induction base case
N = 2, the theorem holds based on the Lemma 1. For the inductive
step, suppose the theorem holds for N − 1 robots, where N ≥ 3.
We will show that if we choose Rc that minimizes the expected
cost, then ESoR(RN ) is minimized.

Let {R1, ..., RN} be a team of N robots. We will assume, with-
out loss of generality that R1 minimizes the executed cost of the
task execution. Therefore in particular, R1 minimizes the expected
cost for all the possible couples of robots in the environment, i.e.,
for any given pair of robots (R1, Ri) where 1 ≤ i ≤ N , the se-
lection of R1 results in a minimal cost compared to the selection of
Ri. We will prove by contradiction thatR1 minimizes the expected
SoR for N robots.

We assume for contradiction that exist robot Ri, where R1’s
expected cost is smaller than Ri’s expected cost (EC(R1) <
EC(RN )). But according to lemma 1, Let R1 and Ri be a team
of two robots, if EC(R1) < EC(Ri) then the expected social re-
gret function SoR is minimized, R1’s expected SoR is bigger than
Ri’s expected SoR (ESoR(R1) > ESoR(Ri)). In contradiction
to the assumption. Therefore, the theorem holds for N robots,
N ≥ 2.

Table 2 gives travel times distributions of two robots to a goal.
As it shows in the table, if we will choose robot R1 by minimizing
its expected cost, we will minimizes the ESoR as well.

3.2.3 A Short-Cut to Determining SwF
The computation of ESoR for each robot, which is necessary

whenever we select robots based on a policy different from risk-
neutral selection, is tedious, and potentially time-consuming if the
distribution’s domains are large, or there are many robots.

Thankfully, it turns out that we do not need to compute ESoR
directly. To compute SwF, we want the difference ESoR(Ri) −
ESoR(Rj) for the two robotsRi, Rj . It turns out that a corollary of
Lemma 1 is that this difference is exactly the difference in expected
costs of the two robots, which is much easier to compute:

COROLLARY 3. From Lemma 1, it follows that the difference
between the expected costs of any two robots in a given team of N
robots {R1, . . . , RN} (each with a discrete probability distribution
over possible costs c1, . . . , ck) is equal to the distance between the
expected SoR of the same robots.

PROOF. Omitted for lack of space.

4. PATH TRAVEL IN PRACTICE
We experimented with simulated and physical robots, to exam-

ine the travel time distributions in practice. We use the results to
demonstrate in Section 4.1 that even under ideal conditions, robots
do indeed have variance in the time that it takes them to travel a
given path, and that this variance needs to be taken into account as
described above. In Section 4.3 we show that the travel time distri-
butions have distinctive shapes, and in general fit the Generalized

Extreme Value family of distributions, and thus the distributions
can be estimated in principle.

4.1 Experiments with Robots
We used our laboratory as the environment for the experiments.

First, we used a popular open-source laser-based SLAM package,
GMapping [6], to allow the robots to construct a map of the envi-
ronment. The results of the exploration and mapping process were
used as the basis for the experiments; this is to make sure that all
path-planning and movements were carried out using a map with
realistic quality. For path planning, we used A∗ with a fixed 4-
neighbor grid laid out over the map. If the robot discovered an
unknown obstacle on the way, it tried to go around the obstacle un-
til a timeout occurred, in this case a new path was planned from the
current location to the goal, given the new information about the
discovered obstacle.

Physical Robot Experiments. We utilized the RV-
400 differential-drive robots (see Figure 2) for exper-
iments in our lab. The RV-400 was equipped with
a Hokuyu UTM-30LX laser, with nominal range of

Figure 2: RV400 robot.

30m (though in practice effective
range was slightly smaller). The
RV-400 robot has an approximate
size 40× 40 (width, length), and
so this was used as the grid cell-
size. We kept the environment
static, with no obstacles or other
changes to the environment that
are unknown to the robot.

Figure 3 shows the environ-
ment used for the experiments, as
mapped by the robot. We tested
three paths: A short 6.4m path
(2 to 3), with a narrow pass; an
8m path (1 to 2), through open
space; and a 14.6m path which
combined both (1 to 3). We mea-
sured the travel time in each of these paths 10 times.

Figure 3: The mapped lab
used in the robotics experi-
ments.

Figures 4(a), 4(b), and 4(c)
show the distribution, in his-
togram form, of travel time
that were measured in these
experiments, for the 6.4m,
8m, and 14m paths. For each
of the settings, the planned
path was identical, and the en-
vironment kept strictly static.
The associated figure shows
the path traversal time (X

axis) versus its probability (Y Axis). Despite these ideal condi-
tions, the robot took varying amount of time getting to the target
locations. This variance is caused because of inaccuracies in the
movement and sensing, which lead to actual execution of the path
to differ between runs. In addition, changes to battery power also
affect the robots linear and angular velocities. Indeed, Figure 4(b)
does not include four data points that were removed from the data,
because in their associated runs the robot operated with a faulty
battery, and was almost twice as slow as in the other runs.

Simulation Experiments. We also conducted ex-
periments in simulation, where we scaled up the
number and complexity of the paths. We utilized
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Figure 4: RV-400 Travel Time Distributions.

the Webots 3D physics-based robotics simulator [11]

Figure 5: The mapped simu-
lated environment.

to create the virtual world
which the robots mapped and
navigated as part of the exper-
iments (see Fig. 5 for the re-
sulting map). Webots has high
fidelity, and models realistic
sensor and motion errors, as
we demonstrate below. In the
simulation experiments, we
simulated three RV-400 robots
and their Hokuyu lasers. The
openings between the rooms
are doors which were open or close according to the evaluated cri-
teria. Minor obstacles (boxes to be bypassed) are not shown. The
doorway between the rooms is 1.2m wide.

The following configurations were used in the simulation exper-
iments: From every robot location, to targets location A,B,C (9
combinations), and robots R1, R3 to target location D. we tested
4 obstacle settings: (i) static world (i.e., conforming to the map);
(ii) with an unknown obstacle (a box placed on the planned path,
that can be avoided and bypassed); (iii) an unexpected closed door
blocking the original path (if the path was through an opening); and
(iv) two unexpected closed doors blocking the original path, then
a re-planned path. Each of the configuration (11 initial-target lo-
cation pairs, 4 obstacle settings) was repeated 30 times. In all the
experiments the robot had a path to the last target.

A small subset of the results from the simulation experiments are
shown in Figures 6(a)–6(c). These are the results for one robot R1,
and for a single target point A (results for point B are shown later;
other robots and points omitted for lack of space). Our intent is to
demonstrate the variance that exists even under idealized simulated
conditions.

Figure 6(a) shows the distribution of traversal times of R1 for
arriving at target A in a static world. As seen in the figure, even
for a static world, and even under the relative noise-free world of
simulation, there is variance in traversal time, due to motion and
sensing uncertainties.

Of course, when choosing a robot for executing a task the world
cannot typically be assumed to be static. These increase the vari-
ance in the actual travel times. Figure 6(b) shows the wider distri-
bution of traversal times when an obstacle was added to the path of
the robot, in 50% of 60 cases (the X axis scale is 80 to 350). This
obstacle could be locally avoided (bypassed), and thus only a minor
change was required to the pre-planned path. Note, that all the dis-
tribution of the static environment become a part of the first bin of
the new distribution. Figure 6(c) shows the even wider distribution

when we also take into account a door that was closed in a third of
90 cases, and which blocked the original path. This requires a new
path to be planned and executed from the point where the closed
door was discovered, to the target location.

The results above are similar to the distributions collected for
the other experiment configurations, i.e., for other robots and other
target locations. In all cases, even for paths that involve very few
heading changes, and no obstacles or narrow passages, we see dis-
tributions that require reasoning about which robots to select, given
the decision-maker’s policy towards risk.

4.2 Selection Based on Experiment Data
We use the collected data to execute the decision-making policies

described earlier, in both the simulated and physical world. To do
this, we discretized the collected data into bins of approximately 25
seconds, and chose the robots according to the different decision
policies.

Simulation Experiments. Robots {R1, R2, R3} compete on
reaching targets A,B,C, and robots {R1, R3} on target D. Table
4 shows the chosen robot using each of the decision policies.

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)

A R3 R3 R1

B R3 R3 R2

C R2 R2 R2

D R1 R3 R3

Table 4: Selected robots for targets, according to each policy.

We find that indeed, the selected robot is not always the closest
one to the target. For instance, R3 is closest to point A. But when
selecting a risk-seeking policy, R1 is chosen. Likewise, R3 is clos-
est to point B, and yet R2 is selected when a risk-seeking policy.
R3 is also closer to D, yet R1 is selected in the risk-neutral pol-
icy. This is a direct result of the uncertainty inherent in the robots’
movements.

We note that the selected robots for points {A, B, C} in the
risk-averse MinExpMaxC criteria were the same as the robots
with the minimal expected cost. This is because the robots were in
the same rooms with the target locations, and thus the closing and
opening of doors–which would otherwise create large worst case
travel times (and therefore large expected maximal times)–did not
affect the ability of the robots to reach these targets.

Table 5 shows a case where an overruling of the selected robot is
recommended by the SwF function. When selecting which of the
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(a) Static environment. The X axis scale is 80 to
100.

(b) Avoidable obstacle in 50% of trials. The X axis
scale is 80 to 350.

(c) Moving in a static environment, facing occa-
sional avoidable obstacles, and sometimes needing
to re-plan a path. The X axis scale is 80 to 1050.

Figure 6: R1 Travel Time Distributions.

robots should reach target A through a risk-seeking policy, both
robots R1, R2 have a minimal cost of 88. However, robot R1 is
chosen because its probability for this cost is a bit higher.

p88 ESoR
R1 0.438679 84.5507
R2 0.433333 49.2834
R3 0 29.0444

Table 5: The robots expected minimal cost, and expected SoR
for the minimal cost of 88, while competing on point A.

But looking at the ESoR of the robots, it is clear that R2 has
lower expected regret than R1. Plugging these values into the SwF
function yields the following:

(ESoR(R1)− ESoR(R2)) = 84.5507− 49.2834 (1)
= 35.2673 (2)
> 0 (3)
= 88− 88 (4)
= min

C
(R2)−min

C
(R1) (5)

In this case, SwF returns 1, and we should consider selecting R2

despite its slightly higher expected minimal traversal time.

Physical Robot Experiments. We utilized the RV-400 data
in similar experiments. Abstracting away from the map, we used
the distributions for traversal times of 6.4m, 8m and 14.6m paths,
for three robots: RV1 positioned 6.4m away from a target point,
RV2 positioned 8m away from the same point, and RV3 which is
positioned 14.6m away. Table 6 shows the chosen robot in each of
the decision policies.

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)
RV1 RV2 RV1

Table 6: Selected physical robot, according to each policy.

The results show that in the physical world as well, the closest
robot is not always the robot to choose. Due to the narrow pass
in the 6.4m path, the worst case travel time for RV1 was worse
(though less likely) than the worst case of RV2 (which traveled 8m
through open space).

4.3 Parametric travel time distributions
The experiments conducted reveal repeating characteristics of

the emerging distributions, in particular their sharp lower bound

and long tail. This is a result of having a clear lower bound on path
traversal time (there’s a limit as to how quickly a path can be tra-
versed), and the increasingly rare (but still occurring) long arrival
times, due to getting stuck by unforeseen obstacles, decreasing bat-
tery levels, etc. On such occasions, robots would re-plan their path
several times on the way to the goal, and would sometimes need to
traverse long distances to bypass a closed door.

We thus hypothesized that in fact known (parametrized) heavy-
tailed continuous distributions may fit the data, allowing for im-
proved prediction. We began experimentally, by fitting familiar
distributions to the data, and using the Kolmogorov-Smirnov and
Anderson-Darling fitness tests to determine the best-fitting distri-
butions.

The fitness results for the best three distributions are shown in
Table 7. The table shows the average matching functions, for all
the paths that were followed, for the top three matching functions
that were found.

Gen. Log-
Logistic

Gen. Extreme
Value

Frechet (3P )

Kolmogorov-
Smirnov

0.132 0.135 0.136

Anderson-
Darling

1.051 1.512 0.69

Table 7: The average fitness of the top three matching distribu-
tions using Kolmogorov-Smirnov & Anderson-Darling tests.

The three best-fitting functions were found to be the General
Log-Logistic (also called the 3-parameter Log-Logistic distribu-
tion), the General Extreme Value, a limit distribution of the max-
imum of a sequence of independent random variables which are
identically distributed. and Frechet (3P ), a special case of the
General Extreme Value distribution. The table shows that The
General Log-Logistic distribution has the best average fitness using
Kolmogorov-Smirnov test, and Frechet (3P ) has the best average
fitness using Anderson-Darling test. Both of them, however, are
strongly related (special cases) of the General Extreme Value dis-
tribution. Figures 6(a), 6(b), 6(c) show a curve which is the best-fit
Log-Logistic continuous probability distribution fitting the simula-
tion experiments data. In addition, Figure 7 shows the travel times
distribution of robot R1, traveling to point B in a static environ-
ment, 132 times. As seen is the figure, although the number of
experiments grow the log-logistic distribution is a good fit.

We focused on the General Log-Logistic distribution. It has
three parameters: shape, scale and shift. The shift parameter was
found to be almost perfectly linearly correlated with the the min-
imal travel time of each one on the paths that were traveled. Fig-
ure 8 shows the relation between the minimal execution time of
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Figure 7: Distribution of R1’s travel times to point B in a static
environment, over 132 path following experiments. The line
shows the fitted log-logistic distribution.

all the paths that were traveled, and the shift parameter of the Gen-
eral Log-Logistic distribution that was fitted to the histogram of the
path travel times. It is clear from the figure that there exist a direct
relation between the two.

Figure 8: Measured minimal travel time versus fitted shift.

Looking on the other parameters, we found that the shape param-
eter was quite steady on values between 0.89304 to 3.3684 while
its declaration is (−∞,∞). We did not find a consistent value for
the scale parameter.

5. DISCUSSION AND FUTURE WORK
The techniques developed in this paper allow robot selection that

maintains bounds and guarantees as to travel times, even under un-
certainty. We showed that even under static environment condi-
tions, it takes the robots varying amount of time getting to a target
location. Due to this variance, choosing a robot to preform a task
cannot be done based on greedy selection (shortest path).

Thus, we introduced a decision making technique, inspired by
economic decision theory, to distinguish between different poli-
cies based on risk. The experiments in simulated and physical
robots demonstrated that different robots were chosen according to
the different policies because of time travel variance: And indeed
sometimes the closest robot is not the one to be selected, given
the decision-making policy. Furthermore, we have shown that un-
der some conditions, choosing the robot according to the selection
policies will not always give a reasonable selection in practice. We
defined the social regret function SoR which measure the cost of
choosing specific robot over all other robot, and allow us to eval-
uate the gain from switching the chosen robot to a robot that will
preform better. In our future work we plan to expand this tech-
niques for allocating teams of N robots to K tasks.

While examining the experiments’ data, we found that the data
distributions had a good fit to the family of General Extreme Value
distributions, and specifically to the General Log-Logistic distribu-
tion. We plan to explore this fit and learn to predict the parameters
of the distributions for future real world paths and obstacles.
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ABSTRACT
Autonomous mobile robots are considered a valuable technology
for search and rescue applications, where an initially unknown en-
vironment has to be explored to locate human victims. In thissce-
nario, robots exploit exploration strategies to autonomously move
around the environment. Most of the strategies proposed in litera-
ture are based on the idea of evaluating a number of candidatelo-
cations according toad hocutility functions that combine different
criteria. In this paper, we show some of the advantages of using a
more theoretically-grounded approach, based on Multi-Criteria De-
cision Making (MCDM), to define exploration strategies for robots
employed in search and rescue applications. We implementedsome
MCDM-based exploration strategies within an existing robot con-
troller and we experimentally evaluated their performancein a sim-
ulated environment.
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1. INTRODUCTION
In search and rescue with autonomous mobile robots, an ini-

tially unknown environment has to be explored and searched for
human victims [4]. Exploration strategiesthat drive the robots
around the partially known environment on the basis of the avail-
able knowledge are fundamental for achieving an effective behav-
ior. The mainstream approach for developing exploration strategies
is based on the idea of incrementally exploring the environment
by evaluating a number of candidate observation locations accord-
ing to an utility function and by selecting, at each step, thenext
best observation location. Exploration strategies differin the util-
ity functions they use to evaluate candidate locations. Although
in multirobot exploration the evaluation of candidate observation
locations is closely related to their coordinated allocations to the
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available robots, in this paper we focus only on evaluation of can-
didate observation locations. In systems proposed in literature, this
evaluation is performed using utility functions that aggregate mul-
tiple criteria measuring different aspects of the locations and that
are rarely based on a theoretical ground.

In this paper, we apply a decision-theoretical tool, calledMulti-
Criteria Decision Making(MCDM), to define exploration strate-
gies for search and rescue. Using decision-theoretical tools, on the
one hand, contributes to the further assessment of the science of
robotics and, on the other hand, provides practical advantages in
the definition of effective exploration strategies. Although MCDM
has been already applied to map building with a single robot [5], we
deem that its application to multirobot search and rescue represents
a significant contribution since it addresses a more challenging set-
ting for exploration strategies, where the primary objective is not
to build an accurate map of the physical space but to search the en-
vironment for locating the largest number of victims in a limited
amount of time. Differently from map building, in search andres-
cue settings operations must be performed quickly, privileging the
amount of explored area over the map quality. To the best of our
knowledge, this is the first attempt to apply MCDM to search and
rescue.

We consider a situation in which a team of robots have to search
an initially unknown environment for victims. Since noa priori
knowledge about the possible locations of the victims is assumed to
be available, we can reduce the problem of maximizing the number
of victims found in a given time interval to the problem of maxi-
mizing the amount of area covered by robots’ sensors in the same
time interval. Broadly speaking, the robots operate according to the
following steps: (a) they perceive the surrounding environment, (b)
they integrate the perceived data within a map representingthe en-
vironment known so far, (c) they decide where to go next, and (d)
they go there and start again from (a). We propose to use MCDM
for addressing step (c), namely for defining the explorationstrat-
egy. In our experiments, we implemented the proposed approach
as a modification of a publicly available controller used forthe
RoboCup Rescue Virtual Robots Competition [18]. In this way,
on the one hand, we can focus on the development of exploration
strategies (step (c)) exploiting an already tested framework for steps
(a), (b), and (d) and, on the other hand, we can fairly compareour
strategies with that originally used in [18].

2. RELATED WORK
Robotic explorationis a broad concept that can be defined as a

process that discovers unknown features in environments bymeans
of mobile robots. Exploration is employed in several tasks,like
map building [16], search and rescue [15], and coverage [8].For
example, in map building the features to be discovered are the ob-
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stacles and the free space, while in search and rescue can be the lo-
cations of victims or fires.Exploration strategiesare used to move
autonomous robots around environments in order to discovertheir
features. In this paper, we are interested in exploration strategies
employed for discovering the physical structure of environments
that are initially unknown. In these scenarios, we do not know ex
ante the complete set of the possible locations that the robots can
reach. We explicitly note that, as a consequence, we cannot employ
some exploration strategies, like those proposed in [11] and [13],
which require ana priori knowledge on the possible observation
locations. In the following, we survey a representative sample of
the countless exploration strategies that have been proposed in lit-
erature.

Unsurprisingly, most of the work on exploration strategiesfor
discovering the physical structure of environments has been done
for map building. The mainstream approach models exploration
as an incremental Next Best View (NBV) process, i.e., a repeated
greedy selection of the next best observation location. Usually, at
each step, an NBV system considers a number of candidate loca-
tions on the frontier between the known free space and the unex-
plored part of the environment (in such a way they are reachable
from the current position of the robot) and selects the best one [20].
The most important feature of an exploration strategy is howit eval-
uates candidate locations in order to select the best one.

In evaluating candidate locations, different criteria canbe used.
A simple one is the distance from the current position of the robot [20],
according to which the best observation location is the nearest one.
However, most works combine different criteria in more complex
utility functions. For example, in [14] the cost of reachinga can-
didate locationp is linearly combined with its benefit. Measuring
the cost as the distanced(p) of p from the current location of the
robot and the benefit as an estimate of the new informationA(p)
acquirable fromp, the global utility ofp is computed as:

u(p) = A(p)− βd(p), (1)

whereβ balances the relative weight of benefit versus cost (authors
show that choosingβ within the interval[0.01, 50] does not causes
significant variations in the exploration performance). Another ex-
ample of combination of different criteria is [9], in which distance
d(p) and the expected information gainA(p) of a candidate loca-
tion p are combined in an exponential function

u(p) = A(p)e−λd(p) (2)

(whereλ is a parameter that weights the two criteria). In [1], a
technique based on relative entropy is used to combine traveling
cost and expected information gain. In [17], several criteria (such
as uncertainty in landmark recognition and number of visible fea-
tures) are combined in a multiplicative function. In [12], traveling
cost to reach a location is used as the main criterion for evaluating
candidate locations, while the utility of the locations (calculated
according to the proximity of other robots) is used as a tie-breaker.

The above strategies aggregate different criteria in utility func-
tions that are definedad hocand are strongly dependent on the cri-
teria they combine. In [2], the authors dealt with this problem and
proposed a more theoretically-grounded approach based on multi-
objective optimization, in which the best candidate location is se-
lected on the Pareto frontier. Besides distance and expected infor-
mation gain, also overlap is taken into account. This criterion is
related to the amount of old information that will be acquired again
from a candidate location. Maximizing the overlap can improve the
self-localization of the robot. The work presented in this paper fol-
lows the same theoretically-grounded approach and, as described

in Sections 3 and 4, tries to employ MCDM in search and rescue
applications.

Compared with exploration strategies for map building, only few
works proposed exploration strategies for autonomous search and
rescue. A work that explicitly addressed this problem is [18], which
proposes to combine the distanced(p), the expected information
gainA(p), and the probability of a successful communicationP (p)
from a candidate locationp in the following utility function:

u(p) =
A(p)P (p)

d(p)
. (3)

This strategy has been employed, with good results, in different
RoboCup Rescue Virtual Robots Competitions. In this work we
experimentally compare the exploration strategies developed with
our approach with that proposed in [18], which is explicitlyde-
voted to the same goal. Another exploration strategy for search and
rescue is reported in [6], where a formalism based on Petri nets is
used to exploita priori information about the victims’ distribution
(e.g., if they are uniformly spread or concentrated in few clusters)
to improve the search.

3. MULTI-CRITERIA DECISION MAKING
When designing an effective exploration strategy for exploring

initially unknown environments, the main challenge is to achieve
a good global (long-term) performance by means of local (short-
term) decisions that are made on the basis of partial knowledge.
In our scenario, the partial knowledge is given by the current map
built by the robots and short-term decisions are made by evaluating
a number of alternatives, i.e., candidate observation locations on
the frontiers between the explored and unexplored space, and by
selecting the best one. The “goodness” of an observation location
can be measured with respect to multiple criteria, as we haveseen
in the previous section. The number of criteria that can be con-
sidered is, in principle, unlimited. As the tasks the robotsperform
become more complex (think, for example, of an exploring robot
that has also to find victims, localize fire sources, communicate
with a base station, and so on), this number is likely to increase.

In this work, we explicitly consider the evaluation of candidate
locations as a multi-objective (or multi-criteria) optimization prob-
lem. We have a setC of candidate locations among which we want
to choose the “best” one. We denote the set ofn criteria considered
in the evaluation process asN = {1, 2, . . . , n}. Given a candidate
p ∈ C we denote withui(p) ∈ I its utility with respect to criterion
i ∈ N , whereI ⊆ R represents the set of possible utility values.
Note that we assume that all utilities have values over the same set
I . The larger the utilityui(p), the better locationp satisfies crite-
rion i. Each candidatep can be associated to a vector ofn elements,
namely its utilities,up = (u1(p), u2(p), . . . , un(p)). The problem
of selecting the “best” candidate observation location comes down
to the problem of selecting the optimal candidate locationp∗ from
C.

Dealing with this multi-criteria scenario, the optimalityof candi-
dates involves the concept ofPareto frontier. Formally, the Pareto
frontier of C can be defined as the largest subsetP ⊆ C such that
for everyp ∈ P there is not any candidateq ∈ C with ui(q) >
ui(p) for all i ∈ N . A candidateq ∈ C \ P is said to bePareto-
dominatedand can be safely discarded, since at least a preferable
candidate is guaranteed to exist inP . Therefore, choosing a candi-
date on the Pareto frontierP is a fundamental requirement to select
a “good” candidate. The actual selection is performed via aglobal
utility functionu(p) = f(up) = f(u1(p), u2(p), . . . , un(p)) that
combines together utilities in an aggregate value (well-known ex-
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amples are the arithmetic and weighted mean). Since comput-
ing the Pareto frontierP can be computationally expensive (es-
pecially when the number of candidates grows), the selection is
usually done by looking directly at the initial setC, namelyp∗ =
arg maxp∈C f(up). It can be easily shown that iff() is a non-
decreasing function in every one of itsn arguments, thenp∗ is guar-
anteed to be on the Pareto frontier. As the previous section shows,
the mainstream approach followed in literature to define global util-
ity functions is to combine a pre-determined number of criteria in
an ad hocform. Despite it is not explicitly mentioned, almost all
these methods are Pareto optimal, since a non-decreasing global
utility function is a “natural” choice.

In the following section, we describe Multi-Criteria Decision
Making (MCDM) as a general method for defining global utility
functions and we discuss some of its advantages and properties
that make it a valid tool for defining exploration strategiesfor au-
tonomous mobile robots.

3.1 Combining Criteria with the Choquet In-
tegral

We introduce and motivate the proposal of MCDM by consider-
ing the important aspect of the dependency between criteria, that is
often neglected by global utility functions. Criteria thatare used to
evaluate candidate locations are not always independent. For exam-
ple, think of criteria that estimate the same feature using different
methods, like two criteria that estimate the distance of a candidate
location from the current position of the robot according tothe Eu-
clidean and Manhattan distance. Intuitively, when combining them
into a global utility function, their overall contributionto the global
utility of a candidate location should be less than the sum oftheir
individual ones. In this case, aredundancyrelation holds between
criteria. A dual situation occurs when two or more criteria are very
different and, in general, can be hardly optimized together. In this
case, asynergyrelation holds between criteria, and their overall
contribution should be considered larger than the sum of theindi-
vidual ones. An example involves the estimated informationgain
and the overlap. These criteria can be considered synergic,since
large utilities for both are very difficult to achieve by a single candi-
date and candidates that satisfy both criteria reasonably well should
be preferred to candidates that satisfy them in an unbalanced way.
In order to consider these issues we need a way to define a global
utility function that accounts for redundancy and synergy between
criteria when combining them. MCDM provides a general aggre-
gation method which can deal with this and with other aspectsand
that exploits theChoquet integralto compute global utilities [10].
Let us introduce it.

We first introduce a (total) functionµ : P(N) → [0, 1] (P(N) is
the power set of setN ) with the following properties:µ({∅}) = 0,
µ(N) = 1, and if A ⊂ B ⊂ N , thenµ(A) ≤ µ(B). That is,µ
is a normalizedfuzzy measureon the set of criteriaN that will be
used to associate a weight to each group of criteria. The weights
specified by the definition ofµ describe the dependency relations
that hold for each group of criteria. Criteria belonging to agroup
G ⊆ N are said to be redundant ifµ(G) <

∑
i∈G µ(i), synergic

if µ(G) >
∑

i∈G µ(i), and independent otherwise.
The global utilityf(up) for a candidatep is computed as the

discrete Choquet integralC() with respect to the fuzzy measureµ
usingp’s utilities:

f(up) = C(up) =

n∑

j=1

(u(j)(p)− u(j−1)(p))µ(A(j)), (4)

where(j) ∈ N indicates thej-th criterion according to an increas-

ing ordering with respect to utilities, i.e., after that criteria have
been permutated to have, for candidatep,

u(1)(p) ≤ . . . ≤ u(n)(p) ≤ 1.

It is assumed thatu(0)(p) = 0. Finally, the setA(j) is defined as

A(j) = {i ∈ N |u(j)(p) ≤ ui(p) ≤ u(n)(p)}.
UsingC(up) to compute global utilities allows to consider criteria’s
importance and their mutual dependency relations.

3.2 Some Properties of MCDM
In this section, we discuss a number of properties of the proposed

MCDM approach. A first general feature of the Choquet integral is
that, differently fromad hocglobal utility functions, it can be ap-
plied to any number of criteria. Indeed, rigorously speaking, C() as
defined in (4) is not an aggregation function, for which the number
of arguments is fixeda priori, but anaggregation operator. An ag-
gregation operator is a collection of aggregation functions, one for
each numbern of criteria to be combined. For example, the arith-
metic and weighted means are aggregation operators since they ba-
sically specify an aggregation technique for every possible number
of criteria, while global utility functions like (2) and (3)are aggre-
gation functions suitable only for the set of criteria they have been
tailored for. In this sense, we can say that an aggregation operator is
more general than an aggregation function. An obvious advantage
of using an aggregation operator instead of an aggregation function
is the increased flexibility, because adding and removing criteria
can be accomplished preserving the way in which they are com-
bined. As we will discuss in the next sections, this feature enables
easy refinements of the exploration strategies and facilitates some
experimental activities such as assessing the impact of removing or
including a criterion.
C(up) enjoys several other properties [10]. Here, we briefly dis-

cuss some properties that are significant in connection withthe def-
inition of exploration strategies and that characterize MCDM as a
suitable approach to define global utility functions.

Increasing monotonicity in each argument
For allup, u′p ∈ In,

• if ∀i ∈ N, ui(p) ≤ u′i(p), thenC(up) ≤ C(u′p),

• if ∀i ∈ N, ui(p) < u′i(p), thenC(up) < C(u′p).

This property can be exploited to guarantee that the maximization
of C() over the set of candidate locationsC will select a Pareto op-
timal candidate. As we discussed before, almost all aggregation
functions proposed in literature for exploration strategies satisfy
this property.

Stability for linear transformations
For all up ∈ In andr, s ∈ R with r > 0 such that, for alli ∈ N ,
rui(p) + s ∈ I , it holds that

C(ru1(p) + s, ru2(p) + s, . . . , run(p) + s) =

rC(u1(p), u2(p), . . . , un(p)) + s.

This property ensures the independence of the particular scale in
which utilities are measured (up to a linear transformation). In this
paper we assume, without any loss of generality, that utilities have
values inI = [0, 1]; however, any other common scale would have
been equivalent. In general, this property is rarely satisfied by ag-
gregation functions proposed in literature, where often criteria are
measured with respect to different scales and combined without any
normalization (see, for example, [9] and [18]).
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Continuity
Givenn, the corresponding aggregation functionC() is continuous
on In. This property prevents the global utility to exhibit irregular
variations with respect to small changes of the utility values that
are aggregated. When the global utility is computed by adopting
exponential or fractional functions (see (2) and (3)), thisproperty
is satisfied.

Idempotence
If, for a givenp, all ui(p) = u ∈ I , then

C(u1(p), u2(p), . . . , un(p)) = C(u, u, . . . , u) = u.

This property assures a sort of consistency, namely, if all the criteria
are satisfied with the same degreeu, then the global utility isu.
This property is rarely exhibited by the aggregation functions used
in literature, with the drawback that the particular form inwhich
criteria are combined can introduce a bias in the evaluation, for
example by implicitly giving more importance to some criteria to
the detriment of others.

3.3 Generality of MCDM
Another important advantage of MCDM is its generality. In-

deed, different aggregation operators turn out to be particular cases
of the Choquet integral, up to a proper choice of weights for the
fuzzy measureµ. For instance, a class of aggregation operators that
can be expressed with the Choquet integral areweighted means. A
weighted mean is defined as

∑n
i=1 wiui(p) wherewi is the weight

of criterion i and
∑n

i=1 wi = 1. This aggregation operator can
be obtained from Choquet integral by settingµ({i}) = wi for all
i ∈ N and by constrainingµ to be additive:

µ(S) =
∑

i∈S

wi ∀S ∈ P(N).

Note that additivity ofµ reflects independence between criteria,
namely joint contributions are exactly the sum of marginal ones.
Therefore, weighted means should be considered suitable when
such independence between criteria holds. Moreover, the arith-
metic mean and thek-th criterion projection can be obtained as fur-
ther particular cases of weighted means by imposingwi = 1/n ∀i ∈
N andwk = 1, wi = 0 ∀i ∈ N \ {k}, respectively. In the con-
text of exploration, this means that the strategy proposed in [14]
and based on (1) can be viewed as a special case of MCDM-based
exploration strategies. Moreover, also the global utilityfunction
proposed in [12] can be viewed as a special case of MCDM, basi-
cally being ak-th criterion projection.

A second class of aggregation operators that are special cases
of the Choquet integral is composed ofordered weighted means.
An ordered weighted mean is defined as

∑n
j=1 wju(j)(p) (i.e., a

weighted mean in whichwj is the weight of thej-th criterion ac-
cording to an increasing ordering of utilities). An orderedweighted
mean aggregation operator can be obtained from the Choquet inte-
gral by settingµ({i}) = wi for all i ∈ N and by definingµ(S)
according to:

µ(S) =
n∑

i=n−|S|+1

wi ∀S ∈ P(N).

Some further particular cases of ordered weighted means that can
be modeled with a proper choice of weightswi are the minimum
and maximum (whenw1 = 1 andwn = 1, respectively), the me-
dian (whenw n

2
= w n

2 +1 = 0.5 andn is even or whenw n+1
2

= 1

andn is odd), and the arithmetic mean excluding the two extremes

(whenw1 = wn = 0 andwi = 1
n−2

∀i ∈ N \ {1, n}). This
shows the possibility offered by MCDM of obtaining completely
different global utility functions (and, as a consequence,different
behaviors of the robot) by simply setting weightsµ. In this sense,
we say that MCDM constitutes a general approach for defining ex-
ploration strategies.

4. MCDM-BASED EXPLORATION STRATE-
GIES FOR SEARCH AND RESCUE

We apply the proposed MCDM approach to search and rescue,
where mobile robots are deployed in an initially unknown environ-
ment with the goal to explore it and locate human victims within a
limited amount of time. As discussed in Section 1, this appliation
domain offers a challenging scenario to test exploration strategies.

We implemented MCDM-based exploration strategies in an ex-
isting robot controller for search and rescue applications. We looked
at the participants to the RoboCup Rescue Virtual Robots Competi-
tion where different teams compete in developing simulatedrobotic
platforms operating in Urban Search And Rescue scenarios simu-
lated in USARSim [7] (an high fidelity 3D robot simulator). From
an analysis based on availability of code and performance obtained
in the competition, we selected the controller developed bythe Am-
sterdam and Oxford Universities (Amsterdam Oxford Joint Rescue
Forces, AOJRF1) for the 2009 competition [19]. The reasons for
implementing MCDM-based exploration strategies in an existing
controller are that we can focus only on the exploration strategies,
exploiting existing and tested methods for navigation, localization,
and mapping and that we have a fair way to compare our explo-
ration strategies with that originally used in the controller. In the
following we describe the original controller and how we modified
it to implement MCDM-based strategies.

4.1 The AOJRF Controller
In this section, we describe some of the controller’s features that

are relevant to the scope of this paper (please refer to [18] for a
complete description).

The controller manages a team of robots. The robotic platform
used is a Pioneer P3AT, whose basic model and sensors are pro-
vided with the USARSim simulator. The map of the environment
is maintained by a base station, whose position is fixed in theen-
vironment, and to which robots periodically send data. The map
is two-dimensional and represented by two occupancy grids.The
first one is obtained with a small-range (typically3 meters) scan-
ner and constitutes thesafe area, i.e., the area where the robots can
safely move. The second one is obtained from maximum-range
scans (typically20 meters) and constitutes thefree area, i.e., the
area which is believed to be free but not yet safe. Moreover, arep-
resentation of theclear areais also maintained as a subset of the
safe area that has been checked for the presence of victims (this
task is accomplished with simulated sensors for victim detection).
Given a map represented as above, a set of boundaries betweensafe
and free regions are extracted and considered as frontiers.For each
frontier, the middle point is considered as a candidate location to
reach. The utility of a candidate locationp is evaluated by combin-
ing the following criteria:

• A(p) is the amount of the free area beyond the frontier ofp
computed according to the free area occupancy grid;

• P (p) is the probability that the robot, once reachedp, will
be able to transmit information (such as the perceived data or

1http://www.jointrescueforces.eu/
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the locations of victims) to the base station (whose position
in the environment is known), this criterion depends on the
distance betweenp and the base station;

• d(p, r) is the distance betweenp and current position of robot
r, this criterion can be calculated with two different methods:
dEU (), using the Euclidean distance, anddPP (), using the
exact value of the distance returned by a path planner.

Given these criteria, the global utility for a candidatep is calculated
using function (3). We will refer to the exploration strategy using
this global utility function as the “AOJRF strategy”.

The allocation of candidate locations to robots is performed with
the following algorithm, which is executed by each robot indepen-
dently, knowing (from the base station) the current map and the
positions of other robots [18]:

1. compute the global utilityu(p, r) of allocating each candi-
datep to each robotr using (3) whered(p, r) is calculated
using the Euclidean distancedEU() (namely using an under-
estimate of the real distance),

2. find the pair(p∗, r∗) such that the previously computed util-
ity is maximum,(p∗, r∗) = arg maxp,r u(p, r),

3. re-compute the distance betweenp∗ andr∗ usingdPP () with
the path planner (namely considering the real distance) and
update the utility of(p∗, r∗) using such exact value instead
of the Euclidean distance,

4. if (p∗, r∗) is still the best allocation, then allocate robotr∗

to locationp∗, otherwise go to Step 2,

5. eliminate robotr∗ and candidatep∗ and go to Step 2.

The reason behind the utility update of Step 3 is that computing
dPP () requires a considerable amount of time. Doing this for all
the candidate locations and all robots would be not affordable in
the rescue competition, since a maximum exploration time of20
minutes is enforced.

4.2 Developing MCDM-based strategies
We now describe the changes we made to the original controller

to include our MCDM-based strategies.

M
C

D
M

criteria µ() criteria µ
A 0.5 A, d 0.95
d 0.3 A, P 0.7
P 0.2 d, P 0.4 M

C
D

M
b

criteria µ() criteria µ()
A 0.4 d, P 0.25
d 0.25 d, b 0.35
P 0.1 P, b 0.25
b 0.25 A, d, P 0.75

A, d 0.75 A, d, b 0.9
A, P 0.5 A, P, b 0.75
A, b 0.65 d, P, b 0.45

M
C

D
M

w

criteria µ1() µ2()
A 0.6 0.4
d 0.1 0.5
P 0.3 0.1

A, d 0.8 0.95
A, P 0.9 0.5
d, P 0.3 0.5

Table 1: Weights used for the MCDM-based strategies.

The first MCDM-based strategy we propose adopts the same cri-
teria of the AOJRF strategy (i.e.,A, P , andd, as described above),
but combines them with the MCDM approach. Basically, we re-
place function (3) with function (4), with the weights reported in
Tab. 1 (top-left). We call this the “MCDM strategy”.

Choosing a particular set of weights can be tricky. In this phase,
the designer considers the application domain and defines the im-
portance of single and groups of criteria. We remark that searching

for the “best” set of weights is an ill-posed problem in the context
of MCDM. MCDM is not a method to determine the best explo-
ration strategy, but provides a flexible and general tool to combine
criteria. Therefore, we assigned weights manually, considering the
search and rescue context. For example, the MCDM strategy as-
signs more importance toA than toP andd (see Tab. 1 (top-left)),
pushing the robot to discover new areas, even covering long dis-
tances or risking a loss of communication. The joint contribution
of d andP is inhibited by establishing redundancy between them.
On the other side, a synergy holds betweend andA, privileging
locations satisfying these criteria in a balanced way. Thismanual
method for assigning weights does not scale well with the number
n of criteria. Indeed,2n − 2 weights have to be assigned. How-
ever, specification of weights is done at design-time and there are
semi-automated techniques to compute weights for large sets of
criteria [10].

To apply MCDM, utilities have to be normalized to the chosen
common scaleI = [0, 1]. We note that the robot’s decision at any
step depends only onC and not on previous decisions and previous
sets of candidate locations. Hence, we use a linear relativenor-
malization. For example, given a robotr, the utility of a candidate
p related to the distanced() is normalized usingud(p, r) = 1 −
(d(p, r)−minq∈C d(q, r))/(maxq∈C d(q, r)−minq∈C d(q, r)).
This poses a problem for normalizing the updated utility in Step 3,
since it would require to determine the path for every candidate
location, making the20 minutes limit too strict to achieve an ac-
ceptable performance (recall thatdPP () is computationally expen-
sive). To deal with this problem we use the following procedure
in Step 3: once computeddPP (p∗, r∗), we normalize it by using
the previously calculated valuesdEU(p, r∗) for other candidates
p ∈ C.

The second MCDM-based strategy we propose shows the flexi-
bility of MCDM in adding a new criterion, i.e., the robot’s battery
remaining chargeb. Explicitly considering the battery can improve
exploration by preventing the robot from making decisions it can-
not complete (e.g., selecting a location not reachable withthe resid-
ual energy). To computeub(p) we need an estimate of the energy
spent for reachingp. We consider a very simple model in which
the power consumption is translated in a time interval. In order to
estimate the time needed to reach a locationp we consider the path
the robot should follow in terms of linear segments and rotations.
By approximating the linear and angular velocities of the robot as
constants, we can derive estimates of the timeb(p) needed to reach
p. Obviously, the smallerb(p) the largerub(p). Notice thatb and
d show an evident dependency relation given by the fact that long
traveling distances often correspond to long times. However, de-
spite this similarity, includingb in the set of criteria can, to some
extent, provide more informed decisions since it captures also the
difficulty for covering a path which generally is not captured by d
(consider, for example, short but winding paths that could require
lot of time and battery). Modeling a redundancy relation between
these two criteria is the proper way to include both of them inthe
decision-making process without unbalancing decisions toward the
common selection principle encoded inb and d. We denote the
strategy includingb as “MCDMb strategy”, whose weights are re-
ported in Tab. 1 (top-right). As it can be seen, the weight assigned
to the set{d, b} is lower than the sum of weights ofb andd. Re-
dundancy and synergy are also defined on sets of more than two
criteria; for example, criteriad, P , andb are redundant and the
weight of the set{d, P, b} is smaller than the sum of the weights of
its elements.

We also show how MCDM can be adopted for defining different
behaviorsin exploration. Broadly speaking, a behavior defines the
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preferences according to which the robot selects observation loca-
tions. Given a set of criteria, a behavior is associated to the particu-
lar set of weights of those criteria. By changing the weightsduring
exploration, we can switch between different behaviors, varying the
criteria’s importance that drive robot decisions. This technique al-
low us to improve the exploration strategy’s adaptability to different
situations. Hence, we define a third MCDM-based strategy, called
the “MCDMw strategy”, whose weights are reported in Tab. 1 (bot-
tom). This strategy encloses two different behaviors, given by the
sets of weights denoted asµ1 andµ2, defined over the original set
of criteria of the MCDM strategy (i.e.,A, P , andd, as described
above). In addition, we define the following policy for switching
through behaviors. The weights defined byµ1() are used during the
first 10 minutes of search while those defined byµ2() are used dur-
ing the last10 minutes. The first set of weights encodes an aggres-
sive behavior oriented towards the maximization of the new area.
This behavior is reasonable during the first part of the search when
a long remaining time is left and the robot can privilege the amount
of new area even if long paths have to be followed. Differently, the
second set of weights induces a more conservative behavior.This
behavior accounts for the fact that remaining time is short and gives
more importance to distance (µ1(d) = 0.1 while µ2(d) = 0.5).

5. EXPERIMENTAL EVALUATION
In the first experiments we evaluate the performance of the MCDM

strategy when compared with other strategies. We consider the AO-
JRF strategy (corresponding to (3)), the WS strategy (correspond-
ing to (1) with β = 1), and the DIST strategy, by which loca-
tions are selected simply by minimizingd (i.e., choosing always the
nearest location). AOJRF and WS are continuous and increasingly
monotonic aggregation functions. These two strategies guarantee
a Pareto optimal selection, however AOJRF strategy lacks inflexi-
bility since including further criteria would require to re-define the
aggregation technique, while WS can be considered as a special
case of MCDM-based strategies (see Section 3.3). Nevertheless,
AOJRF and WS have been proved to achieve good results in prac-
tice, therefore, by comparing the MCDM strategy with them, we
aim at deriving insights on how performance changes when using a
more theoretically-grounded way to define global utility functions.
DIST is a very simple strategy that can be viewed as a particular
case of MCDM-based strategy. Indeed, it can be obtained by re-
stricting the set of criteria to the singletond (see Section 3.3). By
comparing MCDM and DIST we aim at confirming that making
more informed local decisions actually results in a better global
performance.

We considered teams of one or two robots, as in [18] (note that
the maximum number of robots allowed in the RoboCup Rescue
Virtual Robots Competition is4). The robots are deployed in the
two indoor environments of Fig. 1 that show different character-
istics. Map A is cluttered and composed of corridors and many
rooms, while Map B is characterized by the presence of open spaces.
A configuration is defined as an environment, a team of robots de-
ployed in it, and the exploration strategy adopted. For eachconfig-
uration, we executed10 runs (with randomly selected starting loca-
tions for the robots) of20 minutes each. We assess performance by
measuring the amount of free, safe, and clear area at each minute
of the exploration. Due to space limitations, we report onlydata on
safe area (free area is less significant and clear area is similar to the
safe area).

Figs. 2 and 3 show the results of the first experiments with a team
of one and two robots, respectively. Histograms compare thenum-
ber of runs in which a strategy obtained the largest amount ofsafe
area at the end of the20 minutes exploration. Graphs show how the

(a) Map A (b) Map B

Figure 1: The maps used for tests.

mapped safe area varies with time (each point is the average over
10 runs).
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Figure 2: Comparison between MCDM and other exploration
strategies with one robot.

The MCDM strategy discovered the largest area in the majority
of runs, outperforming (on average) other strategies. According to
an ANOVA test, the averages of the total safe area (in Map A) are
statistically significantly different between DIST and each one of
the other three strategies. Differences between MCDM, AOJRF,
and WS are not statistically significant in Map A. In Map B, the
MCDM strategy shows a statistically significant differencewhen
compared to DIST and AOJRF, while the statistical difference be-
tween MCDM and WS is slightly acceptable. These findings re-
flect an interesting insight associated to the different characteris-
tics of the two environments. Map A is cluttered and, exploring it,
the robots deal with a relatively large number of frontiers among
which to choose (30 candidate locations on average at each step
with one robot and40 with two robots). Map B is characterized
by open spaces, resulting in a smaller number of candidate fron-
tiers (5 candidate locations on average at each step with one robot
and 8 with two). However, despite their large number, frontiers
in Map A are very similar in the contribution they can give to the
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Figure 3: Comparison between MCDM and other exploration
strategies with two robots.

explored area. Differently, in Map B the situation in which one
alternative is remarkably better than others is more frequent. Con-
sider, for instance, a frontier that lies close to an obstacle (from
where an observation will return a small new area) and another one
in front of an open space. In such situation, the benefits provided
by a “right choice” would be more evident. This is what happens
during the exploration of Map B, showing why differences between
strategies are statistically significant in this environment. This ba-
sically confirms the single robot results presented in [5], enforc-
ing the idea that when very different alternatives are present and
making a good choice is very rewarding, MCDM-based exploration
strategies achieve satisfactory results.
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Figure 4: Comparison between the MCDM-based strategies.

Fig. 4 shows the performance of the three MCDM-based explo-
ration strategies with two robots (we omit results with one robot,
for which the same considerations can be drawn). A first com-
parison that is worth doing is between MCDM and MCDMb, to
assess the impact ofb’s inclusion in evaluating a location. When
adopted for exploring Map A, these two strategies performedsimi-
larly, not showing any statistically significant difference in the total
safe area. However, the effects of introducing criterionb can be
noted by looking at the final maps built by the robots. A represen-
tative example is shown in Fig. 5, which reports the two maps ob-
tained with MCDM and MCDMb after a run. Considering that the
criterionb pushes the robots to discard locations that require com-
plicate paths with several rotating maneuvers, the robots save time
avoiding to deeply explore corners, rooms, and other cluttered parts
of the environment, preferring corridors and open spaces. The re-
sult is that the obtained map, from the one hand, is less precise but,
from the other hand, is more representative of the general topology
of the environment. This kind of map can be more useful to firstre-
sponders in giving a broad idea of the topology of the environment
(as discussed in [3]). The introduction of the criterionb does not
show the same qualitative behavior in Map B, where the presence
of open spaces makes intricate paths very rare. The employment
of this criterion in an open space is not justified by the character-
istics of the environment, showing an example where “too-much
informed” local decisions could achieve a not so good globalper-
formance.

(a) MCDM (b) MCDMb

Figure 5: An example of maps obtained after an exploration.

Adopting different behaviors with the MCDMw strategy led to
the best results in Map A. Roughly speaking, this strategy combines
the benefits of MCDM and MCDMb strategies. In the first half of
the exploration a more aggressive behavior is adopted, trying to
maximize the explored area. Then, as the residual time decreases,
the strategy becomes more conservative, trying to save timeavoid-
ing cluttered zones. In Map B, the employment ofµ1 in the first
part of the exploration showed the main drawback of a very aggres-
sive behavior: its vulnerability to decisions that happen to be not as
good as expected. In a number of situations,µ1 pushed the robots
to cover long distances for reaching locations with potentially large
amounts of new area that, due to information gain estimationer-
rors, were not so informative once reached. This is the reason why
MCDM and MCDMw curves are relatively separated in the first10
minutes of exploration (Fig. 4).

Fig. 6 depicts an example of paths followed by a robot when em-
ploying the three MCDM-based strategies. The starting location in
all the three cases is at the center of the top corridor. All the strate-
gies initially drive the robot toward the right part of the top corridor
until the first difference can be observed in the path of MCDMw. Its
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aggressive behavior pushed the robot to go back at the intersection
with the vertical corridor to obtain a wide view over the freespace.
MCDM and MCDMb start to significantly differ in the bottom end
of the central vertical corridor. More precisely, MCDMb’s path
resulted more regular than that of MCDM. Indeed, MCDM drove
the robot to explore a sequence of rooms while, with MCDMb, the
robot chose to enter the bottom horizontal corridor. MCDMw’s
paths avoided all the rooms in the right part of the environment
(first 10 minutes) but performed a more detailed exploration in the
left part of the map (last10 minutes of the exploration). This ex-
ample shows how obtained paths are coherent with the design prin-
ciples of each strategy and demonstrates that the decision-theoretic
framework of the MCDM-based strategies can provide some level
of predictability.

Figure 6: Example of paths of MCDM-based strategies.

From our results, we can say that MCDM can be an effective
method for defining good exploration strategies in search and res-
cue applications. Local decisions made with MCDM-based explo-
ration strategies resulted in a comparable and sometimes better per-
formance, when compared to other exploration strategies proposed
in literature. In particular, MCDM showed significant improve-
ments in situations (like those faced in Map B) where making the
right decision is more rewarding. In addition, MCDM presents a
remarkable flexibility in composing criteria that can be exploited
to add new criteria or to define multi-behavioral strategiesthat can
adapt to different situations.

6. CONCLUSIONS
In this paper, we have presented the application of the MCDM

decision-theoretic approach to the definition of exploration strate-
gies for search and rescue. We have shown that MCDM provides a
general and flexible way for developing utility functions for evalu-
ating candidate observation locations. Experimental results show
that MCDM-based exploration strategies achieve a good perfor-
mance, when compared withad hocstrategies used in exploration.

Possible future work includes the development of automatictech-
niques to set the values of weights in MCDM, in order to further
simplify the inclusion of new criteria in the evaluation of candi-
date locations, and the application of MCDM-based strategies to
other domains, like planetary exploration. Another interesting di-
rection is working on the robot-frontier allocation, trying to achieve
a closer integration between evaluation of candidate locations and
coordination of robots.
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ABSTRACT
Performing everyday manipulation tasks successfully depends on
the ability of autonomous robots to appropriately account for the
physical behavior of task-related objects. Meaning that robots have
to predict and consider the physical effects of their possible actions
to take.

In this work we investigate a simulation-based approach to naive
physics temporal projection in the context of autonomous robot ev-
eryday manipulation. We identify the abstractions underlying typi-
cal first-order axiomatizations as the key obstacles for making valid
naive physics predictions. We propose that temporal projection for
naive physics problems should not be performed based on abstrac-
tions but rather based on detailed physical simulations. This idea is
realized as a temporal projection system for autonomous manipula-
tion robots that translates naive physics problems into parametrized
physical simulation tasks, that logs the data structures and states
traversed in simulation, and translates the logged data back into
symbolic time-interval-based first-order representations. Within this
paper, we describe the concept and implementation of the tempo-
ral projection system and present the example of an egg-cracking
robot for demonstrating its feasibility.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

General Terms
Design, Experimentation

Keywords
Temporal Projection, Naive Physics, Simulation, Cognitive Robots

1 Introduction
Accomplishing everyday manipulation tasks successfully requires
robots to predict the consequences of actions before committing to
them: the robot has to decide where and how hard to hit an egg in
order to open it without damaging its content (see Figure 1). Or, it
should reason about whether it is necessary to hold a cup upright to
avoid spilling the coffee inside. To make such decisions the robot
has to predict the changes of the physical state caused by its actions.

To compute the consequences of picking up a cup of coffee too
rapidly we can model the setting as a fluid dynamics problem and
Cite as: Simulation-based Temporal Projection of Everyday Robot Ob-
ject Manipulation, Lars Kunze, Mihai Emanuel Dolha, Emitza Guzman,
and Michael Beetz, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 107-114.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Robot TUM-Rosie manipulates egg in simulation.

solve the respective equations for the variables of interest. This
way the robot could compute the fluid flow caused by the robot
action and derivated variables. However, these computations do not
readily provide the information needed to choose the appropriate
action parametrization. It is more informative to predict whether or
not a given action parametrization will cause coffee to be spilled.
Abstracting the reality into a small qualitative state space, such as
coffee spilled or not spilled will also cut down the search space for
action selection and thereby make the search more tractable.

Researchers in Artificial Intelligence have investigated approaches
to represent and reason about such knowledge under the notion of
naive physics and commonsense reasoning. The attempt to for-
mulate and automate this knowledge using first-order logic has re-
ceived most of the attention so far. Researchers in qualitative rea-
soning [18] have formalized various physics problems. The objec-
tives of this approach are most comprehensively stated in Hayes’s
Naive Physics Manifesto [8]. More recently, the Common Sense
Problem Page [14] lists challenge problems. Most relevant are at-
tempts to so-called mid-size axiomatizations [15].

The basic idea is to formalize the laws of physics and situations
as logical axioms in an abstract and qualitative language and then
deduce the predictions of what will happen from these axioma-
tizations. Unfortunately, the formalizations tend to become very
lengthy and often it is difficult to make the right predictions based
on axiomatizations of qualitative physics. One of the main rea-
sons is that logical axiomatizations often quantify over the values
of state variables or abstract away from some state variables assum-
ing that they are not relevant for valid predictions. However, when
considering actions such as cracking an egg the effects of actions
can vary largely with small changes of action parametrizations. The
effects depend on where exactly and how hard the egg is hit, how
strong and where it is held, and on the exact state of the egg’s yolk,
etc. Without exactly knowing the values of all state variables it
might be impossible to predict the action effects.

Indications of these difficulties are the number and the restric-
tions of action logics that try to capture phenomena such as con-
current actions, the size of axiomatizations of simple physical phe-
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nomena for problems on the Common Sense Problem Page, or, the
impossibility to perform certain predictions in a qualitative repre-
sentations, such as predicting whether a robot will see a certain ob-
ject when it navigates through the environment while at the same
time turning its camera.

These problems do not occur in physics simulations where physics
engines (such as ODE1 or Bullet2) can simulate such phenomena
without problems because they apply accurate dynamics models at
a fine level of granularity.

WORLD
SITUATION

SIMULATION
PERCEPTION

LOGGING

LOGICAL
AXIOMATIZATION

AXIOMATIZATION
+ TIMELINES

PROOF

WORLD
SITUATION′
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(including mental

simulation)

answers

deduces

Figure 2: Naive physics inference scheme.
In this paper we combine the ideas of qualitative reasoning about

courses of action and their physical effects and having accurate and
realistic modeling as depicted in Figure 2. We do so by translat-
ing qualitative physics problem formalizations into a parametrized
simulation problem, performing a detailed physics-based simula-
tion, logging the state evolution into appropriate data structures and
then translating these subsymbolic data structures into an interval-
based first-order symbolic/qualitative representation of the respec-
tive episode. The resulting fact-base is then used to infer the an-
swers to the qualitative reasoning problems.

The key contribution of this paper is the combination of first-
order symbolic representation with physics-based simulation as a
inference mechanism for predicting the effects of actions. This
combination provides the best of both worlds: it provides the struc-
ture and compactness of symbolic representations and the real-
ism and accuracy of physics-based simulation. Taken together the
robot can predict consequences of actions such as whether an egg
will break when the robot performs a specific parametrized move,
whether a table will be clean after wiping it with a sponge or whether
the sponge needs to be pressed out before, whether using a specific
parametrization of a pick up action would cause the coffee in a cup
be spilled. The point is that while these predictions are symbolic
they are computed from realistic models. Combining the simula-
tion with sampling in the state space as well as in the parametriza-
tion space of actions also allows for probabilistic predictions.

In the remainder of the paper we proceed as follows: First, we
shortly revisit a well-known problem in naive physics, namely crack-
ing an egg. Second, we explain how our approach addresses prob-
lems of this kind by tightly integrating logic-based reasoning and
physics-based simulation. Third, we demonstrate the feasibility of
our approach through experiments. Finally, we conclude after dis-
cussing related work.

2 Cracking An Egg
In this paper we take the cracking of an egg as our running example.
Egg cracking has been proposed by [3] as a challenge problem for
logical formalization and reads as follows:
1
http://www.ode.org

2
http://www.bulletphysics.com

“A cook is cracking a raw egg against a glass bowl.
Properly performed, the impact of the egg against the
edge of the bowl will crack the eggshell in half. Hold-
ing the egg over the bowl, the cook will then separate
the two halves of the shell with his fingers, enlarging
the crack, and the contents of the egg will fall gently
into the bowl. The end result is that the entire contents
of the egg will be in the bowl, with the yolk unbro-
ken, and that the two halves of the shell are held in the
cook’s fingers.”

Solutions to this problem should not only characterize aspects men-
tioned above but also account for variants of the problem:

“What happens if: The cook brings the egg to impact
very quickly? Very slowly? The cook lays the egg in the
bowl and exerts steady pressure with his hand? The
cook, having cracked the egg, attempts to peel it off its
contents like a hard-boiled egg? The bowl is made of
looseleaf paper? of soft clay? The bowl is smaller than
the egg? The bowl is upside down? The cook tries this
procedure with a hard-boiled egg? With a coconut?
With an M & M?”

The cracking an egg problem poses many challenges, especially in
the context of everyday robot manipulation. In order to solve it we
regard the following aspects to be substantial: First, the abstrac-
tion level of a formalization should reflect the sensing and acting
capabilities of the manipulating robot. Second, variants should be
handled without the need of explicit modeling. And third, concur-
rent actions and events should be taken into account.

3 Temporal Projection
Let’s now consider how simulation-based temporal projection in-
fers answers to naive physics problems like cracking an egg or
pouring coffee to a cup. After giving a short overview of the overall
system, we present each part in more detail.

Figure 3: Simulation-based temporal projection system.

3.1 System Overview
An overview of the proposed simulation-based temporal projection
system is shown in Figure 3. We formalize task-relevant domain
knowledge about object classes and individuals within an ontology.
Assertions about individual objects are stored in a knowledge base
and used for automatically parametrizing a physics-based simula-
tion. Within the simulator we describe everyday objects with de-
tailed 3D models, augment the descriptions with object controllers
that compute physical phenomena not covered by the rigid body
dynamics, e.g. breaking of objects, and attach monitoring routines
to objects in order to collect object specific data. For a task like egg
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cracking, we run simulations with differently parametrized con-
trol programs, whereby states of objects are monitored and logged.
Logged simulations are then translated into time-interval-based rep-
resentations, called timelines. Finally, we use PROLOG for reason-
ing about the generated timelines. As can be seen in Figure 3, for
its reasoning PROLOG also accesses the domain knowledge.
3.2 Domain Knowledge
We use first-order representations to formalize domain knowledge.
Within our approach, we describe general physical knowledge about
object types and their properties as well as specific knowledge about
individuals in Description Logic (DL). In the following we explain
what kind of knowledge we represent.

For representing domain knowledge in DL, we use the seman-
tic web ontology language OWL3. We build our representations on
OpenCyc’s4 upper-ontology and extend type and property descrip-
tions whenever necessary. For example, let’s have a closer look
at the physically relevant knowledge about eggs and how it can be
formalized in DL. We consider an egg as consisting of an eggshell
and its content, i.e. egg white and egg yolk. An eggshell is a solid
rigid (but fragile) container that has a shape, a mass, and extensions
in space. Since the eggshell is fragile it can break. The egg’s con-
tent is a liquid which has a viscosity and a mass. Figure 4 depicts
a simplified excerpt of the ontology that shows type, relation and
property information about eggs. For describing a specific situation
individuals of relevant objects and their properties are explicitly
asserted, e.g., an individual of type Egg, egg3, has eggshell3 and
yolk3 as its parts, where eggshell3 and yolk3 have a mass of 0.01
and 0.04 respectively. Other properties and relations are specified
similarly. For a specific task like egg cracking information about
all relevant objects is asserted in the knowledge base. These asser-
tions build the basis for parametrizing the physics-based simulation
which is explained in the next section.

EGG

LIQUID SOLID CONTAINER

EGGWHITEYOLK EGGSHELL

VISCOSITY MASS EXTENSIONS RIGIDITY FRAGILITY SHAPE

HASPART HASPART

ISTYPE ISTYPE ISTYPE

HASPROP HASPROP HASPROP HASPROP HASPROP HASPROP HASPROP

Figure 4: Ontology showing physical aspects of eggs.

3.3 Physics-based Simulation
Within our approach, we utilize a physics-based simulator, namely
Gazebo5, for computing the effects of robot actions, object interac-
tions and other physical events.

For the computation, we parametrize the simulator on the basis
of the logical axiomatization, i.e. the domain knowledge, run sim-
ulations and log data of features like position, velocity, forces, and
contact points between objects over time. After explaining shortly
how a physics-based simulator computes physical effects generally,
we present how the Gazebo simulator can be configured and how
we derive a configuration based on the assertions in the knowledge
base.

Generally a physics-based simulator works as follows: the simu-
lator starts its computation of physical effects based on an initial
3
http://www.w3.org/2004/OWL

4
http://www.opencyc.org

5
http://playerstage.sourceforge.net/gazebo/gazebo.html

configuration. Then it periodically receives motor control com-
mands which are translated into forces and updates the state of the
simulated world according to physical laws. Within each tiny up-
date step, forces are applied to affected objects by considering both
the object’s current dynamic state and its properties like mass and
friction. Later we explain how we augment the simulation in order
to account for physical phenomena like breaking or absorbing.

The initial configuration of the Gazebo simulator is based on an
XML file, called world file. The world file describes properties of
the simulation, specifies parameters for the physics engine (ODE)
and describes all things occurring in the world, including robots,
sensors and everyday objects. The following excerpt of a world file
shows entries for the physics engine and the objects eggshell3 and
yolk3.

<gazebo:world ...>
<physics:ode>
<stepTime>.006</stepTime>
<gravity>0 0 -9.8</gravity>...

</physics:ode>
<model:physical name="eggshell3">
<xyz>0 0 1.23</xyz>
<rpy>0 0 0</rpy>
<include embedded="true">
<xi:include href="../models/eggshell3.model" />

</include>
</model:physical>
<model:physical name="yolk3">...

</gazebo:world>

Within a world file each object has its own model description.
Such model descriptions comprise mainly the object’s shape and
a set of physical properties like size, mass, and rigidity. Figure 5
visualizes some parameters for both models: eggshell3 and yolk3.
These models configurations are derived from the information stored
in the knowledge base. When properties are not explicitly specified
within the knowledge base, we simply assume default values.

To simulate physical phenomena like breaking objects we aug-
ment the model descriptions, how this is realized is presented in the
next section.

Body id: #42
x: -0.082 y: 0.297 z: 0.265
type: {solid, eggshell} mass: 0.1

Joint id: #88
body1: #42 body2: #18
x: -0.123 y: 0.322 z: 0.199
roll: 0.0 pitch: -54.092 yaw: -31.626
type: {solid, eggshell} forcelimit: 150 broken: false

Body id: #71
x: -0.053 y: 0.305 z: 0.082
type: {liquid, egg-yolk} mass: 0.1

Figure 5: Modeling shape and physical properties of an egg.
The shape of the egg is modeled with a graph-based structure
of bodies which are linked by joints. The physical properties
of these individual bodies and joints, which are shown exem-
plarily on the left side, determine the physical properties of the
whole egg, e.g. its mass and fragility.

3.4 Augmented Simulation
The Gazebo simulator is designed for simulating robots, sensors
and objects, whereby physical aspects of objects and their inter-
actions are more or less limited to rigid body dynamics. Since
we want to simulate naive physics problems with phenomena like
breaking, cutting, mixing, cooking, baking, or melting we augment
object model descriptions with detailed shape models, controllers
for simulating physical phenomena, and monitors for logging states
of objects. The extended model descriptions are collected in a li-
brary for simulating phenomena of everyday physics.
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Instead of modeling objects as rigid bodies, we describe the shape
of objects similar to work by [9] with graph-based structures which
allow us to inspect physical aspects at a more detailed level. Fig-
ure 5 visualizes the shape of an eggshell with egg yolk inside. The
basic entities for modeling the shape of an object are bodies and
joints, which are mutually connected. Properties of an object like
type, mass, spatial extensions, and rigidity determine the attributes
of these basic entities.

In order to simulate new classes of objects, e.g. objects that
are breakable, cutable, or objects that absorb liquids we add con-
trollers to the object model descriptions. These controllers are
called within each simulation step and perform some specialized
computation. The computation can be based on physical proper-
ties calculated by the simulator or on results computed by other
controllers. Thereby object attributes like temperature, being wet,
being dirty, or being broken can be computed. This allows us to
simulate a new range of processes like filling, cutting, or breaking.

In addition to controllers, we add monitoring routines to object
model descriptions to log the object’s state at each simulation step.
The data that is monitored and logged is specified for each object
individually.

3.5 From Logged Simulations to Timelines
In this section we explain how we ground first-order representations
in logged data structures of the simulator. Before we explain how
log files are translated into logic, we will present the representation
formalism for temporal knowledge and shortly discuss its relation
to domain knowledge.

For representing temporal knowledge, i.e. object configurations
and events at given time points, we make use of notations common
in the event calculus [10] and its extensions. In the following we
present predicates relevant for temporal reasoning.

The notation is based on two concepts, namely fluents and events.
Fluents are conditions that change over time, e.g., a cup contains
coffee: contains(cup,coffee). Events (or actions) are temporal enti-
ties that have effects and occur at specific points in time, e.g., con-
sider the action of pouring coffee: pourTo(coffee,pot,cup). Logical
statements about both fluents and events are expressed mainly by
two predicates:
• Holds(f,t) and
• Occurs(ev,t),

where f denotes a fluent, ev denotes an event and t simply de-
notes a point in time. The statement Holds(f,t) represents that fluent
f holds at time t, whereas Occurs(ev,t) represents an occurrence of
event ev at time t. Although fluents and events look as if they were
predicates themselves, they are not: both fluents and events are rei-
fied as functions returning respective instances. Thus, by treating
them as ’first-class citizens’ in a first-order representation allows us
to state at what points in time they hold or occur.

The relation of domain and temporal knowledge is straight for-
ward. Domain knowledge, in particular the assertions about indi-
vidual objects, characterize the initial conditions for the temporal
reasoning. From the temporal reasoning point of view, the asser-
tional knowledge holds at time point 0.0, i.e. Holds(f,0.0). That
the assertional knowledge describes the initial conditions for the
temporal reasoning perfectly makes sense since it is also used for
parametrizing (or initializing) the simulation as we explained ear-
lier.

Logged simulations are translated into interval-based timeline
representations by using the predicates Holds and Occurs. When-
ever a fluent or event is recognized an instance of its corresponding
type is generated and either the Holds or the Occurs predicate is
asserted for the observed timepoint. We reuse a generated instance

only if the fluent or event is also valid in successive timesteps.
Thereby we get an interval-based representation of timelines. Ta-
ble 1 and Table 2 list examples of implemented fluents and events
for which we assert predicates from the logged simulations.

Table 1: Fluents for static physical configurations.
fluent intuitive description
contacts(o1, o2) object o1 and object o2 contact each other
attached(o1, o2) object o2 is attached to object o1
supports(o1, o2) object o1 supports object o2
contains(o1, o2) container o1 contains object (or stuff) o2
broken(o1) object o1 is broken
spilled(o1) object o1 is spilled

Table 2: Fluents for physical events.
fluent intuitive description
colliding(o1, o2) object o1 and object o2 are colliding
falling(o1) object o1 is falling
moving(o1) object o1 is moving
openingGripper(o1) robot is opening gripper o1
closingGripper(o1) robot is closing gripper o1
breaking(o1) object o1 is breaking
spilling(o1) object o1 is spilling over a surface

How fluents and events are grounded in the data structures of the
simulator is exemplarily explained for the fluents contacts(o1, o2)
and supports(o1, o2) and the events moving(o1) and breaking(o1).

A contact between objects is directly reported by the simulator:

Holds(contacts(o1, o2), ti)⇔
Collisions = SimulatorValueAt(Collisions, ti)∧
Member(〈o1, o2〉,Collisions)

Object o1 supports an object o2 when there exists a contact be-
tween both objects and the maximum value of o1’s bounding box
within z-dimension is slightly less or equal than the minimum value
of o2’s bounding box and o2’s center of mass lies within the spa-
tial extensions of object o1 regarding the x-y-dimensions. The later
condition is captured by the isDirectlyBelow predicate. Further-
more the gravity force of o2 has to be canceled out:

Holds(supports(o1, o2), ti)⇔
Holds(contacts(o1, o2), ti)∧
p1 = SimulatorValueAt(Pose(o1), ti)∧
p2 = SimulatorValueAt(Pose(o2), ti)∧
isDirectlyBelow(p1, p2)∧
gravityForceIsCanceledOut(o2)

An object o1 is moving when its pose has changed between two
successive timesteps tj and ti:

Occurs(moving(o1), ti)⇔
p1 = SimulatorValueAt(Pose(o1), ti)∧
p2 = SimulatorValueAt(Pose(o1), tj)∧
previousTimestep(tj , ti)∧
p1 6= p2

An object o1 is breaking in timestep t1 when one of its joints
is detached within that timestep. The controller that realizes the
breaking phenomenon of objects directly reports which joints are
detached in a timestep:

Occurs(breaking(o1), ti)⇔
j1 = SimulatorValueAt(Detached(joint1), ti)∧
Member(j1,GetJoints(o1))

The next section explains how we do reasoning on the grounded
fluents and events asserted in timelines.
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3.6 Reasoning on Timelines
Figure 6 shows a sequence of images of a simulated egg dropped
onto the floor. By examining this simple example we show how
PROLOG can be used for reasoning about both timelines derived
from logged simulations and domain knowledge. Let’s consider the
PROLOG query:

?- holds(F1,T1), fluentT(F1,supports), objOf(F1,egg1),
after(T2,T1), occurs(E1,T2), objOf(E1,egg1).

where F1 and E1 are variables for a fluent and event respec-
tively, T1 and T2 are time intervals, supports is the type of flu-
ent F1, and egg1 denotes an individual. The query basically asks
for all events E1 that hold for egg1 after egg1 is no longer sup-
ported. For the dropped egg example,E1 is bound to falling(egg1),
colliding(egg1,floor), and breaking(egg1). The after relation used
in the query above is one of the thirteen possible temporal relation-
ships between time intervals [1] which we have implemented as
predicates for reasoning about timelines.

Figure 6: Simulation of an egg dropped onto the floor. From
left to right: falling, colliding, breaking, and broken.

Figure 7 illustrates the complete process of naive physics reason-
ing for a situation where a robot wants to grasps an egg but his hand
is wet. Similar to the example query above, the robot could ask
what will happen if (after) it grasps the egg with its wet hand. The
initial conditions describing the actual situation are taken from the
knowledge base to parametrize the simulation, the fact that the hand
is wet would reduce the friction of the hand. Then the simulation
is run whereby states of objects are monitored and logged. After
the logged simulations are translated into interval-based first-order
representations the query will be answered based on the resulting
timelines. Depending on the reduced friction of the hand the egg
might slip away and fall onto the floor which cause the eggshell to
break and the egg yolk to be spilled.

Simulation

falling(egg)

colliding(egg)

breaking(egg)

broken(egg)

Initial conditions
Holds(wet(hand),0)

Holds(supported(egg),0)

¬Holds(falling(egg),0)

¬Holds(broken(egg),0)

. . .

What happens if

grasping(egg,hand,force)

wet(hand)

Timelines
Holds(supported(egg),1.4)

Holds(falling(egg),2.04)

Holds(colliding(egg),2.5)

Holds(breaking(egg),5.3)

Holds(broken(egg),5.3)

Inferred predicates

broken(egg)

spilled(eggyolk)

Robot

Figure 7: Complete process of the temporal projection.

In addition to fluents and events that are grounded within the
data structures of the simulator, more complex events like picking
up an object or an overflowing container can be defined by utilizing
grounded fluents, events and additional temporal constraints. For
the description of complex events we follow the notion of chroni-
cles [7].

4 Experiments
For showing the feasibility of our approach we have conducted sev-
eral robot manipulation experiments for the problem of cracking an
egg as described in Section 2. In these experiments we addressed
the requirements posed in the problem formulation. Furthermore
we have conducted experiments for the problem of pouring and ab-
sorbing liquids.

The robot model used in our experiments is the PR2 robot plat-
form developed by Willow Garage6. The PR2 has an omnidirec-
tional base, a telescoping spine and a pan-tilt head. Each of the
two compliant arms of the platform have four degrees of freedom
(DOF) with an additional three DOF in the wrist and one DOF grip-
per. The sensor setup is comprised of a laser sensor on the base, a
tilting laser sensor for acquiring 3D point clouds, two stereo cam-
era setups and a high resolution camera in the head. The hands also
have cameras in the forearms, while the grippers have three-axis ac-
celerometers and fingertip pressure sensor arrays. The entire setup
is realistically modeled and ready to use in the Gazebo simulator.

4.1 Cracking an Egg
Cracking an egg against another object and then separating (split-
ting) it requires a robot to be able to grasp an egg at all. Therefore
we start our experiments with a scenario where a robot is supposed
to simply grasp an egg lying on a table.

The first experiment consists of several trials in which a robot,
in this case the PR2, is using different values of gripper force to
grasp an egg. The experiment underlines the importance of a phys-
ical simulation since it allows to determine an appropriate force
for grasping an egg which would not be possible by pure symbolic
reasoning.

The simulation setup for this experiment is simple and consists
of the PR2 robot model and the egg model lying on a table being
spawned in a Gazebo environment. The robot is trying to pick up
the egg by applying different forces with his gripper. It starts with
the lowest force level and after each try the force is increased, the
old egg is unspawned and a new one is created as the old one might
be damaged during the experiment. In each trial the robot tries to
pick the egg up and hold it up for a period of time. During the
experiments we found three possible outcomes (see Figure 8): the
egg slips out of the robot’s gripper, the egg is held by the robot
successfully, and the egg is crashed by the robot (Figure 9).

Within the experiment we identified four force levels as being
too low for grasping the egg, three force levels as appropriate and
five force levels as being too high. A video showing this experiment
is available online7.

The data structures of the simulation were logged and trans-
lated into interval-based first-order representations. Thereby the
results of the experiment are made available in the logical program-
ming environment PROLOG which is demonstrated by the follow-
ing queries

?- occurs(E,T1), eventT(E,’ClosingGripper’),
argsOf(E, [rightGripper, force7]), holds(F,T2),
after(T2,T1), fluent(F,Type), argsOf(F,Args).

E = closingGripperEvt7,
T1 = 3.25,
F = attachedFl1,
T2 = 5.0,
Type = ’Attached’,
Args = [rightGripper, egg1].

?- occurs(E,T1), eventT(E,’ClosingGripper’),
argsOf(E, [rightGripper, force12]), holds(F,T2),

6
http://www.willowgarage.com/pages/pr2/overview

7
http://www.youtube.com/watch?v=MzMnTooXyCc
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Figure 8: PR2 robot picking up an egg with different force lev-
els (upper left: successful; upper right: egg slipping; bottom
left: egg crashed, parts of the eggshell fell onto the table; bot-
tom right: egg crashed).

after(T2,T1), fluent(F,Type), argsOf(F,Args).

E = closingGripperEvt12,
T1 = 3.0,
F = brokenFl1,
T2 = 4.25,
Type = ’Broken’,
Args = [egg1]

where the first and the second query ask for fluents that hold after
grasping the egg with force7 and force12, respectively. Whereas
using force7 result in a successful trial where the egg is attached
to the robot’s gripper, using force12 result in a situation where the
egg is broken. Given the simulation-based temporal projections of
what will happen if the robot grasps an egg with a particular force
it is possible to determine an appropriate value for the grasp force
parameter.

In the second experiment we used a valid grasping force to pick
up an egg and test its behavior when hitting it against obstacles and
tables. The egg is picked up and then is hit or pressed against an
obstacle. The results here are of course dependent on the forces
that affect the egg model: while hitting the egg against another
object very gently would not break it, hitting it stronger or press-
ing it firmly against the table would produce breaking. Figure 10
shows the egg model being cracked after being hit against an obsta-
cle. This experiment can be used to gather information on how to
safely manipulate such a fragile object and how the robot’s actions
influence the forces applied to the object.

The last experiment was focused on egg splitting. The robot
is grasping the egg from the table that’s lying on the table and,
after hitting it against an obstacle and cracking it, is trying to split
it using his other gripper (Figure 11). This experiment was not
entirely successful as the egg to be too fragile for the PR2 grippers.
The result of most of the trials involved in this experiment was the
cracked egg being completely crashed by the two grippers.

In contrast to the logical formalization that has been proposed

Figure 9: The egg model crashing in a grasp trial because of
too much gripper force.

by [15] our approach is able to make temporal projections about al-
most all aspects of the problem specification and its variants. Their
theory [15] is based on roughly 70 axioms, but variations such as

• the cook brings the egg to impact very quickly or very slowly
• the bowl is upside down
• the cook tries the procedure with a hard-boiled egg, coconut,

or an M&M
• the cook puts the egg in the bowl and exerts steady pressure

with his hand
• the cook, having cracked the egg, attempts to peel it off its

contents like a hard-boiled egg

cannot be handled without further extensions. All these vari-
ations, except the last, seem to be feasible with our simulation
approach. We simply have to adapt the robot control program to
induce a different manipulation behavior, to change the configu-

Figure 10: An egg model cracked by hitting an obstacle.
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Figure 11: An egg splitting trial using the PR2 robot model.

ration of the environment, or to adjust the physical parameters of
the object models, e.g. size, structure and/or fragility of objects.
Although the adjustment of the physical parameters is not trivial,
it seems to be much easier than the extension of a logical theory
since machine learning techniques can be applied for finding the
appropriate physical models.

Figure 12 shows the robot moving its arm away from the egg
after breaking it. In the beginning, parts of the eggshell stuck to
the gripper and fell off at a later point in time. It is impossible
to model such phenomena within logical abstractions, whereas in
detailed simulations they simply emerge from the laws of physics.
This example strongly emphasizes the benefit of combining first-
order representations with physics simulations.

Figure 12: Grasping an egg. (1) eggshell stuck to gripper (2)
eggshell fell off the gripper.

4.2 Pouring Liquids
In this scenario the robot picks up a filled container from the table,
moves it above a second container, and then pours the water from
the first to the second container. We looked at several variants of
the problem: (a) the second container has holes, (b) the second
container is upside down, (c) honey (instead of water) is poured
to an upside down container (d) the task is performed successfully,
meaning that the liquid completely ends up in the second container,
(e) the second container is already filled which causes it to overflow
as soon as the robot pours further liquid to it, meaning that some
liquid is spilled on the table.

The following query asks for the conditions that hold after the
pouring action:

?- occurs(E,T1), eventT(E,pouringTo),
argsOf(E,[cup1,liq1,cup2]),
after(T2,T1), holds(F,T2).

where in variant (a) and (e) F is bound to contains(cup2,liq1),
spilled(liq1) and supports(table1,liq1), in variant (b) F is bound to
spilled(liq1), supports(table1,liq1) and supports(cup2,liq1), in (c)
F is bound to spilled(liq1) and supports(cup2,liq1), and in (d) F is
bound to contains(cup2,liq1) (Figure 13). The notably difference
between variants (b) and (c) result from the fact that honey has a

Figure 13: Pouring liquids to containers (a) Pouring liquid to
container with holes (b) Pouring water to an upside down con-
tainer (c) Pouring honey to an upside down container.

higher viscosity than water. Within the simulation this is reflected
by the different friction values for water and honey.

In a follow-up experiment the robot cleans the table with a sponge
(Figure 14). The corresponding query looks as follows:

?- occurs(E,T1), eventT(E,wiping),
argsOf(E,[sponge1,table1]),
after(T2,T1), holds(F,T2).

where F is bound to absorbs(sponge1,liq1).

Figure 14: Wiping table with sponge (teleoperated) (a) Grip-
per approaches sponge (b) Gripper pushes sponge over liquid
which in turn is absorbed (c) Gripper pushes sponge and both
absorbed liquid and sponge move together.

5 Related Work
Solutions to a naive physics problem, namely egg cracking [3],
were formulated by [11, 15] based on logical axiomatizations. Lim-
itations of these approaches are mainly that physical details are ab-
stracted away and that variants cannot be handled very flexibly. To
overcome such limitations this work proposes a simulation-based
approach: we take a logical axiomatization and translate it into
a parametrized simulation problem, simulate and log simulation
data, translate logged simulation data into an interval-based first-
order representation which is used for answering queries about a
qualitative reasoning problem.

The integration of numerical simulation and qualitative meth-
ods has been investigated before, for example, work on qualitative-
numeric simulation [2] and self-explanatory simulations [5]. Work
by [12] has shown an integration of numerical simulation and quali-
tative modeling based on the Qualitative Process Theory [4] for vir-
tual interactive environments. But none of the approaches, we are
aware of, have investigated a simulation-based approach for mak-
ing predictions in the context of every robot object manipulation.
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Our simulation-based approach is in a similar line of work by
[9] who integrated logic and simulation for commonsense reason-
ing. Whereas they use a general purpose simulation, we utilize
a physics-based simulator augmented with phenomena of everyday
physics since we are particularly interested in naive physics reason-
ing for robot manipulation. Instead of looking at isolated problems,
we aim for a tight integration between the our proposed reasoning
system and other processes like planning, e.g., to predict whether a
meal is edible when executing a specific plan for cooking pasta.

The grounding of logical predicates like contacts(o1, o2) in data
of logged simulations is done similar to work by [17] who grounded
semantics in visual perception. Similarly, we ground only primi-
tive predicates in logged simulations. Complex predicates are for-
mulated in PROLOG and are based on primitive or other complex
predicates similar to definitions of symbolic chronicles [7].

The underlying idea of our approach is not restricted to prob-
lems in naive physics, but it can effectively be applied to tasks like
the visibility of objects in scenes, perspective taking [13], physics-
based motion planning [19], navigation in environments with non-
rigid objects [6], and the prediction of interfering effects of contin-
uous and concurrent actions [16].

6 Conclusions
In this paper we presented a simulation-based approach to naive
physics temporal projection in the context of robot manipulation.
Instead of making predictions based on logical axiomatizations, we
propose an inference system based on physics simulations.

We developed techniques for transferring qualitative reasoning
problems to physics simulations, for monitoring states of objects
and logging them to appropriate data structures, for translating logs
into first-order representations, and for answering queries on the
resulting representations. We successfully conducted experiments
that show that it is feasible to infer answers to naive physics prob-
lems based on physical simulations. We think that the effort needed
to get a functionality in simulation-based inference is less than for
axiomatizing the respective functionality. Additionally, details of
investigated problems are not abstracted away within detailed sim-
ulations. Furthermore, inference tasks that are notoriously difficult
to axiomatize are doable in simulation-based reasoning, for exam-
ple, tasks including concurrent actions, soft bodies, liquids, and
physical processes like mixing, overboiling, or scorching. In this
work we are neither aiming for high-performance nor high-fidelity
simulations, but rather exploiting simulation technologies for an-
swering questions about naive physics problems which a abstracted
in a reasonable small qualitative state space. We expect that issues
related to performance and realistic models will be addressed by
the game and animation film industry.

Thereby, we believe that this system provides a functionality
needed for successfully accomplishing complex everyday robot ma-
nipulation tasks. In future work, we will address how robots can
employ the simulation-based temporal projection approach for de-
termining the appropriate parametrizations for their actions.
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ABSTRACT
Autonomy requires robustness. The use of unmanned (au-
tonomous) vehicles is appealing for tasks which are dangerous or
dull. However, increased reliance on autonomous robots increases
reliance on their robustness. Even with validated software, phys-
ical faults can cause the controlling software to perceive the envi-
ronment incorrectly, and thus to make decisions that lead to task
failure. We present an online anomaly detection method for robots,
that is light-weight, and is able to take into account a large num-
ber of monitored sensors and internal measurements, with high
precision. We demonstrate a specialization of the familiar Maha-
lanobis Distance for robot use, and also show how it can be used
even with very large dimensions, by online selection of correlated
measurements for its use. We empirically evaluate these contribu-
tions in different domains: commercial Unmanned Aerial Vehicles
(UAVs), a vacuum-cleaning robot, and a high-fidelity flight sim-
ulator. We find that the online Mahalanobis distance technique,
presented here, is superior to previous methods.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Experimentation

Keywords
anomaly detection, Mahalanobis Distance , uncertainty, machine
learning, robotics

1. INTRODUCTION
The use of unmanned vehicles and autonomous robots is appeal-

ing for tasks which are dangerous or dull, such as surveillance and
patrolling [1], aerial search [9], rescue [2] and mapping [19].
However, increased reliance on autonomous robots increases our
reliance on their robustness. Even with validated software, physical
faults in sensors and actuators can cause the controlling software to
perceive the environment incorrectly, and thus to make decisions
that lead to task failure.

This type of fault, where a sensor reading can be valid, but in-
valid given some operational or sensory context, is called contex-
Cite as: Online Anomaly Detection in Unmanned Vehicles, Eliahu Kha-
lastchi, Gal A. Kaminka, Meir Kalech and Raz Lin, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 115-122.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tual failure [4]. For instance, a sensor can get physically stuck such
that it no longer reports the true value of its reading, but does report
a value which is in the range of valid readings.

Autonomous robots operate in dynamic environments, where it
is impossible to foresee, and impractical to account, for all possible
faults. Instead, the control systems of the robots must be comple-
mented by anomaly-detection systems, that can detect anomalies in
the robot’s systems, and trigger diagnosis (or alert a human oper-
ator). To be useful, such a system has to be computationally light
(so that it does not create a computational load on the robot, which
itself can cause failures), and detect faults with high degree of both
precision and recall. A too-high rate of false positives will lead
operators to ignoring the system; a too-low rate makes it ineffec-
tive. Moreover, the faults must be detected quickly after their oc-
currence, so that they can be dealt before they become catastrophic.

In this paper, we focus on online anomaly detection methods for
robots. We present methods that are light-weight, and are able to
take into account a large number of monitored sensors and internal
measurements, with high precision. We make two contributions.
First, we argue that in monitoring robots and agents, anomaly de-
tection is improved by considering not the raw sensor readings, but
their differential. This is because robots act in the same environ-
ment in which they sense, and their actions are expected to bring
about changes to the environment (and thus change to their sensor
readings). Second, we demonstrate the online use of the Maha-
lanobis distance—a statistical measure of distance between a sam-
ple point and a multi-dimensional distribution—to detect anoma-
lies. The use of Mahalanobis distance is not new in anomaly de-
tection; however, as previous work has shown [12] its use with the
high-dimensional sensor data produced by robots is not trivial, and
requires determining correlated dimensions. While previous work
relied on offline training, to do this, we introduce the use of the
lightweight Pearson correlation measure to do this. Taken together,
the two contributions lead to an anomaly detection method special-
ized for robots (or agents), and operating completely on-line.

To evaluate these contributions, we conduct experiments in three
different domains: We utilize actual flight-data from commercial
Unmanned Aerial Vehicles (UAVs), in which simulated faults were
injected by the manufacturer; data from the RV-400 vacuum clean-
ing robot; and the Flightgear flight simulator, which is widely used
for research [10, 16, 7]. In all, we experiment with variant algo-
rithms, and demonstrate that the online Mahalanobis distance tech-
nique, presented here, is superior to previous methods. The ex-
periments also show that the use of the differential sensor readings
improve on competing anomaly detection techniques, and is thus
independent of the use of the Mahalanobis distance.

2. RELATED WORK
Anomaly detection has generated substantial research over past
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years. Applications include intrusion and fraud detection, medi-
cal applications, robot behavior novelty detection, etc. (see [4]
for a comprehensive survey). We focus on anomaly detection in
Unmanned (Autonomous) Vehicles (UVs). This domain is charac-
terized by a large amount of data from many sensors and measure-
ments, that is typically noisy and streamed online, and requires an
anomaly to be discovered quickly, to prevent threats to the safety of
the robot [4].

The large amount of data is produced from a large number of
system components comprising of actuators, internal and external
sensors, odometry and telemetry, that are each monitored at high
frequency. The separated monitored components can be thought
of as dimensions, and thus a collection of monitored readings, at
a given point in time, can be considered a multidimensional point
(e.g., [12, 15]). Therefore, methods that produce an anomaly score
for each given point, can use calculations that consider the points’
density, such as Mahalanobis Distance [12] orK-Nearest Neighbor
(KNN) [15]. We repeat such a method here.

When large amounts of data are available, distributions can be
calculated, hence, statistical approaches for anomaly detection are
considered. These approaches usually assume that the data is gen-
erated from a particular distribution, which is not the case for high
dimensional real data sets [4]. Laurikkala et al. [11] proposed the
use of Mahalanobis Distance to reduce the multivariate observa-
tions to univariate scalars. Brotherton and Mackey [3] use the Ma-
halanobis Distance as the key factor for determining whether sig-
nals measured from an aircraft are of nominal or anomalous behav-
ior. However, they are limited in the number of dimensions across
which they can use the distance, due to run-time issues.

Apart from having to reduce dimensions when using Maha-
lanobis Distance, the dimensions that are left should be correlated.
Recently, Lin et al. [12] demonstrated how using an offline mecha-
nism as the Multi-Stream Dependency Detection (MSDD) [14] can
assist in finding correlated attributes in the given data and enable
use of Mahalanobis Distance as an anomaly detection procedure.
The MSDD algorithm finds correlation between attributes based on
their values. Based on the results of the MSDD process, they man-
ually defined the correlated attributes for their experiments. How-
ever, the main drawback of using the MSDD method is that it con-
sumes many resources and can only be used with offline training.
Thus, we propose using a much simpler algorithm, that groups cor-
related attributes using Pearson correlation coefficient calculation.
This calculation is both light and fast and therefore can be used
online, even on a computationally weak robot.

To distinguish the inherent noisy data from anomalies, Kalman
filters are usually applied (e.g., [8, 18, 5]). Since simple Kalman
filters usually produce a large number of false positives, additional
computation is used to determine an anomaly. For example, Cork
and Walker [5] present a non-linear model, which, together with
Kalman filters, tries to compensate for malfunctioning sensors of
UAVs. We use a much simpler filter that significantly improved
the results of our approach. The filter normalizes values using a Z
score transformation.

3. ONLINE ANOMALY DETECTION FOR
ROBOTS

We begin by describing the problem and outlining our approach.
We describe the online training procedure, and the specialization
for anomaly detection on robots. Finally, we describe when our ap-
proach should flag anomalies and describe our algorithm in detail.

3.1 Problem Description

We deal with the problem of online anomaly detection. Let
A = {a1, . . . , an} be the set of attributes that are monitored. Mon-
itored attributes can be collected by internal or external sensors
(e.g., odometry, telemetry, speed, heading, GPSx, GPSy ,
etc.). The data is sampled every t milliseconds. An input vector
~it = {it,1, . . . , it,n} is given online, where it,j ∈ R denotes the
value of attribute aj at current time t. With each ~it given, a decision
needs to be made instantly whether or not ~it is anomalous.

Past data H (assumed to be nominal) is also accessible. H is an
m×nmatrix where the columns denotes the nmonitored attributes
and the rows maintain the values of these attributes over m time
steps. H can be recorded from a complete operation of the UV that
is known to be nominal (e.g., a flight with no known failures), or it
can be created from the last m inputs that were given online, that
is, H = {~it−m−1, . . . ,~it−1}.

We demonstrate the problem using a running example. Consider
a UAV with its actuators that collects and monitors n attributes,
such as: air-speed, heading, altitude, roll pitch and yaw, and other
telemetry and sensors data. The actuators provides input in a given
frequency (usually with 10Hz frequency), when suddenly a fault
occurs; for instance, the altimeter is stuck on a valid value, while
the GPS’s indicated that the altitude keeps on rising. Another ex-
ample could be that the UAV’s stick is moved left or right but the
UAV is not responsive, due to icy wings. This is expressed in the
unchanging values of the roll and heading. Our goal is to detect
these failures, by flagging them as anomalies.

3.2 Online Detection

Figure 1:
Illustration
of the sliding
window.

We utilize a sliding window technique [4]
to maintain H , the data history, online. The
sliding window (see Figure 1) is a dynamic
window of predefined size m which gov-
erns the size of history taken into account in
our algorithm. Thus, every time a new in-
put ~it is received, H is updated as H ←
{~it−m−1, . . . ,~it−1} the last m online inputs.
The data in H is always assumed to be nomi-
nal and is used in the online training process.
Based onH we evaluate the anomaly score for
the current input ~it using the Mahalanobis Dis-

tance [13].

Figure 2: Eu-
clidean vs. Maha-
lanobis Distance.

Mahalanobis Distance is an n dimen-
sional Z-score. It calculates the dis-
tance between an n dimensional point
to a group of others, in units of stan-
dard deviations [13]. In contrast to the
common n dimensional Euclidean Dis-
tance, Mahalanobis Distance also con-
siders the points’ distribution. There-
fore, if the group of points represents an
observation, then the Mahalanobis Dis-
tance indicates whether a new point is an
outlier compared to the observation. A
point with similar values to the observed
points is located in the multidimensional space, within a dense area
and will have a lower Mahalanobis Distance. However, an outlier
will be located outside the dense area and will have a larger Maha-
lanobis Distance.

An example is depicted in Figure 2. We can see in the figure
that while A and B have the same Euclidean distance from the
centroid µ, A’s Mahalanobis Distance (3.68) is greater than B’s
(1.5), because an instance of B is more probable than an instance
of A with respect to the other points.
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Thanks to the nature of the Mahalanobis Distance, we can uti-
lize it for anomaly detection in our environment. Each of the n
attributes of the domain correlates to a dimension. An input vec-
tor ~it is the n dimensional point, that is measured by Mahalanobis
Distance against H . The Mahalanobis Distance is then used to in-
dicate whether each new input point ~it is an outlier with respect to
H .

Using the Mahalanobis Distance, we can easily detect the three
common categories of anomalies [4]:

1. Point anomalies: illegal data instances, corresponding to il-
legal values in ~it.

2. Contextual anomalies, that is, data instances that are only
illegal with respect to specific context but not otherwise. In
our approach, the context is provided by the changing data
of the sliding window.

3. Collective anomalies, which are related data instances that
are legal apart, but illegal when they occur together. This is
met with the multi-dimensionality of the points being mea-
sured by the Mahalanobis Distance .

An anomaly of any type, can cause the representative point to be
apart from the nominal points, in the relating dimension, thus plac-
ing it outside of a dense area, and leading to a large Mahalanobis
Distance and eventually raising an alarm.

Formally, the Mahalanobis Distance is calculated as follows. Re-
call that ~it = (it,1, it,2, . . . , it,n) is the vector of the current input
of the n attributes being monitored, and H = m × n matrix is the
group of these attributes’ nominal values. We define the mean of
H by µ = (µ1, µ2, . . . , µn) , and S is the covariance matrix of H .
The Mahalanobis Distance, Dmahal, from ~it to H is defined as:

Dmahal(~it, H) =

√
(~it − ~µ)S−1(~it

T − ~µT )

Using the Mahalanobis Distance as an anomaly detector is prone
to errors without guidance. Recently, Lin et al. [12] showed that
the success of Mahalanobis Distance as an anomaly detector de-
pends on whether the dimensions inspected are correlated or not.
When the dimensions are indeed correlated, a larger Mahalanobis
Distance can better indicate point, contextual or collective anoma-
lies. However, the same effect occurs when uncorrelated dimen-
sions are selected. When the dimensions are not correlated, it is
more probable that a given nominal input point will differ from the
observed nominal points in those dimensions, exactly as in con-
textual anomaly. This can cause the return of large Mahalanobis
Distance and the generating of false alarms.

Therefore, it is imperative to use a training process prior to the
usage of the Mahalanobis Distance. This process will find and
group correlated attributes, after which Mahalanobis Distance can
be applied per each correlated set of attributes. Instead of regard-
ing ~it as one n dimensional point and use one measurement of Ma-
halanobis Distance againstH , we apply several measurements, one
per each correlated set. In the next subsection we describe the work
of the training process and how it is applied online.

3.3 Online Training
Finding correlated attributes automatically is a difficult task.

Some attributes may be constantly correlated to more than one at-
tribute, while other attribute’s values can be dynamically correlated
to other attributes based on the characteristics of the data. For ex-
ample, the elevation value of an aircraft’s stick is correlated to the
aircraft’s pitch and to the change of height, measured in the differ-
ences of the values of the altitude attribute. However, this is only
true depending on the value of the roll attribute, which is influenced

by the aileron value of the aircraft’s stick. As the aircraft is being
rolled, the pitch axis is getting more vertical. This, in turn, makes
the elevation value to correlate to the heading value, rather than
the height. This example demonstrates how correlation between at-
tributes can change during execution time. Thus, it is apparent that
an online training is needed to find dynamic correlations between
the attributes.

Figure 3 shows a visualization of a correlation matrix, were each
celli,j depicts the correlation strength between attributes ai, aj .
The stronger the correlation, the darker the color of the cell. Figure
3 displays three snapshots taken from different time periods of a
simulated flight, where 71 attributes were monitored. The correla-
tion change is apparent.

Figure 3: Visualization of correlation change during a flight

We use a fast online trainer, denoted as Online_Trainer(H).
Based on the data of the sliding window H , the online trainer
returns n sets of dynamically correlated attributes, denoted as
CS = {CS1, CS2, . . . , CSn}, and a threshold per each set, de-
noted as TS = {threshold1, . . . , thresholdn}.

The online trainer executes two procedures. The first is a corre-
lation detector (see Alg. 1) that is based on Pearson correlation co-
efficient calculation. Formally, the Pearson correlation coefficient
ρ between given two vectors ~X and ~Y with averages x̄ and ȳ, is
defined as:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

(1)

ρ ranges between [−1, 1], where 1 represents a strong positive cor-
relation, and −1 represents a strong negative correlation. Values
closer to 0 indicate no correlation.

Algorithm 1 Correlation_Detector(H)
for each ai ∈ A do
CSi ← φ
for each aj ∈ A do

if |ρi,j(HT
i , H

T
j )| > ct then

add aj to CSi
add CSi to CS

return CS

Algorithm 1 returns the n sets of correlated attributes, one per
each attribute ai ∈ A. Each CSi contains the indices of the other
attributes that are correlated to ai. The calculation is done as fol-
lows. The vectors of the last m values of each two attributes ai, aj
are extracted from H and denoted HT

i ,HT
j . We then apply the

Pearson correlation on them denoted as ρi,j . If the absolute result
|ρi,j | is larger than a correlation threshold parameter ct ∈ {0..1},
then the attributes are declared correlated and aj is added to CSi.

The ct parameter governs the size of the correlated attributes set.
On the one hand, the higher it is, less attributes are deemed cor-
related, thereby decreasing the dimensions and the total amount of
calculations. However, this might also prevent attributes from be-
ing deemed correlated and affect the flagging of anomalies. On
the other hand, the smaller the ct more attributes are considered
correlated, thereby increasing the dimensions, and also increasing
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the likelihood of false positives, as less correlated attributes are se-
lected.

The second procedure sets a threshold value per each correlated
set. These thresholds are later used by the Anomaly Detector (see
Alg. 2) to declare an anomaly if the anomaly score of a given in-
put crossed a threshold value. Each thresholda ∈ TS is set to
be the highest Mahalanobis Distance of points with dimensions re-
lating the attributes in CSa extracted from H . Since every point
inH is considered nominal, then any higher Mahalanobis Distance
indicates an anomaly.

3.4 Specializing Anomaly Detection for
Robots

Monitoring in the domains of autonomous robots is unique and
have special characteristics. The main difference emerges from the
fact that we are required to monitor using the data obtained from
sensors that are used in the control loop to affect the environment.
In other words, the expectations to see changes in the environment
are a function of the actions selected by the agent.

Therefore, it makes sense to monitor the change in the values
measured by the sensors (which originates from the robot’s ac-
tions), rather than the absolute values. The raw readings of the
sensors usually do not correspond directly to the agent’s actions.
For example, an increase of speed should be correlated to the lose
of height generated by the UAV’s action, rather than correlating
a specific speed value with a specific height value. Formally, we
use the difference between the last two samples of each attribute,
denoted as4(~it) = ~it − ~it−1.

To eliminate false positives caused by the uncertainty inherent in
the sensors’ readings, and also to facilitate the reasoning about the
relative values of attributes, we apply a smoothing function using
a z-transform. This filter measures changes in terms of standard
deviations (based on the sliding window) and normalizes all values
to using the same standard deviation units. A Z-score is calculated
for a value x and a vector ~x using the vector’s mean value x̄ and its
standard deviation σx, that is, Z(x, ~x) = x−x̄

σx
.

We then transform each value it,j to its Z-score based on the last
m values extracted from the sliding window H (HT

j ). Formally,
Zraw(~it) = {Z(it,1, H

T
1 ), . . . , Z(it,n, H

T
n )}. We also define this

transformation on the differential data as Z4(~it) = Zraw(4(~it)).
Two aspects emphasize the need to use filters. First, the live

feed of data is noisy. Had we used only the last two samples, the
noise could have significantly damaged the quality of the differ-
ential data. Second, the data feed is received with high frequency.
When the frequency of the incoming data is grater than the speed of
the change in an attribute, the differential values might equal zero.
Therefore, a filter that slows the change in that data, and takes into
account its continuity, must be applied. In our simulations we ex-
perimented with two types of filters that use the aforementioned
Z-transformations, Zraw and Z4.

When an actuator is idle, its Z-values are all 0s, since each in-
coming raw value is the same as the lastm raw values. However, as
the actuator’s reading changes, the raw values become increasingly
different from one another, increasing the actuator’s Z-values, up
until the actuator is idle again (possibly on a different raw value).
The last m raw values are filled again with constant values, low-
ering the actuator’s Z-values. This way, a change is modeled by
a “ripple effect"", causing other attributes that correspond to the
same changes, also to be affected by that effect.

Figure 4 illustrates the Z-transformation technique. The data is
taken from a segment of a simulated flight. The figure presents
values of attributes (Y Axis) through time (X axis). The aileron at-
tribute stores the left and right movement of the UAV’s stick. These

Figure 4: Illustration of the Z-transformation.

movements controls the UAV’s roll which is sensed using gyros and
stored in the roll attribute. We say that the aileron and roll attributes
are correlated if they share the same effect of change. The aileron’s
raw data is shown in Figure 4 as the square points, which remains
almost constant. Yet, the roll’s raw data, marked as an upside tri-
angle, differs significantly from the aileron’s data. However, they
share a similar ripple effect, illustrated by their Z-transformation
values, shown in the triangle points and the diamond points. Thus,
our Pearson calculation technique can find this correlation quite
easily. Other attributes that otherwise could be mistakenly consid-
ered correlated when using just the raw data or 4 technique, will
not be considered as such when using the Z-transformation tech-
nique, unless they both share a similar ripple effect. This could
explain the fact that the Z4 technique was proven to be the best
one that minimizes the number of false positives as described in
Section 4.2

3.5 The Anomaly Detector
Algorithm 2 lists how the anomaly detector works. Each input

vector that is obtained online, ~it, is transformed to Z4(~it). The
sliding window H is updated. The online trainer process retrieves
the sets of correlated attributes and their thresholds. For each cor-
related set, only the relating dimensions are considered when we
compare the point extracted from ~it to the points with the same
dimensions in H . These points are compared using Mahalanobis
Distance. If the distance is larger than the correlated sets’ thresh-
old, then an anomaly is declared.

Algorithm 2 Anomaly_Detector(~it)
~it ← Z4(~it)

H ← {~it−m−1, . . . ,~it−1}
CS, TS ← Online_Trainer(H)
for each a (0 ≤ a ≤ |CS|) do

Let CSa be the a’th set of correlated attributes in CS
Let thresholda be the a’th threshold, associated with CSa
PH ← points with dimensions relating to CSa’s attributes
extracted from H
pnew ← point with dimensions relating to CSa’s attributes
extracted from ~it
if thresholda < Dmahal(pnew, PH) then

declare “Anomaly”.

4. EVALUATION
First, we describe the experiments setup; the test domains and

anomalies, the different anomaly detectors that emphasize that
need of each of our approach’s features, and how the scoring is
done. Then, we evaluate the influence of each feature of our ap-

118



proach, and we show how it outperforms other anomaly detection
approaches.

4.1 Experiments Setup
We use three domains to test our approach, described in Table 1.

Domain UAV UGV FlightGear
data real real simulated
anomalies simulated real simulated
scenarios 2 2 15
scenario duration (sec) 2100 96 660
attributes 55 25 23
frequency 4Hz 10Hz 4Hz
anomalies per scenario 1 1 4 to 6
anomaly duration (sec) 64, 100 30 35

Table 1: Tested domains and their characteristics.
The first is a commercial UAV (Unmanned Aerial Vehicles). The

data of two real flights, with simulated faults, was provided by the
manufacture. The fault of the first flight is a gradually decreas-
ing value of one attribute. The fault of the second flight is an at-
tribute that froze on a legal value. This fault is specially challeng-
ing, because it is associated with an attribute that is not correlated
to any others, making it very difficult for our approach to detect the
anomaly.

Figure 5: RV-400
tangled with a
string connected to
a heavy cart.

The second domain is a UGV. We
used a laboratory robot, the RV400 (see
Fig. 5). This robot is equipped with
ten sonars, four bumpers and odom-
etry measures. We tested two sce-
narios. In each scenario the robot
went straight, yet it was tangled with
a string that was connected to a cart
with weight. The extra weight causes
the robot to slow down in the first sce-
nario, and completely stop in the sec-
ond scenario. These scenarios demon-
strate anomalies that are a result of
the physical objects which are not
sensed by the robot. Therefore, the
robot’s operating program is unaware of these objects as well,
leaving the situation unhandled. This domain also presents
the challenge of having little data (only 96 seconds of data).

Figure 6: FlightGear
flight simulator.

To further test our approach,
on more types of faults and
on various conditions, we used
a third domain, the FlightGear
flight simulator (see Fig. 6).
FlightGear models real world
behavior, and provides realistic
noisy data. “Instruments that
lag in real life, lag correctly in
FlightGear, gyro drift is mod-

eled correctly, the magnetic compass is subject to aircraft body
forces.”[6] Furthermore, FlightGear also accurately models many
instrument and system faults, that can be injected into a flight. For
example, “if the vacuum system fails, the HSI gyros spin down
slowly with a corresponding degradation in response as well as a
slowly increasing bias/error."[6]

In the FlightGear simulation, we programmed an autonomous
UAV to fly according to the following behaviors: a take-off, an
altitude maintenance, a turn, and eventually a landing. During a
flight, 4 to 6 faults were injected into three different components;
the airspeed-indicator, altimeter and the magnetic compass. The

faults and their time of injection, were both randomly selected.
Each fault could be a contextual anomaly [4] with respect to the
UAV’s behavior, and a collective anomaly [4] with respect to the
measurements of different instruments such as the GPS airspeed,
altitude indicators and the Horizontal Situation Indicator.

Our approach is based on three key features, compared to previ-
ous work. 1) a comparison to a sliding window, rather than a com-
plete record of past data. 2) the use of an online training process
to find correlated attributes. 3) the use of differential filtered data.
To show the independent contribution of each feature we tested the
following online anomaly detectors that are described by three pa-
rameters (Nominal Data, Training, Filter), as summarized in Table
2. The bold line is our recommended approach when using Z∆ as
the filter.

Name Nominal Data Training
(CD,none,filter) complete past data none
(SW,none,filter) sliding window none
(CD,Tcd,filter) complete past data offline
(SW,Tcd,filter) sliding window offline
(SW,Tsw,filter) sliding window online

Table 2: Tested Anomaly Detectors.
The filter can be raw, ∆, Zraw, Z∆ as described in Section

3.4. CD denotes the use of a Complete record of past Data. SW
denotes the use of a Sliding Window. (SW,Tsw,Z∆) is our proposed
anomaly detector described in section 3.5. (SW,Tcd,filter) uses
almost the same technique; the thresholds are calculated on the data
of the sliding window. However the training is done first, offline,
on a complete record of past data. With (CD,Tcd,filter), the data
of the sliding window is replaced with the data of the complete past
record. With (SW,none,filter) no training is done, meaning all the
dimensions are used at once to compare ~it to the data of the sliding
window. (CD,none,filter) uses all the dimensions to compare ~it
to the data of a complete past record.

(CD,Tsw,filter) is not displayed in table 2. This anomaly de-
tector executes the training process on the sliding window, thus,
thresholds are calculated online each time different correlated sets
are returned. However, the comparison of the online input is made
against a complete record of past data, thus, thresholds are calcu-
lated on the data of CD, which is considerably larger than the data
of SW . Therefore, the anomaly detection of (CD,Tsw,filter) is
not feasible online, hence, its is not compared to the other anomaly
detectors displayed in table 2.

We evaluated the different anomaly detectors by the detection
rate and false alarm rate. To this aim we define four counters, which
are updated for every input ~it. A “True Positive” (TP) refers to the
flagging of an anomalous input as anomalous. A “False Negative”
(FN) refers to the flagging of an anomalous input as nominal. A
“False Positive” (FP) refers to the flagging of a nominal input as
anomalous. A “True Negative” (TN) refers to the flagging of a
nominal input as nominal. Table 3 summarizes how these counters
are updated.

score description
TP counts 1 if at least one “anomalous” flagging

occurred during a fault time
FN counts 1 if no “anomalous” flagging occurred

during a fault time
FP counts every “anomalous” flagging during nominal time
TN counts every “nominal” flagging during nominal time

Table 3: Scoring an anomaly detector.
For each algorithm, we calculated the detection rate = tp

tp+fn
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and the false alarm rate = fp
fp+tn

. An efficient classifier should
maximize the detection rate and minimize the false alarm rate. The
perfect classifier has a detection rate of 1, and a false alarm rate of
0.

4.2 Results
Figures 7 and 8 present the detection rate and the false alarm rate

respectively of 15 flights in the FlightGear simulator. We present
the influence of the different filters on the different algorithms. The
scale ranges from 0 to 1, where 0 is the best possible score for a
false alarm rate and 1 is the best possible score for a detection rate.

Figure 7: Detection rate. (Higher is better)

Figure 8: False alarm Rate. (Lower is better)

We begin with the first anomaly detector, (CD,none). Both Fig-
ures 7 and 8 show a value of 1, indicating a constant declaration
of an anomaly. In this case, no improvement is achieved by any of
the filters. This accounted for the fact that the comparison is made
to a complete record of past data. Since the new point is sampled
from a different flight, it is very unlikely for it be observed in the
past data, resulting with a higher Mahalanobis Distance than the
threshold, and the declaration of an anomaly.

The next anomaly detector we examine is (SW,none). In this de-
tector, the comparison is made to the sliding window. Since data is
collected in a high frequency, the values of ~it and the values of each
vector in H , are very similar. Therefore the Mahalanobis Distance
of ~it is not very different than the Mahalanobis Distance of any vec-
tor in H . Thus the threshold is very rarely crossed. This explains
the very low false alarm rate for this algorithm in Figure 8. How-
ever, the threshold is not crossed even when anomalies occur, re-
sulting in a very low detection rate as Figure 7 shows. The reason is
the absence of training. The Mahalanobis Distance of a contextual
or collective anomaly, is not higher than Mahalanobis Distances of
points with uncorrelated dimensions in H . The anomalies are not
conspicuous enough.

The next two anomaly detectors, introduce the use of offline
training. The first (CD,Tcd), uses a complete record of past data,
while the second (SW,Tcd) uses a sliding window. However in both
anomaly detectors the training is done offline, on a complete record
of past data. When no filter is used, (CD,Tcd) declares an anomaly
most of the times, this is illustrated in the square dot in Figures 7
and 8. When filters are used, more false negatives occur, expressed
in the almost 0 false alarm rates and the decreasing of the detection
rate. However, when a sliding windows is used, even with no filters,
(SW,Tcd) got better results, a detection rate of 1, and less than 0.5
false alarm rate, which is lower than (CD,Tcd)’s false alarm rate.
The filters used with (SW,Tcd) lower the false alarm rate to almost
0, but this time, the detection rate, though decreased, remains high.
Comparing (SW,Tcd) to (CD,Tcd) shows the importance of a slid-
ing window, while comparing (SW,Tcd) to (SW,none) it shows the
crucial need of training.

The final anomaly detector is (SW,Tsw) which differs from
(SW,Tcd) by the training mechanism. (SW,Tsw) applies an online
training on the sliding window. This allows achieving a very high
detection rate. Each filter used allows increasing the detection rate
closer to 1, until Z∆ gets the score of 1. The false alarm rate is
very high when no filter is used. When using filters we are able to
reduce the false alarm rate to nearly 0. (SW,Tsw,Z∆), which is the
approach we described in section 3.5, achieves a detection rate of
1, and a low false alarm rate of 0.064.

The results show the main contributions of each feature, sum-
marized in table 4

feature contribution reason
sliding window decreases FP similarity of ~it to H .
training increases TP correlated dimensions→

more conspicuous anomalies.
online training increases TP correspondence to dynamic

correlation changes.
filters decreases FP better correlations are found.

increases TP

Table 4: Feature Contributions

Figure 9: The classifier plane.
Figure 9 describes the entire space of classifiers: the X-axis is

the false alarm rate and the Y -axis is the detection rate. A clas-
sifier is expressed as a 2D point. The perfect anomaly detector is
located at point (0,1), that is, it has no false positives, and detects
all the anomalies. Figure 9 illustrates that when the features of our
approach are applied, they allow the results to approximate the per-
fect classifier.

Figure 10 shows the detection rates and false alarm rates of
(TW,Tsw,Z∆) in the classifier space, when we increase the cor-
relation threshold ct ∈ {0..1} in the online trainer described in
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Figure 10: The influence of the correlation threshold.
section 3.3. Note that the X axis scales differently than in Figure 9,
it ranges between [0, 0.2] in order to zoom in on the effect.

When ct equals 0 all the attributes are selected for each corre-
lated set, resulting with false alarms. As ct increases, less uncorre-
lated attributes are selected, reducing the false alarms, until a peak
is reached. The average peak of the 15 FlightGear’s flights was
reached when ct equals 0.5. (TW,Tsw,Z∆) averaged a detection
rate of 1, and a false alarm rate of 0.064. As ct increases above that
peak, less attributes that are crucial for the detection of an anomaly
are selected, thereby increasing the false negatives, which in return
lowers the detection rate. When ct reaches 1, no attributes are se-
lected, resulting a constant false negative.

To further test our approach, we compare it with other methods.

Figure 11: FlightGear Domain
Detection Rate

Support Vector Ma-
chines (SVM) are
considered very suc-
cessful classifiers when
examples of all cat-
egories are provided
[17]. However, the
SVM algorithm clas-
sifies every input as
nominal, including all
anomalies, resulting in
a detection rate of 0 as
Figure 11 shows. Sam-
ples of both categories
are provided to the SVM, and it is an offline process, yet, the
contextual and collective anomalies are undetected. This goes to
show how illusive these anomalies are, which were undetected
by a successful and well-known classifier, even under unrealistic
favoring conditions.

We also examine the quality of (SW,Tsw,Z∆) in the context of
other anomaly detectors. We compared it to the incremental LOF
algorithm [15]. As in our approach, the incremental LOF returns a
density based anomaly score in an online fashion. The incremental
LOF uses K nearest neighbor technique to compare the density
of the input’s “neighborhood” against the average density of the
nominal observations [15]. Figure 11 shows a detection rate of 1
to (SW,Tsw,Z∆) and the incremental LOF algorithm, making it a
better competitive approach to ours than the SVM.

Since the incremental LOF returns an anomaly score rather than
an anomaly label, we compared the two approaches using an offline
optimizer algorithm that gets the anomaly scores returned by an
anomaly detector, and the anomaly times, and returns the optimal
thresholds, which in retrospect, the anomaly detector would have
labeled the anomalies, in a way that all anomalies would have been
detected with a minimum of false positives.

Figures 12 to 15 show for every tested domain the false alarm
rate of

1. (SW,Tsw,Z∆)
2. optimized (SW,Tsw,Z∆) denoted as OPT(SW,Tsw,Z∆)
3. optimized incremental LOF denoted as OPT(LOF)

The results of the detection rate for these anomaly detectors is 1 in
every tested domain, just like the perfect classifier; all anomalies
are detected. Thus, the false alarm rate presented, also expresses
the distance to the perfect classifier, where 0 is perfect.

The comparison between (SW,Tsw,Z∆) to OPT(LOF) does not
indicate which approach is better in anomaly detection, since
the incremental LOF is optimized, meaning, the best theoretical
results it can get are displayed. However the comparison be-
tween OPT(SW,Tsw,Z∆) to OPT(LOF) does indicate which ap-
proach is better, since both are optimized. The comparison be-
tween OPT(SW,Tsw,Z∆) to (SW,Tsw,Z∆) indicates how better
(SW,Tsw,Z∆) can theoretically get.

Figure 12: FlightGear domain.

Figure 13: UAV first flight.

Figure 14: UAV second flight.
In all the domains the OPT(SW,Tsw,Z∆) had the lowest false

alarm rate. Naturally, OPT(SW,Tsw,Z∆) has a lower false alarm
rate than (SW,Tsw,Z∆), But more significantly, it had a lower false
alarm rate than OPT(LOF), making our approach a better anomaly
detector than the incremental LOF algorithm. Of all the tested do-
mains, the highest false alarm rate of (SW,Tsw,Z∆) occurred in the
UAV’s second flight, as Figure 14 show (little above 0.09). In this
flight, the fault occurred in an attribute that is not very correlated
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Figure 15: UGV domain.

to any other. Thus, the correlation threshold (ct) had to be low-
ered. This allowed the existence of a correlated set that includes the
faulty attribute as well as other attributes. This led to the detection
of the anomaly. However the addition of uncorrelated attributes
increased the false alarm rate as well.

Figure 15 show a surprising result. Even though the results of
the incremental LOF are optimized, (SW,Tsw,Z∆), which is not
optimized, had a lower false alarm rate. This is explained by the
fact that in the UGV domain, there was very little data. KNN ap-
proaches usually fail when nominal or anomalous instances do not
have enough close neighbors [4]. This domain simply did not pro-
vide the LOF calculation enough data to accurately detect anoma-
lies. However, the Mahalanobis Distance uses all the points in the
distribution, enough data to properly detect the anomalies.

Figure 16: Sliding Window’s changing size.
Figure 16 shows the false alarm rate influenced by the increase

of the sliding window’s size. While Mahalanobis Distance uses the
distribution of all the points in the sliding window, the KNN uses
only a neighborhood within the window, thus unaffected by its size.
Therefore, there exists a size upon which our approach’s real false
alarm rate, meets the incremental LOF’s optimized false alarm rate.

5. SUMMARY AND FUTURE WORK
We showed an unsupervised, model free, online anomaly detec-

tor for robots, that shows a great potential in detecting anomalies
while minimizing false alarms. Moreover, the features of the slid-
ing window, the online training and the filtered differential data,
made the difference between having an unusable anomaly detector,
and an anomaly detector that is better than current existing meth-
ods, when applied to robots. However we also showed that with dif-
ferent thresholds, even better results could be obtained. Therefore,
in our future work we shall try to select thresholds in a more clever
way. Raising an alarm is just the first step towards autonomous
self-correcting robots. The next step before diagnosing the cause
of the fault, is isolating it. By process of eliminating dimensions,
the anomaly, or fault, could be isolated, thus helping a diagnosis
process.
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ABSTRACT

Incremental heuristic search algorithms can solve sequences of

similar search problems potentially faster than heuristic search

algorithms that solve each search problem from scratch. So far,

there existed incremental heuristic search algorithms (such as

Adaptive A*) that make the h-values of the current A* search

more informed, which can speed up future A* searches, and incre-

mental heuristic search algorithms (such as D* Lite) that change

the search tree of the current A* search to the search tree of the

next A* search, which can be faster than constructing it from

scratch. In this paper, we present Tree Adaptive A*, which ap-

plies to goal-directed navigation in unknown terrain and builds on

Adaptive A* but combines both classes of incremental heuristic

search algorithms in a novel way. We demonstrate experimentally

that it can run faster than Adaptive A*, Path Adaptive A* and

D* Lite, the top incremental heuristic search algorithms in the

context of goal-directed navigation in unknown grids.
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1. INTRODUCTION
Agents, such as robots and game characters, have to be

able to navigate from their current location to a given desti-
nation [4]. However, they might not know a map of the ter-
rain initially, and their sensors can typically sense the terrain
only near their current location. They can use path plan-
ning with the freespace assumption to navigate from their
current location to their destination, which is a popular ap-
proach in robotics [13]: The agents plan a minimum-cost
path from their current location to their destination under
the assumption that the terrain is traversable except for the
obstacles that they have already sensed. As they move along
the planned path, they sense additional obstacles and add
them to their map. When they detect obstacles on the path,
they replan a minimum-cost path from their current loca-
tion to their destination and repeat the process until they
reach their destination or can no longer find a path to their
destination (in which case the destination is unreachable).

Path planning with the freespace assumption thus inter-
leaves path planning with movement and requires repeated
searches. These searches need to be fast since agents have to
move smoothly and without delay. For example, the com-
puter game company Bioware imposes a time limit of 1-3ms
on each search [2]. However, even A* searches [6] can be
time consuming if the terrain is large or many agents per-
form simultaneous searches. Incremental heuristic search
algorithms use information from the current and previous
searches to solve future similar search problems potentially
faster than heuristic search algorithms that solve each search
problem from scratch [12]. They have been used to speed
up A* searches in the context of both symbolic planning [9]
and path planning [12]. There are two classes of incremental
heuristic search algorithms:

• Incremental heuristic search algorithms of the first class
make the h-values of the current search more informed,
which can speed up future searches by making them more
focused. Examples include Adaptive A* [11], Generalized
Adaptive A* [19] and Multi-target Adaptive A* [16].

• Incremental heuristic search algorithms of the second class
change the search tree of the current search to the search
tree of the next search, which can be faster than con-
structing it from scratch. Examples include D* [18] and
D* Lite [10], which can speed up A* searches by more than
one order of magnitude [10] and are typically faster than
Adaptive A* and Generalized Adaptive A* in the context
of goal-directed navigation in unknown terrain [11]. Ver-
sions of them have been used as part of path planners in

123



5 6 5 5 3 2

4 5 4 4 4 3 3 1

1 4 1 3 1 2 1 1 0 0

G

2 4 2 3 2 2

D

E

F

7

A

B

C

1 2 3 4 5 6

(a)
x Hmax(x) Hmin(x) Paths(x)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 5 2 {5}
5 6 4 ∅

3 2

4 3 3 1

1 4 1 3 1 2 1 1 0 0

G

2 4 2 3 2 2

1 6 7

A

B

2 3 4 5

C

D

E

F

(b)
x Hmax(x) Hmin(x) Paths(x)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 3 2 ∅
5 4 4 ∅

6 5 6 4 3 2

4 3 3 1

1 4 1 3 1 2 1 1 0 0

G

2 4 2 3 2 2

C

D

E

F

6 7

A

B

2 3 4 51

(c)
x Hmax(x) Hmin(x) Paths(x)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 3 2 {6}
5 4 4 ∅
6 5 3 ∅

Figure 1: Illustration of Reusable Trees

a wide range of fielded robotics systems [14, 5, 15], in-
cluding the winning DARPA Urban Challenge entry from
Carnegie Mellon University.

We present Tree Adaptive A* (Tree-AA*) in this paper, an
incremental heuristic search algorithm that applies to path-
planning with the freespace assumption for goal-directed
navigation in unknown terrain or, more generally, repeat-
edly following a minimum-cost path from the current loca-
tion to a destination where the movement costs can increase
(but not decrease). Tree-AA* generalizes Path Adaptive A*
(Path-AA*) [7]. Path-AA* applies to path planning with
the freespace assumption and generalizes Adaptive A* to
reuse a suffix of the minimum-cost path of the current A*
search (= reusable path) to allow the next A* search to ter-
minate earlier. Tree-AA* also applies to path planning with
the freespace assumption but generalizes Adaptive A* to
reuse suffixes of the minimum-cost paths of the current and
all previous A* searches (= reusable tree). Thus, Tree-AA*
combines incremental heuristic search algorithms of the two
above classes in a novel way. The reusable tree of Tree-AA*
is similar to the search tree of incremental heuristic search
algorithms (such as D* Lite) that change the search tree
of the current A* search to the search tree of the next A*
search since they perform backward A* searches to guaran-
tee that the root of the search tree does not change. How-
ever, Tree-AA* changes the reusable tree via forward A*
searches, which is a novel way of maintaining the search tree.
We demonstrate experimentally that it can run faster than
Path-AA*, Adaptive A* and D* Lite, the top incremental
heuristic search algorithms in the context of goal-directed
navigation in unknown grids.

2. NOTATION
We use the following notation: S is the finite set of states,

which correspond to the locations. sstart ∈ S is the current
state of the agent, which corresponds to its current loca-
tion. sgoal ∈ S is the goal state, which corresponds to its
destination. Succ(s) ⊆ S is the set of successor states of
state s ∈ S. c(s, s′) > 0 is the cost of moving from state
s ∈ S to its successor state s′ ∈ Succ(s). The goal cost of a
state is the cost of a minimum-cost path from the state to
the goal state. The h-value h(s) (= heuristic) of state s ∈ S
is a consistent approximation of the goal cost of the state,
that is, one that satisfies the triangle inequality [17].

3. BACKGROUND
We provide a brief introduction to Adaptive A* and Path-

AA* since Tree-AA* uses their principles. Both incremen-
tal heuristic search algorithms apply to path planning with
the freespace assumption and use A* searches to find a
minimum-cost path from the current state of the agent to
the goal state. They perform A* searches from the current
state of the agent to the goal state (= forward search), which
is the most efficient search direction for Adaptive A* [10]
and the only possible search direction for Path-AA*. As the
agent follows the planned path, it senses additional obsta-
cles, which increase the costs of moving from some states to
their successor states (often to infinity). When one or more
edges with increased costs are on the planned path between
the current state of the agent and the goal state, Path-AA*
replans a minimum-cost path from the current state of the
agent to the goal state and then repeats the process until it
reaches the goal state or it can no longer find a path to the
goal state.

3.1 Adaptive A*
Adaptive A* [11] is based on the following “update prin-

ciple,” which was first described in [8] in the context of hi-
erarchical A* search: If the h-value of every state expanded
by an A* search with consistent h-values is set to the f-value
of the goal state minus the g-value of the state, then the
resulting h-values are again consistent and weakly dominate
the original h-values. Thus, an A* search with the resulting
h-values expands no more states than an A* search with the
original h-values (and the same tie-breaking strategy). The
goal state has to remain unchanged from A* search to A*
search but the start state can change and some movement
costs can increase (but not decrease). Thus, Adaptive A*
can be used for path planning with the freespace assump-
tion, which typically makes the A* searches more focused
and thus speeds them up. The properties of Adaptive A*
are explained in more detail in [11]. We make extensive use
of the property that Adaptive A* sets the h-values of all
states on the minimum-cost path to their goal costs.

3.2 Path Adaptive A* (Path-AA*)
Path Adaptive A* (Path-AA*) [7] is based on the follow-

ing “termination principle” and extends the “path-caching
strategy,” which was first described in [8] in the context of
hierarchical A* search: If one knows a minimum-cost path
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from some state to the goal state (= reusable path) and the
h-values of all states on the reusable path are equal to their
goal costs, then a forward A* can terminate when it is about
to expand a state on the reusable path (including the goal
state). Thus, a Path-AA* search can terminate earlier than
a regular A* search, that terminates only when it is about to
expand the goal state. The (minimum-cost) path from the
current state of the agent to the state on the reusable path
and the (minimum-cost) path from the state on the reusable
path to the goal state along the reusable path then form a
minimum-cost path from the current state of the agent to
the goal state. The properties of Path-AA* are explained in
more detail in [7].

4. TREE ADAPTIVE A* (TREE-AA*)
Path-AA* was the first search algorithm to combine incre-

mental heuristic search algorithms of the two above classes
in a novel way. It is often faster than D* Lite, an alternative
state-of-the-art incremental heuristic search algorithm [7],
but has an important limitation: Path-AA* reuses only one
path for the next A* search, namely a suffix of the minimum-
cost path of the current A* search (= reusable path). In
complex terrain, including terrain with large obstacles, the
next A* search is unlikely to expand a state on that path
far away from the goal state and thus unlikely to terminate
much earlier than a regular A* search. We introduce Tree
Adaptive A* (Tree-AA*) to address this limitation. Tree-
AA* generalizes Path-AA* to reuse suffixes of the minimum-
cost paths of the current and all previous A* searches (=
reusable tree). It maintains minimum-cost paths from sev-
eral states to the goal state organized in form of a tree rooted
in the goal state. If one knows minimum-cost paths from
several states to the goal state (= reusable tree) and the
h-values of all states in the reusable tree are equal to their
goal costs, then a forward A* search can terminate when it
is about to expand a state in the reusable tree (including the
goal state), for the same reasons as in the context of Path-
AA*. Tree-AA* needs to support two operations, namely
adding a path to the reusable tree and removing paths from
the reusable tree:

• Adding a Path to the Reusable Tree: When an A*
search of Tree-AA* terminates because it is about to ex-
pand a state in the reusable tree (including the goal state),
then Tree-AA* adds the path from the current state of
the agent to the state in the reusable tree to the reusable
tree. It does this because the (minimum-cost) path from
the current state of the agent to the state in the reusable
tree and the (minimum-cost) path from the state in the
reusable tree to the goal state along the branch of the
reusable tree form a minimum-cost path from the current
state of the agent to the goal state (since Adaptive A*
finds minimum-cost paths) and the h-values of all states
on the path are equal to their goal costs (since Adaptive
A* updates the h-values this way).

• Removing Paths from the Reusable Tree: When
the costs of edges in the reusable tree increase, then Tree-
AA* uses the largest prefix of the reusable tree that does
not contain edges with increased costs. (By prefix of a
tree we mean the top part of the tree that includes its
root.) It does this because all branches of the resulting
tree are minimum-cost paths from some state to the goal
state and the h-values of all states in the resulting tree are

still equal to their goal costs. When the cost of an edge
from state s to state s′ increases, then Tree-AA* finds the
largest prefix of the reusable tree by removing both the
edge and the subtree rooted in state s from the reusable
tree.

4.1 Implementation of the Reusable Tree
Tree-AA* implements the above two operations efficiently

by maintaining two variables for every state and three vari-
ables for every path x = s0 . . . sn in the reusable tree, where
s0 is the state at the start of the path and sn is the state
at the end of the path that an A* search was about to ex-
pand when it terminated. We say that the states s0 . . . sn−1

belong to path x. Every path in the reusable tree is identi-
fied with a unique integer that corresponds to the number
of the A* search after which it was added to the reusable
tree (starting with one). Every path in the reusable tree
is the prefix of a minimum-cost path from some state to
the goal state. The h-values of all states on the path are
equal to their goal costs and thus are strictly monotonically
decreasing along the path. The variables are as follows:

• Id(s) is the path in the reusable tree which state s belongs
to. These values are initialized to zero, which means that
state s is either the goal state or not in the reusable tree.

• Reusabletree(s) is the parent of state s in the reusable tree
if state s is a non-goal state in the reusable tree.

• Hmax(x) is the largest h-value of any state s0 . . . sn, that
is, Hmax(x) = h(s0). Hmax(0) = −1, as explained below.

• Hmin(x) is the smallest h-value of any state s0 . . . sn, that
is, Hmin(x) = h(sn).

• Paths(x) is the set of all paths in the reusable tree that
connect to one of the states s0 . . . sn−1. These paths “feed
into” path x.

Figure 1(a) shows a fictitious example of a reusable tree.
The terrain is discretized into cells that are either blocked
or unblocked, a common practice in the context of real-time
computer games [1]. We assume for simplicity that the agent
can move in the four main compass directions with cost one
and thus operates on undirected four-neighbor grids. Values
are shown only for cells that are in the reusable tree. A
cell is black if it is blocked and this fact is known to the
agent. The Id-value of a cell is shown in its upper left corner.
The h-value of a cell is shown in its upper right corner.
The Reusabletree-pointer of a cell is shown as an arrow.
The arrows thus show the reusable tree, that consists of five
paths. Path 1 is D2 D3 D4 D5 D6, path 2 is E3 E4 E5 D5,
path 3 is B6 C6 D6, path 4 is C2 C3 C4 D4, and path 5 is
B2 B3 C3. The table shows the variables of all paths.

4.2 Implementation of the Operations
The goal state is always in the reusable tree. Tree-AA*

could check whether Id(s) > 0 when it needs to check whether
a non-goal state s is in the reusable tree. However, this
would require it to set Id(s) to zero when it removes a
non-goal state from the reusable tree, which is expensive
since Tree-AA* often needs to remove whole paths from
the reusable tree. Thus, Tree-AA* checks whether h(s) ≤
Hmax(Id(s)) when it needs to check whether a non-goal state
s is in the reusable tree. (The goal state fails this test.)
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Tree-AA* can now remove a path x from the reusable tree
by setting Hmax(x) to Hmin(x) without having to set Id(s) to
zero for all states s that belong to path x. Thus, Id(s) = 0
is not necessarily true for states s not in the reusable tree.
There are two subtleties here. Non-goal states s that have
not yet been part of the reusable tree correctly fail the test
since Hmax(Id(s)) = Hmax(0) = −1. Non-goal states s that
were part of the reusable search tree but have subsequently
been removed correctly fail the test since they have an h-
value larger than Hmax(Id(s)). Tree-AA* adds a path to the
reusable tree and removes paths from the reusable tree as
follows:

• Adding a Path to the Reusable Tree: Tree-AA* adds
a path x = s0 . . . sn to the reusable tree as follows. It
equates x with the number of the current A* search (as
given by the variable Counter) to identify the path with
a unique integer. It inserts x into the set Paths(Id(sn))
if sn is a non-goal state since path x feeds into the path
that state sn belongs to [Lines 9-10]. (The line numbers
refer to the pseudo code of Tree-AA* in Figure 2). It sets
Hmin(x) to h(sn) [Line 11] and Hmax(x) to h(s0) [Line 12]
since the h-values are strictly monotonically decreasing
along the path. It sets Paths(x) to the empty set [Line
13] since no paths feed into path x yet. It sets Id(s) to
x and Reusabletree(s) to the successor of state s on path
x for all states s0 . . . sn−1 [Lines 14-18] since the states
s0 . . . sn−1 belong to path x. The runtime of adding a
path to the reusable tree is thus basically proportional to
the number of states on the path.

• Removing Paths from the Reusable Tree: When
the cost of an edge from state s to state s′ increases, then
Tree-AA* removes paths from the reusable tree as fol-
lows. If Reusabletree(s) = s′ then the edge might be in
the reusable tree [Lines 69-70], namely on path x := Id(s)
[Line 20]. In this case, Tree-AA* sets Hmax(x) to h(s′) (if
it was larger) to shorten path x [Lines 21-22]. It also re-
moves all paths x′ ∈ Paths(x) with Hmax(x) ≤ Hmin(x

′)
from the set Paths(x) and schedules them for removal
from the reusable tree [Lines 24-27]. For each path x
scheduled for removal with Hmax(x) > Hmin(x), it sets
Hmax(x) to Hmin(x), removes all paths x′ ∈ Paths(x) from
the set Paths(x) and schedules them recursively for re-
moval [Lines 28-34]. The runtime of removing paths from
the reusable tree when the cost of one edge increases is
thus basically proportional to the number of paths in the
reusable tree, which is bounded by the number of A*
searches performed so far.

Figure 1(b) continues the fictitious example from Figure
1(a) by showing the reusable tree after Tree-AA* removed
paths from the reusable tree after C3 became blocked. Tree-
AA* shortened path 4 to C4 D4 and removed path 5. Figure
1(c) shows the reusable tree after Tree-AA* added B3 B4 C4
D4 to the reusable tree after an A* search.

4.3 Pseudocode
We now put all of our insights together. The pseudo code

of Tree-AA* in Figure 3 proceeds as follows:1 It sets Id(s) to

1Tree-AA* maintains the following variables for its regular A*
searches: Counter is the number of the current A* search. OPEN
is the open list of the current A* search. CLOSED is the closed
list of the current A* search. Generated(s) is the number of the

01 procedure InitializeState(s)
02 if (Generated(s) = 0)
03 g(s) := ∞;
04 h(s) := H(s);
05 else if (Generated(s) 6= Counter)
06 g(s) := ∞;
07 Generated(s) := Counter;

08 procedure AddPath(s)
09 if (s 6= sgoal)
10 insert Counter into Paths(Id(s));
11 Hmin(Counter) := h(s);
12 Hmax(Counter) := h(sstart);
13 Paths(Counter) := ∅;
14 while (s 6= sstart)
15 saux := s;
16 s := Searchtree(s);
17 Id(s) := Counter;
18 Reusabletree(s) := saux;

19 procedure RemovePaths(s)
20 x := Id(s);
21 if (Hmax(x) > h(Reusabletree(s)))
22 Hmax(x) := h(Reusabletree(s));
23 QUEUE := ∅;
24 for all x′ ∈ Paths(x)
25 if (Hmax(x) < Hmin(x

′))
26 add x′ to the end of QUEUE;
27 remove x′ from Paths(x);
28 while QUEUE 6= ∅
29 remove x from the head of QUEUE;
30 if (Hmax(x) > Hmin(x))
31 Hmax(x) := Hmin(x);
32 for all x′ ∈ Paths(x)
33 add x′ to the end of QUEUE;
34 remove x′ from Paths(x);

35 function ComputePath()
36 while (OPEN 6= ∅)
37 remove state s with the smallest g(s) + h(s) value from OPEN;
38 if (s = sgoal OR h(s) ≤ Hmax(Id(s)))

/* s is in reusable tree */
39 for all s′ ∈ CLOSED
40 h(s′) := g(s) + h(s)− g(s′);
41 AddPath(s);
42 return true;
43 insert s into CLOSED;
44 for all s′ ∈ Succ(s)
45 InitializeState(s′);
46 if (g(s′) > g(s) + c(s, s′))
47 g(s′) := g(s) + c(s, s′);
48 Searchtree(s′) := s;
49 if (s′ ∈ OPEN)
50 remove s′ from OPEN;
51 insert s′ into OPEN with value g(s′) + h(s′);
52 return false;

53 function Main()
54 Counter := 1;
55 Hmax(0) := −1;
56 for all s ∈ S
57 Generated(s) := Id(s) := 0;
58 Reusabletree(s) := NULL;
59 while (sstart 6= sgoal)
60 InitializeState(sstart);
61 g(sstart) := 0;
62 OPEN := CLOSED := ∅;
63 insert sstart into OPEN with value g(sstart) + h(sstart);
64 if (ComputePath() = false)
65 return false; /* failure: the goal state is unreachable */
66 while (h(sstart) ≤ Hmax(Id(sstart)))

/* sstart is non-goal state in reusable tree */
67 sstart := Reusabletree(sstart);
68 for all increased costs c(s, s′)
69 if (Reusabletree(s) = s′)
70 RemovePaths(s);
71 Counter := Counter + 1;
72 return true; /* success: the goal state has been reached */

Figure 2: Tree-AA*

last A* search that generated state s. A* uses these values to
initialize the g-values and h-values of states as needed during an
A* search [procedure InitializeState] to avoid having to initialize
them for all states before every A* search. Searchtree(s) is the
parent of state s in the search tree of the Generated(s)th A*
search. g(s) is the g-value of state s during the Generated(s)th
A* search. h(s) is the current h-value of state s.
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Figure 3: Example Trace of Tree-AA*

zero [Line 57], Reusabletree(s) to NULL [Line 58] and h(s)
(when needed for the first time during an A* search) to the
user-given consistent h-value H(s) [Line 4] for all states s. It
performs a forward A* search [function ComputePath] until
it is about to expand a state s in the reusable tree (including
the goal state) [Line 38, termination principle]. It sets the
h-value of every expanded state s′ to the f-value of state s
(which is the same as the f-value of the goal state) minus the
g-value of state s′ [Lines 39-40, update principle]. It then
adds the (minimum-cost) path from the current state of the
agent to state s to the reusable tree [procedure AddPath],
as described above [Line 41]. It then follows the minimum-
cost path from the current state of the agent to the goal
state along the branch of the reusable tree [Lines 66-70].
Whenever edge costs increase, it removes paths from the
reusable tree [procedure RemovePaths], as described above
[Lines 68-70]. If the current state of the agent is no longer in
the reusable tree, it performs another forward A* search and
then repeats the process until the agent either reaches the
goal state or it can no longer find a path to the goal state.
The correctness proof of Tree-AA* is basically the same as
that of Path-AA* and thus not given here.

4.4 Example Trace of Tree-AA*
Figure 3(a-d) shows the beginning of a trace of Tree-AA*.

The agent always senses the blockage status of its four neigh-
boring cells and can then move to any one of the unblocked
neighboring cells with cost one. Its task is to move from
start cell S to goal cell G. It assumes that all cells are
unblocked except for the blocked cells that it has already
sensed. It plans a minimum-cost path from its current cell
to the goal cell. As it follows the planned path, it senses
additional blocked cells and adds them to its map. When it
detects blocked cells on its path, it replans a minimum-cost
path from its current cell to the goal cell until it reaches the
goal cell or can no longer find a path to the goal cell. The
user-given h-values are all zero. A cell is black if it is blocked
and this fact is known to the agent. The Id-value of a cell is
shown in its upper left corner. The h-value of a cell (after
it was updated using the update principle) is shown in its
upper right corner. The g-value of a cell is shown in its lower
left corner if it was generated during the current A* search.
A cell is shaded if it was expanded during the current A*
search. The Reusabletree-pointer of a cell is shown as an
arrow if it belongs to the reusable tree.

Figure 3(a) shows the initial situation with start cell D2.
Figure 3(b) shows that the first A* search of Tree-AA* from
D2 to D6 terminates when it is about to expand D6 and
returns the D2 D3 D4 D5 D6. Tree-AA* adds the path to

the reusable tree and updates the h-values of the expanded
states using the update principle. The agent then follows
the branch of the reusable tree from D2 to D3, where it
senses that D4 is blocked. Tree-AA* removes D2 D3 D4 D5
from the reusable tree. Figure 3(c) shows that the second
A* search of Tree-AA* from D3 to D6 terminates when it
is about to expand D6 and returns D3 C3 C4 C5 C6 D6. It
expands fewer cells than an A* search with the user-given
zero h-values (which also expands B2, C2 and D2), illus-
trating the speed up achieved with the update principle.
Tree-AA* adds the path to the reusable tree and updates
the h-values. The agent then moves from D3 to C3, where
it senses that C4 is blocked. Tree-AA* removes D3 C3 C4
C5 from the reusable tree. Figure 3(d) shows that the third
A* search of Tree-AA* from C3 to D6 terminates when it
is about to expand C6 and returns C3 B3 B4 B5 B6 C6. It
terminates earlier than a regular A* search with the same
h-values (which also expands C6 and terminates only when
it is about to expand D6), illustrating the speed up achieved
with the termination principle.

4.5 Comparison of Path-AA* and Tree-AA*
Figure 4 shows an example that illustrates the difference

between Path-AA* (top) and Tree-AA* (bottom) on the
same navigation problem. A cell is black if it is blocked
and this fact is known to the agent. A Reusabletree-pointer
is shown as a thick arrow if it was added to the reusable
path (or reusable tree) in the current A* search and as a
thin arrow if it was added in a previous A* search. A trian-
gle marks the cell that the current A* search was about to
expand before it terminated.

Figures 4(a) and 4(e) show that the first A* searches of
Path-AA* and Tree-AA* produce the same result. The
agent then moves from E2 to E3, where it senses that E4
is blocked. Path-AA* removes E2 E3 E4 E5 E6 E7 E8 E9
D9 from the reusable path. Figure 4(b) shows that the sec-
ond A* search of Path-AA* terminates when it is about
to expand D9, and Path-AA* adds E3 D3 D4 D5 D6 D7
D8 D9 (shown as thick arrows) to the reusable path. On
the other hand, Tree-AA* removes E2 E3 E4 E5 from the
reusable tree. Figure 4(f) shows that the second A* search
of Tree-AA* also terminates when it is about to expand D9,
but Tree-AA* adds E3 D3 D4 D5 D6 D7 D8 D9 (shown as
thick arrows) to the reusable tree. Thus, Tree-AA* removes
fewer cells, which might allow its future A* searches to ter-
minate earlier. The agent then moves from E3 to D3, where
it senses that D4 is blocked. Path-AA* and Tree-AA* per-
form their third A* searches. The agent then moves from
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Figure 4: Comparison of Path-AA* (top) and Tree-AA* (bottom)

D3 to C3, where it senses that C4 is blocked. Path-AA*
and Tree-AA* perform their fourth A* searches. We omit
the details of the third and fourth A* searches due to space
constraints. The agent then moves from C3 to B3, where it
senses that B4 is blocked. Figure 4(c) shows that the fifth A*
search of Path-AA* terminates when it is about to expand
B9. Figure 4(g) shows that the fifth A* search of Tree-AA*
terminates already when it is about to expand E9, illustrat-
ing the speed up resulting from reusing the paths from all
previous A* searches. The agent then moves from B3 to
F5, where it senses that F6 is blocked. Figure 4(d) shows
that the sixth A* search of Path-AA* terminates when it is
about to expand E9. Figure 4(h) shows that the fifth A*
search of Tree-AA* terminates already when it is about to
expand F5, again illustrating the speed up resulting from
reusing the paths from all previous A* searches.

5. TREE-AA*-BACK
An A* search with consistent h-values guarantees that

the g-value of every expanded state is equal to the cost of
a minimum-cost path from the start state to the expanded
state [17]. Thus, if the first A* search of Tree-AA* searches
from the goal state to the current state of the agent (=
backward search), then the resulting search tree restricted
to the expanded states is a reusable tree. All subsequent A*
searches of Tree-AA* must be forward searches. We refer to
the resulting version of Tree-AA* as Tree-AA*-Back. The
reusable tree after the first A* search of (standard) Tree-
AA* contains only the expanded states on the minimum-
cost path from the current state of the agent to the goal
state, while the reusable tree after the first A* search of
Tree-AA*-Back contains all expanded states, which might
allow future A* searches to terminate earlier.

6. EXPERIMENTAL EVALUATION
We compare Tree-AA* to the top incremental heuristic

search algorithms in the context of goal-directed naviga-
tion in unknown grids, namely Adaptive A* (that uses for-
ward searches, which is the most efficient search direction
for Adaptive A*), Path-AA* (that uses forward searches,
which is the only possible search direction for Path-AA*)

Figure 5: Maps

and D* Lite (that uses backward searches, which is the only
possible search direction for D* Lite). Tree-AA* uses for-
ward searches but we also implement Tree-AA*-Back from
Section 5, whose first A* search is a backward search. For
fairness, all search algorithms use binary heaps as priority
queues and break ties among states with the same f-values
in favor of states with larger g-values (which is known to be
a good tie-breaking strategy), with one exception: During
the first search, Tree-AA*-Back (1) breaks ties among states
with the same f-values in favor of states with larger g-values
but Tree-AA*-Back (2) breaks ties in favor of states with
smaller g-values. During the remaining A* searches, both
versions of Tree-AA*-Back break ties in favor of states with
larger g-values.

6.1 Experimental Setup
We used four-neighbor grids as examples since they re-

sult in integer-valued g-values, h-values and f-values. We
use eight-neighbor grids in the experiments since they are
often preferred in practice, for example in video games [3,
2]. The agent always senses the blockage status of its eight
neighboring cells and can then move to any one of the un-
blocked neighboring cells with cost one for horizontal or ver-
tical movements and cost

√
2 for diagonal movements. The

user-given h-values are the octile distances [3].
We use two indoor office maps of size 1, 000× 1, 000 cells,

where the size of each room is 20 × 20 cells. Figure 5 (left
and center) shows areas of 2 × 2 rooms in office maps 1
and 2. We also use a computer game map of size 3, 000 ×
3, 000 cells adapted from Counter-Strike (courtesy of Vadim
Bulitko from the University of Alberta). Figure 5 (right)
shows the game map. We average our experimental results
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Office Map 1
All A* Searches First A* Search Remaining A* Searches

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Adaptive A* 1,333 652 473 0.127 82.8 900 0.48 472 0.126
D* Lite 1,520 474 562 0.177 83.9 25,836 9.25 508 0.158
Path-AA* 1,333 652 114 0.043 28.0 900 0.48 113 0.042
Tree-AA* 1,333 652 13 0.005 3.3 900 0.45 11 0.004
Tree-AA*-Back (1) 1,337 615 55 0.015 9.2 25,836 5.84 13 0.006
Tree-AA*-Back (2) 1,334 652 212 0.059 38.5 134,669 36.42 6 0.003

Office Map 2
Adaptive A* 6,606 3,924 512 0.130 445.8 900 0.47 512 0.130
D* Lite 5,821 2,429 285 0.092 223.5 48,013 17.14 265 0.085
Path-AA* 6,637 3,094 88 0.033 102.1 900 0.47 88 0.033
Tree-AA* 6,637 3,094 19 0.006 18.6 900 0.48 19 0.006
Tree-AA*-Back (1) 6,413 2,903 36 0.008 23.2 48,013 10.77 19 0.004
Tree-AA*-Back (2) 6,635 3,088 60 0.016 49.4 132,795 36.11 17 0.004

Game Map
Adaptive A* 4,842 2,524 3,424 1.094 2,761.3 2,671 1.62 3,424 1.094
D* Lite 5,723 2,491 1,547 0.790 1,967.9 5,821 3.64 1,545 0.789
Path-AA* 4,841 2,520 1,442 0.525 1,323.0 2,671 1.65 1,442 0.525
Tree-AA* 4,841 2,519 1,353 0.437 1,100.8 2,671 1.57 1,353 0.437
Tree-AA*-Back (1) 4,955 2,378 1,320 0.407 967.8 5,821 2.29 1,322 0.406
Tree-AA*-Back (2) 4,841 2,519 1,610 0.466 1,173.9 1,203,590 392.12 1,132 0.310

(a) = moves per test case; (b) = A* searches per test case; (c) = cell expansions per A* search; (d) = runtime per A* search; (e) = runtime per test case;
(f) = cells expansions of the ↓rst A* search; (g) = runtime of the ↓rst A* search; (h) = cell expansions per A* search (excluding the ↓rst A* search);

(i) = runtime per A* search (excluding the ↓rst A* search).

Table 1: Experimental Results

over 500 test cases with a reachable goal cell for each map.
For each test case in the office maps, we ensure that the start
and goal cells are far apart by independently choosing the
x-coordinate of the start cell randomly between 1 and 100
and the x-coordinate of the goal cell randomly between 901
and 1,000. We independently choose the y-coordinates of the
start and goal cells randomly between 1 and 1,000. Similarly,
for each test case in the game map, we independently choose
the x-coordinate of the start cell randomly between 1 and
300 and the x-coordinate of the goal cell randomly between
2,701 and 3,000. We independently choose the y-coordinates
of the start and goal cells randomly between 1 and 3,000.

6.2 Experimental Results
We report two measures of the difficulty of goal-directed

navigation problems in unknown grids, namely (a) the num-
ber of moves of the agent per test case and (b) the number of
A* searches per test case until the agent reaches the goal cell.
These measures vary slightly among the compared search al-
gorithms since they can determine different minimum-cost
paths, in which case the agents that follow the paths might
sense different blocked cells, which can make their trajecto-
ries diverge. We report three measures of the efficiency of
the search algorithms, namely (c) the number of expanded
cells per A* search, (d) the runtime per A* search in mil-
liseconds and (e) the runtime per test case in milliseconds on
a Linux PC with a Pentium CoreQuad 2.33 GHz CPU and
8 GB RAM. Since the number of A* searches is (approxi-
mately) the same for all search algorithms, their runtimes
per test case are largely proportional to their runtimes per
A* search. Therefore, the main measure of the efficiency
of the search algorithms is their runtime per A* search. In
order to gain more insight into the behavior of the search
algorithms, we divide each test case into two parts, namely
the first A* search and the remaining A* searches other than
the first one. For the first A* search, we report (f) the num-
ber of expanded cells and (g) the runtime in milliseconds.
For the remaining A* searches other than the first one, we
report (h) the number of expanded cells per A* search and
(i) the runtime per A* search in milliseconds. Table 1 shows
the following relationships:

First, Tree-AA* has a smaller runtime per A* search than
Adaptive A* for all maps because it has a smaller number of
cell expansions per A* search due to the speed up achieved
with the termination principle. For example, Tree-AA* ex-
pands only about 2.7, 3.7 and 39.5 percent of the cells per

A* search that Adaptive A* expands in office maps 1 and 2
and the game map, respectively. It thus runs by factors of
25.4, 21.7 and 2.5 faster per A* search.

Second, Tree-AA* has a smaller runtime per A* search
than D* Lite for all maps, which is due to two reasons.
First, Tree-AA* has a smaller number of cell expansions per
A* search perhaps due to the speed up achieved with the
update and termination principles. For example, Tree-AA*
expands only about 2.3, 6.7 and 87.5 percent of the cells
per A* search that D* Lite expands in office maps 1 and
2 and the game map, respectively. Second, Tree-AA* has
a smaller number of heap percolates per A* search due to
both the smaller number of cell expansions per A* search
(resulting in fewer heap operations) and a smaller number
of cells in the open list during each A* search (resulting
in fewer heap percolates per heap operation). The smaller
number of cells in the open list is due to each A* search
of Tree-AA* starting with an empty open list rather than
the open list at the end of the previous A* search. Tree-
AA* thus runs by factors of 35.4, 15.3 and 1.8 faster per A*
search.2

Third, Tree-AA* has a smaller runtime per A* search than
Path-AA* for all maps because it has a smaller number of
cell expansions per A* search due to the speed up achieved
with a reusable tree rather than a reusable path. For ex-
ample, Tree-AA* expands only about 11.4, 21.6 and 93.8
percent of the cells per A* search that Path-AA* expands
in office maps 1 and 2 and the game map, respectively. It
thus runs by factors of 8.6, 5.5 and 1.2 faster per A* search.

Fourth, both versions of Tree-AA*-Back have a larger run-
time for the first A* search than (standard) Tree-AA* for
all maps but tend to have a smaller runtime per A* search
for the remaining A* searches, which is due to the following
reasons: The first A* search of Tree-AA* is a forward search,
while the first A* search of both versions of Tree-AA*-Back

2To understand better in which situations Tree-AA* has an ad-
vantage over D* Lite, we also perform experiments on maps of
size 500 × 500 cells and independently block 20, 30, 40, 50 and
60 percent of randomly chosen cells, respectively. We average our
experimental results over 500 test cases with a reachable goal cell
for each map. For each test case, we choose the x-coordinate of
the start cell randomly between 1 and 50 and the x-coordinate of
the goal cell randomly between 451 and 500. We independently
choose the y-coordinates of the start and goal cells randomly be-
tween 1 and 500. Tree-AA* expands only about 11.2, 12.5, 14.9,
17.4 and 87.0 percent of the cells per A* search that D* Lite
expands, respectively.

129



is a backward search. Backward A* searches expand more
cells than forward A* searches [10]. Thus, the runtime of the
first A* search of both versions of Tree-AA*-Back is larger
than the one of Tree-AA*. The first A* search of Tree-AA*
yields a reusable path, while the first A* search of both ver-
sions of Tree-AA*-Back yields a reusable tree. During the
first search, Tree-AA*-Back (1) breaks ties among states
with the same f-values in favor of states with larger g-values
but Tree-AA*-Back (2) breaks ties in favor of states with
smaller g-values. Thus, the runtime of the first A* search
and the size of the reusable tree of Tree-AA*-Back (2) are
larger than the ones of Tree-AA*-Back (1). The larger the
reusable tree, the more it speeds up the first few remaining
A* searches of Tree-AA*-Back due to the termination princi-
ple until the reusable trees of Tree-AA*-Back and Tree-AA*
are about equally large. For example, Tree-AA*-Back (1)
and, given in parentheses, Tree-AA*-Back (2) expand about
423.1 (1630.8), 189.5 (315.8) and 97.6 (119.0) percent of the
cells per A* search that Tree-AA* expands in office maps 1
and 2 and the game map, respectively. They thus run by fac-
tors of 3.0 (11.8), 1.3 (2.7), and 0.9 (1.1) more slowly per A*
search. However, Tree-AA*-Back (1) and (2) expand about
118.2 (54.5), 100.0 (89.5) and 97.7 (83.7) percent of the cells
per A* search that Tree-AA* expands for the remaining A*
searches other than the first one. They thus run by factors
of 0.7 (1.3), 1.5 (1.5) and 1.1 (1.4) faster per A* search for
the remaining A* searches. Therefore, Tree-AA*-Back (1)
and (2) tend to run faster than Tree-AA* for applications
where the first A* search can be performed offline before the
goal-directed navigation problem in unknown terrain starts
and its runtime thus does not matter, as is often the case in
robotics.

7. CONCLUSIONS
In this paper, we introduced a new incremental heuristic

search algorithm called Tree Adaptive A*. So far, there ex-
isted incremental heuristic search algorithms (such as Adap-
tive A*) that make the h-values of the current A* search
more informed and incremental heuristic search algorithms
(such as D* Lite) that change the search tree of the current
A* search to the search tree of the next A* search. Tree
Adaptive A* uses the update principle of Adaptive A* to
make the h-values of the current A* search more informed.
It also uses the termination principle of Path Adaptive A* to
terminate A* searches earlier than regular A* searches but
generalizes it to reuse suffixes of the minimum-cost paths of
the current and all previous A* searches (= reusable tree).
Overall, Tree Adaptive A* is the first incremental heuristic
search algorithm to combine the principles of both classes of
incremental heuristic search algorithms and can run faster
than Adaptive A*, Path Adaptive A* and D* Lite, the top
incremental heuristic search algorithms in the context of
goal-directed navigation in unknown grids.
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ABSTRACT
k- and t-optimality algorithms [9, 6] provide solutions to
DCOPs that are optimal in regions characterized by its size
and distance respectively. Moreover, they provide quality
guarantees on their solutions. Here we generalise the k- and
t-optimal framework to introduce C-optimality, a flexible
framework that provides reward-independent quality guar-
antees for optima in regions characterised by any arbitrary
criterion. Therefore, C-optimality allows us to explore the
space of criteria (beyond size and distance) looking for those
that lead to better solution qualities. We benefit from this
larger space of criteria to propose a new criterion, the so-
called size-bounded-distance criterion, which outperforms k-
and t-optimality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Design, Theory

Keywords
DCOP, approximate algorithm, bound, region optimality

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a popu-

lar framework for cooperative multi-agent decision making.
It has been applied to real-world domains such as sensor
networks [14], traffic control [5], or meeting scheduling [10].
In real-world domains, and particularly in large-scale appli-
cations, DCOP techniques have to cope with limitations on
resources and time available for reasoning. Because DCOP
is NP-Hard [8], complete DCOP algorithms (e.g. Adopt [8],
OptAPO [7], DPOP [10]) that guarantee global optimality
are unaffordable for these domains due to their exponen-

Cite as: Quality guarantees for region optimal DCOP algorithms, M.
Vinyals et al., Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 133-140.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tial costs. In contrast to complete algorithms, incomplete
algorithms [14, 4, 12, 9, 6] provide better scalability.

Unfortunately, an important limitation for the application
of incomplete algorithms is that they usually fail to pro-
vide quality guarantees on their solutions. The importance
of quality guarantees is twofold. First, they help guaran-
tee that agents do not converge to a solution whose quality
is below a certain fraction of the optimal solution (which
can have catastrophic effects in certain domains). Secondly,
quality guarantees can aid in algorithm selection and net-
work structure selection in situations where the algorithmic
cost of coordination must be weighed up against solution
quality (trade-off cost versus quality).

To the best of our knowledge, k-size and t-distance op-
timal algorithms [9, 6] are the only incomplete DCOP al-
gorithms that can provide guarantees on the worst-case so-
lution quality of their solutions at design time and exploit-
ing different levels of knowledge of the particular problem
instance(s). These quality guarantees exploit the available
knowledge, if any, about the DCOP(s) to solve regarding
their graph structure [9] and their reward structure [3]. Un-
like other incomplete algorithms that focus on individual
agent decisions [14, 4, 12], k-size [9] and t-distance [6] opti-
mal algorithms are based on coordinating the decisions of lo-
cal groups (neighborhoods) of agents. Thus, given a DCOP,
agents inside a neighbourhood coordinate to locally optimise
their joint decision by considering any joint assignment that
can improve their joint reward. The difference between k-
size and t-distance optimal algorithms is the criterion em-
ployed to generate neighbourhoods: k-size-optimality cre-
ates neighbourhoods of a fixed size (k), whereas t-distance-
optimality creates per each agent a neighbourhood that in-
cludes all other agents within a certain distance (t) in the
constraint graph. In both cases, we can regard a collection
of neighbourhoods as an exploration region for either a k- or
t-optimal algorithm in a constraint graph.

Although k-size and t-distance are the criteria explored
so far in the literature, it is reasonable to wonder whether
there are further local optimality criteria that can lead to
better solution qualities while providing quality guarantees.
In this paper we provide the foundations to explore this
fundamental research question. First of all, we generalise
the k- and t-optimal framework to introduce C-optimality, a
flexible framework that provides quality guarantees for local
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Figure 1: Example of (a) a DCOP graph, (b) its
2-size region and (c) its 3-size region.

optima in regions characterised by any arbitrary criterion.
Therefore, C-optimality allows us to explore the space of
local optimality criteria (beyond size and distance) looking
for those that lead to better solution qualities.

We benefit from this larger space of criteria to propose a
novel criterion to define regions, the so-called size-bounded-
distance criterion, which we design to overcome the main
drawbacks of size and distance optimality. Finally, we ex-
tend the DALO algorithm proposed in [6] to compute C-
optimal solutions. We empirically show that the size-bounded-
distance criterion indeed leads to better solution qualities,
outperforming k− and t-optimality. Therefore, the C-optimality
framework opens new research opportunities to study the
design of new local optimality criteria.

Likewise k- and t- optimality, C-optimality is algorithmic-
independent, meaning that bounds are defined over solutions
not over the algorithms to find them. Thus, although we
propose C-DALO as general purpose algorithm to find any
C-optimal for arbitrary criteria, it does not imply that there
cannot exist different region-optimal algorithms. Indeed, in
our previous work [11], we employ analogous guarantees to
provide worst-case bounds on the solutions of the loopy be-
lief propagation algorithm, a popular approximate algorithm
for finding the Maximum a Posteriori assignment in Markov
Random Fields. In contrast, this work focuses on DCOPs.
Firstly, we generalise the bounds in [11] to provide a frame-
work for regional DCOPs algorithms. Secondly, we analyse
the benefits of exploring arbitrary region criteria.

The paper is organised as follows. Section 2 provides
some background on DCOPs and on the k− and t-optimality
frameworks. Section 3 introduces the notion of C-optimality
solution as a local solution for an arbitrary criterion and the
mechanisms for computing quality guarantees for C-optimal
solutions. Moreover, it also proves that the C-optimality
framework generalises k- and t-optimality. Section 4 in-
troduces a new local optimality criterion, size-bounded dis-
tance, and empirically compares the quality solutions ob-
tained by the new criterion with respect to k- and t-optimal
solutions. Finally, section 5 draws conclusions and sets paths
to future research.

2. BACKGROUND

2.1 DCOP Definition
A Distributed Constraint Optimization Problem (DCOP)

consists of a set of variables, each assigned to an agent which
must assign a discrete value to the variable: these values cor-
respond to individual actions that can be taken by agents.
Constraints exist between subsets of these variables that de-
termine rewards to the agent team based on the combina-
tions of values chosen by their respective agents, namely
relations. Let X = {x1, . . . , xn} be a set of variables over

domains D1, . . . ,Dn. A relation on a set of variables V ⊆ X
is expressed as a reward function SV : DV → R+, where
DV is the joint domain over the variables in V . This func-
tion represents the reward generated by the relation over the
variables in V when the variables take on an assignment in
the joint domain DV . Whenever there is no need to identify
the domain, we simply use S to note relations.

In a DCOP each agent knows all the relations that involve
its variable(s). In this work we assume that each agent is
assigned a single variable, so we will use the terms “agent”
and “variable” interchangeably.

Formally, a DCOP is a tuple 〈X ,D,R〉, where: X is a
set of variables (each one assigned to a different agent); D
is the joint domain space for all variables; and R is a set
of reward relations. The solution quality for an assignment
d ∈ D to the variables in X is the sum of the rewards for
the assignment over all the relations in the DCOP, namely:

R(d) =
X
SV ∈R

SV (dV ) (1)

where dV ∈ DV contains the values assigned by d to the
variables in V . With slight abuse of notation we allow to
write equation 1 as R(d) =

P
S∈R S(d).

Solving a DCOP amounts to choosing values for the vari-
ables in X such that the solution quality is maximized. A
binary DCOP (each relation involves a maximum of two
variables) is typically represented by its constraint graph,
whose vertices stand for variables and whose edges link vari-
ables that have some direct dependency (appear together in
the domain of some relation). Examples of constraint graphs
are depicted in figures 1(a) and 2(a).

2.2 Size and distance optimality
Since DCOP is NP-hard, an important line of work fo-

cuses on developing fast incomplete algorithms. Along this
direction, a significant trend is to study approaches based on
coordinating the decisions of local groups of agents, instead
of having each agent make an individual choice.

Two important local optimality criteria that establish how
to group agents to coordinate their decisions are k-size [9]
and t-distance [6] optimality. According to k-size optimality
agents form groups of k agents. For instance, figures 1(b)
and 1(c) depict the groups of 2 agents and 3 agents respec-
tively for the DCOP in figure 1(a) where boldfaced nodes
stand for agents included in the group. Given an assign-
ment x∗, it is a local optimum, k-optimum, when no group
of k or fewer agents can improve its reward R(x∗) by si-
multaneously changing their variable assignments. On the
other hand, t-optimality defines locality based on a group
of surrounding nodes within a fixed distance t of a central
node. For instance, figures 2(b) and 2(c) depict the groups of
agents at distance 1 and 2 respectively for each agent in the
DCOP in figure 2(a). Likewise k-optimality, a t-optimum
occurs when no group of agents can improve its reward.
k- and t-optimal algorithms represent an important class

of incomplete algorithms that have agents dynamically form
local groups to coordinate action choices. A significant fea-
ture of k- and t-optimal algorithms is that they provide guar-
antees on the solution quality of a DCOP as a fraction of
the global optimum, prior to the execution of the algorithm.
An algorithm has a quality guarantee δ (being 0 ≤ δ ≤ 1) if
every solution provided by the algorithm has at least quality
δ·R(x∗) where x∗ stands for the global optimum assignment.
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Figure 2: Example of (a) a DCOP graph, (b) its
1-distance region and (c) its 2-distance region.

The larger the quality guarantee, the closer the algorithm is
to providing an optimal solution to the problem.

Both k− and t-optimality have explored mechanisms for
computing bounds. Firstly, both k-size optimality and t-
distance optimality provide means for computing bounds
independently of the problem instance [9, 6], namely dis-
regarding the graph structure and reward structure. Sec-
ondly, knowledge of a problem instance can be used to ob-
tain tighter guarantees. One way is to exploit the knowledge
about the graph structure of the DCOP (e.g. star, ring) [9].
Another way is to exploit the reward structure [3]. We can
group such mechanisms based on their computational costs.

On the one hand, a tight bound on the quality of every k-
or t-optimum can be computed using a linear program (LP)
[9, 6]. In this method, rewards on the relations in the DCOP
are treated as variables in a program whose goal is to min-
imise the quality guarantee. When the program is solved,
the decision variables are instantiated with the values that,
if used as relation rewards, would produce the DCOP whose
local optimum has the lowest reward with respect to the
global optimal solution. For example, for k-optimality and
for a specific graph structure, after running the program we
obtain (1) a quality guarantee δ for any k-optimal solution
on any DCOP having the specific constraint graph and (2) a
DCOP having the specific constraint graph and a k-optimal
solution xk whose quality is equal to the bound, namely
R(xk) = δ ·R(x∗)

On the other hand, there are methods that are computa-
tionally cheaper and can compute bounds in constant time
[9, 6]. Despite the computational savings of these methods,
with respect to the LP-based approach, in general tightness
is not guaranteed.

3. GENERALIZING SIZE AND DISTANCE
OPTIMALITY

In this section we generalize the concept of size and dis-
tance optimality to C-optimality, which allows us to charac-
terize any local optimum in a region C characterized by an
arbitrary criterion.

Notice that given a DCOP both k− and t− local optimal-
ity criteria define a region, namely a family of neighbour-
hoods (subsets of variables) C. For instance, in figure 2(b),
we show the neighbourhoods in the 1-distance region of the

DCOP in figure 2(a), where boldfaced nodes in the con-
straint graph stand for variables included in the neighbour-
hood. Given some assignment x, we say that it is optimal
in a neighbourhood Cα ∈ C if its reward cannot be improved
by changing the values of some of the variables in the neigh-
bourhood. For instance, the first graph on the left in fig-
ure 2(b) represents a neighbourhood. An assignment x is
optimal in that neighbourhood if any other assignment that
maintains the values of x2, x4 and x5 receives at most the
same reward as x. Then, we can claim optimality for x in a
region C (noted as xC) whenever it is optimal in each neigh-
bourhood in the region. For instance, an assignment x will
be optimal in the region depicted in figure 2(c) if it is op-
timal in each of its neighbourhoods. Therefore, in general,
for both k-size and t-distance based optimality, we observe
that:

• each criterion is based on the definition of a region over
the constraint graph; and

• given any assignment, checking for either k-size or t-
distance optimality amounts to checking for optimality
in that region.

Hereafter we propose a general notion of region optimal-
ity, the so-called C-optimality, and describe how to calculate
bounds for a C-optimal assignment, namely an assignment
that is optimal in an arbitrary region C.
3.1 Region optimality

Next, we introduce the concepts of neighbourhood and re-
gion so that we can formally define C-optimality. After that,
we analyse the way in which neighbourhoods relate to each
others by formalizing the idea that a larger neighbourhood
covers a smaller one.

Formally, a neighbourhood is a subset of variables of X .
Given two assignments x and y, we define D(x, y) as the
set containing the variables whose values in x and y differ.
Given a neighbourhood A, we say that x is a neighbour of y
in A iff x differs from y only in variables that are contained
in A.

A region C is a multi-set1 of subsets of X , namely a multi-
set of neighbourhoods of X . Given a region C, we say that
x is inside region C of y iff x differs from y only in variables
that are contained in one of the neighbourhoods in C, that is,
if there is a neighborhood Cα ∈ C such that x is neighbour
of y in Cα.

An assignment x is C-optimal if it cannot be improved by
any other assignment inside region C of x. That is, for every
assignment y inside region C of x, we have that R(x) ≥ R(y).

Relations among neighbourhoods
Given two neighbourhoods A,B ⊆ X we say that B com-
pletely covers A if A ⊆ B. We say that B does not cover
A at all if A ∩ B = ∅. Otherwise, we say that B covers A
partially.

As an example of these relations, consider neighbourhoods
(1) and (4) in figure 2(b), noted as A = {x0, x1, x3} and
B = {x2, x4, x5} respectively, and neighbourhood (1) in fig-
ure 2(c), noted as C = {x0, x1, x2, x3, x4}. Then, we have
that A covers C partially (it contains some variables in C)
whereas C covers A completely (C contains all variables in

1A multi-set is a generalisation of a set that can hold mul-
tiple instances of the very same element.
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A). Moreover, A does not cover B at all and vice versa
because these neighbourhoods do not have any variable in
common.

Then, we say that A ⊆ X is covered by C if there is a
neighbourhood Cα ∈ C such that Cα completely covers A.
For example, neighbourhood (1) in figure 2(b) is covered by
the region of neighbourhoods in figure 2(c), because, among
others, neighbourhood (1) in this region covers it completely.

For each neighbourhood Cα we can classify each relation
S in a DCOP into one of three disjoint groups, depend-
ing on whether Cα covers S completely (T (Cα)), partially
(P (Cα)), or not at all (N(Cα)).

For each relation SV ∈ R we define cc(SV , C) = |{Cα ∈
C s.t V ⊆ Cα}|, that is, the number of neighbourhoods in
C that cover the domain of SV completely. We also define
nc(SV , C) = |{Cα ∈ C s.t V ∩Cα = ∅}|, that is, the number
of neighbourhoods in C that do not cover the domain of SV
at all.

3.2 Quality guarantees for region optima
After its formal definition, we are interested in providing

a bound on the quality of any C-optimal assignment in a
DCOP with non-negative rewards. We say that we have
a bound δ when we can state that the quality of any C-
optimal assignment xC is larger than δ times the quality
of the optimal x∗. Hence, having a bound δ means that for

every xC we have that R(xC)
R(x∗) ≥ δ. For a given set of relations

R, let xC− be the C-optimal assignment with smallest reward,

then
R(xC−)

R(x∗) provides a tight bound on the quality of any C-
optimal assignment for the specific rewards R.

We are interested in defining bounds that are independent
of the particular reward values of the DCOP. In that setting,
a simple way to provide a bound on the quality is to directly
search the space of reward values to find the set of rewards

R∗ that minimizes
R∗(xC−)

R∗(x∗) .

More formally, this can be encoded as:
Find R, xC and x∗ that

minimize R(xC)
R(x∗)

subject to xC being a C-optimal for R
Applying some transformations detailed in [13], we can

simplify this program into the following linear program (LP)
with x and y being vectors of positive real numbers:

minimize
P
S∈R xS

subject toP
S∈R yS = 1

and for each neighbourhood C covered by C subject toP
S∈R xS ≥

P
S∈T (C) yS +

P
S∈N(C) xS

where T (C) contains the relations completely covered by C
and N(C) the relations that are not covered by C at all.

After solving this LP, δ =
P
S∈R xS provides a tight

bound on the quality of a C-optimal solution for the graph
structure represented by R. Let M be the number of vari-
ables of the largest neighbourhood in C. The LP has 2 · |R|
variables and O(2M · |C|) constraints, and hence it is solvable
in time polynomial in |R| and in 2M · |C|.

3.3 Faster quality guarantees
The computational complexity of the previous LP can be

high as the number of relations |R|, the number of neigh-
bourhoods |C| or its size M grows. In this section we show
that we can compute a bound in time O(|R||C|). Further-

more, the result will prove as a very valuable tool for fu-
ture theoretical developments. As a counterpart, we lose
the tightness of the bound.

Proposition 1. Let 〈X ,D,R〉 be a DCOP with non-negative
rewards and C a region. If xC is a C-optimal assignment then

R(xC) ≥ cc∗
|C| − nc∗R(x∗) (2)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), and
x∗ is the optimal assignment.

Proposition 1 directly provides a simple algorithm to com-
pute a bound. Given a region C and a graph structure, we
can directly assess cc∗ and nc∗ by computing cc(S, C) and
nc(S, C) for each relation S ∈ R and taking the minimum.
This will take time O(|R||C|), that is linear in the number
of relations of the DCOP and linear in the number of neigh-
bourhoods in the region.

As an example, now we turn back to figure 2 to assess
the bounds for a C-optimal assignment using equation 2.
First, we assess the bound for the 1-distance region C1 in
figure 2(b). Given the relation S = R{x0,x1}, we assess the
number of neighbourhoods that completely cover {x0, x1}
as cc(S, C1) = 2 (the two first neighbourhoods on the left-
hand side) and the number of neighbourhoods that do not
cover {x0, x1} at all as nc(S, C1) = 2 (the fourth and fifth
neighbourhoods). After repeating the process for the rest of
relations in the constraint graph, we obtain that cc∗ = 2 and
nc∗ = 2, and hence cc∗

|C1|−nc∗ = 2
6−2

= 1
2
. Notice that this

leads to a better bound than the one we obtain following
the result in [6], since m+t−1

n
= 1

3
. This is due to the fact

that we are computing the bound specifically for this graph
structure, whilst the bounds provided in [6] are independent
of the graph structure. If now we consider the 2-distance
region C2 in figure 2(c), we obtain that cc∗

|C2|−nc∗ = 4
6−0

= 2
3
.

Again, this leads to a better bound than the one reported
in [6] since m+t−1

n
= 1

2
. Note that the bounds provided

as example are tight. However, despite these examples, the
bound assessed by proposition 1 is not guaranteed to be tight
and can return worse bounds than the ones provided by the
LP-based mechanism.

Both the LP and proposition 1 assess bounds that depend
on the graph structure but are independent of the specific
reward values. We can always use them to assess bounds in-
dependently of the graph structure by assessing the bound
for the complete graph, since any other structure is a par-
ticular case of the complete graph with some rewards set to
zero.

The proof for proposition 1 is a generalization of the one
in [9] for k-optimality.

Proof. For every Cα ∈ C, consider an assignment xα

such that xαi = xCi if xi 6∈ Cα and xαi = x∗i if xi ∈ Cα. Since
xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα) holds, and
hence

R(xC) ≥
P
Cα∈C R(xα)

|C| . (3)

Now for each xα, we have that R(xα) =
P
S∈R S(xα).

We can split the sum into completely covered (T (Cα)),
partially covered (P (Cα)), or not covered at all (N(Cα)) re-
lations, havingR(xα) =

P
S∈T (Cα) S(xα)+

P
S∈P (Cα) S(xα)

+
P
S∈N(Cα) S(xα).

Then, by setting partially covered relations to the min-
imum possible reward (0 assuming non-negative rewards),
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R(xα) ≥ P
S∈T (Cα) S(xα) +

P
S∈N(Cα) S(xα). Now, by

definition of xα, for every variable xi in a relation com-
pletely covered by Cα we have that xαi = x∗i , and for ev-
ery variable xi in a relation not covered at all by Cα we
have that xαi = xCi . Hence, R(xα) ≥ P

S∈T (Cα) S(x∗) +P
S∈N(Cα) S(xC). To assess a bound, after substituting this

inequality in equation 3, we have that

R(xC) ≥

P
Cα∈C

P
S∈T (Cα)

S(x∗) +
P

Cα∈C

P
S∈N(Cα)

S(xC)

|C| . (4)

We need to express the numerator in terms of R(xC) and
R(x∗). Grouping the sum by relations and reminding that
cc∗ = minS∈R cc(S, C), the term on the left can be expressed
as: X

Cα∈C

X
S∈T (Cα)

S(x∗) =
X
S∈R

cc(S, C) · S(x∗) ≥

≥
X
S∈R

cc∗ · S(x∗) = cc∗
X
S∈R

S(x∗) = cc∗ ·R(x∗).

Furthermore, recalling that nc∗ = minS∈R nc(S, C), we
can do the same with the right term:X

Cα∈C

X
S∈N(Cα)

S(xC) =
X
S∈R

nc(S, C) · S(xC) ≥

≥
X
S∈R

nc∗ · S(xC) = nc∗
X
S∈R

S(xC) = nc∗ ·R(xC).

After substituting these two results in equation 3 and re-
arranging terms, we obtain equation 2.

In the next two sections we show that the constant-time
reward-independent bounds provided for size and distance
optimality in [6, 9] are particular cases of proposition 1.

3.4 Size-optimal bounds as a specific case of
region-optimal bounds

Now we present the main result in [9] as a specific case of
C-optimality. An assignment is k-size-optimal if it can not
be improved by changing the value of any group of size k or
fewer variables.

Proposition 2. Let 〈X ,D,R〉 be a DCOP with non-negative
rewards and m the maximum relation arity. Then, for any
k-optimal assignment xk:

R(xk) ≥
`|X|−m
k−m

´`|X|
k

´− `|X|−m
k

´R(x∗) (5)

Proof. This result is just a specific case of our general
result where we take as region all subsets of size k, that is
C = {Cα ⊆ X | |Cα| = k}. The number of neighbourhoods

is |C| =
`|X|
k

´
. The number of neighbourhoods that com-

pletely cover S is cc(S, C) =
`|X|−|S|
k−|S|

´
, where |S| stands for

the cardinality of S (take the variables in S plus k − |S|
variables out of the remaining |X | − |S|). Because cc(S, C)
reaches the minimum value with the maximum value of |S|,
cc∗ =

`|X|−m
k−m

´
. The number of neighbourhoods in C that do

not cover S at all is nc(S, C) =
`|X|−|S|

k

´
(take k variables

out of the remaining |X | − |S| variables). Because nc(S, C)
reaches the minimum value with the maximum value of |S|,
nc∗ =

`|X|−m
k

´
. Finally, we obtain equation 5 by using |X |,

cc∗ and nc∗ in equation 2, and simplifying.

3.5 Distance-optimal bounds as a specific case
of region optimal bounds

Now we present the main result in [6] as a specific case
of C-optimality. First, let us notice that the bound in [6]
can be more easily proved if the graph is assumed to be
connected. After that, we will see that the bound can be
improved in the case that the graph is composed of a set of
connected components. Consider a connected DCOP with
n variables, minimum constraint arity m, non-negative re-
wards, and globally optimal assignment x∗. It is easy to see
that whenever m + t − 1 > n, the length of the shortest
path between any two nodes is smaller than t, and hence
any t-distance optimal assignment will in fact be globally
optimal.

Proposition 3. Let 〈X ,D,R〉 be a connected DCOP with
non-negative rewards. Then, whenever m + t − 1 ≤ n, we
can bound the quality of any t-distance optimal assignment
xt as

R(xt) ≥ (m+ t− 1)

n
R(x∗) (6)

Proof. This result is just a specific case of our general
result where we take as region the t-distance neighbourhoods
for each variable x ∈ X , that is C = {Ωt(x)| x ∈ X}. The
number of neighbourhoods in the region is |C| = n. Next, we
show that for every relation S, we have that the number of
neighbourhoods in C that completely cover S, cc(S, C) is at
least m+t−1. The only variables that do not have S in their
t-neighbourhood are those variables that are at distance t
or more from every variable in S. If no such variables exist,
then cc(S, C) = n > m + t − 1. Otherwise, let x′ be one
of these variables. There is a shortest path connecting x′

to its closest variable in S (say x). The path must have
length at least t, that is x, x1, . . . , xt−1, . . . , x

′. Now, it is
clear that S is in the t-neighbourhood of the t− 1 variables
{x1, . . . , xt−1}. Note that since we are taking the shortest
path to any variable in S, no xi can be in S. Since S is also
in the t-neighbourhood of every variable in S and there can
be no intersection between S and {x1, . . . , xt−1}, we have
cc(S, C) = |S|+ t−1 ≥ m+ t−1. Hence cc∗ ≥ m+ t−1. By
definition, nc∗ ≥ 0. Finally, we obtain equation 6 by using
|C|, cc∗ and nc∗ in equation 2, and simplifying.

If the DCOP is not connected, we can obtain a better bound
by simply applying equation 6 to each connected component

and taking the minimum. That is R(xt) ≥ (m+t−1)
n∗ R(x∗)

where n∗ is the number of elements of the largest connected
component, which is always smaller than n.

4. EMPIRICAL EVALUATION
In this section we show how we can benefit from the

larger space of criteria for defining regions provided by C-
optimality. We start by analyzing the regions generated by
k-size and t-distance on DCOPs with different structures,
to conclude that k-size generates a potentially huge number
of neighborhoods of limited size and t-distance generates
a limited number of potentially huge neighborhoods. To
keep under control the amount and size of neighborhoods
we introduce a new type of regions, namely size-bounded
distance regions, that include a limited number of limited
size neighborhoods. Finally, we empirically show that al-
gorithms for approximate DCOP solving can benefit from
using size-bounded distance regions.
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We start by analyzing k-size and t-distance regions in sec-
tion 4.1, to motivate the introduction of size-bounded dis-
tance regions in section 4.2. The DALO algorithm was pro-
posed in [6] to find either k- or t- optimal solutions. In
section 4.3 we show how we can extend it to find an optimal
in any region C. Finally, in section 4.4 we compare the per-
formance of size, distance and size-bounded distance regions
on DCOPs with different graph structures using DALO.

4.1 Analysis of size and distance regions
We are interested in analyzing the regions generated by

k-size and t-distance on DCOPs with different structures.
More concretely, we want to assess the number of differ-
ent neighbourhoods as well as the size (number of variables)
for each neighbourhood, since both parameters strongly in-
fluence the amount of computation needed to obtain a k,
t-optimum. The worst case time for checking optimality in
a neighbourhood is exponential in its number of variables.
Furthermore, if an agent has to consider a large number of
neighbourhoods, it will have to share its time among them.
Hence, in terms of computational effort, it is of interest to
find regions that have a limited number of neighbourhoods
of limited size. In k-size optimality the size is limited by
k but the number of neighbourhoods grows as

`|X|
k

´
, which

can turn out prohibitively large. In t-distance optimality
the number of neighbourhoods is O(|X |) but the size of the
neighbourhoods is not limited. For example, the 1-distance
region of a complete graph contains a single neighbourhood
with all the variables, and hence finding a 1-distance optimal
in a complete graph is as hard as finding a global optimum.

For a more detailed empirical analysis, we have computed
statistics of the maximum neighbourhood size in a region
(MaxS) and the number of neighbourhoods per agent (#)
over randomly generated constraint graphs. We have used
three different types of graph structures: G(n,M) random
graphs [2], Barabasi-Albert (BA) scale-free graphs [1], and
non-linear preferential attachment (NLPA) graphs based on
the BA model, but with a larger emphasis on many nodes
having fewer connections. All the graphs have 100 nodes
with a density of four meaning that on average each node has
four neighbours. We compare the results of three different
criteria: 5-size (K5)2, 1-distance (T1) and 2-distance (T2).
The first three rows in table 1 present the averages over 50
DCOPs of MaxS and # for each criteria and each type of
graphs. From these statistics we observe that T1 and T2 dis-
tance criteria result in very large neighbourhoods, especially
on scale-free and NLPA graphs due to the presence of hub
agents with a large number of neighbours. We also observe
that K5 criterion generates a large number of neighbour-
hoods, specially in scale-free and NLPA due to the presence
of hub nodes (e.g. the average number of neighbourhoods
per agent in NLPA graphs is 11366).

From this analysis we can conclude that k-size generates
a potentially huge number of neighborhoods of limited size
and t-distance generates a limited number of potentially
huge neighborhoods. To overcome this, we introduce a new
type of regions, namely size-bounded distance regions, which
include a limited number of bounded size neighborhoods.

4.2 Size-bounded distance optimality
Our aim at formulating the size-bounded distance crite-

2As in [6, 9] neighbourhoods of 5 variables that are not
connected in the graph are discarded.
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Figure 3: Example of (a) a DCOP graph, and (b)-
(g) the set neighboorhods for the 5-size-distance
bounded region.
rion is to provide an alternative trade-off to size and dis-
tance, being more aware of the complexity of the regions
they generate.

Let T (xi, xj) be the distance between two variables in the
constraint graph. Let Ωt(xi) = {xi|T (xi, xj) ≤ t} be the
t-distance neighbourhood centered on variable xi. Then,
the s-size-bounded-distance neighbourhood is the largest t-
distance region whose number of variables does not exceed
the limit s. Formally, let t(xi) = max {t s.t. |Ωt(xi)| ≤ s}
be the largest value for t such that |Ωt(xi)| ≤ s. The s-size-
bounded-distance neighbourhood centered on variable xi is
defined as Φs(xi) = Ωt(xi)(xi).

Figure 3 (b)-(g) depicts 5-size-bounded distance neigh-
bourhoods for agents x0 to x5 for the DCOP in figure 3
(a). Observe that agents can end up exploring different dis-
tance levels in their neighbourhoods as a result of bounding
their size to s. In our example, agents x0, x2, x3 and x5

explore their 2-distance neighbourhood with size 5 (figures
3 (b)(d)(e)(g)), whereas agents x1 and x4 are restricted to
1-distance neighbourhood with size 4 (figures 3 (c)(f)).

Now, the s−size-bounded distance region includes the s-
size-bounded-distance neighbourhood of each agent xi ∈ X .
Moreover, in order to ensure that all relations are covered,
the s-size-bounded-distance region also includes a neigh-
bourhood for every edge in the graph.

Note that in size-bounded distance optimality both the
number of neighbourhoods and their size are limited. Now
we can go back to table 4, to compare the number of regions
and its size with the state-of-the-art criteria. In the last row
we show the averages over 50 constraint graphs of MaxS
and # for 5-size-bounded-distance optimality (S5) for each
type of graph. We can see that S5 is the only criterion that
manages to keep the size of the region limited (to 5 agents)
together with a reasonable number of neighbourhoods per
agent (between 3 and 10 depending on the graph structure).

4.3 DALO for region optimality
The DALO algorithm is an asynchronous algorithm that

starts with a random initial assignment and monotonically
increases the solution quality by independently optimizing
in each of the neighbourhoods that are created. As described
in [6], DALO has three phases: initialization, optimization,
and implementation.

During the initialization phase agents distributedly create
a set of neighbourhoods and assign each neighbourhood to a
leader agent (the central node to minimize communication)
that will be in charge of its optimization. After initialization,
agents run in parallel the optimization and implementation
phases for each assigned neighbourhood until stabilization.
During the optimization phase, each leader agent optimises
by searching for a joint assignment of the variables in its
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neighborhoods that improve their reward. After optimiz-
ing, the leader agent runs the implementation phase try-
ing to implement the new joint assignment found. Because
neighbourhoods are optimised in parallel and a variable can
appear in multiple neighbourhoods, DALO implementation
phase uses an asynchronous protocol based on a standard
lock/commit pattern to ensure stability.

To use DALO with an arbitrary region, we focused on the
initialization phase to modify how agents create the groups
over which they optimise. Concretely to allow DALO to
search for a C-optimal, agents will distributedly generate
the neighbourhoods in region C. For example, to use DALO
in the s-size-bounded distance region each agent will iterate
through various t-distance neighbourhoods, by broadcasting
at distance t, to determine the largest t-distance neighbour-
hood whose size does not exceed s. After initialization, for
the specific region, optimization and implementation phases
are ran as specified in [6], independently of the used region.

4.4 Empirical results
In this section we compare the results obtained by DALO

using four different criteria: 5-size (K5), 1-distance (T1),
2-distance (T2), and 5-size bounded distance (S5) criteria.

We ran similar experimental settings to Kiekintveld et
al. [6]. We measured the performance of the extension of
the DALO algorithm3 described in section 4.3 when running
over each one of the regions generated by the four criteria
described above. Thus, we tested DALO for the four cri-
teria over the different types of graphs described in section
4.1. All the graphs have 100 nodes, each one with density 4,
meaning that on average each node has 4 neighbours. More-
over, variables’ domain size is 10, and rewards are integers
sampled from a distribution U [0, 10000].

Besides graph types, we also considered different Com-
putation/Communication Ratios (CCR) [6]. The CCR set-
ting defines the number of constraint assignments that may
be evaluated at each communication step. For example,
CCR = 0.01 allows each node to process up to 100 checks
in a time step. We vary the setting of CCR in our ex-
periments to test DALO in two settings with different rel-
ative cost for sending messages and computation, namely
CCR = 0.01 and CCR = 0.1. In general, the larger the
value of CCR, the higher the computation cost. Notice that,
with respect to the experimental settings in [6], we discarded
using CCR = 0. The rationale is that if CCR = 0, com-
munication is infinitely more costly than computation and
hence the best strategy is computing the optimal by means
of a fully centralized algorithm.

Figures 4 (a)-(f) plot the normalized solution quality of
each algorithm along global time for each graph structure
and CCR metric. The normalized solution quality is com-
puted by: (1) subtracting the initial reward, as assessed
by DALO for a given criterion, from the reward at a given
global time; and (2) dividing the result by the best known
reward obtained by DALO out of the four criteria. All re-
sults are averaged over 25 sample instances. In what follows,
we compare the four criteria along two dimensions: (1) the
final normalised solution quality; and (2) the convergence
speed required to reach a good solution quality.

Regarding solution quality, the results vary depending the
value of CCR and graph structure. On the one hand, in

3We used the DALO code provided by the authors at http:
//teamcore.usc.edu/dcop/.

Random Scale-free NPLA
MaxS # MaxS # MaxS #

K5 5 167 5 963 5 11366
T1 10 1 27 1 63 1
T2 38 1 82 1 99 1
S5 5 3 5 3 5 10

Table 1: Statistics for regions generated by k5, t1,
t2 and s5 criteria for 100 agents. MaxS stands for
the maximum size of a neighbourhood and# for the
average number of neighbourhoods per agent.

scenarios where computation is more costly (CCR = 0.1),
overall S5 outperforms the rest of criteria. Although T1 is
very competitive and its solution quality comes very close
to that of S5 over random and scale free graphs, S5 signifi-
cantly outperforms T1 on NLPA graphs. Moreover, both S5
and T1 largely outperform K5. The reason of the poor per-
formance of K5 is that it generated neighbourhoods of fixed
size. On the other hand, in scenarios where computation
is cheaper (CCR = 0.01), the differences of final solution
qualities between S5, T1, and K5 are not significant. There
is an aspect though that deserves special attention. Notice
that for all the test cases, the performance of DALO over T2
regions is much worse than the performance over the regions
generated by the rest of criteria. We can explain this result
by analysing the complexity of T2 regions as shown in table
1. Thus, we observe that T2 generates very large neighbour-
hoods that can not be optimised within the maximum global
time (1000 global time steps). The solution quality degrada-
tion when handling T2 regions is particularly significant on
scale-free and NLPA graphs because the criterion generates
neighbourhoods whose size is close to the size of the original
problem (99 variables on average in NLPA graphs).

Regarding convergence speed, S5 regions help DALO con-
verge to a high solution quality faster. Likewise our analysis
about solution quality above, T1 is again competitive with
respect to S5, though S5 largely outperforms T1 on NLPA
graphs. This is because, as observed in [6], NLPA graphs are
characterized by large hub nodes with many connections that
results in large neighbourhoods that take long for agents to
optimise. Regarding K5, convergence speed is slower than
that of S5 and T1 because each leader in DALO coordinates
a neighbourhood of size 5, whereas the neighbourhoods for
S5 and T1 may be smaller.

To summarise, our experimental results show that criteria
that produce regions with large number of neighbourhoods
or/and large neighbourhood sizes are not guaranteed to out-
perform criteria that produce less complex regions. In fact,
overall the size-bounded distance criterion proposed in sec-
tion 4.2 was able to outperform the rest of criteria by limiting
the complexity of the regions that it generates.

5. CONCLUSIONS
In this paper we generalise the k- and t-optimal frame-

works [9, 6] to introduce C-optimality, a flexible framework
that provides quality guarantees for local optima in regions
characterised by any arbitrary criterion. With this aim,
we provide: (1) a formal definition of C-optimality, namely
of local optimality in some arbitrary region; and (2) qual-
ity guarantees for region optimal solutions that exploit the
knowledge about the graph structure. Regarding quality
guarantees, we defined two methods with different compu-
tational costs: (1) a first one, based on solving an LP, that
guarantees tightness; and (2) a second one that requires lin-
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Figure 4: Experimental results comparing DALO for K5, T1, T2 and S5 regions.

ear time but does not ensure tightness. Moreover, we prove
that the bounds provided for size and distance optimality
are particular instances of the C-optimal bounds.

To illustrate how the C-optimality framework allows us to
explore the space for arbitrary criteria, we proposed a novel
criterion to generate regions, the so-called size-bounded-
distance criterion. This new criterion has been designed to
overcome the main drawbacks of size and distance optimal-
ity. Moreover, we extend the DALO algorithm [6] to com-
pute C-optimal solutions. Our empirical analysis of the size-
bounded-distance criterion shows that it outperforms both
size and distance criteria by providing a more fine-grained
control of the complexity of the regions to explore.

As future work, we plan to extend the C-optimal bounds
to exploit some a-priori knowledge of the reward structure of
the problem, if available, along the lines of [3]. Furthermore,
since a critical issue in the design of any C-optimal algorithm
is the choice of regions, we will focus on defining techniques
that allow us to explore the space of regions in search for
regions with limited complexity and high quality guarantees.
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ABSTRACT
Scheduling agents can use the Multiagent Simple Temporal
Problem (MaSTP) formulation to efficiently find and repre-
sent the complete set of alternative consistent joint schedules
in a distributed and privacy-maintaining manner. However,
continually revising this set of consistent joint schedules as
new constraints arise may not be a viable option in environ-
ments where communication is uncertain, costly, or otherwise
problematic. As an alternative, agents can find and repre-
sent a temporal decoupling in terms of locally independent
sets of consistent schedules that, when combined, form a set
of consistent joint schedules. Unlike current algorithms for
calculating a temporal decoupling that require centralization
of the problem representation, in this paper we present a
new, provably correct, distributed algorithm for calculating
a temporal decoupling. We prove that this algorithm has
the same theoretical computational complexity as current
state-of-the-art MaSTP solution algorithms, and empirically
demonstrate that it is more efficient in practice. We also
introduce and perform an empirical cost/benefit analysis
of new techniques and heuristics for selecting a maximally
flexible temporal decoupling.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence

General Terms
Algorithms, Experimentation, Theory

Keywords
Multiagent Scheduling, Temporal Decoupling Problem

1. INTRODUCTION
A scheduling agent is often responsible for independently

managing the scheduling constraints of its user, while also
ensuring that its user’s schedule coordinates with the sched-
ules of other agents’ users. In many scheduling environments,
agents must also react to new constraints that arise over
time, either due to volitional decisions by the agents (or their

Cite as: Distributed Algorithms for Solving the Multiagent Temporal
Decoupling Problem, James C. Boerkoel Jr. and Edmund H. Durfee, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 141-148.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

users) or due to the dynamics of the environment. Agent
coordination is further challenged by desires for privacy and
uncertain, costly, or otherwise problematic communication.
Fortunately, scheduling agents can use the Multiagent Simple
Temporal Problem (MaSTP) formulation to, in a distributed
and efficient manner, find and represent sets of alternative
consistent joint schedules to these types of complex, multia-
gent scheduling problems [3, 2].

As an example of this type of problem, suppose three
student colleagues, Ann, Bill, and Chris, have each selected
a tentative morning schedule (from 8:00 to noon) and have
each tasked a personal computational scheduling agent with
maintaining his/her schedule. Ann will have a 60 minute
run with Bill before spending 90 to 120 minutes on a group
project (after picking up deliverables that Chris will leave
in the lab); Bill will have a 60 minute run with Ann before
spending 60 to 180 minutes working on homework; and finally,
Chris will work on the group project for 90-120 minutes and
drop it off in the lab before attending a lecture from 10:00
to 12:00. This example is displayed graphically as a distance
graph (explained in Section 2.1) in Figure 1(a).

One approach for solving this problem is to represent the
set of all possible joint schedules that satisfy the constraints,
as displayed in Figure 1(b). In this approach, if a new, non-
volitional constraint arrives (e.g., Chris’ bus is late), the
agents can easily recover by simply eliminating inconsistent
joint schedules from consideration. However, doing so may
still require communication (e.g., Chris’ agent should com-
municate that her late start will impact when Ann can start,
and so on). In fact, this communication must continue (e.g.,
until Chris actually completes the project, Ann does not
know when she can start), otherwise agents could make in-
consistent, concurrent decisions. For example, if Ann decides
she wants to run at 8:00, while Bill simultaneously decides he
wants to run at 9:00 (both allowable possibilities), Ann and
Bill’s agents will inadvertently introduce an inconsistency.
An alternative to this approach, displayed graphically in
Figure 1(d), is for agents to simply select one joint schedule
from the set of possible solutions. However, as soon as a new,
non-volitional constraint arrives (e.g., Chris’ bus arrives late
by even a single minute), this exact, joint solution may no
longer be valid. This, in turn, can require agents to regener-
ate a new solution every time a new constraint arrives, unless
that new constraint is consistent with the selected schedule.
Due to either a lack of robustness or lack of independence,
neither of these two approaches is likely to perform well in
time-critical, highly-dynamic environments.

Fortunately, there is a third approach that balances the
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Figure 1: The distance graph corresponding to the
(a) original, (b) decomposable, (c) decoupled, and
(d) fully assigned, versions of our example MaSTP.

robustness of Figure 1(b) with the independence of Figure
1(d). Agents can find and maintain a temporal decoupling,
which is composed of independent sets of locally consistent
schedules that, when combined, form a set of consistent joint
schedules [4]. An example of a temporal decoupling is dis-
played in Figure 1(c), where, for example, Chris’ agent has
agreed to complete the group project by 10:00 and Ann’s
agent has agreed to wait to begin work until after 10:00.
Not only are agents’ schedules no longer interdependent, but
agents also still maintain sets of locally consistent schedules.
Now when Chris’ bus is late by a minute, Chris’ agent can
“absorb” this new constraint by independently updating its
local set of schedules, without requiring any communication
with any other agent. The advantage of this approach is that
once agents establish a temporal decoupling, there is no need
for further communication unless (or until) a new (series
of) non-volitional constraint(s) render the chosen decoupling
inconsistent. It is only if and when a temporal decoupling
does become inconsistent (e.g., Chris’ bus is more than a
half hour late, violating her commitment to finish the project
by 10:00) that agents must calculate a new temporal decou-
pling (perhaps establishing a new hand-off deadline of 10:15),
and then once again independently react to newly-arriving
constraints, repeating the process as necessary.

Unfortunately, the current temporal decoupling algorithms
[4, 7] require centralizing the problem representation at some

“coordinator” who sets the decoupling constraints for all. The
computational, communication, and privacy costs associated
with centralization may be unacceptable in multiagent plan-
ning and scheduling applications, such as military, health
care, or disaster relief, where agents specify problems in a
distributed fashion, expect some degree of privacy, and must
provide unilateral, time-critical, and coordinated scheduling
assistance. In this paper, we contribute new, distributed
algorithms for calculating a temporal decoupling, prove the
correctness, privacy implications, and runtime properties of
these algorithms, and perform an empirical comparison that
shows that these algorithms calculate a temporal decoupling
that approaches the best centralized methods in terms of
flexibility, but with less computational effort than current
MaSTP solution algorithms.

2. PRELIMINARIES
In this section we provide definitions necessary for under-

standing our contributions, using and extending terminology
from the literature.

2.1 Simple Temporal Problem
As defined in [3], the Simple Temporal Problem (STP),
S = 〈V,C〉, consists of a set of timepoint variables, V , and
a set of temporal difference constraints, C. Each timepoint
variable represents an event, and has an implicit, continuous
numeric domain. Each temporal difference constraint cij

is of the form vj − vi ≤ bij , where vi and vj are distinct
timepoints, and bij ∈ R is a real number bound on the
difference between vj and vi. To exploit extant graphical
algorithms and efficiently reason over the constraints of an
STP, each STP is associated with a weighted, directed graph,
G = 〈V,E〉, called a distance graph. The set of vertices
V is as defined before (each timepoint variable acts as a
vertex in the distance graph) and E is a set of directed edges,
where, for each constraint cij of the form vj − vi ≤ bij , we
construct a directed edge, eij from vi to vj with an initial
weight wij = bij . As a graphical short-hand, each edge from
vi to vj is assumed to be bi-directional, compactly capturing
both edge weights with a single label, [−wji, wij ], where
vj−vi ∈ [−wji, wij ] and wij is initialized to∞ if there exists
no corresponding constraint cij in P . All times (e.g. ‘clock’
times) can be expressed relative to a special zero timepoint
variable, z ∈ V , that represents the “start of time”. Bounds
on the difference between vi and z are expressed graphically
as “unary” constraints specified over a timepoint variable
vi. Moreover, wzi and wiz then represent the earliest and
latest times, respectively, that can be assigned to vi, and
thus implicitly define vi’s domain. In this paper, we will
assume that z is always included in V and that, during the
construction of G, an edge ezi is added from z to every other
timepoint variable vi ∈ V .

An STP is consistent if there exist no negative cycles in
the corresponding distance graph. A consistent STP contains
at least one solution , which is an assignment of specific time
values to timepoint variables that respects all constraints
to form a schedule. A decomposable STP represents the
entire set of solutions by establishing the tightest bounds on
timepoint variables such that: (1) no solutions are eliminated
and (2) any assignment of a specific time to a timepoint vari-
able that respects these bounds can be extended to a solution
with a backtrack-free search using constraint propagation.
Full-Path Consistency (FPC) works by establishing de-
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composability of an STP instance in O(|V |3) by applying an
all-pairs-shortest-path algorithm, such as Floyd-Warshall, to
the distance graph to find the tightest possible path between
every pair of timepoints, vi and vj , forming a fully-connected
graph, where ∀i, j, k, wij ≤ wik +wkj . The resulting graph is
then checked for consistency by validating that there are no
negative cycles, that is, ∀i 6= j, ensuring wij + wji ≥ 0 [3].

An alternative for checking STP consistency is to es-
tablish Directed Path Consistency (DPC) [3] on its dis-
tance graph. DPC triangulates the distance graph by vis-
iting each timepoint, vk, in some elimination order , o =
(v1, v2, . . . , vn), tightening (and when necessary, adding) edges
between each pair of its not yet eliminated neighboring time-
points, vi, vj (connected to vk via an edge), using the rule
wij ← min(wij , wik +wkj), and then “eliminating” that time-
point from further consideration. The quantity ω∗o is the
induced graph width relative to o, and is defined as the maxi-
mum, over all vk, of the size of vk’s set of not yet eliminated
neighbors at the time of its elimination. The edges added
during this process, along with the existing edges, form a
triangulated (also called chordal) graph — a graph whose
largest non-bisected cycle is of size three. The complexity of
DPC is O(|V | · ω∗2o ), but instead of establishing decompos-
ability, it establishes the property a solution can be recovered
from a DPC distance graph in a backtrack-free manner if
variables are assigned in reverse elimination order. Partial
Path Consistency (PPC) [1] is sufficient for establishing de-
composability on an STP instance by calculating the tightest
possible path for only the subset of edges that exists within a
triangulated distance graph. As a result, PPC may establish
decomposability much faster than FPC algorithms in prac-
tice (O(|V | · ω∗2o ) ⊆ O(|V |3)) [8, 6]. The PPC representation
of our example is displayed in Figure 1(b).

2.2 Multiagent Simple Temporal Problem
The Multiagent Simple Temporal Problem (MaSTP) is

informally composed of n local STP subproblems, one for
each of n agents, and a set of constraints CX that estab-
lish relationships between the local subproblems of different
agents. Our definition of the MaSTP improves on our original
MaSTP specification [2]. An agent i’s local STP subproblem
is defined as Si

L =
〈
V i

L, C
i
L

〉
1, where:

• V i
L is defined as agent i’s set of local variables, which

is composed of all timepoints assignable by agent i and
also includes agent i’s reference to z;

• Ci
L is defined as agent i’s set of intra-agent or local

constraints, where a local constraint, cij ∈ Ci
L is

defined as a bound on the difference between two local
variables, vj − vi ≤ bij , where vi, vj ∈ V i

L.

In Figure 1(a), the boxes labeled Chris, Ann, and Bill repre-
sent each person’s respective local STP subproblem from our
running example. Notice, the sets V i

L partition the set of all
non-reference timepoint variables and the sets Ci

L partition
the set of all local constraints.

Moreover, CX is the set of inter-agent or eXternal con-
straints, where an external constraint is defined as a bound
on the difference between two variables that are local to
different agents, vi ∈ V i

L and vj ∈ V j
L , where i 6= j. Further,

VX is defined as the set of external timepoint variables,

1Throughout this paper we will use superscripts to index
agents and subscripts to index variables and edges.

where a timepoint is external if it is involved in at least one
external constraint. In Figure 1(a), external constraints and
variables are denoted with dashed edges. It then follows that:

• Ci
X is agent i’s set of external constraints that each

involve exactly one of agent i’s assignable timepoints;

• V i
X is the set of timepoint variables known to agent i

due their involvement in some constraint from Ci
X , but

that are local to some other agent j 6= i.

More formally, then, an MaSTP, M, is defined as the
STP M = 〈VM, CM〉 where VM =

{⋃
i V

i
L

}
and CM ={

CX ∪⋃i C
i
L

}
. Note, the definition of the corresponding

distance graph is defined as before, where the definition
of agent i’s local and external edges, Ei

L and Ei
X , follows

analogously from the definition of Ci
L and Ci

X , respectively.

2.3 Multiagent Temporal Decoupling Problem
Given the previous definitions, we adapt the definition of

temporal decoupling in [4] to apply to the MaSTP. Agents’
local STP subproblems {S1

L,S2
L, . . . ,Sn

L} form a temporal
decoupling of an MaSTP M if:

• {S1
L, S

2
L, . . . , S

n
L} are consistent STPs; and

• Merging any locally consistent solutions to the prob-
lems in {S1

L,S2
L, . . . ,Sn

L} yields a solution to M.

Alternatively, when {S1
L,S2

L, . . . ,Sn
L} form a temporal de-

coupling of M, {S1
L,S2

L, . . . ,Sn
L} are said to be temporally

independent . The Multiagent Temporal Decoupling Prob-
lem (MaTDP), then, is defined as, for each agent i, finding
a set of constraints Ci

∆ such that if Si
L+∆ =

〈
V i

L, C
i
N ∪ Ci

∆

〉
,

then {S1
L+∆,S2

L+∆, . . . ,Sn
L+∆} is a temporal decoupling of

MaSTP M. Figure 1(c) represents a temporal decoupling
of our example, where new unary decoupling constraints, in
essence, replace all external edges (shown faded). A min-
imal decoupling is one where, if the bound of any decou-
pling constraint c ∈ Ci

∆ for some agent i is relaxed, then
{S1

L+∆,S2
L+∆, . . . ,Sn

L+∆} is no longer a decoupling (e.g., Fig-
ure 1(c) is an example of a minimal decoupling whereas the
decoupling in (d) is not minimal). The original TDP al-
gorithm [4] executes on a centralized representation of the
MaSTP and iterates between proposing new constraints to
decouple agent subproblems with respect to a particular ex-
ternal constraint (until all external constraints have been
decoupled) and reestablishing FPC on the corresponding
global distance graph, so that subsequently proposed decou-
pling constraints are guaranteed to be consistent.

3. ALGORITHMS
In this section, we introduce new distributed algorithms for

calculating a temporal decoupling and prove their correctness,
computational complexity, and privacy properties.

3.1 A Distributed MaTDP Algorithm
The goal of our Multiagent Temporal Decoupling Problem

(MaTDP) algorithm, presented as Algorithm 1, is to find a
set of decoupling constraints C∆ that render the external
constraints CX moot. Agents accomplish this goal by co-
ordinating both to establish DPC and also to consistently
assign external variables in reverse elimination order. First,
we use D∆P3C-1 (an efficient, distributed DPC algorithm
corresponding to lines 1-22 of the D∆P3C algorithm pre-
sented in [2]) to triangulate and propagate the constraints,
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Algorithm 1 Multiagent Temporal Decoupling Problem
(MaTDP) Algorithm

Input: Gi, agent i’s known portion of the distance graph correspond-
ing an MaSTP instance M.

Output: Ci
∆, agent i’s decoupling constraints, and Gi, agent i’s PPC

distance graph w.r.t. Ci
∆.

1: Gi, oi
L, oX = (v1, v2, . . . vn)←D∆P3C-1(Gi)

2: Return INCONSISTENT if D∆P3C-1 does
3: Ci

∆ = ∅
4: for k = n . . . 1 such that vk ∈ V i

L do

5: wDP C
zk ← wzk, wDP C

kz ← wkz

6: for j = n . . . k + 1 such that ∃ejk ∈ Ei
L ∪ Ei

X do

7: if ejk ∈ Ei
X then

8: wzj , wjz ← Block until receive updates from (Agent(vj))
9: end if
10: wzk ← min(wzk, wzj + wjk)
11: wkz ← min(wkz, wkj + wjz)
12: end for
13: Assign vk // tighten wzk,wkz to ensure wzk + wkz = 0

14: Send wzk, wkz to each Agent(vj) s.t. j < k, ejk ∈ Ei
X

15: Ci
∆ ← Ci

∆ ∪ {(z − vk ∈ [−wzk, wkz ])}
16: end for
17: if(RELAX)then Gi, Ci

∆ ← MaTDR(Gi, wDP C)

18: return P3C-2(Gi
L+∆, o

i
L), Ci

∆

where external timepoints VX are eliminated last. Figure
2(a) shows VX after all other local variables have been elim-
inated. Notice that local constraints are reflected in the
tighter domains. The external variables are eliminated in
order, from left to right (oX = (GPC

ET , R
A
ST , GP

A
ST , R

B
ST )),

which introduces the new edges, shown with dotted lines,
and their weights. If D∆P3C-1 propagates to an inconsistent
graph, then our algorithm returns INCONSISTENT.

Otherwise, we initialize an empty C∆ and then step through
vertices in inverse elimination order, starting with RB

ST . We
skip over the inner loop (lines 6-12) because there are no
vertices later in oX than RB

ST . In line 13, we use a heuristic
that decouples by “assigning” the timepoint to the midway
point between its upper and lower bounds. In this case we
add the constraint that RB

ST happens at 8:45 to C∆ (line 15).
In line 14, this is sent to Ann’s agent, because RB

ST shares
external edges with Ann’s timepoints. The next vertex is
GPA

ST . Note, Ann’s agent would consider processing this
variable right away, but the inner loop (lines 6-12) forces
Ann’s agent to wait for the message from Bill’s agent. When
it gets there, Ann’s agent updates its edge weights accord-
ingly (lines 10-11). In this case, given that GPA

ST is at least
60 minutes after RB

ST , GPA
ST ’s domain is tightened to [9:45,

10:30]. Then in line 13, Ann’s agent chooses the decoupling
point by splitting the difference, thus adding the constraint
that GA

ST occurs at 10:08. This same process is repeated
until all timepoints in VX have been assigned; the result is
shown in Figure 2.

As mentioned, our default heuristic is to assign vk to the
midpoint of its path consistent domain (which corresponds to
using the rules wzk ← wzk − 1

2
(wzk + wkz);wkz ← −wzk for

line 13). In general, however, assigning variables is more con-
straining than necessary. Fortunately, agents can optionally
call a relaxation algorithm (introduced in Section 3.2) that
replaces C∆ with a set of minimal decoupling constraints.
Later in this paper, we will explore and evaluate other assign-
ment heuristics for line 13 (other than our default midpoint
assignment procedure) that, when combined with the relax-
ation algorithm, could lead to less constraining decoupling
constraints.

𝐺𝑃𝐸𝑇
𝐶  𝑅𝑆𝑇

𝐴  𝐺𝑃𝑆𝑇
𝐴  𝑅𝑆𝑇

𝐵  

8: 00,9: 30  8: 00,9: 30  9: 30,10: 30  9: 30,10: 00  

0,0  [0,∞) 

[60,∞) [60,∞) 

DPC 

𝐺𝑃𝐸𝑇
𝐶  𝑅𝑆𝑇

𝐴  𝐺𝑃𝑆𝑇
𝐴  𝑅𝑆𝑇

𝐵  

𝑅𝑆𝑇
𝐵 ∈ 

8: 45,8: 45  
𝑅𝑆𝑇
𝐴 ∈ 

8: 45,8: 45  
𝐺𝑃𝑆𝑇

𝐴 ∈ 
10: 08,10: 08  

𝐺𝑃𝐸𝑇
𝐶 ∈ 

9: 45,9: 45  

[60,∞) 

8: 45,8: 45  8: 45,8: 45  10: 08,10: 08  9: 45,9: 45  

𝐺𝑃𝐸𝑇
𝐶  𝑅𝑆𝑇

𝐴  𝐺𝑃𝑆𝑇
𝐴  𝑅𝑆𝑇

𝐵  
[60,∞) 

8: 45,8: 45  8: 45,8: 45  10: 00,10: 30  9: 30,10: 00  

Relax 

Decouple 

(a) 

(b) 

(c) 

𝐶Δ = 

𝑅𝑆𝑇
𝐵 ∈ 

8: 45,8: 45  
𝑅𝑆𝑇
𝐴 ∈ 

8: 45,8: 45  10: 00 ≤ 𝐺𝑃𝑆𝑇
𝐴  ∅ 𝐶Δ

′ = 

Figure 2: Applying the MaTDP algorithm to the
example scheduling problem.

To avoid inconsistency due to concurrency, before calculat-
ing decoupling constraints for vk, an agent blocks in line 8
until it receives the fresh, newly computed weights wzj , wjz

from vj ’s agent (Agent(vj), as sent in line 14) for each ex-
ternal edge ejk ∈ Ei

X where j > k. While this implies some
sequentialization, it also allows for concurrency whenever
variables do not share an external edge. For example, in Fig-
ure 2(b), because GPC

ET and RA
ST do not share an edge, after

Ann’s agent has assigned GPA
ST , both Ann and Chris’ agents

can concurrently and independently update and assign RA
ST

and GPC
ET respectively. Finally, each agent establishes PPC

in response to its new decoupling constraints, by executing
P3C-2 (which refers to the second phase of the single-agent
P3C algorithm presented in [6] as Algorithm 3).

Theorem 1. The MaTDP algorithm has an overall time
complexity of O(|V |ω∗2o ) and requires O(|EX |) messages.

Proof. The MaTDP algorithm calculates DPC and PPC
in O(|V |ω∗2o ) time. Unary, decoupling constraints are cal-
culated for each of |VX | external variables vk ∈ VX (lines
4-16), after iterating over each of vk’s O(ω∗o) neighbors (lines
6-12). Thus decoupling requires O(|V |ω∗o) ⊆ O(|V |ω∗2o ) time,
and so MaTDP has an overall time complexity of O(|V |ω∗2o ).
The MaTDP algorithm sends exactly one message for each
external constraint in line 14, for a total of O(|EX |) mes-
sages.

Theorem 2. The MaTDP algorithm is sound.

Proof. Lines 1-2 return INCONSISTENT whenever the
input MaSTPM is not consistent. By contradiction, assume
that there exists some external constraint cxy with bound
bxy that is not satisfied when the decoupling constraints
cxz and czy, calculated by MaTDP with bounds bxz and
bzy respectively, are (that is bxz + bzy > bxy). WLOG, let
x < y in oX . Notice, line 1 (DPC) implies wxy ≤ bxy. Line
11 then implies wxz + wzy ≤ wxy ≤ bxy (since inductively
wyz + wzy = 0). Notice that after line 11, all other possible
updates to wxz that occur before cxz is constructed in line 15
(e.g., in lines 10-11, 13) only tighten (never relax) wxz, and
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so bxz + bzy ≤ wxz + wzy ≤ wxy ≤ bxy. However, this is a
contradiction to our assumption that bxz + bzy > bxy, so the
decomposable distance graph and constraints C∆ calculated
by MaTDP form a temporal decoupling of M.

Theorem 3. The MaTDP algorithm is complete.

Proof (Sketch). The basic intuition for this proof is pro-
vided by the fact that, in some sense, the MaTDP algorithm
is simply a distributed version of the basic backtrack-free
assignment procedure that can be applied to a DPC distance
graph. We show that when we choose bounds for new, unary
decoupling constraints for vk (effectively in line 13), wzk, wkz

are path consistent with respect to all other variables. This
is because not only is the distance graph DPC, but also
the updates in lines 10-11 guarantee that wzk, wkz are path
consistent with respect to vk for all j > k (since each such
path from vj to vk will be represented as an edge ejk in
the distance graph). So the only proactive edge tightening
that occurs, which happens in line 13 and guarantees that
wzk + wkz = 0, is done on path consistent edges and thus
will never introduce a negative cycle (or empty domain).

3.2 A Minimal Temporal Decoupling Relax-
ation Algorithm

The goal of the Multiagent Temporal Decoupling Relax-
ation (MaTDR) algorithm, presented as Algorithm 2, is to
replace the set of decoupling constraints produced by the
MaTDP algorithm, C∆, with a set of minimal decoupling

constraints, C
′
∆. Recall that a minimal decoupling is one

where, if the bound of any decoupling constraint c ∈ Ci
∆

for some agent i is relaxed, then {S1
L+∆,S2

L+∆, . . . ,Sn
L+∆}

is no longer a decoupling. Clearly the temporal decoupling
produced when running MaTDP using the default heuristic
on our example problem, as shown in Figure 2(b), is not min-
imal. The basic idea of the MaTDR algorithm is to revisit
each external timepoint vk and, while holding the domains
of all other external timepoint variables constant, relax the
bounds of vk’s decoupling constraints as much as possible.

The MaTDR works in original oX order, and thus starts
with GPC

ET . First, Chris’ agent removes GPC
ET ’s decoupling

constraints and restores GPC
ET ’s domain to [9:30,10:00] by

updating the corresponding edge weights to their stored,
DPC values (lines 1,3). Notice that lines 3-16 are similar to
backwards execution of lines 6-12 in the MaTDP algorithm,
except that a separate, “shadow” δ bound representation is
used and updated only with respect to the original external
constraint bounds (not edge weights). Also, in lines 17-24, a
decoupling constraint is only constructed when the bound
of the potential new constraint (e.g. δkz) is tighter than
the already implied edge weight (e.g. when δkz < wkz). So
in the case of GPC

ET , the only constraint involving GPC
ET

is that it should occur before GPA
ST . However, GPA

ST is
currently set to occur at 10:08 (δ=10:08), and since GPC

ET is
already constrained to occur before 10:00 (w =10:00), δ 6< w,

and so no decoupling constraints are added to the set C
′
∆

for GPC
ET . The next variable to consider is RA

ST , whose
domain relaxes back to [8:00,9:30]. However, since RA

ST

shares a synchronization constraint with RB
ST , whose current

domain is [8:45,8:45], Ann’s agent will end up re-enforcing the
original decoupling constraints of RA

ST ∈ [8:45,8:45]. On the
other hand, after Ann’s agent recovers GPA

ST ’s original DPC
domain of [9:30,10:30], it then needs to ensure that GPA

ST

will always occur after GPC
ET ’s new domain of [9:30,10:00]. In

Algorithm 2 Multiagent Temporal Decoupling Relaxation
(MaTDR)

Input: Gi, and the DPC weights, wDP C
zk , wDP C

kz , for each vk ∈ V i
X

Output: C
′i
∆ , agent i’s minimal decoupling constraints, and Gi,

agent i’s PPC distance graph w.r.t. C
′i
∆ .

1: C
′i
∆ ← ∅

2: for k = 1 . . . n such that vk ∈ V i
L do

3: wzk ← wDP C
zk , wkz ← wDP C

kz
4: δzk ← δkz ←∞
5: for j = 1 to n such that ∃ejk ∈ Ei

L ∪ EX do

6: if ejk ∈ Ei
X then

7: if j < k then wzj , wjz ← Block receive from Agent(vj)
8: if cjk exists then δzk ←min(δzk, bjk − wjz)
9: if ckj exists then δkz ←min(δkz, bkj − wzj)
10: else if j < k then
11: wzk ← min(wzk, wzj + wjk)
12: wkz ← min(wkz, wkj + wjz)
13: end if
14: end for
15: if δkz < wkz then
16: wkz ← δkz

17: C
′i
∆ ← C

′i
∆ ∪ {(z − vk ≤ δkz)}

18: end if
19: if δzk < wzk then
20: wzk ← δzk

21: C
′i
∆ ← C

′i
∆ ∪ {(vk − z ≤ δzk)}

22: end if
23: Send wzk, wkz to each Agent(vj) s.t. j > k, ejk ∈ Ei

X
24: end for
25: return Gi, C

′i
∆

this case, decoupling from GPC
ET requires only a lower bound

of 10:00 for GPA
ST and results in a more flexible domain

of [10:00,10:30]. The minimal decoupling constraints and
corresponding distance graph that MaTDR calculates for
the running example are presented in Figure 2(c) and Figure
1(c).

The type of update performed on timepoint vk’s actual
domain edge weights, wzk and wkz (line 11-12), and shadow
edge weights, δzk and δkz (line 8-9), differs based on whether
the edge ejk being considered in the inner loop is local
or external respectively. For example, suppose vk has a
domain of [1:00,4:00], vj has a domain of [2:00,2:30] (which
already incorporates its new decoupling constraints, since
vj appears before vk in oX), and ejk has the label [0,60]
(e.g., vk − vj ∈ [0, 60]), which corresponds to bounds of
original constraints. If ejk is an external edge, the “shadow”
domain of vk would be updated by lines 8-9 to be [2:30,3:00].
Otherwise, if ejk is a local edge, then the actual domain
of vk would be instead updated by lines 11-12 and result
in the less restrictive domain [2:00, 3:30]. The difference
between the two updates is that the updates in lines 8-9
guarantee that all possible assignments to the two variables
will be consistent with respect to the external constraint,
whereas the updates in lines 11-12 only guarantee that there
exists some local assignment to the two variables that will
be consistent. Finally, notice that if the domain of vj had
instead been assigned (e.g., to [2:30,2:30]), the updates in
lines 8-9 and lines 11-12 would have resulted in the exact
same update to the domain of vk (e.g., [2:30,3:30]). Due to
its similarity to the MaTDP algorithm, we forgo formally
proving the correctness and computational complexity of the
MaTDR sub-routine.

Theorem 4. The reference constraints calculated by the
MaTDR algorithm form a minimal temporal decoupling of S.

Proof (Sketch). The proof that C
′
∆ form a temporal
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decoupling is roughly analogous to the proof for Theorem
3.1. By contradiction, we show that if the bound bxz of some

decoupling constraint cxz ∈ C′
∆ is relaxed by some small,

positive value εxz > 0, then C
′
∆ is no longer a temporal

decoupling. This is because lines 8-9 imply that there exists
some y such that either, bxz = bxy− bzy, and thus bxz + εxz +
bzy > bxy (and thus no longer a temporal decoupling), or that
bzy = bxy − (bxz + εxz) (and so is either not a decoupling or
requires us to also alter bzy in order to maintain the temporal
decoupling).

3.3 Privacy
The natural distribution of the MaSTP representation

affords a partitioning of the MaSTP into private and shared
components [2]. Agent i’s set of private variables, V i

P ,
is the subset of agent i’s local variables that are involved
in no external constraints, V i

P = V i
L \ VX . Agent i’s set

of private constraints, Ci
P , is the subset of agent i’s local

constraints Ci
L that include at least one of its private variables.

Alternatively, the shared STP, SS = 〈VS , CS〉 is composed
of the set of shared variables, VS , where VS = VX∪{z}, and
the set of shared constraints, CS , where shared constraints
are defined exclusively over shared variables and by definition
include all external constraints, CS = CX ∪

{⋃
i C

i
N \ Ci

P

}
.

In the example displayed in Figure 1, all shared variables and
constraints are represented with dashed lines. SS represents
the maximum portion of the MaSTP that a set of colluding
agents could infer, given only the joint MaSTP specification
[2]. Hence, given the distribution of an MaSTP M, if agent
i executes a multiagent algorithm that does not reveal any
of its private timepoints or constraints, it can be guaranteed
that any agent j 6= i will not be able to infer any private
timepoint in V i

P or private constraint in Ci
P by also executing

the multiagent algorithm — at least not without requiring
conjecture or ulterior (methods of inferring) information on
the part of agent j. Additionally, it is not generally required
that any agent knows or infers the entire shared STP. In our
algorithms, agents attempt to minimize shared knowledge to
increase efficiency.

Corollary 5. The MaTDP and MaTDR algorithms never
reveal any of agent i’s private variables or private constraints
(or edges) and hence maintain privacy over them.

Proof (Sketch). Follows from proof of the properties
of the MaSTP privacy partitioning, Theorem 1 in [2].

Together, the MaTDP and MaTDR algorithms calculate
a minimal temporal decoupling for an MaSTP. In the next
section, we empirically compare the performance of these
algorithms with previous approaches.

4. EMPIRICAL EVALUATION
In the following subsections, we introduce the methodol-

ogy we use to empirically evaluate the performance of our
algorithm’s computational effort and flexibility.

4.1 Methodology
To develop results comparable to those elsewhere in the

literature, we model our experimental setup after [2] and [4],
adapting the random problem generator described in [4] so
that it generates MaSTP instances. Each problem instance
has A agents each with start timepoints and end timepoints

for 10 actions. Each action is constrained to occur within
the time interval [0,600] relative to a global zero reference
timepoint, z. Each activity’s duration is constrained by
a lower bound, lb, chosen uniformly from interval [0,60]
and an upper bound chosen uniformly from the interval
[lb, lb+ 60]. In addition to these constraints, the generator
adds 50 additional local constraints for each agent andN total
external constraints. Each of these additional constraints, eij ,
is constrained by a bound chosen uniformly from the interval
[−Bji, Bij ], where vi and vj are chosen, with replacement,
with uniform probability. To confirm the significance of our
results, we generate and evaluate the expected performance
of our algorithms over 25 independently generated trials for
each parameter setting. Since the novelty of our algorithms
lies within the temporal decoupling aspects of the problem,
we only generate consistent MaSTP problem instances to
compare the computational effort of full applications of the
various decoupling algorithms. We modeled a concurrently
executing multiagent system by systematically sharing a
3 Ghz processor with 4 GB of RAM by interrupting each
agent after it performed a single bound operation (either an
update or evaluation) and a single communication (sending
or receiving one message).

4.2 Evaluation of Computational Effort
In the first set of experiments, we empirically compared:

• MaTDP+R – our MaTDP algorithm with the MaTDR
subroutine,

• Cent. MaTDP+R – a single agent that executes
MaTDP+R on a centralized version of the problem,

• D-P3C – our implementation of the D∆P3C distributed
algorithm for establishing PPC for an MaSTP (but not
a decoupling) [2], and

• TDP — our implementation of the fastest variation
(the RGB variation) of the (centralized) TDP algorithm
as reported in [4].

For the TDP approach, we used the Floyd-Warshall algo-
rithm to initially establish FPC and the incremental update
described in [5] to maintain FPC as new constraint were
posted. We evaluated approaches across two metrics. The
non-concurrent computation (NCC ) metric is the number
computational cycles before all agents in our simulated mul-
tiagent environment have completed their execution of the
algorithm [2]. The other metric we report in this section is
the total number of messages exchanged by agents.

In the first experiment set (Figure 3), A = {1, 2, 4, 8, 16, 32}
and N = 50 · (A− 1). In the second experiment set (Figure
4), A = 25 and N = {0, 50, 100, 200, 400, 800, 1600, 3200}.
The results shown in both figures demonstrate that our
MaTDP+R algorithm clearly dominates the original TDP ap-
proach in terms of execution time, even when the MaTDP+R
algorithm is executed in a centralized fashion. When com-
pared to the centralized version of the MaTDP+R algorithm,
the distributed version has a speedup (centralized compu-
tation/distributed computation) that varies between 19.4
and 24.7. This demonstrates that the structures of the gen-
erated problem instances support parallelism and that the
distributed algorithm can exploit this structure to achieve
significant amounts of parallelism.

Additionally, notice that the MaTDP+R algorithm domi-
nates the D∆P3C algorithm in both computation and number
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Figure 3: Computational effort as A grows.
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Figure 4: Computational effort as N increases.

of messages (which held true in both experiments, although
messages are not displayed in Figure 4 due to space consider-
ations), which means the MaTDP+R algorithm can calculate
a temporal decoupling with less computational effort than
the D∆P3C algorithm can calculate a decomposable, PPC
representation of the MaSTP. This is due to the fact that,
while the MaTDP+R is generally bound by the same run-
time complexity as the D∆P3C, as argued in Theorem 1,
the complexity of the actual decoupling procedure is less
in practice, since the decoupling algorithm only calculates
new bounds for reference edges, instead of calculating new
bounds for every shared edge. This is important because if
agents instead chose to try to maintain the complete set of
consistent joint schedules (as represented by the decompos-
able, PPC output of D∆P3C), agents may likely perform
additional computation and communication every time a
new constraint arises, whereas the agents that calculate a
temporal decoupling can perform all additional computation
locally and independently, unless or until a new constraint
arises that invalidates the temporal decoupling. The fact
that MaTDP+R algorithm dominates the D∆P3C algorithm
also implies that even if the original TDP algorithm were
adapted to exploit the current state-of-the-art distributed
PPC algorithm [2], our algorithm would still dominate the
basic approach in terms of computational effort. Overall, we
confirmed that we could exploit the structure of the MaSTP
to calculate a temporal decoupling not only more efficiently
than previous TDP approaches, but also in a distributed man-
ner, avoiding centralization costs previously required, and
exploiting parallelism to lead to impressive levels of speedup.

We next ask whether the quality of our MaTDP+R algorithm
is competitive.

4.3 Evaluation of Flexibility
As mentioned earlier, one of the key properties of a decom-

posable MaSTP is that it can represent a set of consistent
joint schedules, which in turn can be used as a hedge against
scheduling uncertainty. In the following subsections we de-
scribe a metric for more generally quantifying the robustness
of an MaSTP, and hence a temporal decoupling, in terms of
a flexibility metric and perform an empirical evaluation of
our algorithms with regards to flexibility.

4.3.1 Flexibility Metrics
Hunsberger introduced two metrics, flexibility (F lex) and

conversely rigidity (Rig), that quantify the basic notion
of robustness so that the quality of alternative temporal
decouplings can be compared [4]. He defined the flexibility
between a pair of two timepoints, vi and vj , as the sum
F lex(vi, vj) = Bij+Bji which is always positive for consistent
MaSTPs. The rigidity of a pair of timepoints is defined as
Rig(vi, vj) = 1

1+Flex(vi,vj)
, and the rigidity over an entire

STP is the root mean square (RMS) value over the rigidity
value of all pairs of timepoints:

Rig(S) =

√
2

|V |(|V |+ 1)

∑
i<j

[Rig(vi, vj)]2.

This implies that Rig(S) ∈ [0, 1], where Rig(S) = 0 when
S has no constraints and Rig(S) = 1 when S has a single
solution [4]. Since Rig(S) requires FPC to calculate, we only
apply this metric as a post-processing evaluation technique
by centralizing and establishing FPC on the temporal decou-
plings returned by our algorithms. There exists a centralized,
polynomial time algorithm for calculating an optimal tempo-
ral decoupling [7], but it requires an evaluation metric that
is a linear function of distance graph edge weights, which the
aggregate rigidity function R(S), unfortunately, is not.

4.3.2 Evaluation
In our second set of experiments, we compare the rigidity

of the temporal decouplings calculated by:

• Default – a variant MaTDP algorithm that uses the
the described, default heuristic, but without MaTDR,

• Relaxation – the default MaTDP with MaTDR,

• Locality – a variant of the MaTDP algorithm where, in
line 13, agents heuristically bias how much they tighten
wzk relative to wkz using information from applying
the full D∆P3C algorithm in line 1 (no MaTDR),

• All – the MaTDP using both the locality heuristic and
the MaTDR sub-routine,

• Input – the rigidity of the input MaSTP, and

• TDP – our implementation of Hunsberger’s RLF vari-
ation of his TDP algorithm (where r = 0.5 and ε = 1.0
which lead to a computational multiplier of approxi-
mately 9) that was reported to calculate the least rigid
decoupling in [4].

In this experiment, A = 25 and N = {50, 200, 800}. Table 1
displays the rigidity of the temporal decoupling calculated
by each approach. On average, as compared to the Default,
the Relaxation approach decreases rigidity by 51.0% (while
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Table 1: The rigidity values of various approaches.
N=50 N=200 N=800

Input 0.418 0.549 0.729
All 0.508 0.699 0.878

Relaxation 0.496 0.699 0.886
Locality 0.621 0.842 0.988
Default 0.628 0.849 0.988
TDP 0.482 0.668 0.865

increasing computational effort by 30.2%), and the Local-
ity approach decreases rigidity by 2.0% (while increasing
computational effort by 146%). The Relaxation approach,
which improves the output decoupling the most, offers the
best return on investment. The locality heuristic, however,
is very computationally expensive while providing no signifi-
cant improvement in rigidity. We also explored combining
these rigidity decreasing techniques, and while the increase in
computational effort tended to be additive (the All approach
increases effort by 172%), the decrease in rigidity did not. In
fact, no heuristics or other combinations of techniques led to
a statistically significant decrease in rigidity (as compared
to the default, Relaxation approach) in the cases we investi-
gated. The All approach decreased rigidity by only 49.9% in
expectation.

The fact that the Relaxation approach alone decreases
rigidity by more than any other combination of other ap-
proaches can be attributed to both the structure of an MaSTP
and how rigidity is measured. First, the Relaxation improves
the distribution of flexibility to the shared timepoints re-
actively, instead of proactively trying to guess good values.
As the MaTDP algorithm tightens bounds, the general tri-
angulated graph structure formed by the elimination order
“branches out” the impact of this tightening. So if the first
timepoint is assigned, this defers more flexibility to the sub-
sequent timepoints that depend on the bounds of the first
timepoint, of which there could be many. So by being proac-
tive, other heuristics may steal flexibility from a greater
number of timepoints, where as the MaTDR algorithm al-
lows this flexibility to be recovered only after the (possibly
many more) subsequent timepoints have set their bounds to
maximize their local flexibility.

Notice from Table 1 that the TDP approach decreases the
rigidity the most, representing on average a 20.6% decrease
in rigidity as compared to the Relaxation approach. However,
this additional reduction in rigidity comes at a significant
computational cost — the TDP approach incurs, in expecta-
tion, over 10,000 times more computational effort than our
Relaxation approach. While in some scheduling environments
the costs of centralization (e.g. privacy) alone would invali-
date this approach, in others the computational effort may
be prohibitive if constraints arise faster than the centralized
TDP algorithm can calculate a temporal decoupling. Further,
in many scheduling problems, all temporal decouplings may
be inherently rigid if, for example, many of the external con-
straints enforce synchronization (e.g. Ann’s run start time),
which requires fully assigning timepoints in order to decouple.
Overall, the Relaxation approach, in expectation, outputs a
high-quality temporal decoupling, approaching the quality
(within 20.6%) of the state-of-the-art centralized approach
[4], in a distributed, privacy-maintaining manner faster than
the state-of-the-art MaSTP solution algorithms.

5. CONCLUSION
In this paper, we have presented a new, distributed algo-

rithm that solves the MaTDP without incurring the costs
of centralization like previous approaches. We have proven
that the MaTDP algorithm is correct, and demonstrated
both analytically and empirically that it calculates a tempo-
ral decoupling faster than previous approaches, exploiting
sparse structure and parallelism when it exists. Additionally
we have introduced the MaTDR algorithm for relaxing the
bounds of existing decoupling constraints to form a minimal
temporal decoupling, and empirically showed that this algo-
rithm can decrease rigidity by upwards of 50% (within 20.6%
of the state-of-the-art centralized approach) while increasing
computational effort by as little as 20%. Overall, we have
shown that the combination of the MaTDP and MaTDR
algorithms calculates a temporal decoupling faster than state-
of-the-art distributed MaSTP solution algorithms and the
MaTDR algorithm reduces rigidity further than other heuris-
tics we evaluated. In the future, we hope to evaluate the
computational and communication costs of our algorithms in
the context of a dynamic scheduling environment. We hope
to extend the MaTDR algorithm to an anytime approach for
recovering flexibility as new constraints arise and evaluate
the computational effort in comparison with calculating a
new temporal decoupling after an existing temporal decou-
pling becomes inconsistent. Additionally, we hope to develop
additional flexibility metrics that can be evaluated in a dis-
tributed setting for heuristically guiding scheduling agents
in dynamic scheduling environments.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments

and suggestions. This work was supported, in part, by the
NSF under grants IIS-0534280 and IIS-0964512 and by the
AFOSR under Contract No. FA9550-07-1-0262.

7. REFERENCES
[1] C. Bliek and D. Sam-Haroud. Path Consistency on

Triangulated Constraint Graphs. In Proc. of IJCAI-99,
pages 456–461, 1999.

[2] J. Boerkoel and E. Durfee. A Comparison of Algorithms
for Solving the Multiagent Simple Temporal Problem. In
Proc. of ICAPS-10, pages 26–33, 2010.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. In Knowledge representation, volume 49, pages
61–95. The MIT Press, 1991.

[4] L. Hunsberger. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proc of AAAI-02,
pages 468–475, 2002.

[5] L. Planken. Incrementally solving the stp by enforcing
partial path consistency. In Proc. of PlanSIG-08, pages
87–94, 2008.

[6] L. Planken, M. de Weerdt, and R. van der Krogt. P3C:
A new algorithm for the simple temporal problem. In
Proc. of ICAPS-08, pages 256–263, 2008.

[7] L. Planken, M. de Weerdt, and C. Witteveen. Optimal
temporal decoupling in multiagent systems. In Proc. of
AAMAS-10, pages 789–796, 2010.

[8] L. Xu and B. Choueiry. A new effcient algorithm for
solving the simple temporal problem. In Proc. of
TIME-ICTL-03, pages 210–220, 2003.

148



Decomposing constraint systems: Equivalences and
computational properties

Wiebe van der Hoek
Dept. of Computer Science

University of Liverpool,
United Kingdom

wiebe@csc.liv.ac.uk

Cees Witteveen
Dept. of Software Technology
Delft University of Technology,

The Netherlands
C.Witteveen@tudelft.nl

Michael Wooldridge
Dept. of Computer Science

University of Liverpool,
United Kingdom

mjw@liverpool.ac.uk

ABSTRACT
Distributed systems can often be modeled as a collection of
distributed (system) variables whose values are constrained
by a set of constraints. In distributed multi-agent systems,
the set of variables occurring at a site (subsystem) is usually
viewed as controllable by a local agent. This agent assigns
values to the variables, and the aim is to provide distributed
methods enabling a set of agents to come up with a global
assignment (solution) that satisfies all the constraints. Al-
ternatively, the system might be understood as a distributed
database. Here, the focus is on ensuring consistency of the
global system if local constraints (the distributed parts of the
database) change. In this setting, the aim is to determine
whether the existence of a global solution can be guaranteed.
In other settings (e.g., P2P systems, sensor networks), the
values of the variables might be completely out of control of
the individual systems, and the constraints only characterize
globally normal states or behavior of the system. In order to
detect anomalies, one specifies distributed methods that can
efficiently indicate violations of such constraints. The aim of
this paper is to show that the following three main problems
identified in these research areas are in fact identical: (i) the
problem of ensuring that independent agents come up with
a global solution; (ii) the problem of ensuring that global
consistency is maintained if local constraint stores change;
and (iii) the problem of ensuring that global violations can
be detected by local nodes. This claim is made precise by
developing a decomposition framework for distributed con-
straint systems and then extracting preservation properties
that must satisfied in order to solve the above mentioned
problems. Although satisfying the preservation properties
seems to require different decomposition modes, our results
demonstrate that in fact these decomposition properties are
equivalent, thereby showing that the three main problems
identified above are identical. We then show that the com-
plexity of finding such decompositions is polynomially re-
lated to finding solutions for the original constraint system,
which explains the popularity of decomposition applied to
tractable constraint systems. Finally, we address the prob-
lem of finding optimal decompositions and show that even
for tractable constraint systems, this problem is hard.
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1. INTRODUCTION
Distributed systems can frequently be modelled as a col-
lection of distributed (system) variables X, whose values
are constrained by a set of constraints. Usually, one distin-
guishes a set of sites, each of which contains a disjoint subset
of variables Xi ⊆ X. Each site is responsible for those con-
straints relating to the variables that occur in its variable set
Xi (its set of local constraints). Sites must interact with re-
spect to the set of global constraints1, which relates variables
of different components Xi. The way such a model of a dis-
tributed system is used largely depends on the application
domain. We can identify at least three different application
domains: multi-agent systems, distributed databases, and
P2P systems.

In multi-agent systems, one typically assumes that there
is a set of agents, with each agent Ai controlling the vari-
ables in Xi. It is the common task of all the agents to
assign suitable values to their variables such that all con-
straints are satisfied. Since each agent tries to assign values
to the variables independently from the others, only the con-
straints whose variables occur in the agent’s control set are
guaranteed to be satisfied. The main research problem is
then to provide (distributive) methods enabling the agents
to come up with a global assignment (solution) satisfying all
constraints – both local and global.

In other domains, such as databases, such a distributed
constraint system is conceived as a model of a distributed
database. Here, the focus is not on finding solutions for
a fixed set of constraints, but to ensure consistency of the

1Although the term“global constraints” in the CP-literature
refers to constraints encapsulating sets of other constraints,
in the context of distributed constraint processing we use
this term only to distinguish them from local constraints.
That is, global constraints are those constraints whose vari-
ables occur in more than one control set.
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global system in the event that local constraints (the dis-
tributed components of the database) change. Such a notion
of consistency is expressed by global integrity constraints
that need to be respected whatever changes take place at
local sites. Hence, here the issue is not giving values to vari-
ables such that all constraints are satisfied, but to ensure
that there exists at least one possibility for such a globally
satisfying assignment.

While in the above mentioned areas the focus is on finding
a solution or guaranteeing the existence of at least one solu-
tion, in areas such as peer-to-peer (P2P) systems and sensor
networks, modeling by distributed constraint systems is of-
ten focused on the detection of constraint violations. Here,
the set of constraints is used to characterize acceptable states
or behavior of the global system, and violations of such con-
straints indicate potentially problematic anomalies (e.g., a
DDoS attack). In order to detect such anomalies, one spec-
ifies a set of distributed methods that aim to establish vio-
lations of such constraints as efficiently as possible.

Although these problems arise in different areas they all
have a common aspect. From an abstract point of view,
one might consider the set of agents (sites, local databases)
with their constraints as a decomposition of the original con-
straint system induced by a partitioning of the variables.
In all three areas mentioned above, the problem is how we
might ensure this decomposition to have some preservation
properties with respect to the underlying global system.

From a multi-agent systems point of view, in distributed
constraint systems one often considers the local agent as
autonomous. Here, decomposition has to ensure that the lo-
cal constraints can be solved completely independently from
the others, after which the local solutions can always be
merged to yield a solution to the complete system. Hence,
in multi-agent systems research the focus of decomposition
has been on a solution preserving property: in obtaining a
global solution, local solutions should always be preserved
in order to ensure independent local problem solving. For
example, in [10] decomposition2 has been applied to ensure
that independently chosen schedules for subnetworks of a
Simple Temporal Network (STN) can always be merged to a
joint schedule of the total network. In [11] a decomposition
technique is presented to ensure decentralized cooperative
control of multi-agent systems where satisfaction of all (dis-
tributed) subtasks of a joint task implies the fulfillment of
the complete task as well.

In the database community, one wants to ensure that
whenever each local database is consistent, the consistency
of the global database is implied, whatever changes occur
locally. The method applied here is to provide localized ver-
sions of global integrity constraints that ensure that, what-
ever local information satisfying these constraints is added
to the (distributed) database, the global consistency of the
total database will be preserved [2, 9, 4]. Hence the database
community is interested in consistency preserving decompo-
sitions3.

2In this paper, Hunsberger has adopted the term temporal
decoupling for decomposition in STNs.
3Quite closely related to the database community, in the
sensor network community, one distinguishes the localization
problem, where a distributed constraint is reformulated into
local constraints for mobile entities and is adjusted dynam-
ically [12, 15]. The satisfaction of the distributed constraint
is guaranteed whenever all the local constraints are satisfied.

The P2P community aims at the efficient detection of con-
straint violations. Here, normal operations are specified by
a global constraint CS . For reasons of efficiency, one prefers
not to monitor all sites to establish violations of these con-
straints. Therefore, localizations of such constraints are pro-
vided to each node, such that it has its own violation detec-
tion mechanism [1]. A global violation detection mechanism
is triggered only if some local node detects a violation, thus
saving communication between the nodes. So, in the P2P
community, one is interested in safety preserving decompo-
sitions of integrity constraints, ensuring that whenever all
local states indicate safeness (no violation detection occurs)
of their local states, the global state is safe (that is, the
global integrity constraints are all respected), too.

In summary, it seems that we can study all three problems
in a common decomposition framework, where the only dif-
ference between these problems is in their preservation prop-
erties. In fact, as, we pointed out, there has been extensive
research in these three areas, focusing on either the solution
preserving, the consistency preserving, or the safety preserv-
ing aspect of decompositions in distributed constraint sys-
tems. However, to the best of our knowledge, there have
been no attempts to establish their equivalence. In short,
the aim of the present paper is to address this issue and to
investigate some computational aspects of such decomposi-
tions.

We begin in Section 2 by presenting a formal framework
for investigating these properties, and present the technical
preliminaries used in the remainder of the paper. In Sec-
tion 3, we investigate the relationships between the proper-
ties we identified, i.e., we consider whether the properties
are independent from each other, whether they imply each
other, or whether they are they completely identical. In
Section 4, we address some computational aspects of these
preservation properties — for example, how difficult is it
to find a {solution, consistency, violation}-preserving de-
composition. We will establish some tight computational
connections between these problems and the general prob-
lem of finding a solution to a constraint system. Then, in
Section 5, we will address the problem of information loss
inherent in solving a decomposed problem as opposed to
solving the problem at a global level. We will indicate that
in general the problem of establishing the exact information
loss is intractable. Finally, in Section 6, we state some final
conclusions to place this work into a broader perspective.

2. PRELIMINARIES
In this section we briefly define constraint systems, distributed
constraint systems, and decompositions of distributed con-
straint systems.

2.1 (Distributed) Constraint Systems
A constraint system is a tuple S = 〈X,D,C〉 where X is
a (finite) set of variables, D is a set of (value) domains Di
for every variable xi ∈ X, and C is a set of constraints
over X. We assume constraints c ∈ C to be specified as
formulas of some language. We will not require any specific
language for constraints c ∈ C, but it is useful to assume
some fundamental properties. Specifically, we will assume
the language contains constants for elements in the domains
Di, the usual Boolean connectives (¬,∨,∧), and equality.
We also require that it is possible to determine whether a
solution satisfies a constraint in polynomial time. Formally,
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a solution σ of the system S = 〈X,D,C〉 is an assignment
σ = {xi ← di}ni=1 to all variables in X such that di ∈ Di,
and each constraint c ∈ C is satisfied. We sometimes write
σ |= C to mean that σ is a solution to C. Given a subset
Xi ⊆ X, we let σXi denote the restriction of σ to the subset
Xi. Where no confusion is possible, we will use σi as a
shorthand for σXi . The set of all assignments σ is denoted by
Σ. Likewise, the set of all assignments for a subset Xi ⊆ X
is denoted by ΣXi or Σi.

The set of solutions σ to system S = 〈X,D,C〉 will be
denoted by Sol(S). S is called consistent if Sol(S) 6= ∅. For
every c ∈ C, let Var(c) denote the set of variables mentioned
in c. For a set of constraints C, we let

Var(C) =
⋃
c∈C

Var(c).

Given S = 〈X,D,C〉, we obviously require Var(C) ⊆ X.
If D is a set of value domains Di for variables xi ∈ X and
X ′ ⊂ X then DX′ is the set of value domains Di of the
variables xi ∈ X ′. Likewise, given a set of constraints C
and a set of variables X ′, we let CX′ denote the subset
{c ∈ C | Var(c) ⊆ X ′} of constraints over X ′.

In this paper we consider constraint systems S that are
distributed [19]; that is, there is a set of N agents Ai, each
being able to make assignments to, or to add constraints over
a subset Xi of the set X of variables. Here, we assume that
agents do not share control over the variables, and that every
variable is controlled by an agent. Hence, the collection
{Xi}Ni=1 constitutes a partitioning of X, i.e.:

• ⋃Ni=1Xi = X; and

• for all 1 ≤ i < j ≤ N , Xi ∩Xj = ∅.
To indicate that a constraint system S = 〈X,D,C〉 is dis-
tributed by a partitioning {Xi}Ni=1 of X, we write S =
〈{Xi}Ni=1, D,C〉 and call it a distributed constraint system.
We are particularly interested in those distributed systems
S = 〈{Xi}Ni=1, D,C〉 where each agent Ai, controlling the
set Xi, only processes a set of constraints over Xi, and does
not take into account other constraints. That effectively im-
plies that in such a case, instead of one constraint system
S and a partition {Xi}Ni=1, we have a set of independent
constraint systems Si = 〈Xi, Di, C′i〉, where each C′i is a set
of constraints over Xi, i.e., V ar(C′i) ⊆ Xi. We call the re-
sulting set S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 of such subsystems
a decomposed constraint system4. We say that σ is a solu-
tion of S ′ if, for each i, σi is a solution of Si = 〈Xi, Di, C′i〉.
The decomposition S ′ is said to be consistent if

⋃
i C

′
i is

consistent.
Whenever {Xi}Ni=1 is a partitioning of X, we will write

σ = σ1 t σ2 t . . . t σN to indicate an assignment σ that is
composed of the disjoint assignments σi for Xi. Likewise,
we will write Sol(S1) t Sol(S2) t . . . t Sol(SN ) to indicate
the set of global assignments σ that can be constructed by
simply composing all local solutions of the subsystems Si.
2.2 Decompositions: preservation properties
We now discuss three specifications of the relationship be-
tween a distributed constraint system S and a decomposi-
tion S ′, with respect to the three preservation properties we
informally discussed above.

4For the moment, we do not specify any relationship be-
tween C′i and CXi .

2.2.1 Solution preserving decompositions
A decomposed system can be used to preserve solutions of
a distributed constraint system: to obtain a global solution
σ for the distributed constraint system S one simply merges
the individual solutions σi of the subsystems Si of a decom-
posed system S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1. In that case the
decomposed system is said to be solution preserving if the
merging of each collection of local solutions σi always results
in a global solution σ:

Definition 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then the decomposed system

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is said to be a solution-preserving decomposition w.r.t. S if
it satisfies the following property:

∅ ⊆ Sol(S1) t Sol(S2) t . . . t Sol(SN ) ⊆ Sol(S).

S ′ is said to be strictly solution preserving if the first inclu-
sion is strict whenever Sol(S) 6= ∅.5

Example 1. Let S = 〈{Xi}Ni=1, D,C〉 be a constraint sys-
tem where C = {x1 ∧ x2, x1 ∨ x3, x1 ∨ x4} is a set of
Boolean constraints over X = {x1, x2, x3, x4} and X is par-
titioned as {X1 = {x1, x2}, X2 = {x3, x4}}. The decom-
position {S1,S2} where S1 = 〈{x1, x2}, D1, {x1 ∧ x2}〉 and
S2 = 〈{x3, x4}, D2, ∅〉 is a strictly solution preserving decom-
position of S: S1 has a unique solution Sol(S1) = {{x1 ←
1, x2 ← 1}}, while S2 has a “universal” solution set: Sol(S2) =
{{x3 ← i, x4 ← j} : i, j ∈ {0, 1}}. Every solution in
Sol(S1)tSol(S2) is a solution to S, because x1 as well as x2

is assigned to 1 in any merge, thereby satisfying C. Hence,
{S1,S2} is strictly solution preserving.

Note that, in general, not every solution σ ∈ Sol(S) will be
obtainable by simply merging local solutions σi.

2.2.2 Consistency preserving decompositions
In distributed database applications, one typically distin-
guishes local constraints from global (integrity) constraints.
Usually, in such applications, agents are free to add con-
straints to their set of local constraints as long as the re-
sulting set remains consistent. The problem then is to en-
sure that local consistency ensures global consistency. This
global consistency has to be ensured by the set of integrity
constraints. In order to prevent communication overload be-
tween the distributed sites, one often tries to distribute these
integrity constraints over the sites in such a way that sat-
isfaction of all the local versions of the constraints implies
the satisfaction of the global constraints. To simplify the
discussion, we focus on the case where each site is allowed
to add constraints to their local store. Consistency preser-
vation then means that the total set of original constraints
plus locally added constraints is consistent, whenever the
added information does not cause any local inconsistency.
We need the following definition.

Definition 2. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. An extension of S = 〈{Xi}Ni=1, D,C〉 is
a constraint system SE = 〈{Xi}Ni=1, D,C

′〉 where C ⊆ C′.
5This last condition is needed to take care for inconsistent
constraint systems.
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An extension SE captures the idea of a constraint system
S to which a set constraints has been added. Suppose that
we have a decomposed system S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

and suppose that to each local system Si a set C′′i \ C′i
of constraints is added such that for each Si we obtain
an extension SEi . Then consistency preservation requires
that local consistency implies global consistency. That is,
if the locally added information C′′i \ C′i does not render
any resulting extension SEi inconsistent, the total informa-
tion (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N ) added to the distributed
system should not render the total system inconsistent, i.e.,
SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N )〉 should be
consistent as well.

Definition 3 (consistency preserving extensions).
Let S = 〈{Xi}Ni=1, D,C〉 be a distributed constraint system.
A decomposition

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is called consistency preserving w.r.t. S if the following con-
dition holds: whenever, for all i = 1, 2, . . . , N , the extensions

SEi = 〈Xi, Di, C′′i 〉
of Si are consistent, the global extension

SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N )〉
is consistent as well. S ′ is said to be strictly consistency
preserving if, moreover, it holds that every Si is consistent
whenever S is consistent.

Example 2. Consider the distributed constraint system
specified in Example 1 and its decomposition S ′ = {S1,S2}.
We show that S ′ is also a strictly consistency preserving
decomposition w.r.t. S = 〈{Xi}Ni=1, D,C〉: Every constraint
over Xi added to the local constraint systems Si that keeps
it consistent, will imply the existence of a non-empty set
of solutions for Si. Since S1 has a unique solution, every
consistent extension SE1 must have the same unique solution
σ1 = {x1 ← 1, x2 ← 1}. Whatever solution σ2 is chosen
for a consistent SE2 )), it is always a solution to S2, too. But
then, using the solution preservation property, σ = σ1tσ2 |=
C. Moreover, σ1 |= C′′1 and σ2 |= C′′2 , therefore

σ |= C ∪ (C′′1 \ C′1) ∪ (C′′2 \ C′2).

Hence, SE is consistent and the decomposition is strictly
consistency preserving.

2.2.3 Safety preserving decompositions
In areas such as P2P systems and sensor networks, one uses
global constraints on the values by variables indicating vital
system properties or to characterize the normal behavior of
a system. As long as these global constraints are satisfied,
no active control of the system is necessary. Only if vio-
lations of these global constraints occur, actions have to be
performed to restore a normal state. In order to avoid exces-
sive communication between the sites, one prefers to detect
such anomalies in a distributed way. That is, the global
constraints need to be localized in such a way that each
site can establish independently from the others whether or
not its local set of constraints is violated. Such a detection
mechanism should be safe in the sense that whenever there
is a global violation, at least one site should have detected
it. But this, by contraposition, immediately implies that

safeness also can be expressed as a preservation property:
whenever each local site concludes that its local set of con-
straints is safe, the global set of constraints should be safe,
too.

Definition 4 (safety preserving decompositions).
Let S = 〈{Xi}Ni=1, D,C〉 be a distributed constraint system.
A decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is called safety
preserving w.r.t. S if the following condition holds: when-
ever there exists a global system state (assignment) σ such
that for all i = 1, 2, . . . , N , Si is locally safe, i.e., σi |= C′i,
then the global system is safe, too, i.e., σ |= C.

Example 3. Take S = 〈{Xi}Ni=1, D,C〉 of Example 1.
The decomposition S ′ = {S1,S2} is obviously safety preserv-
ing w.r.t. S = 〈{Xi}Ni=1, D,C〉: whenever there is a state σ
such that σ1 |= (x1 ∧ x2) and σ2 |= true, we must have that
σ |= (x1 ∧ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4).

3. DECOMPOSITION PROPERTIES: RELA-
TIONSHIPS

Given the three preservation properties we distinguished in
decompositions of constraint systems, the first question we
should answer is how they are related: Are they indepen-
dent? Is one subsumed by the other? Or are they in fact
equivalent? We start with the easiest one. As the reader
might have noticed, there is an obvious relationship between
solution preserving decompositions and safety preserving de-
compositions: A decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is solution preserving exactly when it is safety preserving
with respect to a given distributed system S = 〈{Xi}Ni=1, D,C〉:

Proposition 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is so-
lution preserving w.r.t. S iff S ′ is also safety preserving
w.r.t. S.

Proof. Notice that a decomposition S ′ that is safety pre-
serving exactly if for all σ = σ1 t . . . t σN ∈ Σ it holds that
∀i = 1, . . . , N σi ∈ Sol(Si) implies σ ∈ Sol(S).

Hence, S ′ is safety preserving iff

∅ 6= Sol(S1) t Sol(S2) t . . . t Sol(SN ) ⊆ Sol(S)

iff S ′ is solution preserving.

With respect to consistency preserving and solution pre-
serving decompositions, intuitively, it should be easy to show
that solution preservation subsumes consistency preserva-
tion: if it is ensured that updates to a local constraint
store ensure locally consistent stores, there exist local so-
lutions σi for every updated local store. In particular, these
solutions are solutions for the initial versions of the local
stores. Hence, by solution preservation, merging these solu-
tions constitutes a solution σ for the global (initial) store.
But then it is easy to show that σ satisfies all the local up-
dates as well. Hence, the global constraint store plus the
added constraints is a consistent set as well. More precisely:

Proposition 2. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. If S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is solution
preserving w.r.t. S, then S ′ is also consistency preserving
w.r.t. S.
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Proof. Assume S ′ to be solution preserving w.r.t. S. For
i = 1, 2, . . . , N , consider arbitrary (consistent) extensions
SEi = 〈Xi, Di, C′′i 〉 of the local subsystems Si = 〈Xi, Di, C′i〉.
For each subsystem SEi , select an arbitrary assignment σi ∈
Sol(SEi ).

Since C′′i ⊇ C′i, it follows that

∅ 6= Sol(SEi ) ⊆ Sol(Si).
Hence, by solution preservation, the assignment σ = σ1 t
. . . t σN will satisfy S. Therefore,

σ |= C (1)

By definition of σi, σi |= C′′i \ C′i. Moreover, every C′′i \ C′i
is a set of variable disjoint constraints over Xi. Hence, it
follows that

σ |= (C′′1 \ C′1) ∪ (C′′2 \ C′2) ∪ . . . (C′′N \ C′N ) (2)

Hence, by equation (1) and (2),

σ |= C ∪ (C′′1 \ C′1) ∪ (C′′2 \ C′2) ∪ . . . (C′′N \ C′N )

and therefore, σ ∈ Sol(SE). So, Sol(SE) 6= ∅ and, conse-
quently, S ′ is consistency preserving with respect to S =
〈{Xi}Ni=1, D,C〉.

Although consistency preservation might seem to be a
weaker property, somewhat surprisingly, the converse is also
true: consistency preservation implies solution preservation.
The intuition behind this result is that every solution to a
constraint system can be encoded as a special update of the
constraint store. The resulting constraint store will have
this solution as its unique solution. By consistency preserva-
tion, the resulting global constraint store will be consistent.
Hence, this decomposition will also be solution preserving,
since the merge of all local solutions will be the unique so-
lution of the resulting system. More formally:

Proposition 3. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. If S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is consis-
tency preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉, then S ′ is also
solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Proof. Assume S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 to be con-
sistency preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉. By assump-
tion, for every subsystem Si and every extension SEi =
〈Xi, Di, C′′i 〉 of Si, it must hold that, whenever the extended
local systems SEi are consistent, then the global extended
system

SE = 〈X,D,C ∪ (C′′1 − C′1) ∪ . . . ∪ (C′′N − C′N 〉
is also consistent.

For each i = 1, . . . , N , let σi be an arbitrary solution to
Si = 〈Xi, Di, C′i〉. Since {Xi}Ni=1 is a partition, the assign-
ment σ = σ1 t . . . t σN is well-defined. We have to show
that σ ∈ Sol(S).
For i = 1, . . . , N , consider the extensions SEi = 〈Xi, Di, C′′i 〉,
where

C′′i = C′i ∪ {x = σ(x) : x ∈ Xi}.
That is, each C′i is extended with a set of unary constraints
encoding the assignment x← σ(x) for every variable x ∈ Xi.
Then, for every i = 1, 2, . . . , N , SEi is consistent and each σi
is the unique solution of SEi .
By consistency preservation, the extension

SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N )〉

is consistent, too. Hence Sol(SE) 6= ∅. Now observe that

C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N ) = C ∪ {x = σ(x) : x ∈ X}
Hence, it follows that σ is the unique solution of SE and

therefore, σ |= C. Hence σ ∈ Sol(S) and the decomposition
S ′ is also solution preserving.

As an easy consequence of these propositions we have the
following result:

Theorem 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is so-
lution preserving w.r.t. S iff S ′ is safety preserving w.r.t. S
iff S ′ is consistency preserving w.r.t. S ′.

It is not difficult to show that these equivalences also hold
for the strictly preserving versions. This immediately im-
plies that all results that have been obtained for consistency
preserving decompositions such as occur in [4, 12] can be
used for solution preserving approaches to decomposition as
well.

4. FINDING SOLUTION PRESERVING DE-
COMPOSITIONS

The equivalence between the three preservation properties
of decompositions does not tell us how we could obtain such
decompositions. In this section, we will discuss the problem
of finding suitable decompositions. Given the above proven
equivalences, in this section we concentrate on the solution
preservation property of decompositions.

First, we prove the equivalence between our notion of solu-
tion preserving decompositions and the notion of safe decom-
positions as introduced by [4] for the purpose of consistency
preserving decompositions. Then, using the definition of safe
decompositions we show that deciding whether a decompo-
sition S ′ is solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉 in
general is a coNP-complete problem.

Next, we prove that finding such a decomposition S ′ is as
hard (neglecting polynomial differences) as finding a solution
for the original system S.6

We start by defining the notion of a safe decomposition:

Definition 5 ([4]). Given a distributed constraint sys-
tem S = 〈{Xi}Ni=1, D,C〉, the decomposition

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is said to be a safe decomposition w.r.t. S if

N⋃
i=1

C′i |= C.

Note that this property is also sometimes known as the cov-
ering property [1] and should not be confused with the safety
preservation property we discussed in the previous section.

Proposition 4. The decomposed system

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is safe w.r.t. S = 〈{Xi}Ni=1, D,C〉 iff S ′ is solution preserv-
ing w.r.t. S.
6Here, we assume that the class of allowable constraints al-
ways comprises the class of unary equality constraints of the
form x = d where d ∈ Dom(x).
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Proof Sketch. Assume that S ′ is solution preserving
w.r.t. S. Then Sol(S1) t . . . t Sol(SN ) ⊆ Sol(S). Take an
arbitrary assignment σ satisfying

⋃n
i=1 C

′
i. Then σ can be

written as σ = σ1 t σ2 t . . . t σN , where σi |= C′i since
{Xi}Ni=1 is a partitioning. Therefore, for i = 1, 2, . . . , N ,
σi ∈ Sol(Si). By solution preservation we have σ ∈ Sol(S).
Therefore, σ |= C and the decomposition is safe w.r.t. S.

Conversely, assume the decomposition S ′ to be safe w.r.t.
S = 〈{Xi}Ni=1, D,C〉. Then

⋃n
i=1 C

′
i |= C. So every assign-

ment σ : X → D satisfying
⋃n
i=1 C

′
i will also satisfy C. Each

such a solution σ can be written as σ = σ1 t σ2 t . . . t σN
where each σi : Xi → Di satisfies C′i. Hence,

Sol(S1) t . . . t Sol(SN ) ⊆ Sol(S)

and S ′ is solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Using this notion of a safe decomposition, we can show
that the problem of deciding whether a decomposition S ′ is
safe w.r.t. S = 〈{Xi}Ni=1, D,C〉 is a coNP-complete problem:

Proposition 5. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system and S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 be a de-
composition. Then the problem to decide whether S ′ is safe
w.r.t. S is coNP-complete.

Proof. To show that the problem is in coNP, just guess
an assignment satisfying

∧N
i=1 C

′
i, but falsifying C. This

shows the complement is in NP. coNP-hardness immediately
follows from a reduction from the coNP-complete logical
consequence problem: Given two propositional formulas
φ and ψ, does it hold that φ |= ψ. To see this, given ar-
bitrary φ and ψ, let X1 be the non-empty set of proposi-
tional atoms occurring in φ and ψ. Let X2 = {y} where
y does not occur in X2. Consider the constraint system
S = 〈X,D,C〉 where X = X1 ∪ X2, D is a set of Boolean
domains and C = {φ, ψ ∨ y,¬y}. Let S1 = 〈X1, DX1 , {φ}〉
and S2 = 〈X2, DX2 , {¬y}〉. Then S ′ = {S1,S2} is a safe de-
composition w.r.t. (S, {X1, X2}) iff (φ∧¬y) |= {φ, ψ∨y,¬y}
iff φ |= {φ, ψ} iff φ |= ψ.

So, unless P=NP, it is hard to decide whether a decom-
position is solution preserving. We can, however, obtain a
more detailed result by relating the difficulty of finding a
strictly solution preserving decomposition for a constraint
system S belonging to a class of constraint systems to the
difficulty of finding a solution to S:

Proposition 6. Let C be an arbitrary class of constraint
systems allowing at least equality constraints. Then there ex-
ists a polynomial algorithm to find a solution for constraint
systems S in C iff there exists a polynomial algorithm that,
given a constraint system S ∈ C and an arbitrary partition
{Xi}Ni=1 of X, finds a strictly solution preserving decompo-
sition w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Proof. Suppose that there exists a polynomial algorithm
A to find a solution for constraint systems in C. We show
how to construct a polynomial algorithm for finding a de-
composition for an arbitrary partition of such a constraint
system. Let S ∈ C be constraint system and {Xi}Ni=1 an
arbitrary partitioning of X. To obtain a decomposition
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 of S, first, using A, we com-
pute a solution σ of S. For every Xi, let

Cσi = {x = d | x← d ∈ σ, x ∈ Xi}

be a set of unary constraints for variables in Xi directly ob-
tained from σ. Then the subsystems Si = (Xi, Di, C

′
i) are

simply obtained by setting C′i = CXi ∪Cσi . Note that each
of these subsystems Si has a unique solution σi = {x ←
d ∈ s | x ∈ Xi} and the merging of these solutions σi
equals σ, i.e., a solution to the original system S. Clearly,
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is a solution preserving decom-
position for S that can be obtained in polynomial time.

Conversely, suppose we can find a strictly solution preserv-
ing decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 for a con-
straint system S ∈ C w.r.t. any partitioning {Xi}Ni=1 in
polynomial time. We show how to obtain a solution σ
of S in polynomial time.7 Since the decomposition S ′ =
{Si = 〈Xi, Di, C′i〉}Ni=1 can be obtained for any partitioning
of X, we choose the partitioning {Xi}Ni=1 where Xi = {xi}
for i = 1, 2, . . . , N . Since the decomposition can be obtained

in polynomial time, it follows that
∣∣∣⋃Ni=1 C

′
i

∣∣∣ is polynomially

bounded in the size of the input S. Hence, the resulting
decomposed subsystems Si each consist of a polynomially
bounded set of unary constraints. It is well known that
such constraint systems are solvable in polynomial time [6].
Therefore, in polynomial time for each subsystem Si an ar-
bitrary value di ∈ Di for xi can be obtained, satisfying all
constraints. Let σi = {xi ← di} denote the solution ob-
tained for Si. Since S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is a solution
preserving decomposition, the merging σ = σ1tσ2t . . .tσN
must be a solution of S as well. Therefore, σ is a solution
of S, too. Hence, given a polynomial algorithm for achiev-
ing a solution preserving decomposition, we can construct a
solution σ ∈ Sol(S) in polynomial time.

Using this result and Theorem 1, we now may conclude:

Theorem 2. Finding a strictly {consistency, solution, safety}-
preserving decomposition S ′ for a distributed constraint sys-
tem S is, neglecting polynomial-time differences, as hard as
finding a solution for S.

It is well-known that for general constraint systems, find-
ing a solution is NP-hard [7]. This theorem explains why
sometimes finding decompositions for a constraint system is
easy: one should restrict one’s attention to tractable con-
straint systems as STNs [10] or linear arithmetic constraints
[4].

5. OPTIMAL SOLUTION PRESERVING DE-
COMPOSITIONS

Finding an arbitrary solution preserving decomposition for
a given distributed constraint system might not always be
sufficient. One important property we also should pay at-
tention to is the amount of information that is preserved in
determining a (solution preserving) decomposition. For ex-
ample, taking a safety preserving decomposition, one would
like to minimize false alarms, i.e., one would minimize those
events where a local constraint is violated, but the global
integrity constraint would still be satisfied.

Hence, the information loss due to the decomposition S =
{Si = 〈Xi, Di, Ci〉}Ni=1 can be defined as
Sol(S) \ (Sol(S1) t . . . t Sol(SN )): the set of solutions of
the original system that cannot be obtained by merging the
local solutions using the decomposition.

7The case where S is inconsistent is easy and omitted, here.
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Therefore, given a distributed constraint system
S = 〈{Xi}Ni=1, D,C〉, we would like to call a solution pre-
serving decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 an opti-
mal decomposition if it minimizes |Sol(S) \ Sol(S ′)| where
Sol(S ′) = Sol(S1) t . . . t Sol(SN ) is the set of solutions
obtainable from the decomposed system.8

This optimality problem can be easily shown to be in-
tractable, even if the underlying constraint system contains
two variables and one (binary) constraint9, and finding a
solution preserving decomposition is trivial:

Proposition 7. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system where |X| = 2 and C contains only one
binary constraint. Then the problem to find an optimal so-
lution preserving decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

w.r.t. S, {Xi}Ni=1) is an NP-hard problem.

Proof. (Sketch) Consider the complete bipartite sub-
graph problem: Given a bipartite graph G = (V1 ∪ V2, E)
and a positive integer K, does there exists a complete bi-
partite subgraph (bi-clique) of order K in G? This problem
can be easily shown to be NP-complete by a reduction from
the standard clique problem.

Let G = (V1 ∪ V2, E) be an instance of the NP-hard max-
imum complete bipartite subgraph problem. We create
an instance of the optimal decomposition problem as follows:
Let S = (X,D,C) be a constraint system and let {X1, X2}
be a partitioning of X = {x1, x2}, where X1 = {x1} and
X2 = {x2} and the domain of x1 is D1 = V1 and the do-
main of x2 is D2 = V2. C contains only one constraint RE
which consists of exactly those tuples that occur in E, that
is (v1, v2) ∈ RE iff {v1, v2} ∈ E.

Finding a solution preserving optimal decomposition
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 for (S, {X1, X2}) would imply
that we have to find two subsystems S1 = ({x1}, {V1}, C1)
and S2 = ({x2}, {V2}, C2), such that C1×C2 is a cardinality
maximal subset of the tuples of RE . Note that both C1 and
C2 contain unary relations R1 and R2 respectively, where
R1 = V ′1 ⊆ V1 and R2 = V ′2 ⊆ V2, respectively. Then
C1 × C2 is a cardinality maximal subset of the tuples of
RE iff (V ′1 ∪ V ′2 , V ′1 × V ′2 ) is a cardinality maximal complete
bipartite subgraph of G.

Note that this result shows that finding optimal solution
preserving decompositions can be hard even in cases find-
ing a solution preserving decomposition is easy. Hence the
intimate complexity connection between finding optimal so-
lution preserving decompositions and finding solutions for
the underlying constraint system has been lost.

6. CONCLUSIONS & FUTURE WORK
This paper considered decompositions of distributed con-
straint problems and studied the relationship between two
well-known properties of such decompositions: solution preser-
vation and consistency preservation. While in database ap-
plications one is interested in finding consistency preserving
decompositions that allow for local updating, in multi-agent

8Here, we concentrate on the case that these solution sets
are finite, e.g., by requiring the domains Di to be finite.
Note that the problem then is in P#P and hardness for this
class is still open.
9A binary constraint is a constraint in which only two vari-
ables do occur

systems applications, one looks for solution preserving de-
compositions that allow for easy composition of local solu-
tions. In this paper, we showed formally that these preser-
vation notions in decomposition are equivalent. Concentrat-
ing on solution preserving decompositions, we proved that
there exists an intimate connection between finding solu-
tion preserving decompositions for a given constraint sys-
tem S and finding solutions for S: they are computationally
equally hard, neglecting polynomial differences. Finally, we
discussed finding optimal decompositions and showed that
this problem is NP-hard even for partitions having only two
blocks. Moreover, the connections between finding optimal
decompositions for a constraint system and finding solutions
for it are lost.

We would like to point out the following implications:
First of all, Hunsberger [10] showed the tractability of the
decomposition method in the special case of Simple Tem-
poral Networks (STNs); in particular he showed that there
exists a polynomial algorithm for finding solution preserving
decompositions. This result should not come as a surprise
given the results we have shown above and the fact that
finding a solution for STNs is solvable in polynomial time.
Secondly, in [4] it is shown that a safe decomposition can
be easily found in case the constraints are linear arithmetic
constraints. Again, this result is a consequence of the rela-
tionship between finding decompositions of a system S and
finding solutions for it. Therefore, viewed in this broader
perspective, these two results can be seen as consequences
of more general results.

With respect to decomposition in distributed scheduling
problems, solution preserving decomposition methods of the
type we have discussed can be applied to enable autonomous
distributed scheduling without the necessity to coordinate
the integration of the solutions and to solve conflicts be-
tween the individual schedules. Our results also show that if
these decompositions are strictly solution preserving, such a
decomposition would also allow for adding local constraints
while maintaining local consistency without endangering the
feasibility of the joint schedule.

Furthermore, we should point out that the work on plan
coordination by design [16, 5] is closely related to the cur-
rent decomposition approach. This work on plan coordina-
tion allows a set of partially ordered tasks to be distributed
among a set of agents in such a way that each of the agents
is able to compose its own plan for the set of tasks assigned
to it while guaranteeing that merging these independently
constructed plans always will result in a feasible joint plan.
This preservation property can be conceived as an acyclicity
preservation property, since it guarantees that the joint plan
always is acyclic whenever the local plans are. Instead of al-
lowing all possible additions of constraints by the individual
planning agents, the only constraints an agent is allowed to
add are precedence order constraints between tasks assigned
to the agent.

Note that there are other views on decomposition in con-
straint systems, as expressed by structural decomposition
methods [8, 17, 6, 14] and by the distributed constraint op-
timization (DCOP) approach [19, 13]. In the structural de-
composition view (i) the structure of the problem (i.e., the
set of constraints) dictates the way in which the subprob-
lems are generated and (ii) in general, the decomposition
will not allow the subproblems to be independently solv-
able. In the DCOP approach, the partitioning of the vari-
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ables is given, but, in general, the result of decomposition
is not a set of independently solvable subproblems. Our ap-
proach differs from these approaches in the sense that, using
the autonomous agent perspective, unlike the structural de-
composition approach, we are interested in decomposition
methods that take a given partitioning of the variables into
account. Secondly, unlike the DCOP and structural decom-
position approach, we require a complete decomposition of
the original problem instance, that is, we would like to find
a set of subproblems that can be solved concurrently and
independently to obtain a complete solution to the original
instance.

Concerning future work, we would like to point out that
in distributed scheduling there are other important preser-
vation properties like makespan or tardiness preservation in
decompositions that can be studied. In [18] we have made a
preliminary investigation into minimal makespan preserving
decompositions of scheduling problems, but a systematic in-
vestigation of the correspondence between these and other
preservation properties is still lacking.

Furthermore, we should investigate the idea of stratified
decomposition in AI applications where first a solution pre-
serving decomposition of the first layer of their constraints
can be provided, the agents submit their own preferred solu-
tions and conditional on these solutions the decomposition
of the next layer is provided, etc. This would allow for some
kind of synchronisations, for example, when exactly one of
two variables needs to be true, but each are owned by differ-
ent agents (this is a very common problem when assigning
duties or tasks to agents).

Finally, there is another interesting extension of the cur-
rent approach quite similar to the work of [3], where decom-
position is restricted to local constraints and variables oc-
curring in the global constraints might be subject to further
negotiation between agents, or subject to a special decom-
position approach after agents have had an opportunity to
express their preferences for the values of these variables. In
such a way we could make a distinction between those parts
of a constraint network that can be solved by the agents
independently from each other and those parts that would
require some additional processing.
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ABSTRACT
Anytime algorithms allow a system to trade solution quality for
computation time. In previous work, monitoring techniques have
been developed to allow agents to stop the computation at the “right”
time so as to optimize a given time-dependent utility function. How-
ever, these results apply only to the single-agent case. In this pa-
per we analyze the problems that arise when several agents solve
components of a larger problem, each using an anytime algorithm.
Monitoring in this case is more challenging as each agent is uncer-
tain about the progress made so far by the others. We develop a
formal framework for decentralized monitoring, establish the com-
plexity of several interesting variants of the problem, and propose
solution techniques for each one. Finally, we show that the frame-
work can be applied to decentralized flow and planning problems.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]

General Terms
Algorithms, Performance

Keywords
bounded rationality, meta-level control, Dec-MDP

1. INTRODUCTION
Anytime algorithms are algorithms that improve their solution

as a function of time, and can return an answer when interrupted
[7]. When such algorithms are used, one must decide when to
stop computing and use the current solution. Russell and Wefald
describe the situation: “first, real agents have only finite computa-
tional power; second, they don’t have all the time in the world...
Typically, the utility of an action will be a decreasing function of
time.” [16]. Several works have studied the tradeoff of utility for
time in applied settings including intelligent system design [10],
problem solving and search [19], and planning [21].

Much of the work so far has focused on a single decision maker,
whereas work on bounded rationality in group decision making has
been relatively sparse [6, 13]. To some extent, any approximate rea-
soning framework could be viewed as a form of bounded rational-
ity. But unless one can establish some constraints on decision qual-
Cite as: Decentralized Monitoring of Distributed Anytime Algorithms,
Alan Carlin and Shlomo Zilberstein, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
157-164.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ity, such interpretations of bounded rationality are not very inter-
esting. It seems more attractive to define bounded rationality as an
optimization problem constrained by the availability of knowledge
and computational resources. One successful approach is based
on using decision-theoretic principles to monitor and control the
base-level decision making procedure. It has been shown that this
monitoring approach can be treated as a Markov Decision Process
(MDP) and it can be solved optimally offline and used to optimize
decision quality with negligible run-time overhead [9]. This ap-
proach to bounded rationality relies on optimal metareasoning [16].
That is, an agent is considered bounded rational if it monitors and
controls its underlying decision making procedure optimally so as
to maximize the comprehensive value of the decision. Additional
formal approaches to bounded rationality have been proposed. For
example, bounded optimality is based on a construction method
that yields the best possible decision making program given a cer-
tain agent architecture [15]. The approach implies that a bounded
rational agent will not be outperformed by any other agent running
on the same architecture. This is a stronger guarantee than optimal
metareasoning, but it is also harder to achieve.

Extending these computational models of bounded rationality to
multi-agent settings is hard. Even if one assumes that the agents
collaborate with each other – as we do in this paper – there is
an added layer of complication. There is uncertainty about the
progress that each agent makes with its local problem solving pro-
cess. Thus the metareasoning process inherently involves non-
trivial coordination among the agents. One existing approach for
meta-level coordination involves multiple agents that schedule a
series of tasks [14]. As new tasks arrive, each agent must decide
whether to deliberate on the new information and whether to nego-
tiate with other agents about the new schedule. Each agent uses an
MDP framework to reason about its deliberation process. The co-
ordination across agents is handled by negotiation, not by the MDP
policy. A more recent work uses Dec-MDPs for meta-level control,
with reinforcement learning to assign radars to agents [5].

In this paper, we extend optimal metareasoning techniques to
collaborative multiagent systems. We consider a decentralized set-
ting, where multiple agents are solving components of a larger
problem by running multiple anytime problem solving algorithms
concurrently. The main challenge is for each individual agent to
decide when to stop deliberating and start taking action based on
its own partial information. In some settings, agents may be able to
communicate and reach a better joint decision, but such communi-
cation may not be free. We propose a formal model to study these
questions and show that decentralized monitoring of anytime com-
putation can be reduced to the problem of solving decentralized
MDP (Dec-MDP) [3].
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2. DECENTRALIZED MONITORING
We focus in this paper on a multiagent setting in which a group

of agents is engaged in collaborative decision making. Each agent
solves a component of the overall problem using an anytime algo-
rithm – an algorithm that can be stopped at any time and provide
an approximate solution to the problem. Solution quality increases
with computation time according to some known probabilistic per-
formance profile. The purpose of metareasoning is to monitor the
progress of the anytime algorithms in a decentralized manner and
decide when to stop deliberation.

Definition 1. The decentralized monitoring problem (DMP) is
defined by a tuple <Ag,Q, ~q 0, A, T, P, U,CL, CG> such that:
• Ag is a set of agents.
• Q is a setQ1×Q2...×Qn, whereQi is a set of discrete qual-

ity levels for agent i. At each step t, we denote the vector of
agent qualities by ~q t ∈ Q, or more simply by ~q ∈ Q, whose
components are qi ∈ Qi. Components of ~q t are qualities for
individual agents. We denote the quality for agent i at time t
by qt

i .
• ~q 0 ∈ Q is a joint quality at the initial step, known to all

agents.
• A = {continue, stop, monitorL, monitorG} is a set of meta-

level actions available to each agent. The actions monitorL
and monitorG represent locally and global monitoring, re-
spectively.
• T is a finite horizon representing the maximum number of

time steps in the problem.
• Pi is the transition model for the “continue” action for agent
i. We will use notation P with i implied by context. For all
i, t ∈ {0..T − 2}, qt

i ∈ Qi, and qt+1
i ∈ Qi, P (qt+1

i |qt
i) ∈

[0, 1]. Furthermore, Σ
qt+1

i ∈Qi
P (qt+1

i |qt
i) = 1. We assume

that the transitions of any two agents i and j are independent
of each other, that is, P (qt+1

i |qt
i , q

t
j) = P (qt+1

i |qt
i).

• U(~q, t) : Q× T → < is a utility function that represents the
value of solving the overall problem with quality vector ~q at
time t.
• CL and CG are the costs of the local monitoring and global

monitoring actions respectively.

Each agent solves a component of the overall problem using an
anytime algorithm. Unless a “stop” action is taken by one of the
agents, all the agents continue to deliberate for up to T −1 time
steps.

At each time step, agents decide which option to take, to con-
tinue, stop, or monitor globally or locally. If all the agents choose
to continue, then the time step is incremented and solution quality
transitions according to P . However, agents are unaware of the new
quality state determined by the stochastic transition. If any agent
chooses to “stop”, then all agents are instructed to cease computa-
tion before the next time step, and the utility U(~q, t) of the current
solution is taken as the final utility. If an agent chooses to mon-
itor locally, then a cost of CL is subtracted from the utility (for
each agent that chooses monitorL) and the agent becomes aware of
its local quality at the current time step. If any agent chooses to
monitor globally, a single cost of CG is subtracted from the utility
and all agents become aware of all qualities at the time step. The
time step is not incremented after a monitoring action. After an
agent chooses to monitor, it must then choose whether to continue
or stop, at the same time step.

Agents are assumed to know the initial quality vector ~q 0. An
agent has no knowledge about quality in later time steps, unless a

monitoring action is taken. The “monitorL” action monitors the lo-
cal quality; when agent i takes the “monitorL” action at time t it
obtains the value of qt

i . However, it still does not know any compo-
nent of ~q t

−i. A “monitorG” action results in communication among
all the agents, after which they all obtain the global quality ~q t.

3. LOCAL MONITORING
In this section, we examine the concept of local monitoring. That

is, each agent must decide whether to continue its anytime compu-
tation, stop immediately, or monitor its progress at a cost CL, and
then decide whether to continue or stop deliberation and initiate
joint execution. The main result in this section shows that a DMP
with local monitoring decisions can be solved by first converting
the problem to a Transition Independent Dec-MDP. Although the
termination decision may seem to imply transition dependence, the
dependence is eliminated in the construction of Theorem 1.

3.1 Complexity of Local Monitoring
When CL = 0, each agent should choose to monitor locally

on every step, since doing so is free. When CG = ∞, agents
should never choose to monitor globally. The following lemma
and theorem shows that even for the simpler case where CL = 0,
CG =∞, and the number of agents is fixed, the problem of finding
a joint optimal policy is NP-complete. The termination decision
alone, made by agents with local views of quality, is NP-hard.

LEMMA 1. The problem of finding an optimal solution for a
DMP with a fixed number of agents |Ag|, CL = 0 and CG =∞ is
NP-hard in the number of quality levels.

PROOF. A nearly identical problem to this special-case DMP
with zero monitoring cost is the Team Decision Problem (TDP) in
Tsitsiklis [22]. Unfortunately, unlike in the Team Decision Prob-
lem, three joint decisions of a two-agent DMP (when either agent
stops, or they both do) contain the same utility. Therefore we pro-
ceed directly to the underlying Decentralized Detection problem
upon which the complexity proof of TDP is established.

We show that the NP-complete Decentralized Detection (DD)
problem can be solved by a three step DMP. The following defini-
tion is provided in [22].

Decentralized Detection: Given finite sets Y1, Y2, a rational prob-
ability mass function p : Y1 × Y2 → Q, a partition {A0, A1} of
Y1 × Y2. The goal is to optimize J(γ1, γ2) over the selection of
γi : Yi → {0, 1}, i = 1, 2, where J(γ1, γ2) is given byX

(y1,y2)∈A0

p(y1, y2)γ1(y1)γ2(y2)

+
X

(y1,y2)∈A1

p(y1, y2)(1− γ1(y1)γ2(y2))

Decentralized detection can be polynomially reduced to a three
step DMP with CL = 0. The first step is a known joint quality ~q 0.
We define a unique quality level at the second and third step for
each yi ∈ Yi. We will denote the quality level representing yi by
qyi. Transition probabilities to the second step are defined by the
probability mass function, P (q2i , q

2
j ) = p(y1, y2). Each agent then

monitors (for zero cost) and is aware of its local quality.
We model the decision of selecting γi = 1 as a decision by agent

i to continue, and of selecting γi = 0 as a decision by agent i to ter-
minate. To accomplish this, the DMP transition model transitions
deterministically to a unique quality at step 3, for each quality of
step 2 of each agent.

Utility on step 3 is defined so that:
U(q2yi, q

2
yj , 2) = 0, U(q3yi, q

3
yj , 3) = 1 iff (yi, yj) ∈ A0, and

U(q2yi, q
2
yj , 2) = 1, U(q3yi, q

3
yj , 3) = 0 iff (yi, yj) ∈ A1.
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Figure 1: An example of the state space for one of the agents,
while running the Dec-MDP construction of Theorem 1. When
the agent continues, only the current time is incremented.
When the agent monitors, the agent stochastically transitions
to a new quality state based on its performance profile. The
current time increments and monitoring time is set to the cur-
rent time. Not shown, when either agent terminates, the agents
get a reward based on the expectation of utility over their per-
formance profiles.

It should be clear from this construction that an optimal continu-
ation policy which maps qyi to a decision to continue or terminate,
can be used to construct γ(yi) in DD.

To show that this DMP is in NP, we will reduce to a transition in-
dependent Decentralized MDP (Dec-MDP), a problem which was
shown by Goldman and Zilberstein to be NP-complete [8].

In the Dec-MDP model, each agent has a local state space (de-
noted Si) available, similar to a classic MDP. The vector of states,
one for each agent, is referred to as the joint state. Each agent
takes one action from a set of actions denoted Ai, and actions have
stochastic effects which change the local state. The vector of ac-
tions, one per agent, is referred to as the joint action. Finally, agents
receive a joint reward (denoted R(~s,~a)) for taking a joint action
from a joint state. Execution takes place sequentially, a joint action
is taken from a joint state, a joint reward is received, and the pro-
cess repeats. In a finite horizon problem, there are T repetitions,
with T being the horizon of the problem. An agent’s Dec-MDP
policy is a mapping from its history of states and actions to a plan
for future actions, and is denoted πi.

Each agent is aware of its own local state and local action, but not
necessarily the states and actions of the other agents at run-time. It
is aware, however, of the other agents’ policies which were formed
at planning time. The Dec-MDP model enforces the rule that the
joint state is jointly fully observable. That is, between the agents,
the whole state can be observed at every step. In typical formula-
tions of Dec-MDP, this means each agent is aware of its local state
but not the state of the other agents. In a transition independent
Dec-MDP, state transitions of each agent are fully independent of
each other, no agent can have an effect another agent’s local state.
The only dependency between the agents is with respect to joint
reward.

THEOREM 1. The problem of finding an optimal solution for a
DMP with a fixed number of agents, CL = k and CG = ∞ is
NP-complete.

NP-hardness follows from above, with k = 0 as a special case. To
show NP-completeness, we show that the problem can be reduced

to a transition independent Dec-MDP. Policies and policy-values
for the DMP will correspond to policies and policy-values for the
transition-independent Dec-MDP. The conversion is as follows:

The state space Si for agent i are tuples < qi, t0, t >, where qi

is a quality level (drawn from Qi), t0 is the time step at which that
quality level was monitored, and t is the number of the current time
step. We also define a terminal state for each agent.

The action space for all agents is {terminate, continue, monitor}.
The transitions consist of the following: when the action is to

continue, t is merely incremented. When the action is to terminate,
the agent transitions to the terminal state. Let PMDP(s′|s, a) be
the transition function of the Dec-MDP. Let t0 represent the time
step when an agent last monitored. When the action is to monitor,
we have ∀qi, q

′
i ∈ Qi :

PMDP(< q′i, t
′
0, t

′ > | < qi, t0, t >,monitor) = 0

if t′ 6= t or t′ 6= t0.

PMDP(< q′i, t
′
0, t

′ > | < qi, t0, t >,monitor) = P (qt′
i |qt0

i )

if t′ = t′0 = t

The Reward is defined as zero if all agents choose to continue, as
−kC if k agents choose to monitor and none of the agents are in
a terminal state, as U(~q) if one of the agents chooses to terminate
and none of the agents are in a terminal state, and as zero if any
agent is in a terminal state.

This reduction is polynomial, as the number of agent states in the
Dec-MDP is |Qi|T 2 and number of actions is 3. The representation
is transition-independent, as the state of each agent does not affect
the state of the other agents. Note that when one agent terminates,
the other agents do not enter a terminal state, such a specification
would violate transition independence. Rather, this notion, that no
reward is accumulated once any agent has terminated, is captured
by the reward function. No reward is received if any of the agents
are in a terminal state. Since reward is only received when one of
the agents enters the terminal state, reward is only received once,
and the reward received by the Dec-MDP is the same as the utility
received by the DMP.

Figure 1 shows a visual representation of the Dec-MDP reduc-
tion from a DMP with local monitoring costs. State consists of a
tuple consisting of a quality level, the time at which the quality was
monitored, and the current time. The “continue” action in the first
step increments the current time. The “monitor” action increments
the monitoring time to the current time, and probabilistically tran-
sitions quality according to the transition probability of the DMP
applied to multiple steps.

An optimal policy for the Dec-MDP produces an optimal policy
for the corresponding multi-agent anytime problem. Note that the
uncertainty of quality present when an agent does not monitor is
simulated in the MDP. Even though, in an MDP, an agent always
knows its state, in this reduction the transition is not executed until
the monitoring action is taken. Thus, even though an MDP has
no local uncertainty, an agent does not “know” its quality until the
monitor action is executed, and thus the local uncertainty of the
multi-agent anytime problem is represented.

3.2 Solution Methods with Local Monitoring

3.2.1 Greedy Solution
We first build a solution that adapts the single-agent approach of

Hansen and Zilberstein to the multi-agent case [9]. The adaption
considers the other agents to be a part of the environment, and thus
we name it the Greedy approach. Greedy computation does not
take into account the actions of the other agents, we will initiate a
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greedy computation by assuming that the other agents always con-
tinue, and that they will never monitor or terminate. We will then
build upon this solution to develop a nonmyopic solution. For ease
of explanation, we will describe the algorithm from a single agent’s
point of view. It should be assumed that each agent is executing this
algorithm simultaneously.

Each agent begins by forming a performance profile for the other
agents. We will use the term Pr as a probability function assuming
only “continue” actions are taken, extending the transition model
P over multiple steps. Furthermore we can derive performance
profiles of multiple agents from the individual agents, using the
independence of agent transitions. For example, in the two agent
case we use Pr(~q) as shorthand for Pr(qi)Pr(qj).

Definition 2. A dynamic local performance profile of an any-
time algorithm, Pri(q

′
i|qi,∆t), denotes the probability of agent i

getting a solution of quality q′ by continuing the algorithm for time
interval ∆t when the currently available solution has quality q.

Definition 3. A greedy estimate of expected value of computa-
tion (MEVC) for agent i at time t is:

MEV C(qt
i , t, t+ ∆t) =

X
~q t

X
~q t+∆t

Pr(~q t|qt
i , t)Pr(~q

t+∆t|~q t,∆t)(U(~q t+∆t, t+ ∆t)− U(~q t, t))

The first probability is the expectation of the current global state,
given the local state, and the second probability is the chance of
transition. Thus, MEVC is the difference between the expected
utility level after continuing for ∆tmore steps, versus the expected
utility level at present. Both of these terms must be computed based
on the performance profiles of the other agents, and thus the utilities
are summed over all possible qualities achieved by the other agents.
Cost of monitoring, CL, is not included in the above definition.
An agent making a decision must subtract this quantity outside the
MEVC term.

For typical utility functions, the agent faces a choice as to whether
to continue and achieve higher quality in a longer time, or to halt
and receive the current quality with no additional time spent. A
monitoring policy makes that decision.

Definition 4. A monitoring policy Π(qi, t) for agent i is a map-
ping from time step t and local quality level qi to a decision whether
to continue the algorithm or act on the currently available solution.

It is possible to construct a stopping rule by creating and optimiz-
ing a value function for each agent. First, create a new local-agent
value function Ui such that

Ui(qi, t) =
X
~q t
−i

Pr(~q t
−i)U(< qi, ~q−i >, t)

Next, create a value function using dynamic programming, one
step at a time:

Vi(qi, t) = max
d

8>>>><>>>>:
if d = stop:
Ui(qi, t),

if d = continue:P
q t+∆t

i
Pr(q t+∆t

i |qi)Vi(qi, t+ ∆t)

to determine the following policy:

πi(qi, t) = argmaxd

8>>>><>>>>:
if d = stop:
Ui(qi, t),

if d = continue:P
q t+∆t

i
Pr(q t+∆t

i |qt
i)Vi(qi, t+ ∆t)

qt
1 = 1 qt

1 = 2 qt
1 = 3

qt
2 = 1 -2 0 -1
qt
2 = 2 5 -3 -1
qt
2 = 3 -2 -1 1

Table 1: An example of a case where greedy termination policy
produces a poor solution. Entries represent the expected utility
of continuing for a step.

where ∆t represents a single time step and d is a variable rep-
resenting the decision. In the above, a stop action yields an ex-
pected utility over the qualities of the other agents. A continue ac-
tion yields an expectation over joint qualities at future step t+ ∆t.
The above definitions exclude the option of monitoring (thus in-
curring the costs CL and CG), the choices are merely whether to
continue or act. Thus, we must define a cost-sensitive monitoring
policy, which accounts for CL and CG.

Definition 5. A cost-sensitive monitoring policy, Πi,c(qi, t), is
a mapping from time step t, quality level qi, and monitoring cost
c into a monitoring decision (∆t,m) such that ∆t represents the
additional amount of time to allocate to the anytime algorithm, and
m is a binary variable that represents whether to monitor at the end
of this time allocation or to stop without monitoring.

Thus, a cost-sensitive monitoring policy at each step chooses to
either blindly continue, monitor, or terminate. It can be constructed
using dynamic programming and the value function below. The
agent chooses ∆t, how many steps to continue blindly, as well as
whether to stop or monitor after. If it stops, it receives expected
utility, if it monitors it achieves value with a penalty of CL.

Vc(qi, t) = max
d,∆t

8>>>>>><>>>>>>:

if d = stop:P
q t+∆t

i
Pr(q t+∆t

i |qt
i)Ui(qi, t+ ∆t)

if d = monitor:P
q t+∆t

i
Pr(q t+∆t

i |qt
i)Vc(qi, t+ ∆t)− CL

A greedy monitoring policy can thus be derived by applying dy-
namic programming over one agent. On initialization, such an al-
gorithm assigns each quality level on the final step a value, based
on its expected utility over possible qualities of the other agents.
Then, working backwards, it finds the value of the previous step,
which is the maximum over: (1) the expected utility over the pos-
sible qualities of the other agents (if it chooses to stop). (2) The
expected utility of continuing (if it chooses to continue). An algo-
rithm to find a cost-sensitive monitoring policy can similarly find
the expectation over each time step with and without monitoring,
and compare the difference to the cost of monitoring.

3.2.2 Solution Methods: Modeling the Other Agents
The greedy solution can be improved upon to coordinate policies

among all the agents. To illustrate, examine Table 1. Each entry
represents the expected joint utility of continuing (thus increasing
utility but also time cost), minus the expected utility of stopping.
Assume all entries have equal probability and monitoring cost is
zero, and that the value of stopping immediately is zero, and thus
the values shown represent only the value of continuing. Agent
1 would greedily decide to continue if it is in state qt

1 = 1 only,
as that is the only column whose summation is positive. Agent 2
would greedily continue if it has achieved quality qt

2 = 2, as that
is the only row whose summation is positive. However, this would
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mean that the agents continue from all joint quality levels which are
in bold. The sum of these levels is negative, and the agents would
do better by selecting to terminate all the time!

We solve the DMP with CG = ∞ optimally by leveraging the
bilinear program approach of Petrik and Zilberstein to solving tran-
sition independent Dec-MDPs [11]. We first convert the problem
to the transition independent Dec-MDP model described above.
We prune “impossible” state-actions, for example we prune states
where t0 > t, as an agent can not have last monitored in the future.
Then we convert the resulting problem into a bilinear program. A
bilinear program can be described by the following objective func-
tion and constraints for the two-agent case (the framework is exten-
sible beyond two agents if more agent-vectors are added):

maximizex,y r
T
1 x+ xTRy + r2y

subject to B1x = α1

B2y = α2

In our bilinear formulation of a DMP, each component of the
vector x represents a joint state-action pair for the first agent (sim-
ilarly, each component of y represents a state-action for the second
agent). Following the construction of Theorem 1, each component
of x represents a tuple< qt0

1 , t0, t, a >where q1 represents the last
quality observed, t0 represents the time at which it was observed, t
represents the current time, and a represents a continue, monitor, or
terminate. Thus, the length of x is 3|Q1|T 2 (assuming no pruning
of impossible state-actions). Each entry represents the probability
of that state and action occurring upon policy execution.

The vectors r1 and r2 are non-zero for entries corresponding to
state-actions that have non-zero local reward, for agents 1 and 2 re-
spectively. We set these vectors to zero, indicating no local reward.

The matrix R specifies joint rewards for joint actions, each entry
corresponds to the joint reward of a single state-action in x and y.
Thus, entries in R correspond to the joint utility U(~q, t) of the row
and column state, when any agent terminates. For entries where
one agent monitors and the other agent terminates or continues, we
adjust reward by −CL. Otherwise, joint reward is 0.

For the constraints, α1 and α2 represent the initial state distribu-
tions, and B1 and B2 and correspond to the dual formation of the
total expected reward MDP [12]. Intuitively, these constraints are
very similar to the classic linear program formulation of maximum
flow. Each constraint represents a state triple, and each constraint
assures that the probability of transitioning to the state (which is
the sum of state-actions that transition to it, weighted by their tran-
sition probabilities) matches the probability of taking the outgoing
state-actions (which is the three state-actions corresponding to the
state triple). A special case is the start quality, from which outgoing
flow equals 1.

Bilinear programs, like their linear counterparts, can be solved
through methods in the literature [11]. These techniques are be-
yond the scope of this paper, one technique is to alternately fix x
and y policies and solve for the other as a linear program. Al-
though bilinear problems are NP-complete in general, in practice
performance depends on the number of non-zero entries in R.

4. GLOBAL MONITORING
Next, we examine the case where agents can communicate with

each other (i.e., monitor globally). We will analyze the case where
CL = 0 and CG = k, where k is a constant. For ease of de-
scription, we describe an on-line approach to communication. The
online approach can be converted to an offline approach by antici-
pating all possible contingencies. We decide whether to communi-
cate based on decision theory, agents compute Value of Information

(VoI), which is defined as follows:

V oI = V ∗(qi, t)− Vsync(qi, t)− CG

where V ∗ represents the expected utility after monitoring, Vsync

represents expected utility without monitoring (see below), andCG

is cost of monitoring. In order to support the computation of Vsync

and V ∗, joint policies are produced at each communication point
(or, for the offline algorithm, at all possible joint qualities). We de-
fine a helpful term V ∗(~q, t), (which decomposes into V ∗(qi, ~q−i, t)
to more clearly identify the local agent), which is the value of
a joint policy after communication and discovery of joint quality
~q, as computed through the methodology of the last section with
CL = 0. From the point of view of agent i, the value after com-
municating can then be viewed as an expectation over the quality
of the other agents, based on their profiles.

V ∗(qi, t) =
X
~q−i

Pr(~q−i, t)V
∗(qi, ~q−i, t)

Similarly, Vsync is the value attached to quality qi and not com-
municating. This was computed as part of the local monitoring
problem at the last point of communication, we use the subscript
“sync” to remind us that Vsync(qi, t) depends on the policies cre-
ated and qualities observed at the last point of communication.

Non-myopic policies require each agent to make a decision as to
whether to communicate or not at each step, resulting in the con-
struction of a table resembling Table 1. We examined this table
in a previous section when deciding whether to continue or stop.
The table is used similarly for global monitoring, except the de-
cision made by each agent is whether to communicate or not to
communicate. Communication by either agent forces both agents
to communicate and synchronize knowledge. Entries represent the
joint state, and are incurred if either agent 1 decides to commu-
nicate from the row representing its quality, or agent 2 decides to
communicate from the column representing its local knowledge.

This problem, of deciding whether to communicate after each
step, is NP-complete as well. We will show this by reducing to a
transition independent Dec-MDP-Comm-Sync [2]. A Dec-MDP-
Comm-Sync is a transition independent Dec-MDP with an addi-
tional property: After each step, agents can decide whether to com-
municate or not to communicate. If they do not communicate,
agents continue onto the next step as with a typical transition in-
dependent Dec-MDP. If any agent selects to communicate, then
all agents learn the global state. However, a joint cost of CG is
assessed for performing the communication. Agents form joint
plans at each time of communication. The portion of the joint plan
formed by agent i after step t is denoted πt

i .

THEOREM 2. The DMP problem with CL = 0 and CG is a
constant, is NP-complete.

The proof of NP-hardness is similar to Lemma 1.
To show that the problem is in NP, we can reduce the problem to

that of finding the solution of a Dec-MDP-Comm-Sync. We create
the following Dec-MDP-Comm-Sync from a DMP with CL = 0.

• Si is the set Qi ∪ {fi} for agent i, where fi is a new “termi-
nal” state for agent i.

• Ai = {continue, terminate}; the joint action set is
Q

i A
i.

• The transition model:
PMDP(qt+1

i |qt
i , continue) = P (qt+1

i |qt
i)

PMDP(qt2
i |qt1

i , continue) = 0, ∀(t2 6= t1 + 1)

PMDP(fi|qt
i , terminate) = 1, ∀qt

i ∈ Si
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Figure 2: Expected Utility versus cost of time of non-myopic
local monitoring of RockSample, for four different values of
CL. For the four plots, from highest to lowest, the cost of mon-
itoring was .5, 4, 7, and 10.

• The reward function R(~q t, ai) = U(~q, t) if ai = terminate
for some i; 0 otherwise.

• The reward function is 0 when any agent is in the final state.

• The horizon T is the same as T from the DMP.

• The cost of communication is CG.

The reduction is polynomial as the number of states added is
equal to T , and only one action is added.

It is straightforward to verify that this reduction is polynomial.
Having represented the DMP problem as a Dec-MDP-Comm-Sync,
we can use solution techniques from the literature to solve the prob-
lem which make use of a VoI computation [2].

5. EXPERIMENTS
We experimented on two decentralized decision problems in-

volving anytime computation. First we profiled the RockSample
domain, borrowed from the POMDP planning literature. In this
planning problem, two rovers must each form a plan to sample
rocks, maximizing the interesting samples. However, the loca-
tion of the rocks are not known until runtime, and thus the plans
can not be constructed until the rovers are deployed. We selected
the HSVI algorithm for POMDPs as the planning tool [20]. HSVI
is an anytime algorithm, the performance improves with time, its
error bound is constructed and reported at runtime. Prior to run-
time, the algorithm was simulated 10, 000 times on randomized
RockSample problems, in order to find the performance profile.
The resulting profile held 5 quality levels over 6 time steps.

Second, we profiled the Ford Fulkerson maximum flow solution
method. This motivating scenario involved a decentralized max-
imum flow problem where two entities must each solve a maxi-
mum flow problem in order to supply disparate goods to the cus-
tomer. To estimate the transition model P in the DMP, we profiled
performance of Ford Fulkerson through Monte Carlo simulation.
The flow network was constructed randomly on each trial, with
each edge capacity in the network drawn from a uniform distribu-
tion. Quality levels corresponded to regions containing equal-sized
ranges of the current flow. From the simulation, a 3-dimensional
probability table was created, with each layer of the table corre-
sponding to the time, each row corresponding to a quality at that
time, each column representing the quality at the next time step,
and the entry representing the transition probability. We created
software to compile a Decentralized MDP from the probability ma-

Problem (Local/Global) Compile Time Solve Time
Max Flow Local 3.5 11.4

RockSample Local .13 2.8
Max Flow Global .04 370

RockSample Global .01 129

Table 2: Timing results in seconds. Compile time represents
time to compile performance profile into bilinear problem,
solve time measures time taken by the bilinear solver.

Agent 1
Quality 1 2 3 4 5 6

1 4 3 3 2 1 0
2 4 3 3 2 1 0
3 0 3 2 2 1 0
4 0 2 1 1 1 0
5 0 1 0 0 0 0

Agent 2
1 4 3 3 2 1 0
2 4 3 3 2 1 0
3 0 3 2 2 1 0
4 0 2 1 1 1 0
5 0 1 0 0 0 0

Table 3: Greedy Local Monitoring Policy for RockSample
problem, C=2 K=8

trix, as described in the previous sections, and solved the resulting
problem using a bilinear program.

Three parameters of utility were varied with respect to each other:
the reward for increasing quality, a linearly increasing cost of time,
and the cost of monitoring. Experiments varied the latter two.
For RockSample, the chosen utility function was 10(qi + qj −
Kt), where t was time in seconds modulo 5, and we experimented
with various values of K. For MaxFlow, utility was defined as
10(min(qi, qj) − Kt), where min(qi, qj) represents the lesser of
the flows, t represents the time step, (defined for the profile as the
time in seconds modulo 5), and K represents cost of time and was
varied. For max flow there were 10 quality levels and 10 time steps
for each agent. In this section we focus problems with costs of time
which result in non-trivial continuation policies. When cost of time
is very low with respect to quality increase, computation trivially
always continues, and when cost of time is very high, computa-
tion stops immediately. When cost of time lies between these two
extremes, the option of monitoring becomes interesting.

Mean running time for the non-myopic variant of our algorithms
is shown in Table 2. The MaxFlow problem was larger than the
RockSample problem (containing more quality levels), thus con-
sumed more time. The global formulations, as opposed to the local
formulations, required a sub-problem formulation to precompute
V ∗ at each communication point, and thus more time elapsed.

Table 3 shows resulting policies of the Greedy algorithm for lo-
cal monitoring on the RockSample problem. The policy is taken
for K = 8 and C = 2, which we consider well motivated since the
routine to report progress took approximately a quarter of a time
step. Rows represent quality levels and columns represent the time
step at which that quality level was observed. Entries represent the
agent’s policy. Numbered entries represent to proceed that number
of steps, and then terminate. For example, the entry in box (1, 1)
represents that at step 1 with quality level 1, the Greedy policy pro-
ceeds 4 steps and then terminates. For this particular cost of time
and cost of monitoring, the Greedy algorithm does not monitor at
any step, although the Greedy algorithm did monitor for lower costs
of monitoring. Also note that the Greedy algorithm is the same for
agent 1 and agent 2, each is working off of the same profile and is
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Agent 1
Quality 1 2 3 4 5 6

1 3M - - 1M 2 0
2 - - - 1M 2 0
3 - - - 1M 2 0
4 - - - 1M 1 0
5 - - - 0 0 0

Agent 2
1 1M 1M 2M - 1 0
2 - 1M 2M - 1 0
3 - - 2M - 1 0
4 - - 1M 0 1 0
5 - - 1M 0 0 0

Table 4: Nonmyopic local monitoring policy for first agent C=2
K=8. In some cases, the bilinear program returned stochastic
actions, where multiple state-actions corresponding to the same
state had non-zero probability (the sum of the state-actions
equaled one). In these cases, the tables show the most probable
action for the state.

not considering the policy of the other agent.
Table 4 shows resulting policies of the Nonmyopic algorithm for

the same local monitoring problem. Entries designated “xM” de-
note continuing for x steps and then monitoring. For instance, in
the first step, the first agent will proceed for 3 steps and then mon-
itor. The second agent, by contrast, will proceed one step and then
monitor. In these policies, agents are more likely to stop at higher
quality levels, and more likely to monitor at earlier points in time.

Qualities that are impossible to achieve are reported with a “-”.
The bilinear program only reports its policy for state-actions with
probability above zero. For example, since agent 1 has a 100 per-
cent chance of starting at quality level 1, and since the first step for
agent 1 continues for three steps and then monitors, it is impossible
to observe any quality level on the 2nd and 3rd steps.

Figure 2 plots value versus the cost of time (K) for 4 different
local costs of monitoring on the RockSample problem. For a
constant cost of time, a higher cost of monitoring results in a lower
quality solution. The drop off is monotonically decreasing and
roughly linear, with higher cost of monitoring resulting in a more
negative slope. This can be explained in context of the extremes of
the graph. As one proceeds leftwards, cost of time is smaller, ulti-
mately when it is small enough the agents should always continue
(and, for instance when cost of time is zero, no monitoring decision
is needed to verify this). As one proceeds rightwards, cost of time
is larger, and when it is large enough the agents should stop on the
first step (and again, no monitoring decision is required to verify
this), achieving zero value. One can see that expected utility hits
zero more quickly for the high cost of monitoring than the low cost
of monitoring. Thus, the plots of all four monitoring costs intersect
to the far left and the far right, but the zones where expected util-
ity lies between those values is smallest when cost of monitoring is
highest. Thus, higher cost of monitoring results in a more negative
slope.

Figure 3 (a) shows value of Global Monitoring as compared to
Local Monitoring on RockSample for various time costs. Value
with Global Monitoring is higher, due to the Cost of Local Mon-
itoring being zero for the Global Monitoring case, as well as the
ability of each agent to monitor the progress of other agents, thus
coordinating further.

Similarly, Figure 3 (b) summarizes experiments on MaxFlow.
Nonmyopic monitoring outperforms myopic monitoring, and the
global variant achieves higher performance. The RockSample
domain proved more difficult to achieve higher scores, as the min
function made it difficult to achieve value.

(a) RockSample

(b) MaxFlow

Figure 3: Comparison of global monitoring, nonmyopic lo-
cal monitoring, and local monitoring on RockSample and
MaxFlow problems.

6. RELATED WORK
The history of literature on anytime algorithms is rich in single-

agent settings. We refer to [1, 6, 18] for recent overviews. Dean
and Boddy used the term “anytime algorithm” in the 1980’s to de-
scribe a class of algorithms that "can be interrupted at any point
during computation to return a result whose utility is a function of
computation time" [7, 4]. They employed these algorithms in their
work on time dependent planning and how to schedule deliberation.
Horvitz, during the 1980’s as well, used decision theory to analyze
"costs and benefits of applying alternative approximation proce-
dures" to cases "where it is clear that there are insufficient com-
putational resources to perform an analysis deemed as complete"
[10]. Russell and Wefald used a discrete deliberation scheduling
algorithm, which decides whether to deliberate or act based on ex-
pected value [16]. The work was implemented for search algo-
rithms. Russell, Subramanian, and Parr utilized bounded optimal-
ity, which holds if a program produces a solution to a constrained
optimization problem presented by the environment [15].

Work in artificial intelligence has produced several theories and
architectures that can take into account the computational cost of
decision making [7, 10, 15, 23, 24]. Zilberstein and Russell utilized
performance profiles of algorithms in order to inform future any-
time decisions [25]. The concept of performance profiles has been
further explored in recent decision-theoretic approaches. Hansen
and Zilberstein form a performance profile of an agent offline [9].
Then, based on this profile, a dynamic programming approach is
used to make stopping decisions. The decisions use Bayesian rea-
soning based on the profiles in order to ascertain probability of fu-
ture quality. Predictions of future quality are used to inform moni-
toring decisions, which are decisions whether to pause and monitor
quality, or merely to continue. Similarly, Sandholm uses perfor-
mance profiles to decide when to optimally terminate incomplete
decision algorithms (algorithms which never finish if the answer is
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N and may or may not finish if the answer is Y) on problems such
as 3-SAT [17]. Termination decisions are based on the prior proba-
bility of an answer, on a utility model based on the utility of quality
and time, and on the performance profiles.

In the multi-agent realm, Raja and Lesser explore a framework
for coordinating agents Meta-Level control [13, 14]. In these works
a single agent or multiple agents schedule a series of tasks. At var-
ious points in time, new tasks arrive, and each agent must decide
whether to deliberate on the new information and whether to nego-
tiate with other agents about the new schedule. The authors use an
MDP framework within agents to reason about deliberation and the
coordination across agents is handled by negotiation. The recent
approach of Cheng et al. uses reinforcement learning for meta-level
control of weather radars, using Dec-MDPs [5].

7. CONCLUSIONS AND FUTURE WORK
Anytime algorithms effectively gauge the trade-off between time

and quality. Monitoring is an essential part of the process. Existing
techniques from the literature weigh the trade-off between time,
quality, and monitoring for the single-agent case. The complexity
of the monitoring problem is known, and dynamic programming
methods provide an efficient solution method.

However, this paper shows that these techniques do not scale to
the multi-agent case. In this paper, we took a decision-theoretic ap-
proach to the monitoring problem. We formalized the problem for
the multi-agent case, and proved that there exist problems for both
local and global monitoring which are NP-complete. We showed
how the multi-agent monitoring problems can be compiled as spe-
cial cases of Decentralized Markov Decision Processes, and thus
solvers from the literature can produce efficient solutions.

Future work lies in several directions. First, we will analyze and
produce solutions for monitoring problems that are partially ob-
servable. We will also examine items like varying the monitoring
cost. Second, we would like to examine cases with non-cooperative
utility functions. Third, we will apply the methods to cases involv-
ing more than two agents. The latter will require modifications to
the bilinear solver.
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ABSTRACT
We consider the fundamental problem of reaching consensus in
multiagent systems. To date, the consensus problem has been
typically solved with decentralized algorithms based on graph
Laplacians. However, the convergence of these algorithms is
often too slow for many important multiagent applications,and
thus they are increasingly being combined with acceleration
methods. Unfortunately, state-of-the-art acceleration techniques
require parameters that can be optimally selected only if complete
information about the network topology is available, whichis rarely
the case in practice. We address this limitation by derivingtwo
novel acceleration methods that can deliver good performance even
if little information about the network is available. The first is
based on the Chebyshev semi-iterative method and maximizesthe
worst-case convergence speed given that only rough bounds on the
extremal eigenvalues of the network matrix are available. It can
be applied to systems where agents use unreliable communication
links, and its computational complexity is similar to thoseof simple
Laplacian-based methods. This algorithm requires synchronization
among agents, so we also propose an asynchronous version
that approximates the output of the synchronous algorithm.
Mathematical analysis and numerical simulations show thatthe
convergence speed of the proposed acceleration methods decrease
gracefully in scenarios where the sole use of Laplacian-based
methods is known to be impractical.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial
Intelligence—Multiagent systems

General Terms
Algorithms, Theory

Keywords
Decentralized control, collective dynamics, consensus

1. INTRODUCTION
Reaching agreement (or consensus) between physically distributed
agents is one of the fundamental requirements of many
multiagent applications including target localization [1], distributed

Cite as: Consensus Acceleration in Multiagent Systems with the
Chebyshev Semi-Iterative Method, R. L. G. Cavalcante, A. Rogers, and
N. R. Jennings,Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and
Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 165-172.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

coordination of large swarms of robots [2], distributed control of
modular robotic actuators [3], and others [4]. Typically, such
approaches require the agents to update a local estimate of an
environmental or control parameter, by iteratively communicating
with a few local neighbors, such that the estimates of all agents
converge to the same value. For example, in [3] a modular robotic
setting is described in which agents controlling decentralized
modular actuators must reach consensus on the height of their
actuators in order to ensure that a platform is kept level. Each agent
can only infer (indirectly) the height of its neighbors, so only local
control laws can be used, and the agents must reliably converge to
a consensus height. Likewise, in one of the steps of the algorithm
in [1], agents with individual estimates of the location of atarget,
iteratively exchange and update these estimates, with the intent that
the estimates of all the agents converge to that which would have
been reached had they been able to report their initial estimate to a
center which could fuse them by taking their average.

To date, consensus problems of the type described above, have
typically been solved with classic decentralized iterative algorithms
based on graph Laplacians [2–5] and other related techniques
that differ in the choice of the network matrices [6, 7]. In
these consensus algorithms, every agent produces a sequence of
estimates using a simple two-step approach that can be briefly
described as follows. First, agents exchange estimates locally with
their neighbors. Then each agent updates its current estimate by
taking a weighted average of all estimates to which it has access,
and the process repeats. As described above, the intent is that
the estimates of all the agents converge to that which would have
been reached had the average of the agents’ initial estimates been
taken. Unfortunately, however, it has been recently shown that the
convergence of these classic iterative algorithms is oftentoo slow
in applications where agents have to agree on initial estimates that
have a strong correlation with the agents’ positions [2]. Typical
scenarios in which this occurs are sensor networks and robotic
swarms because the phenomena being measured are often functions
of the agents’ positions. In more detail, when the initial estimates
are spatially correlated, the number of iterations required by
Laplacian-based methods to compute the average consensus value
with good accuracy can grow proportionally with the square of the
network diameter [2]. This fact renders such methods impractical
in large scale multiagent systems with sparse communication.

The convergence of these Laplacian-based algorithms can be
greatly improved with acceleration techniques that filter the output
[8–10]. In particular, efficient two-tap filters have been proposed
for systems where agents communicate both synchronously [10]
and asynchronously [8]. However, these algorithms typically have
a free parameter that has to be chosen by the agents. Such heuristic
choices of parameters can be avoided with the optimal polynomial
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filtering approach proposed in [9]. Unfortunately, this approach
requires precise knowledge of the mean value of the network
matrix, which again is unlikely to be available in many multiagent
systems. In addition, this method is only stable in systems where
the communication links are fairly reliable.

Thus, to address the above shortcomings and to make Laplacian-
based methods practical in the multiagent scenarios described
earlier, we propose low-complexity acceleration methods based
on digital filters that require little information about thenetwork
topology and are robust against unreliable communication links. In
more detail, the main contributions of this study are as follows:
• We derive a novel acceleration method namedsynchronous

semi-iterative consensus. This algorithm filters the output of
classic consensus algorithms with a polynomial filter that is optimal
in the sense of maximizing the worst-case mean convergence
speed when the network topology is unknown. Unlike recent
acceleration techniques [9], the proposed algorithm only requires
rough upper and lower bounds on the extremal eigenvalues of
the network matrix (first order statistics is not necessary), and it
is amenable to an efficient recursive implementation. Compared
to other state-of-the-art acceleration techniques, such as those in
[8, 10], our synchronous semi-iterative consensus algorithm has
better convergence properties in many practical scenarios, the same
communication requirements, and roughly the same computational
complexity.
• To handle scenarios where synchronization among agents

is not possible, we further extend our approach to devise
an asynchronous algorithm, namedasynchronous semi-iterative
consensus, that approximates the output of the proposed
synchronous algorithm. This asynchronous algorithm has a strong
connection with those in [8,10], but it does not require heuristics for
parameter tuning in real applications where the network topology
is largely unknown. All parameters of our algorithm are readily
obtained from rough upper and lower bounds of the extremal
eigenvalues of the unknown network matrix.

The paper is divided as follows. Sect. 2 reviews classic
consensus algorithms based on graph Laplacians and other similar
approaches. Sect. 3 shows the two novel acceleration schemes.
Numerical simulations in Sect. 4 evaluate the proposed methods
in scenarios where Laplacian-based methods are impractical.

2. PROBLEM STATEMENT
We start by briefly introducing our notation. In particular,vectors
are written in lower-case, bold typeface, and matrices are written
in upper-case, bold typeface. Unless otherwise stated, vectors are
assumed to be column vectors. For every vectorv ∈ RN , we define
the norm ofv by ‖v‖ :=

√
vTv, where(·)T denotes the transpose

operation. The vector of ones is denoted by1, and its dimension
is clear from the specific context. The element of thekth row and
thejth column of a matrixX ∈ RM×N is denoted by[X]kj . The
eigenvalues of a symmetric matrixX ∈ RN×N are denoted by
λ1(X), . . . , λN (X). By D := diag(λ1, . . . , λN), we denote a
diagonal matrixD ∈ RN×N havingλ1, . . . , λN as the entries on
its main diagonal.

We now turn to the problem formulation. In this study we
assume that the multiagent system forms a network represented
by a connected undirected graphG = {N , E}, whereN =
{1, . . . , N} is the set of agents,E ⊂ { {k, j} | k, j ∈ N} is the
edge set, and the edge{k, j} ∈ E is an unordered pair of agents.
For convenience, here we assume that{k, k} ∈ E . Initially, at
time i = 0, each agentk reports a valuexk[0] ∈ R, and we are
interested in iterative algorithms that produce, in every agentk ∈
N , sequences{xk[i]} converging toxav := 1/N

∑

k∈N xk[0],

the average of the initial values reported by the agents.
To be truly decentralized, the algorithms of interest should

respect the network topology, i.e., at time instanti ∈ N, each agent
k should exchange information only with its neighborsNk :=
{j ∈ N | {j, k} ∈ E}. In particular, classic algorithms having
this desired feature take the form:

xk[i + 1] =
∑

j∈Nk

[W [i]]kjxj [i], k ∈ N , i ∈ N, (1)

or, more compactly,

x[i + 1] = W [i]x[i], i ∈ N, (2)

wherex[i] := [x1[i] . . . xN [i]]T ∈ RN , W [i] ∈ RN×N is
a properly selected sequence of (symmetric) matrices,[W [i]]kj

is the weight associated with the edge{k, j} at time i, and
[W [i]]kj = 0 if {i, j} /∈ E . To reach consensus, agents can
compute the weights[W [i]]kj in many different ways according
to the desired characteristics of the system. In particular, if the
network is deterministic, agents only know the local topology, and
links are reliable, agents can use simple Laplacian-based methods
to compute locally the weights [2, 4]. When links are unreliable,
weights can be computed with the method in [5]. In systems where
the network topology is known before deployment and links are
deterministic, the approach in [6] can be used to compute a fixed
matrix W = W [i] that gives better convergence than simple
heuristics based on graph Laplacians. In systems where agents
operate asynchronously and do not know their neighbors, gossip
consensus algorithms [7] can be used to determine the weights.

Hereafter, we do not use a specific method to compute the
weights[W [i]]kj , and, for maximum generality, we only assume
that the matricesW [i] satisfy the following properties:

ASSUMPTION 1. (Properties ofW [i]:)
1. The matricesW [i] (i ∈ N) in (2) are i.i.d. random1 matrices

with [W [i]]jk = 0 if {j, k} /∈ G.
2. Each matrixW [i] is symmetric and satisfiesW [i]1 = 1

(henceW [i] is a doubly stochastic matrix).
3. ‖E[W [i]T W [i]] − 1/N11T ‖2 < 1 (and ‖W −

1/N11T ‖2 < 1, whereW := E[W [i]] denotes the mean of
W [i]).

The above properties are sufficient conditions to guarantee
that x[i] in (2) converges toxav1 ∈ RN in both the mean
sense and the mean square sense [7], i.e.,limi→∞ E[x[i]] =
xav1 and limi→∞ E[‖x[i] − xav1‖2] = 0. Unfortunately,
irrespective of the method being used for the computation of
the weights[W [i]]kj , when agents only have local information
about the network topology, consensus algorithms solely based
on the iteration in (2) are typically slow. In particular, when the
initial values reported by agents have a strong correlationwith
their locations, Laplacian-based methods have been shown to be
impractical in large multiagent systems because the convergence
speed scales badly with the network diameter [2]. To addressthis
serious drawback of consensus algorithms based on (2), we develop
an acceleration technique that improves the convergence ofx[i] in
the mean sense. Before deriving the proposed method, we first
review convergence properties of (2).

By the i.i.d. assumption of the symmetric matricesW [i] (i ∈
N), we have thatE[W [i]] is a time-invariant symmetric matrix
(E[W [i]] = W for all i ∈ N). Let the eigenvalue decomposition

1In this study, we use the same notation for random variables and
their realizations. The interpretation that should be applied is clear
from the context.
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of W be given byQΛQT = W , where q1, . . . , qN are
the columns ofQ, and Λ := diag

(

λ1(W ), . . . , λN (W )
)

with eigenvalues arranged in non-increasing order of magnitude:
|λ1(W )| ≥ . . . ≥ |λN(W )|. Note that, also from Assumption 1,
we have thatq1 = (1/

√
N)1 and that1 = λ1(W ) > |λj(W )|

for j = 2, . . . , N . With these definitions, we deduce:

E[x[i]] = (W )i
x[0] = QΛi

Q
T
x[0]

= [(1/
√

N)1 q2 . . . qN ]

· diag(1, (λ2(W ))i, . . . , (λN(W ))i)

· [(1/
√

N)1 q2 . . . qN ]Tx[0]. (3)

Therefore, by|λj(W )| < 1 for j = 2, . . . , N , we conclude
that limi→∞ E[x[i]] = (1/N)11Tx[0] = xav1 and that the
slowest mode of convergence of (3) is given byλ2(W ) (by taking
powers, the eigenvaluesλj(W ) (j = 3, . . . , N ) do not decay
slower to zero thanλ2(W )). Thus, the iteration in (2) can be
particularly slow ifλ2(W ) is close to one and the vectorx[0] has
a nonzero projection onto the subspace spanned by the eigenvector
corresponding toλ2(W ).

3. THE ACCELERATION ALGORITHM
In this section, we derive our novel algorithms and compare them
with existing methods. We start by revisiting polynomial filters.

3.1 Polynomial Filtering
In our proposed method, we improve the convergence of (2) (in
the mean sense) by using polynomial filters. The idea is similar to
that proposed in [9], but the size of the filters that we use increase
with the number of iterations. Later in this section we show that
this is amenable to implementations with very low computational
complexity and memory requirements. In addition, our method is
optimal in a well defined sense (c.f. (7)) even if little information
aboutW [i] in (2) is available.

In more detail, each agentk improves its local estimate ofxav

by filteringxk[i] obtained with (1):

yk[i] =
i

∑

n=0

γ[i, n]xk[n], k ∈ N , (4)

whereγ[i, n] ∈ R (i ∈ N, n = 0, . . . , i) arescalars to be designed
(common to all agents), andyk[i] is the improved estimate ofxav

at timei in agentk. Stackingy1[i], . . . , yN [i] in a vectory[i] :=
[y1[i] . . . yN [i]]T , we can rewrite (4) equivalently as

y[i] =

i
∑

n=0

γ[i, n]x[n]. (5)

Combining (3) and (5) and using Assumption 1, we can compute
the mean value ofy[i]:

E[y[i]] =
i

∑

n=0

γ[i, n](W )n
x[0]

= Q diag
(

pi(1), pi(λ2(W )) . . . , pi(λN(W ))
)

Q
T
x[0],

= [(1/
√

N)1 q2 . . . qN ]

· diag
(

pi(1), pi(λ2(W )), . . . , pi(λN (W ))
)

· [(1/
√

N)1 q2 . . . qN ]Tx[0], (6)

wherepi(x) is the polynomialpi(x) :=
∑i

n=0 γ[i, n]xn at timei.
Now we need to choose a polynomialpi that makes (6) a potentially
better estimate ofxav1 than (3).

3.2 The Synchronous Consensus Algorithm
By comparing (3) with (6), the slowest mode of convergence of
E[y[i]] to xav1 is faster than that ofE[x[i]] if the polynomialspi

satisfy the following properties: (see also [9], which, unlike the
proposed method, use filters of short length.)

P1) pi(1) = 1 and

P2) maxj∈{2,...,N} |pi(λj(W ))| < |λ2(W )|i.
Therefore, at each timei, we conclude that we should find

polynomials such thatpi(1) = 1 and that|pi(λj(W ))| is as
close to zero as possible for allj ∈ {2, . . . , N} and all i ∈ N.
Unfortunately, finding an ideal polynomial having roots atλ2(W ),
...,λN (W ) (for i ≥ N−1) would require global information about
the network in every agent. To avoid this unrealistic requirement,
we assume that the eigenvaluesλ2(W ), ...,λN (W ) belong to the
interval [α, β], but their exact values are unknown. (Assumption 1
guarantees−1 < α, β < 1, and the bounds can be obtained from
typical application scenarios; see Sect. 4.) With this assumption, a
reasonable choice forpi is the normalized polynomialpi(1) = 1
of degreei least deviating from zero on the interval[α, β] (see
also [11], [12, Sect. 10.1.5]). We can expect that such a polynomial
would satisfy properties P1) and P2) above without knowledge of
λj(W ) (j = 2, . . . , N ). More formally, at timei we use the
polynomial:

p⋆
i ∈ arg min

p∈Si

{ max
α≤x≤β

|p(x)|}, (7)

whereSi is the set of polynomials of degreei normalized to satisfy
pi(1) = 1. The polynomial in (7), which has been typically used
to accelerate the convergence of iterative methods solvingsystems
of linear equations, is unique and given by [11], [12, Sect. 10.1.5]:

p⋆
i (x) =

ci

(

−1 + 2
x− α

β − α

)

ci (µ)
,

where

µ := 1 + 2
1− β

β − α
(8)

andci is the Chebyshev polynomial of degreei

ci(x) =

{

cos(i cos−1 x), |x| ≤ 1, i ∈ N,

cosh(i cosh−1 x), |x| > 1, i ∈ N.

Chebyshev polynomials can be generated with the recursion
cm+1(x) = 2xcm(x) − cm−1(x) (c0(x) = 1 andc1(x) = x),
so, similarly to the original Chebyshev acceleration algorithm [11],
[12, Sect. 10.1.5], we can equivalently computeE[y[i]] (with the
polynomial (7)) in the recursive form:

E[y[i + 1]]

= ωi+1[(1− κ)I + κW ]E[y[i]] + (1− ωi+1)E[y[i− 1]],
(9)

whereE[y[1]] = [(1 − κ)I + κW ]x[0], y[0] = x[0], κ :=
2/(2− α− β), and

ωi+1 =
1

1− ωi

4µ2

, i ≥ 2, ω1 = 1, ω2 =
2µ2

2µ2 − 1
. (10)

Unfortunately, unlessW [i] is a constant matrix, the recursion
in (9) cannot be implemented in a multiagent system becauseW is
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not available. Therefore, we replace expectations by sample values,
and we obtain the following algorithm, which can be implemented
in multiagent systems because the iteration in (1) (or, equivalently,
(2)) can be readily implemented (using local computation ofthe
resulting matrix-vector multiplications):

ALGORITHM 1. (Synchronous Semi-Iterative Consensus
Algorithm)

z[i + 1] = ωi+1 [(1− κ)I + κW [i]] z[i] + (1− ωi+1)z[i− 1],
(11)

wherez[1] = [(1− κ)I − κW [0]]x[0] andz[0] = x[0].

The proposition below shows that some convergence properties
of the original Chebyshev algorithm are retained, even though we
replaced expectations by sample values.

PROPOSITION 1. (Properties of the Synchronous
Semi-Iterative Consensus Algorithm)

Assume the conditions in Assumption 1. Then, the algorithm in
(11) satisfies the following:

a) The algorithm is average preserving, i.e.,(1/N)1Tz[i] =
(1/N)1Tx[0] = xav for everyi ∈ N.

b) In the mean sense, the convergence ofz[i] is identical to
that of y[i] in (5) with γ[i, n] chosen as the coefficients of the
optimal polynomial in the sense of (7). In other words,E[z[i]] =
E[y[i]]. Furthermore, ifα and β are such that−1 < α ≤
minj∈{2,...,N} λj(W ) ≤ maxj∈{2,...,N} λj(W ) ≤ β < 1, then

‖E[z[i]]− xav1‖ ≤ ‖x[0]‖
ci (µ)

, (12)

which shows that limi→∞ E[z[i]] = xav1 because
limi→∞ ci (µ) = ∞.

PROOF. In the following, for notational convenience, we define:
M [i] := [(1− κ)I − κW [i]] andM := [(1− κ)I − κW ].

(a) By 1TW [i] = 1T , we can check that

1T
M [i] = [(1− κ)1T

I − κ1T
W [i]] = 1T ,

and the result follows by induction. More precisely, note that
1Tz[0] = 1Tx[0] = Nxav and that1Tz[1] = 1TM [0]x[0] =
N xav. Now, by assuming1Tz[i] = Nxav and1Tz[i − 1] =
Nxav, we obtain

1T
z[i + 1] = ωi+11

T
M [i]z[i] + (1− ωi+1)1

T
z[i− 1]

= ωi+1Nxav + (1− ωi+1)Nxav = Nxav,

which concludes the proof of (a).
(b) The proof can be informally shown as follows. From the i.i.d.

assumption of the matricesW [i], we have thatz[i] is independent
of W [i], and thusz[i] is also independent ofM [i]. Now, apply the
expectation operator in both sides of (11) to obtain

E[z[i + 1]] = ωi+1ME[z[i]] + (1− ωi+1)E[z[i− 1]] (13)

whereE[z[1]] = Mx[0] andE[z[0]] = x[0], and we conclude
that E[z[i]] = E[y[i]] for every i ∈ N (see (9)), and thus (13)
is equivalent to (6) withy[i] replaced byz[i] and withpi being
the optimal polynomial in (7). Subtractxav1 = (1/N)11Tx[0]
from both sides of (6) and use the facts that|p⋆

i (λ)| ≤ 1/|ci(µ)|
(α ≤ λ ≤ β) and that‖Ab‖2 ≤ ‖A‖2 ‖b‖2 for any matrixA and
vectorb of compatible sizes [12] to obtain (12).

Intuitively, Proposition 1 shows that our algorithm (with properly
selected parametersα and β) is guaranteed to converge in the
mean sense, and the convergence in the mean is typically faster

than that of the original scheme in (2). Unfortunately, unless
the matrixW [i] is a constant matrix, the results in Proposition 1
are not enough to guarantee stability. In particular, Proposition 1
does not guarantee mean-square convergence, but this problem is
also present in existing acceleration techniques that consider time-
varying network matrices [8, 9]. However, in Sect. 4 we show that
our method is robust in many practical scenarios. In addition, note
that Proposition 1(a) holds even if the algorithm diverges (which
could be the case when the parameterα is overestimated), so it
can be useful to devise hybrid schemes with stronger convergence
guarantees, but such methods are not investigated here.

3.3 The Asynchronous Consensus Algorithm
A potential limitation of Algorithm 1 is that agents should know
the time instanti to computeωi. In some systems, such as those
with agents communicating via network gossiping [7], knowing
precisely the time index may not be possible. This fact renders
Algorithm 1 impractical, and, to address this limitation, we propose
an asynchronous semi-iterative consensus algorithm that is based
on the following observation:

FACT 1. [11] [12, p. 517] (On the convergence ofωi)
Letωi be as in (10) and−1 < α < β < 1. Then, fori > 1, ωi

satisfies the following properties: i)1 < ωi < 2, ii) ωi is strictly
decreasing, and iii)

lim
i→∞

ωi =
2

1 +
√

1− 1/µ2
=: ω∞. (14)

Since ωi is convergent (and the asymptotic convergence is
usually fast), we can try to approximate the output of Algorithm
1 by fixing ωi to ω∞, the limit in (14). The resulting algorithm is
formally presented below.

ALGORITHM 2. (Asynchronous semi-iterative consensus
algorithm)

z[i + 1] = ω∞ [(1− κ)I + κW [i]] z[i] + (1− ω∞)z[i− 1],
(15)

wherez[1] = [(1− κ)I − κW [0]]x[0] andz[0] = x[0].

It is not difficult to show that that Algorithm 2 is also average
preserving and converges in the mean sense toxav1.

3.4 Relation with Existing Methods
We now compare the proposed algorithms against the original
consensus algorithm with and without state-of-the-art acceleration
methods. We start by rewriting (11) in the equivalent form:

zk[i + 1] =
∑

j∈Nk

ωi+1 (1− κ + κ[W [i]]kj) zj [i]

+ (1− ωi+1)zk[i− 1], k ∈ N , (16)

wherezk[1] =
∑

j∈Nk
(1 − κ + κ[W [i]]kj)xj [0] and zk[0] =

xk[0]. (Note: Algorithm 2 is obtained by fixingωi in (16).)
From the above, we see that we need to keep two scalars in the

memory of each agent, instead of one as in the original consensus
algorithm in (1). In addition, in terms of local computation
complexity per agent, Algorithm 1 is slightly more complex
than the original consensus algorithm because (16) requires fewer
additional sums and multiplications per iteration as compared to
(1). However, the slightly higher computational complexity and
memory requirements of the proposed method can be ignored
because, in a real-world implementation with wireless links, agents
spend most energy and time with the information exchange rather
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than computation [13]. If agents implement either (1) or (16), they
communicate with exactly the same neighbors and exchange the
same amount of information per iteration. However, to reachthe
desired solutionxav within a prescribed precision, the iteration in
(16) typically requires fewer iterations than the scheme in(1). As
a result, the proposed methods can lead to great time and energy
savings (because less information must be exchanged).

From the equivalence betweenE[z[i]] andE[y[i]] in (9) (or (6)),
which is proved in Proposition 1(b), Algorithm 1 is applyinga long
polynomial filter that is optimal in a well defined sense and that
uses all estimatesz[0], z[1], . . ., even though its implementation
only requiresz[i] and z[i − 1]. This is in stark contrast with
the implementation of the two algorithms in [9], both of which
typically use short filters of fixed length and keep in the memory
of each agent more than two samples of the sequence of estimates
of xav. One of the algorithms in [9] uses filters based on an
intuitive approach that lacks an optimality criterion. Theother
approach in [9] uses filters optimal in a well defined sense, but it
requires precise knowledge of the eigenvalues ofW , which is an
information not required by our approaches.

We can also relate our approaches with the two-register
algorithms in [8, 10]. Assume thatα = −β with β > 0, in which
caseκ = 1. Therefore, (16) reduces to:

zk[i + 1] =
∑

j∈Nk

ωi+1[W [i]]kjzj [i] + (1− ωi+1)zk[i− 1],

k ∈ N , (17)

wherezk[0] andzk[1] are as in (16). As a result, the approaches
in [8, Eq. (9)] and [10, Eq. (28)] (this last by also fixing the
matrix W [i]) are recovered if we fixωi to any number in the
interval (1, 2). Fixing ωi was also the approach used to derive
Algorithm 2, which is an algorithm that gives strong arguments
to useωi = ω∞ and not arbitrary values within the range(1, 2)
(provided that the upper boundβ is available). Note that we can
also argue that fixingω∞ to an arbitrary value within the range
(1, 2) is equivalent to making an arbitrary choice ofβ. More
precisely, givenω∞ ∈ (1, 2) andα = −β (which was used to
derive (17)), we can use (14) to calculate the value ofβ that results
in such a choice ofω∞. In the next section we show that the choice
α = −β can be too pessimistic in many cases, and, as a result, the
acceleration capabilities of the algorithm can be reduced.

A less strict reader could also argue that Algorithm 2 in its full
generality is also equivalent to the algorithms in [8, Eq. (9)] and
[10, Eq. (28)] withW [i] replaced by(1− κ)I − κW [i]. In such
a case, these existing algorithms are accelerating the consensus
algorithmx[i+1] = ((1−κ)I−κW [i])x[i] and not the iteration
in (2). Algorithm 2 shows how to chooseκ (andω∞) when bounds
on the eigenvalues are available.

4. EMPIRICAL EVALUATION
We now show the superiority of our proposed algorithms over
existing methods, and we also evaluate the stability of the proposed
algorithms in practical scenarios.In particular, as in [2], we place
N agents uniformly at random in a square of unit area, and then we
connect agents within distanced =

√

log(N)/N from each other
(unless otherwise stated), which is a distance that guarantees that
the resulting graphG = (N , E) is connected with high probability
[14]. We discard graphs not fully connected. In all simulations,
each agentk initially reports valuesxk[0] = 50

√
2 · ‖[Xk Yk]T ‖+

nk, wherenk is a sample of a Gaussian random variable with mean

zero and unit variance,2 andXk andYk are the Euclidean spatial
coordinates of agentk in the unit grid. (Note that agents start with
values strongly correlated with their positions as is common in the
multiagent systems described earlier [2].)

We consider cases where agents exchange information not
only with reliable communication links, but also with unreliable
communication links because practical algorithms should be robust
against link failures (a common occurrence in wireless links owing
to the presence of jammers, obstacles, etc.). Therefore, for each
scenario, the following network matricesW [i] are used:

• (Reliable links.) For simulations using reliable links, we set
the network matrix toW [i] = I − ǫL (i ∈ N), whereL is
the Laplacian matrix of the graphG and ǫ > 0 is a properly
selected scalar that guarantees thatW [i] satisfies the conditions in
Assumption 1.3 In particular, in this study we setǫ = 0.05 because
it guaranteed the conditions in Assumption 1 in all our simulations.
For a graphG = (N , E), the Laplacian matrixL ∈ RN×N is given
by L := D −A, whereD := diag(|N1| − 1, . . . , |NN | − 1) is
the degree matrix (| · | denotes the cardinality of a set) andA is the

adjacency matrix [2, 4][A]kj =

{

1, if {k, j} ∈ E and k 6= j

0, otherwise.

• (Unreliable links.) For this scenario, we use the model of
unreliable links proposed in [5]. In more detail, we start with a
connected graphG = (N , E) obtained as described above. At each
time instanti, we copy all edges fromE to a new edge setE [i],
and then we remove with probabilityp each edge{k, j} (k 6= j)
from E [i]. The edge setE [i] defines a new graphG[i] = (N , E [i]),
and we useW [i] = I − ǫL[i], whereL[i] is the Laplacian matrix
associated withG[i] = (N , E [i]). The physical interpretation of
this model is that communication links, each of which corresponds
to an edge inE , can fail with probabilityp. As in the case with
reliable links, we chose the valueǫ = 0.05.

All acceleration methods in this section use the matricesW [i]
described above. For convenience, we use the acronyms SSCA
for the synchronous semi-iterative consensus algorithm and ASCA
for the asynchronous semi-iterative consensus algorithm.The
proposed acceleration schemes are compared with Laplacian-
based methods without acceleration [2, 5] and with the following
acceleration techniques:

• The two-register eigenvalue shaping filter (ESF) in [10] (which
is also the algorithm in [8] when the matricesW [i] are designed
for consensus via network gossiping). We showed in the discussion
after (17) that this algorithm is equivalent to Algorithm 2 with α =
−β andω∞ ∈ (1, 2). Our results are useful to help with the choice
of ω∞ when an upper bound on the second largest eigenvalue of
the network matrix is available.

• The optimal short-length polynomial filtering in [9] (algorithm
denominated “polynomial” in the figures).This algorithm uses
more information than that available to the proposed schemes and
the ESF acceleration method.

As in [8, 9], the performance metric of interest is the (absolute)
squared error‖o[i] − xav1‖2, whereo[i] ∈ RN is the output of a
given consensus algorithm at timei (e.g.,o[i] = z[i] in the case
of our proposed acceleration schemes oro[i] = x[i] in the case
of the original consensus algorithm in (2)). In simulationswhere
the network matrix is deterministic, all algorithms are guaranteed

2The samplesnk are different in different runs of the simulation
3The matricesW [i] are fixed and deterministic in this scenario, so
we can simply ignore the expectation operator in Assumption1.
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to converge if the eigenvalues of the network matrix (exceptfor
the eigenvalue 1) fall into the interval[α, β]. Therefore, we
plot the average squared error performance of the algorithms in
such scenarios. However, unless otherwise stated, we show the
(sample) 99th-percentile squared error performance when bounds
on the eigenvalues are not exactly known. By plotting percentile
curves, we identify algorithms that consistently provide good
performance, and we also give less emphasis to rare situations
where acceleration algorithms may not converge (see also the
discussion after Proposition 1). Sample average and percentile
curves are calculated from the results of 1,000 simulations, each
of which use different initial conditions.

4.1 Networks with Reliable Links
Having described the basic setup of the simulations, we now
study the performance of the algorithms in specific settings. We
begin with an ideal scenario where the topology is fixed, links are
reliable, and the minimum and second largest eigenvalues ofthe
network matrix are precisely known. This scenario is usefulto
show the maximum acceleration gain that can be achieved with
the algorithms because the minimum and second largest eigenvalue
are simple to compute. The network under consideration is
depicted in Fig. 1. For simplicity, denoteW := W [i]
(because in this scenario the network matrices are fixed and
deterministic),λmax := maxj∈{2,...,N} λj(W ) (λmax > 0 in
all our simulations), andλmin = minj∈{2,...,N} λj(W ). We use
the following parameters for the proposed acceleration schemes:
SSCA (α = λmin, β = λmax) and ASCA (α = λmin, β = λmax).
The parameterc in [10, Eq. (28)] is set toc = 1− ω∞, whereω∞
is computed according to (14) withβ = −α = λmax (see the
discussion after (17) for the justification of this choice).Note that
the ESF algorithm is basically the ASCA algorithm withβ = −α.
We use filters of length eight for the method in [9] (this valueis
also used in [9]). Fig. 2 shows the performance of the algorithms.

As thoroughly discussed in [2], Laplacian-based algorithms have
poor performance if the initial values reported by agents have
a strong correlation with their positions, and this fact is indeed
observed in Fig. 2. However, dramatic performance gains canbe
obtained by combining Laplacian-based methods with acceleration
techniques. In particular, the SSCA and ASCA algorithms are
able to provide in every agent values extremely close toxav

in very few iterations (as compared to the network size). The
performance of the asynchronous algorithm ASCA closely follows
that of its synchronous counterpart, the SSCA algorithm, which
is optimal in a well defined sense. This result is not surprising
because the asymptotic convergence ofωi is fast. The performance
advantage of the ASCA and SSCA algorithms over the ESF
algorithm is explained by the fact that the former two algorithms
use information about the lower bound on the eigenvalues of the
network matrix. In contrast, the ESF algorithm, a particular case of
the proposed method (see the discussion in Sect. 3.4), uses only
information about the second largest eigenvalue (in magnitude),
and the minimum eigenvalue is largely underestimated with the
conservative lower boundα = −β, which adversely affects
the performance. The polynomial filtering scheme in [9], which
requires precise knowledge ofW has performance comparable to
the ESF algorithm. However, note that the scheme in [9] requires
more information about the network matrixW and has higher
computation complexity than all other acceleration schemes. Its
performance is inferior to that of the SSCA and ASCA algorithms
because the proposed acceleration schemes are based on filters with
increasing length.

We now study the stability of our proposed schemes when upper

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coordinate X

C
oo

rd
in

at
e 

Y

Figure 1: Network with 50 agents distributed uniformly at
random in a square with unit area. Agents are represented by
circles, and lines indicate communication links.
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Figure 2: Transient performance of the algorithms. Every run
of the simulation uses the topology in Fig 1.

and lower bounds of the eigenvalues of the network matrix are
imprecisely estimated. For visual clarity, we use the network in
Fig. 1 in all runs of the simulation, and we plot only results obtained
with the original Laplacian-based algorithm (for reference) and
the following versions of the SSCA algorithm:4 SSCA-under
(β = 0.9λmax, α = λmin) and SSCA-over (β = λmax, α =
λmin + 0.05). Note that SSCA-under underestimates the upper
bound, whereas SSCA-over overestimates the lower bound. Fig. 3
shows the performance of the algorithms.

From Fig. 3 it is clear that, for the proposed algorithms,
underestimating the upper bound is not so problematic as
overestimating the lower bound. In contrast, neither convergence
nor boundedness ofz[i] is guaranteed ifα is overestimated because
|p⋆

i (x)| grows fast outside[α, 1]. This last fact explains the
divergence of the SSCA-over algorithm.

In the simulations above, we have assumed exact knowledge of
λmax and λmin, which is rarely the case in practice. Therefore,

4We omit the performance curves of the asynchronous algorithms
because they are similar to those of the corresponding synchronous
algorithms.
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Figure 3: Stability of the algorithm with wrongly estimated
bounds. Every run of the simulation uses the topology in Fig.1.

to evaluate the algorithm in more practical settings, we consider a
scenario where the topology changes at every run of the simulation.
In such a case,α andβ should be set to appropriate values based
on likely bounds on the eigenvalues. Given that the proposed
algorithms are robust against underestimated upper bounds, we
can setβ to a value expected to be greater than|λ2(W [i])| with
fairly high probability. However, we should take a conservative
approach to choosingα because, as discussed above, overestimated
values can render the proposed algorithms unstable. By simulating
100,000 different networks with the geometric approach described
above,|λ2(W [i])| ≤ 0.994 occurred in less than 1.32% of the
simulations, so we chooseβ = 0.994 for both the SSCA and
ASCA algorithms because we do not need to be overly conservative
on the choice ofβ. As for the parameterα, we useα = −0.5
because eigenvalues less than−0.5 have not been observed in our
simulations. Therefore, we can expect that the proposed algorithms
using α = −0.5 converge with high probability. Fig. 4 shows
the 99th-percentile squared error performance of the algorithms
obtained by randomizing the network (and also the initial values
reported by the agents) at each run of the simulation. In this
figure, we once again set the parameterc in [10, Eq. (28)] to
c = 1−ω∞, whereω∞ was computed by using0.994 = β = −α.
We do not show the results of the polynomial filtering algorithm
in [9] because, as in Fig. 2, its performance is worse than that
obtained with other acceleration methods. In addition, it requires
precise information about the network matrix in every run ofthe
simulation, a very strong assumption in many multiagent systems.

With the settings in Fig. 4, the performance of Laplacian-based
consensus methods is also poor, and all acceleration methods can
greatly improve the convergence. The ASCA and SSCA algorithms
were stable in all runs of our simulations, which is not surprising
given the conservative choice ofα. The ESF algorithm is basically
the ASCA algorithm with an unduly underestimated parameterα,
and this fact explains the worse performance of the ESF algorithm
as compared to the SSCA and ASCA algorithms.

4.2 Networks with Unreliable Links
To study the stability of the acceleration algorithms with time-
varying matricesW [i], we consider in Fig. 5 a scenario similar to
that in Fig. 2, but with the difference that the communication links
fail with probability p = 0.2 at each iteration (see the discussion
in the beginning of this section). The parameters of all algorithms
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Figure 4: Transient performance of the algorithms. Network
matrices W [i] are fixed and deterministic, but they change in
every run of the simulation.
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Figure 5: Transient performance of the algorithms. The
network topology is the one in Fig. 1, but communication links
fail with probability p = 0.2 at each iteration of the algorithms.

are the same as those in Fig. 2. We do not use exact bounds on the
eigenvalues ofW to chooseα andβ because we want to illustrate
a situation where the topology is supposed to be fixed and known,
but the communication links are subject to failures that cannot be
predicted (a common scenario in wireless networks). We omitonce
again the performance of the polynomial filtering approach in [9]
because it did not converge in most runs of our simulations.

We can see in Fig. 5 that, with failing links, the proposed
acceleration schemes (the ESF being a particular case) is acceptable
because all agents are close to reach consensus onxav in few
iterations. In addition, the proposed algorithms converged in all
runs of the simulation, which shows the good stability properties
of our algorithms, even though Proposition 1 has only proved
convergence in the mean sense. The relative performance of the
algorithms is similar to that obtained in previous simulations, and
the reason is the same as before.

In the last simulation, we study the impact of the network size
on the convergence properties of the algorithms. In more detail, in
Fig. 6 we show the (sample) median number of iterations that each
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Figure 6: Median number of iterations required to reach the
precision ‖o[i] − x[0]‖/‖x[0]‖ ≤ 0.001 as a function of the
network size. The network topology changes at each run of the
simulation, and communication links can fail with probabil ity
p = 0.2 at each iteration of the algorithms.

algorithm requires to reach the precision‖o[i] − x[0]‖/‖x[0]‖ ≤
0.001. In this figure, the network topology is randomized in
every run of the simulation, and we decrease the connection range
between agents tod = 0.7

√

log(N)/N to stress further the
limitations of Laplacian-based methods and the gains obtained with
acceleration algorithms. In addition, links fail with probability
p = 0.2 at each iteration of the algorithms. If links are reliable,
by keeping other conditions the same, the value0.999 is a good
estimate of the second largest eigenvalue of networks with sizes
ranging from 10 to 50, so we useβ = 0.999. More precisely, for
networks of size 50, the second largest eigenvalue of the network
matrix is greater thanβ = 0.999 with (empirical) probability less
than 2% (with smaller networks, the probability is lower). For the
minimum eigenvalue, eigenvalues less than−0.1 have not been
observed in the simulations, so we useα = −0.1. The parameters
α andβ have thus been adjusted to accommodate eigenvalues of
(reliable) networks of different sizes and topologies. Note that the
simulations in Fig. 6 use networks with unreliable links, and we did
not try to estimate the eigenvalues ofW because the probability of
failures cannot be usually predicted in real-world applications. The
parameterc in [10, Eq. (28)] was once again set toc = 1 − ω∞,
whereω∞ is given by (14) withβ = −α.

As proved in [2] and also observed in Fig. 6, Laplacian-
based methods scale badly with the network size. However, all
acceleration techniques are relatively insensitive to thenetwork
size, so they can be good alternatives to Laplacian-based methods
in spatial computers. The compared acceleration schemes have
similar performance because the precision, although fairly high,
can be achieved in few iterations by all acceleration schemes (in
previous simulations we can see that differences are usually more
pronounced when we show 99th-percentile curves). Therefore,
choosing parameters based on expected bounds on the eigenvalues
of the network matrix (as proposed in this study) makes simple
consensus algorithms practical in applications where approximate
averages have to be computed with few iterations.

5. CONCLUSIONS
Laplacian-based methods for consensus have been identifiedas too
slow to be practical in many multiagent applications, especially

those involving large-scale systems [2]. However, in this study
we have demonstrated that such methods can still be useful in
large systems if they are combined with acceleration techniques.
In particular, the convergence speed of our two novel algorithms
is fast and decreases gracefully with the network size in scenarios
where the sole use of Laplacian-based methods are known to be
impractical. Our first algorithm requires agents with synchronized
clocks, and it is optimal in a well defined sense. The second
algorithm is an asynchronous method that is able to provide
performance very close to that of the optimal synchronous
algorithm. Unlike existing acceleration methods, we have only
assumed that rough bounds on the extremal eigenvalues of the
network matrix are available (those bounds can be readily obtained
by considering typical application scenarios).
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1. INTRODUCTION
Eliciting information about uncertain events is crucial for

informed decision making. Information is often possessed
by individual agents. Truthfully eliciting such information,
resolving conflicting beliefs, and aggregating the dispersed
information are key problems for achieving collective intel-
ligence in multi-agent systems. Proper scoring rules have
been proposed to incentivize an expert to honestly report
her probability assessment for an uncertain event [2, 7, 21,
22, 18, 23, 3, 6, 11]. Prediction markets, betting interme-
diaries where participants wager on the outcome of some
event of interest, can output equilibrium market prices rep-
resenting the consensus probability assessment based on the
pooled information of market participants [1, 24, 17].
However, most work, with the exception of Othman and

Sandholm [16] and Dimitrov and Sami [4], separates the
information elicitation problem from the decision problem.
Information elicitation and aggregation are studied without
considering how the resultant information will be used. Par-
ticipants of mechanisms are assumed to only care about their
rewards within the mechanism. Incentives for the isolated
elicitation problem may not motivate desirable behavior of
participants when the elicited information is used for deci-
sion making, because participants may have vested interests
in some decision outcome and may misreport their informa-
tion hoping to achieve the decision outcome.
In this paper, we study the information elicitation prob-

lem situated in a decision making process. We consider a
setting where a decision maker seeks to elicit information
about the consequences of various actions that he could take
and choose an action based on the elicited information. For
example, a company needs to choose among three market-
ing campaigns and wants to elicit the probability that each
campaign will result in a sales goal being reached. This set-
ting was first investigated by Othman and Sandholm [16]
when the decision maker uses a deterministic decision rule
and there are two possible outcomes given any action. They
derived a proper scoring rule for a particular decision rule.
Our main contribution is a theorem that significantly gener-
alizes their result by characterizing all (strictly) proper scor-
ing rules for all decision rules.
The rest of the paper is organized as follows. In Section 2,

we cover the relevant background and related work on the
use of scoring rules for information elicitation. Then in Sec-
tion 3, we provide a formal model of the problem of eliciting
information from a single expert for the purpose of making
a decision. We state and prove our main result, a charac-
terization theorem for (strictly) proper scoring rules in the
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decision making setting, in Section 4. Using this character-
ization, we provide a sufficient condition for the existence
of a strictly proper scoring rule and a sufficient condition
for when no such rule exists in Section 5. For situations
where strictly proper scoring rules are not possible, we pro-
vide a derivation of “quasi-strictly proper” scoring rules in
Section 6. We discuss issues that arise when eliciting infor-
mation from multiple experts and some potential solutions
in Section 7. We conclude in Section 8.

2. BACKGROUND AND RELATEDWORK
Proper scoring rules have been designed to incentivize a

risk-neutral expert to truthfully report her probability as-
sessment for an uncertain event [2, 7, 21, 22, 18, 23, 14, 13,
20, 15]. Let 𝑣 be a discrete random variable that has 𝑚 mu-
tually exclusive and exhaustive outcomes, 𝒪 = {𝑜1, . . . , 𝑜𝑚}.
A scoring rule assigns score 𝑠𝑜(𝑝) to an expert who reports
a probability assessment 𝑝 when outcome 𝑜 happens. A
scoring rule is regular if 𝑠𝑜(𝑝) is real valued for all 𝑜, ex-
cept possibly 𝑠𝑜(𝑝) = −∞ if 𝑝𝑜 = 0. A regular scoring rule
is (strictly) proper if a risk-neutral expert (strictly) maxi-
mizes her expected score by reporting truthfully. That is,
𝑝 is an optimal solution to max𝑟⃗∈Δ(𝒪)

∑𝑚
𝑜=1 𝑝𝑜𝑠𝑜(𝑟⃗) for any

proper scoring rule 𝑠, and is the unique optimal solution if
𝑠 is strictly proper. Δ(𝒪) is the probability simplex over 𝒪.
For example, logarithmic scoring rule 𝑠𝑜(𝑝) = 𝑎𝑜 + 𝑏 log 𝑝𝑜
and quadratic scoring rule 𝑠𝑜(𝑝) = 𝑎𝑜+𝑏(2𝑝𝑜−

∑
𝑖 𝑝

2
𝑖 ), where

𝑏 > 0 and 𝑎𝑜 are arbitrary parameters, are strictly proper
scoring rules.
Proper scoring rules are closely related to convex func-

tions. In fact, the following characterization theorem of
Gneiting and Raftery [6], which is credited to McCarthy [12]
and Savage [18], gives the precise relationship between con-
vex functions and proper scoring rules. In the theorem, ⋅
denotes the vector inner product.

Theorem 2.1 (Gneiting and Raftery Theorem 2).
A regular scoring rule is (strictly) proper if and only if

𝑠𝑜(𝑝) = 𝐺(𝑝)−𝐺′(𝑝) ⋅ 𝑝+𝐺′
𝑜(𝑝),

where 𝐺 : Δ(𝒪) → ℝ is a (strictly) convex function and
𝐺′(𝑝) is a subgradient of 𝐺 at the point 𝑝 and 𝐺′

𝑜(𝑝) is the
𝑜-th element of 𝐺′(𝑝).

Theorem 2.1 indicates that a regular scoring rule is (strictly)
proper if and only if its expected score function 𝐺(𝑝) =∑

𝑜 𝑝𝑜𝑠𝑜(𝑝) is (strictly) convex on Δ(𝒪), and the vector with
elements 𝑠𝑜(𝑝) is a subgradient of 𝐺 at the point 𝑝.
Hanson [9, 10] shows how a proper scoring rule designed

to elicit information from a single expert can be turned into
a mechanism for prediction markets, which aggregate the
information of multiple experts. Such a mechanism is called
a market scoring rule. and is essentially a shared proper
scoring rule. Hanson [8] also promotes the idea of decision
markets. A decision market is a prediction market for condi-
tional events. A decision maker who needs to decide among
some actions can operate a conditional prediction market for
each action. The conditional market elicits information on
outcomes of some event of interest conditioned on the cor-
responding action being taken (e.g. probability that stock
price of a company increases conditioned on A is hired as
the CEO). The decision maker can decide on what action to
take based on the elicited conditional probability distribu-
tions. Our work focuses on the incentive problem of eliciting

conditional information from a single expert using a scoring
rule, but we also discuss the implications for using a mar-
ket scoring rule for decision markets. Furthermore, while
Hanson proposes the idea of a decision market, he does not
provide any analysis or techniques showing how one could
be implemented to correctly encourage participants to re-
veal their information. As we discuss in Section 7, this is a
difficult problem.
The closest work to ours is that of Othman and Sand-

holm [16]. They pair a scoring rule for eliciting conditional
probability distributions over two outcomes with a deter-
ministic decision rule. This differs from the standard infor-
mation elicitation problem using proper scoring rules, be-
cause only one action will be taken and used to determine
the score of an expert, but the selected action depends on
the reported conditional probability distributions. Othman
and Sandholm show that for deterministic decision rules, to
have a“quasi-strictly proper”scoring rule it is necessary that
the decision rule only change its decision when probabilities
are equal. A natural version of this is the MAX rule: de-
cide on the action with the highest reported probability for
the more desirable outcome. They construct a quasi-strictly
proper scoring rule for MAX and then extend their results to
decision markets. However, they show that it is impossible
to achieve properness in decision markets using the MAX
decision rule. As an open problem, they pose the question
of how proper scoring rules can be derived for randomized
decision rules. Our main theorem answers this question with
a characterization of all (strictly) proper scoring rules for all
decision rules. Thus, we extend their results to determin-
istic rules other than MAX, randomized decision rules, and
situations with more than two outcomes.
Three other papers have considered the problem of infor-

mation elicitation in other settings where the outcome is not
independent of the predictions of experts. Shi, Conitzer, and
Guo [19] examine settings where participants in a prediction
market may also have an ability to influence the outcome.
For example, participants in a market to predict terrorist
attacks may be able to carry out acts of terrorism and em-
ployees of a company participating in a prediction market
about when a new product will launch may have the ability
to delay the launch. They show how to derive scoring rules
that do not incentivize the participants to take these “unde-
sirable” actions. However, unlike our work, the information
elicited is not explicitly used for decision making. Dimitrov
and Sami [4] examine incentive problems when there are two
prediction markets for different but related events. This
might cause a trader to report sub-optimally in one mar-
ket to mislead a trader in another market. The first trader
can also participate in the second market and profit from
correcting the second trader. This is a situation where the
payoff from the first market does not depend on the decision
the second trader makes; instead, the first trader profits di-
rectly from the decision. Our work considers the opposite
case: experts do not care what decision is made, except that
the outcome (and thus their payoffs) depends on it. Gerding
et al. [5] consider a model where experts need to be incen-
tivized to make costly observations of the quality of service
providers. They consider a number of approaches, includ-
ing scoring rules, and all face tradeoffs between encouraging
experts to invest effort and getting accurate reports. One
of their approaches, basing scores on peer predictions, could
potentially be helpful with resolving the issues with decision
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markets discussed in Section 7.

3. OUR MODEL
Before we introduce our model, we note some notational

conventions we use throughout the paper. We typically de-
note a matrix with a capital letter and an entry of a matrix
𝑃 as 𝑃𝑖,𝑜. We denote a vector as 𝑝, except that when con-
sidering a row of a matrix as a vector we denote it 𝑃𝑖. We
use the Frobenius inner product, 𝑃 : 𝑄 =

∑
𝑖,𝑜 𝑃𝑖,𝑜𝑄𝑖,𝑜, for

matrices.
Our model is essentially that of Othman and Sandholm [16],

but adapted to allow randomized decision rules and more
than two outcomes.
A decision maker needs to choose an action from a set

𝒜 = {1, . . . , 𝑛}. Each action may affect the probability of
achieving each possible outcome from a set 𝒪 = {𝑜1, . . . 𝑜𝑚}.
Othman and Sandholm [16] considered the case of two out-
comes, in which case we use ⊤ to denote the more desirable
outcome and ⊥ to denote the less.
The decision maker asks an expert to report a set of con-

ditional probability distributions, denoted by a 𝑛×𝑚 matrix
𝑃 , where 𝑃𝑖,𝑜 is the probability of outcome 𝑜 conditional on
the decision maker taking action 𝑖. We use 𝑃𝑖 to denote the
𝑖-th row of 𝑃 , that is, the probability distribution over 𝒪
conditional on action 𝑖 being taken. 𝑃𝑖 ∈ Δ(𝒪) for all ac-
tions 𝑖, where Δ(𝒪) is the probability simplex over 𝒪. We
use 𝒫 to denote the space of 𝑃 . In general, not every de-
cision need potentially lead to each outcome. For example,
we could model a decision maker that cares about which
decision is made by having a disjoint set outcomes for each
decision.
Based on the expert’s report, the decision maker makes

a decision using a decision rule 𝐷 : 𝒫 → Δ(𝒜). 𝐷𝑖(𝑃 ) is
the probability the decision maker assigns to action 𝑖 given
report 𝑃 . In the special case of a deterministic decision rule,
𝐷 : 𝒫 → 𝒜. The decision rule 𝐷 is known by the expert.
To encourage the expert to make an accurate prediction,

the decision maker rewards her using a scoring rule 𝑆 : 𝒜×
𝒪 × 𝒫 → ℝ ∪ {−∞}. For notational convenience, we use
𝑆𝑖,𝑜(𝑃 ) to represent 𝑆(𝑖, 𝑜, 𝑃 ), the score for the report 𝑃
when action 𝑖 is taken and outcome 𝑜 happens. Note that
we allow the expert’s reward to depend on the decision made,
a feature not necessary for the deterministic decision rules
considered in Othman and Sandholm’s model. We assume
the expert is risk neutral and only cares about her reward
according to the scoring rule. Specifically, she does not care
what decision is made, other than to the extent that it affects
her expected score.
We now define regular, proper, strictly proper, and quasi-

strictly proper scoring rules for a decision rule.

Definition 3.1. A scoring rule 𝑆 is regular for decision
rule 𝐷 if 𝑆𝑖,𝑜(𝑃 ) ∈ ℝ unless 𝑃𝑖,𝑜 = 0.

The definition is analogous to that of regular scoring rules in
Section 2. An expert may get a score of −∞ only if an event
occurred to which she assigned probability 0. We consider
only regular scoring rules for a decision rule in this paper
because if this condition is not met an expert can get −∞
in expectation, making the scoring rule unappealing.
Let 𝑉 (𝑃,𝑄) denote the expected score of an expert who

believes that the true conditional probabilities are 𝑃 but re-
ports the probabilities𝑄, i.e. 𝑉 (𝑃,𝑄) =

∑
𝑖,𝑜𝐷𝑖(𝑄)𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑄).

We define (strictly) proper scoring rules for a decision rule as
follows, which is a direct generalization of (strictly) proper
scoring rules in Section 2.

Definition 3.2. A regular scoring rule 𝑆 is proper for a
decision rule 𝐷 if

𝑉 (𝑃, 𝑃 ) ≥ 𝑉 (𝑃,𝑄)

for all 𝑃 and all 𝑄 ∕= 𝑃 . It is strictly proper for the decision
rule if the inequality is strict.

Othman and Sandholm showed that no deterministic de-
cision rule has a strictly proper scoring rule, but showed one
that satisfies a slightly weaker condition. Intuitively, the de-
cision maker does not care if the expert is not strictly incen-
tivized to tell the truth about the probabilities for actions
he does not take as long as he learns the true conditional
probabilities for the action he takes. We formally define the
notion for randomized decision rules below.

Definition 3.3. A regular scoring rule 𝑆 is quasi-strictly
proper for a decision rule 𝐷 if it is proper (i.e.

𝑉 (𝑃, 𝑃 ) ≥ 𝑉 (𝑃,𝑄)

for all 𝑃 and all 𝑄 ∕= 𝑃 ), and

𝑉 (𝑃, 𝑃 ) > 𝑉 (𝑃,𝑄)

for all 𝑃 and 𝑄 such that 𝑃𝑘 ∕= 𝑄𝑘 for some 𝑘 ∈ 𝜎𝑄, where
𝜎𝑄 = {𝑖∣𝐷𝑖(𝑄) > 0} is the support of 𝐷(𝑄)1.

A quasi-strictly proper scoring rule for a decision rule en-
sures that an expert is strictly incentivized to truthfully
report her conditional probability distributions for actions
that will be taken with positive probabilities by the decision
maker, although she may lie about her conditional proba-
bility distributions for actions that won’t be taken without
changing her expected score.

4. CHARACTERIZINGPROPER SCORING
RULES FOR DECISION RULES

In this section, we state and prove our main theorem, a
characterization of all regular (strictly) proper scoring rules
for arbitrary (randomized) decision rules. We show that any
scoring rule of a particular form is (strictly) proper for the
corresponding decision rule and that every regular (strictly)
proper scoring rule for a decision rule is of this form. This
form, similar to the one used by Gneiting and Raftery in
Theorem 2.1, relies on the (strict) convexity of a function
𝐺, which can be thought of as the expected truthful score
function 𝑉 (𝑃, 𝑃 ) =

∑
𝑖,𝑜𝐷𝑖𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑃 ). Our theorem can be

interpreted as saying that a scoring rule is (strictly) proper
for 𝐷 if and only if 𝐺(𝑃 ) = 𝑉 (𝑃, 𝑃 ) is (strictly) convex and
satisfies some additional conditions. 𝐺 need not be differen-
tiable in general (for example with a deterministic decision
rule), so rather than using the gradient of 𝐺, the theorem
uses the notion of a subgradient. At a point where 𝐺 is
differentiable, the gradient is the unique subgradient.

1Othman and Sandholm give a different definition of quasi-
strict properness, which does not account for the possibility
that a decision rule may be effectively “tied.” For example
the scoring rule they give for the MAX decision rule violates
their definition when 𝑃1,⊤ = 0.5, 𝑃2,⊤ = 0.5 𝑄1,⊤ = 0.4,
and 𝑄2,⊤ = 0.5, but satisfies our definition.
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The resulting theorem is quite powerful. For an arbitrary
decision rule and scoring rule it provides a simple test to de-
termine whether the scoring rule is proper for the decision
rule. For an arbitrary decision rule, it gives a method of con-
structing proper scoring rules. Additionally, generalizations
of many of Othman and Sandholm’s results [16] characteriz-
ing properties of proper scoring rules for deterministic deci-
sion rules to situations where the decision rule does not have
full support (for example that there are no strictly proper
scoring rules and that all proper scoring rules satisfy an in-
dependence of irrelevant alternatives condition), are simple
corollaries of our theorem.

Theorem 4.1. A regular scoring rule is (strictly) proper
for a decision rule 𝐷 if and only if

𝑆𝑖,𝑜(𝑃 ) =

{
𝐺(𝑃 )−𝐺′(𝑃 ) : 𝑃 +

𝐺′
𝑖,𝑜(𝑃 )

𝐷𝑖(𝑃 )
𝐷𝑖(𝑃 ) > 0

Π𝑖,𝑜(𝑃 ) 𝐷𝑖(𝑃 ) = 0
(1)

where 𝐺 : 𝒫 → ℝ ∪ {−∞} is a (strictly) convex function,
𝐺′(𝑃 ) is a subgradient of 𝐺 at the point 𝑃 with 𝐺′

𝑖,𝑜(𝑃 ) = 0
when 𝐷𝑖(𝑃 ) = 0, and Π𝑖,𝑜 : 𝒫 → 𝑅 ∪ {−∞} is an arbitrary
function that can take a value of −∞ only when 𝑃𝑖,𝑜 = 0.

Proof. Consider a regular scoring rule 𝑆 satisfying (1).
We first show that it must be (strictly) proper. Let 𝜎𝑃 =
{𝑖 ∣ 𝐷𝑖(𝑃 ) > 0}. We have,

𝑉 (𝑃, 𝑃 ) =
�

𝑖,𝑜

𝐷𝑖(𝑃 )𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑃 )

=
�

𝑖∈𝜎𝑃 ,𝑜

𝐷𝑖(𝑃 )𝑃𝑖,𝑜

(
𝐺(𝑃 )−𝐺′(𝑃 ) : 𝑃 +

𝐺′
𝑖,𝑜(𝑃 )

𝐷𝑖(𝑃 )

)

= 𝐺(𝑃 )−𝐺′(𝑃 ) : 𝑃 +
�

𝑖∈𝜎𝑃 ,𝑜

𝐺′
𝑖,𝑜(𝑃 )𝑃𝑖,𝑜

= 𝐺(𝑃 )−𝐺′(𝑃 ) : 𝑃 +𝐺′(𝑃 ) : 𝑃 = 𝐺(𝑃 ).

The fourth equality relies on the condition that 𝐺′
𝑖,𝑜(𝑃 ) = 0

when 𝐷𝑖(𝑃 ) = 0. Because 𝐺 is convex and 𝐺′ is a subgra-
dient, for 𝑄 ∕= 𝑃

𝑉 (𝑃,𝑄) =
�

𝑖,𝑜

𝐷𝑖(𝑄)𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑄)

=
�

𝑖∈𝜎𝑄,𝑜

𝐷𝑖(𝑄)𝑃𝑖,𝑜

(
𝐺(𝑄)−𝐺′(𝑄) : 𝑄+

𝐺′
𝑖,𝑜(𝑄)

𝐷𝑖(𝑄)

)

= 𝐺(𝑄) + (𝑃 −𝑄) : 𝐺′(𝑄) ≤ 𝐺(𝑃 ) = 𝑉 (𝑃, 𝑃 ).

This gives us that 𝑆 is a proper scoring rule for 𝐷. The
inequality is strict if 𝐺 is strictly convex, in which case 𝑆 is
strictly proper for 𝐷.
Now consider a regular proper scoring rule 𝑆 for 𝐷. We

will show that it must be of the form of (1). Define 𝐺(𝑃 ) =
𝑉 (𝑃, 𝑃 ) = sup𝑄 𝑉 (𝑃,𝑄) and𝐺′

𝑖,𝑜(𝑃 ) = 𝐷𝑖(𝑃 )𝑆𝑖,𝑜(𝑃 ). Each
𝑉 (𝑃,𝑄) is a convex function of 𝑃 . 𝐺 is a point-wise supre-
mum of a set of convex functions and hence is convex itself.
If 𝐷𝑖(𝑃 ) = 0, 𝐺′

𝑖,𝑜(𝑃 ) = 0 by definition. For 𝑄 ∕= 𝑃 , we
have

𝐺(𝑃 ) + (𝑄− 𝑃 ) : 𝐺′(𝑃 )

=
�

𝑖,𝑜

𝐷𝑖(𝑃 )𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑃 ) +
�

𝑖,𝑜

(𝑄𝑖,𝑜 − 𝑃𝑖,𝑜)𝐷𝑖(𝑃 )𝑆𝑖,𝑜(𝑃 )

=
�

𝑖,𝑜

𝐷𝑖(𝑃 )𝑄𝑖,𝑜𝑆𝑖,𝑜(𝑃 ) = 𝑉 (𝑄,𝑃 ) ≤ 𝑉 (𝑄,𝑄) = 𝐺(𝑄).

The inequality is due to the properness of 𝑆. It is strict if
𝑆 is strictly proper. Thus, 𝐺′ is a subgradient of the convex
function 𝐺, and 𝐺 is strictly convex if 𝑆 is strictly proper.
Finally, for any 𝑃 and 𝑗 such that 𝐷𝑗(𝑃 ) > 0,

𝐺(𝑃 )−𝐺′(𝑃 ) : 𝑃 +
𝐺′

𝑗,𝑜′(𝑃 )

𝐷𝑗(𝑃 )

=
�

𝑖,𝑜

𝐷𝑖(𝑃 )𝑃𝑖,𝑜𝑆𝑖,𝑜(𝑃 )−
�

𝑖,𝑜

𝐷𝑖(𝑃 )𝑆𝑖,𝑜(𝑃 )𝑃𝑖,𝑜 +
𝐺′

𝑗,𝑜′(𝑃 )

𝐷𝑗(𝑃 )

=
𝐺′

𝑗,𝑜′(𝑃 )

𝐷𝑗(𝑃 )
=

𝐷𝑗(𝑃 )𝑆𝑗,𝑜′(𝑃 )

𝐷𝑗(𝑃 )
= 𝑆𝑗,𝑜′(𝑃 ).

So, 𝑆 is of the proper form.

In Theorem 4.1, Π𝑖,𝑜 allows arbitrary scores to be assigned
when 𝐷𝑖(𝑃 ) = 0, subject to the constraint that the scoring
rule is regular. As the decision rule never takes action 𝑖,
the score that would be assigned if it did is essentially arbi-
trary and does not affect the expected score of the expert.
The theorem has another condition with no parallel in The-
orem 2.1 by Gneiting and Raftery: the requirement that
𝐺′

𝑖,𝑜(𝑃 ) = 0 if 𝐷𝑖(𝑃 ) = 0. This can be read as requiring
the expert’s expected score to be independent of her reports
about the probabilities for actions that will not be taken.
For proper scoring rules for a decision rule 𝐷, this condition
is satisfied by the trivial convex function 𝐺(𝑃 ) = 0, which
pays the expert nothing no matter what she reports, so she
is weakly indifferent to truthful reporting. However, this
condition may not be satisfied by any strictly convex func-
tion, resulting in a non-existence of strictly proper scoring
rules for 𝐷, an issue to which we return in Section 5.
We conclude this section with a number of examples of

proper scoring rules that can be derived using Theorem 4.1.

∙ For the two-outcome case, taking 𝐺(𝑃 ) = max𝑖 𝑃
2
𝑖,⊤

for the MAX decision rule gives the proper scoring
rule derived by Othman and Sandholm [16].

∙ More generally, with more than two outcomes the de-
cision maker may have some utility 𝑢(𝑜) for each out-
come and want to use the deterministic decision rule
that selects the action 𝑖 that maximizes expected util-
ity 𝑈𝑖(𝑃 ) =

∑
𝑜 𝑢(𝑜)𝑃𝑖,𝑜. In this case, he can use

𝐺(𝑃 ) = max𝑖 𝑈𝑖(𝑃 )2, which gives the proper scoring
rule 𝑆𝑖,𝑜 = 2𝑈𝑖(𝑃 )𝑢(𝑜) − 𝑈𝑖(𝑃 )2. Note that this rule
is not strictly proper, but we will see in Section 6 that
it is quasi-strictly proper.

∙ For the two outcome case with randomized decision
rule 𝐷𝑖(𝑃 ) = 𝑃𝑖,⊤/

∑
𝑗 𝑃𝑗,⊤, taking 𝐺(𝑃 ) =

∑
𝑖 𝑃

2
𝑖,⊤

gives us the strictly proper scoring rule 𝑆𝑖,⊤ =
∑

𝑗 2𝑃𝑗,⊤−
𝑃 2
𝑗,⊤ and 𝑆𝑖,⊥ = −∑

𝑗 𝑃
2
𝑗,⊤, which is reminiscent of the

quadratic scoring rule.

5. STRICT PROPERNESS
In addition to characterizing all proper scoring rules for

a particular decision rule, Theorem 4.1 characterizes the
strictly proper scoring rules as well. However, as Othman
and Sandholm [16] observed for the case of deterministic
rules, some decision rules may not have any strictly proper
scoring rules. More generally, we would like to know whether,
given a decision rule 𝐷, there exists a strictly convex 𝐺 sat-
isfying the requirements of Theorem 4.1, and thus a strictly
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proper scoring rule. In this section, we give sufficient con-
ditions for both the existence and non-existence of strictly
proper scoring rules.
For a strictly proper scoring rule to exist, we need to find

a strictly convex function 𝐺 that satisfies the condition from
Theorem 4.1 that 𝐺′

𝑖,𝑜(𝑃 ) = 0 whenever 𝐷𝑖(𝑃 ) = 0. When
𝐷(𝑃 ) always has full support (i.e. 𝐷𝑖(𝑃 ) is never 0) this is
trivially satisfied by any strictly convex function. This gives
us a sufficient condition for a decision rule to have a strictly
proper scoring rule.

Corollary 5.1. If a decision rule 𝐷 always has full sup-
port (𝐷𝑖(𝑃 ) > 0 for all 𝑖 and 𝑃 ) then it has a strictly proper
scoring rule.

Proof. Any strictly convex function𝐺, for example𝐺(𝑃 ) =∑
𝑖,𝑜 𝑃

2
𝑖,𝑜, satisfies the requirements of Theorem 4.1 and thus

yields a strictly proper scoring rule.

On the other hand, Othman and Sandholm show that no
deterministic decision rule has a strictly proper scoring rule.
The following corollary establishes a larger class of decision
rules for which this is the case, namely those for which the
probability distribution over actions chosen by the decision
rule does not have full support and there is a case where the
probabilities outside the support can be changed without
changing the probability distribution over actions.

Corollary 5.2. If there exist 𝑃 ∕= 𝑄 such that

1. 𝐷(𝑃 ) = 𝐷(𝑄),

2. 𝜎𝑃 ⊂ 𝒜, and

3. 𝑃𝑖,𝑜 = 𝑄𝑖,𝑜 for all 𝑖 ∈ 𝜎𝑃 and all 𝑜,

then 𝐷 does not have a strictly proper scoring rule.

Proof. Consider such a 𝑃 and 𝑄 and a proper scoring
rule 𝑆. By Theorem 4.1, 𝐺′

𝑖,𝑜(𝑃 ) = 𝐺′
𝑖,𝑜(𝑄) = 0 for all

𝑖 ∕∈ 𝜎𝑃 , so 𝐺(𝑃 ) = 𝐺(𝑄) and

𝑉 (𝑃,𝑄) =
�

𝑖,𝑜

𝑃𝑖,𝑜𝐷𝑖(𝑄)𝑆𝑖,𝑜(𝑄)

=
�

𝑖∈𝜎𝑄,𝑜

𝑃𝑖,𝑜𝐷𝑖(𝑄)(𝐺(𝑄) +𝐺′(𝑄) : 𝑄+𝐺′
𝑖,𝑜(𝑄))

=
�

𝑖∈𝜎𝑃 ,𝑜

𝑃𝑖,𝑜𝐷𝑖(𝑃 )(𝐺(𝑃 ) +𝐺′(𝑃 ) : 𝑃 +𝐺′
𝑖,𝑜(𝑃 ))

= 𝑉 (𝑃, 𝑃 ).

Thus 𝑆 is not strictly proper.

While Corollary 5.2 shows that a subset of decision rules
that do not have full support do not have a strictly proper
scoring rule, the following open problem remains.

Open Problem 1. Characterize when decision rules that
do not have full support and also do not satisfy the additional
conditions of Corollary 5.2 have a strictly proper scoring
rule.

6. QUASI-STRICT PROPERNESS
We saw in Section 5 that, while we can always construct

a proper scoring rule, many decision rules do not have any
strictly proper scoring rules. The mere existence of a proper
scoring rule is unsatisfying; the scoring rule that gives the
expert a score of 0 no matter what the decision and outcome

is proper for every decision rule but gives the expert no par-
ticular incentive to reveal her beliefs. Strictly proper scoring
rules fix this problem by ensuring that truthful reporting
is uniquely optimal. While not quite as satisfying, a quasi-
strictly proper scoring rule provides the weaker promise that,
no matter what optimal report the expert makes, she re-
ported her true beliefs over the outcome space for the ac-
tions the decision maker might take. In this section, we give
a derivation of quasi-strictly proper scoring rules for a class
of decision rules.
To build intuition about how quasi-strictly proper scoring

rules can be derived, we first examine a set of sufficient con-
ditions for a scoring rule to be quasi-strictly proper for the
MAX decision rule.

Lemma 6.1 (Othman and Sandholm [16]). Let 𝑓 and
𝑔 be functions such that

1. 𝑓 and 𝑔 are twice differentiable on (0, 1),

2. ℎ(𝑝) = 𝑝𝑓(𝑝) + (1 − 𝑝)𝑔(𝑝) is strictly increasing on
[0, 1],

3. 𝑝𝑓 ′(𝑝) + (1− 𝑝)𝑔′(𝑝) = 0 for all 𝑝 ∈ [0, 1], and

4. 𝑝𝑓 ′′(𝑝) + (1− 𝑝)𝑔′′(𝑝) < 0 for all 𝑝 ∈ [0, 1].2

Then 𝑆𝑖,⊤(𝑃 ) = 𝑓(𝑃𝑖,⊤) and 𝑆𝑖,⊥(𝑃 ) = 𝑔(𝑃𝑖,⊤) is quasi-
strictly proper for the MAX decision rule.

A subset of these conditions also suffices to prove that a
function ℎ used in the construction is strictly convex.

Lemma 6.2. Let 𝑓 and 𝑔 be functions such that

1. 𝑓 and 𝑔 are twice differentiable on (0, 1),

2. 𝑝𝑓 ′(𝑝) + (1− 𝑝)𝑔′(𝑝) = 0 for all 𝑝 ∈ [0, 1],

3. 𝑝𝑓 ′′(𝑝) + (1− 𝑝)𝑔′′(𝑝) < 0 for all 𝑝 ∈ [0, 1].

Then ℎ(𝑝) = 𝑝𝑓(𝑝) + (1− 𝑝)𝑔(𝑝) is strictly convex on [0, 1].

Proof. ℎ′(𝑝) = 𝑓(𝑝) − 𝑔(𝑝) + 𝑝𝑓 ′(𝑝) + (1 − 𝑝)𝑔′(𝑝) and
ℎ′′(𝑝) = 2(𝑓 ′(𝑝) − 𝑔′(𝑝)) + 𝑝𝑓 ′′(𝑝) + (1 − 𝑝)𝑔′′(𝑝). Because
𝑝𝑓 ′(𝑝) + (1 − 𝑝)𝑔′(𝑝) = 0, we have ℎ′(𝑝) = 𝑓(𝑝) − 𝑔(𝑝) and
ℎ′′(𝑝) = 𝑓 ′(𝑝)− 𝑔′(𝑝). Combining our two equations for ℎ′′

gives 𝑓 ′(𝑝) − 𝑔′(𝑝) + 𝑝𝑓 ′′(𝑝) + (1 − 𝑝)𝑔′′(𝑝) = 0, or 𝑓 ′(𝑝) >
𝑔′(𝑝). Thus ℎ′′(𝑝) > 0 and ℎ is strictly convex.

This is not a coincidence; we now show how such strictly
convex functions can be used to construct quasi-strictly proper
scoring rules for a large class of decision rules. In the sim-
ple case of deterministic decision rules, the members of this
class share the feature that the desirability of each action
can be computed as a strictly convex function of the condi-
tional probabilities reported for that action and the decision
rule simply takes the maximum of these desirabilities. For
example, the MAX decision rule for two outcomes can be
expressed as 𝐷(𝑃 ) ∈ argmax𝑖 𝑃

2
𝑖,⊤, where ℎ(𝑃𝑖) = 𝑃 2

𝑖,⊤ is a
strictly convex function of 𝑃𝑖. More generally the decision
rule may randomize over several actions and may a priori
exclude some actions or combinations of actions from con-
sideration. Thus, our construction proceeds by selecting a
subset of the power set of actions, associating a strictly con-
vex function with each, and showing that every correspond-
ing decision rule has a quasi-strictly proper scoring rule.
2Othman and Sandholm do not explicitly state this condi-
tion, but it is implicit from the proof of their Theorem 7.
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Lemma 6.3. Let 𝛽 ⊆ 2𝒜 − {∅}, and for each 𝑏 ∈ 𝛽,

𝐺𝑏 : Δ(𝒪)∣𝑏∣ → ℝ be a strictly convex function, 𝐷(𝑃 ) have
support argmax𝑏∈𝛽 𝐺

𝑏(𝑃𝑏) for all 𝑃 , and 𝑃𝑏 be the submatrix
of 𝑃 consisting of those rows whose action is in 𝑏. Then, the
scoring rule from Theorem 4.1 with 𝐺(𝑃 ) = max𝑏∈𝛽 𝐺

𝑏(𝑃𝑏)
is quasi-strictly proper for 𝐷.

Proof. Let 𝑃 and 𝑄 be given and let 𝑏 be the support of
𝐷(𝑄) (the decisions made with positive probability). Then
by Theorem 4.1 and the strict convexity of 𝐺𝑏,

𝑉 (𝑃,𝑄) = 𝐺(𝑄) + (𝑃 −𝑄) : 𝐺′(𝑄)

= 𝐺𝑏(𝑄𝑏) + (𝑃𝑏 −𝑄𝑏) : (𝐺
𝑐)′(𝑄𝑏)

≤ 𝐺𝑏(𝑃𝑏) ≤ max
𝑐∈𝛽

𝐺𝑐(𝑃𝑐) = 𝑉 (𝑃, 𝑃 ).

If 𝑃𝑏 ∕= 𝑄𝑏 the first inequality is strict. If 𝑏 ∕∈ argmax𝑐∈𝛽 𝐺
𝑐(𝑃𝑐)

the second is strict. Thus the scoring rule is quasi-strictly
proper for 𝐷.

In the statement of Lemma 6.3, 𝛽 is the set of possible
supports the decision rule considers. For each such sup-
port 𝑏, 𝐺𝑏 is a strictly convex function that determines
how “good” that support is given the probabilities (𝐺𝑏(𝑃𝑏)).
Our construction applies to any decision rule that always
has a support that is “best” according to the various 𝐺𝑏

(argmax𝑏∈𝛽 𝐺
𝑏(𝑃𝑏)). There are many such rules, as this

condition restricts only the support, not the actual decision
probabilities. Each has a different quasi-strictly proper scor-
ing rule, but they can all be derived from the same convex
function 𝐺(𝑃 ) = max𝑏∈𝛽 𝐺

𝑏(𝑃𝑏).
Lemma 6.3 allows us to derive quasi-strictly proper scor-

ing rules for deterministic decision rules with two outcomes
using 𝛽 = 𝒜 and 𝐺𝑏 = ℎ. For example, we can derive
quasi-strictly proper scoring rules for MAX (e.g. ℎ(𝑃𝑖) =
𝑃 2
𝑖,⊤, mentioned previously, gives Othman and Sandholm’s

rule [16]), MIN (e.g. ℎ(𝑃𝑖) = 𝑃 2
𝑖,⊥), and even strange rules

like “probability farthest from 0.5” (ℎ(𝑃𝑖) = (𝑃𝑖,⊤ − 0.5)2).
We can take 𝛽 ⊂ 𝒜 to allow for decisions rules that only
allow certain actions (e.g. “choose whichever of actions 1
and 3 is more likely to succeed”). With more than two out-
comes it allows rules like the expected utility maximization
rule from Section 4. We can also apply this construction to
the randomized case. For example, we saw in Section 4 a
construction of a scoring rule that is strictly proper for the
decision rule 𝐷𝑖(𝑃 ) = 𝑃𝑖,⊤/

∑
𝑗 𝑃𝑗,⊤. Lemma 6.3 tells us

that a version of this rule that disregards some actions and
uses an appropriately modified scoring rule is quasi-strictly
proper. In particular, if 𝛼 ⊂ 𝒜 is the set of actions con-
sidered then Lemma 6.3 can be applied with 𝛽 = {𝛼} and
𝐺𝛼(𝑃 ) =

∑
𝑖∈𝛼 𝑃

2
𝑖,⊤.

The proof of Lemma 6.3 actually proves something stronger
than quasi-strict properness. In particular, it shows that,
unless the support of𝐷(𝑄) is a maximizer of max𝑐∈𝛽 𝐺

𝑐(𝑃𝑐),
𝑉 (𝑃, 𝑃 ) > 𝑉 (𝑃,𝑄). Thus, not only does the expert have a
strict incentive to report the true probabilities for the actions
the decision maker ends up randomizing over, she also has
a strict incentive to ensure this set is one that the decision
rule considers “optimal.”
One interesting observation about these scoring rules in

the deterministic case is that they can all be viewed as
strictly proper scoring rules when outcomes are exogenous.
For example taking ℎ(𝑃𝑖) = 𝑃 2

𝑖,⊤ and 𝐷(𝑃 ) = 𝑖 gives the

scoring rule 𝑠⊤(𝑃𝑖) = 2𝑃𝑖,⊤ − 𝑃 2
𝑖,⊤ and 𝑠⊥(𝑃𝑖) = −𝑃 2

𝑖,⊤,

which is a variant of the well known quadratic scoring rule
(which is strictly proper).
In fact, we can show that this is generally true for quasi-

strictly proper scoring rules derived according to Lemma 6.3
with a deterministic decision rule. When 𝐷 is a determin-
istic decision rule, its support given 𝑃 must be a singleton
action. Hence, 𝛽 in Lemma 6.3 equals 𝒜 . For each ele-
ment of 𝛽 (i.e. each action 𝑖), we set 𝐺𝑖(𝑃𝑖) = ℎ(𝑃𝑖), where
ℎ is strictly convex. Thus, the decision rule will take ac-
tion 𝑘 where 𝑘 ∈ argmax𝑖∈𝒜 ℎ(𝑃𝑖). We assume that the
decision rule breaks ties arbitrarily when there are more
than one actions that have the same highest value of ℎ(𝑃𝑖).
We have 𝐺(𝑃 ) = max𝑖∈𝒜 ℎ(𝑃𝑖) = ℎ(𝑃𝑘) and can derive a
quasi-strictly proper scoring rule 𝑆𝑖,𝑜(𝑃 ) according to ex-
pression (1) in Theorem 4.1. Clearly, for the chosen action
𝑘, 𝑆𝑘,𝑜(𝑃 ) only depends on 𝑃𝑘. We would like to consider
whether 𝑆𝑘,𝑜(𝑃 ) can be viewed as a strictly proper scoring
rule of 𝑃𝑘 assuming that action 𝑘 is always chosen no mat-
ter how 𝑃𝑘 changes. Let 𝑞⃗ = argmin𝑝 ℎ(𝑝). 𝑞⃗ is unique
because ℎ is strictly convex. We construct a scoring rule
𝑠𝑜(𝑝) = 𝑆𝑘,𝑜(𝑄

𝑝) where 𝑄𝑝 is a probability matrix where

𝑄𝑝
𝑘 = 𝑝 and 𝑄𝑝

𝑗 = 𝑞⃗ for all 𝑗 ∕= 𝑘.

Corollary 6.1. 𝑠𝑜(𝑝) constructed above is strictly proper.

Proof. For all 𝑝, 𝐷(𝑄𝑝) = 𝑘, so 𝑠𝑜(𝑝) = 𝑆𝑘,𝑜(𝑄
𝑝) =

ℎ(𝑝) − ℎ′(𝑝) ⋅ 𝑝 + ℎ′
𝑜(𝑝). By Theorem 2.1 and the strict

convexity of ℎ, 𝑠 is strictly proper.

Thus, for deterministic decision rules, the quasi-strictly
proper scoring rules derived according to Lemma 6.3 are
strictly proper given a chosen action. As we will see in Sec-
tion 7.1, this is a potentially useful property if one of these
rules is used as a basis for a decision market.

7. DISCUSSION: DECISION MARKETS
Scoring rules are useful in their own right as a tool to elicit

information from a single expert, but collectively a group of
experts may provide better information. In this section, we
discuss some challenges and observations on using decision
markets to elicit information from multiple experts.
For a standard market scoring rule, using a strictly proper

scoring rule 𝑠, the market maintains a probability distribu-
tion over outcomes 𝑝. At any time, a trader can change this
to 𝑞⃗, and in doing so accepts the following bet: if outcome 𝑜
occurs then the market pays her 𝑠𝑜(𝑞⃗)−𝑠𝑜(𝑝) (which may be
negative). A trader who only participates once maximizes
her expected payoff by changing the market probability to
match her true beliefs. We can use the same approach for
decision markets. A decision market maintains a market
probability matrix 𝑃 . Any trader can change this to 𝑄,
accepting the bet that if action 𝑖 is taken and outcome 𝑜
occurs then she receives 𝑆𝑖,𝑜(𝑄) − 𝑆𝑖,𝑜(𝑃 ). At the close of
the market, there is some final probability matrix 𝐹 , and
the decision is made according to 𝐷(𝐹 ).
However, as Othman and Sandholm [16] observed, traders’

incentives are not as perfectly aligned in a decision market,
even if 𝑆 is a proper scoring rule for 𝐷. A trader’s pay-
off relying on 𝐷(𝐹 ) points to two key issues. First, in or-
der to determine her expected utility for a report, a trader
needs to know what 𝐹 will be, which is not determined until
the market closes. One way to resolve this issue is to fol-
low Othman and Sandholm and consider the last trader in
the market, whose report is 𝐹 (or equivalently assume that
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traders are myopic and all assume they are the last trader).
Second, in a standard market scoring rule, a trader’s ex-
pected payment to the market institution given beliefs 𝑞⃗
is 𝑞⃗ ⋅ 𝑠(𝑝), which is independent of her report. Thus, she
chooses her report 𝑟⃗ to maximize 𝑞⃗ ⋅ 𝑠(𝑟⃗), and strict proper-
ness of 𝑠 is sufficient. However, a myopic trader who re-
ports 𝑅 in a decision market makes an expected payment
of

∑
𝑖,𝑜𝐷𝑖(𝑅)𝑄𝑖,𝑜𝑆𝑖,𝑜(𝑃 ) given beliefs 𝑄. This is not inde-

pendent of 𝑅. Thus, although properness of 𝑆 means that
𝑄 maximizes

∑
𝑖,𝑜 𝐷𝑖(𝑅)𝑄𝑖,𝑜𝑆𝑖,𝑜(𝑅), unlike the simple mar-

ket scoring rule case, it does not follow that 𝑄 maximizes∑
𝑖,𝑜𝐷𝑖(𝑅)𝑄𝑖,𝑜(𝑆𝑖,𝑜(𝑅)− 𝑆𝑖,𝑜(𝑃 )).
Othman and Sandholm give the following example for the

two-outcome, two-action case under the MAX decision rule
with scoring rule 𝑆𝑖,⊤(𝑃 ) = 2𝑃𝑖,⊤ − 𝑃 2

𝑖,⊤, 𝑆𝑖,⊥(𝑃 ) = −𝑃 2
𝑖,⊤

and show that all scoring rules for MAX have similar ma-
nipulations. Suppose a trader believes the true probabilities
are (𝑄1,⊤, 𝑄2,⊤) = (0.8, 0.75), but the current market prob-
abilities are (0.8, 0.3). If the trader reports her true belief,
her net expected payment is 0, but if she reports (0.8, 0.81)
her expected payment is 0̃.15. In essence, she only gets paid
for correcting the value of 𝑃2,⊤ if she convinces the deci-
sion maker to choose decision 2. To make matters worse,
any later trader with similar beliefs is weakly indifferent
to correcting the market, so the market may get stuck at
these wrong probabilities. Furthermore, this manipulation
is “safe;” if action 1 is chosen in the end the trader’s pay-
ment is 0 and if action 2 is chosen her expected payment is
positive.
Clearly this is not a desirable outcome. Othman and

Sandholm propose to address this problem choosing a scor-
ing rule that minimizes, but does not eliminate, the incentive
for a trader to perform such a manipulation. In the remain-
der of this section we consider several other approaches.

7.1 Faith in Markets
Suppose that, rather than being myopic, a trader believes

the market will “get it right” in the end. That is, if her
beliefs are 𝑄, she believes that, regardless of her report 𝐹
will eventually equal 𝑄. Then she believes that the portion
of her payment to the market institution based on the cur-
rent market probabilities is

∑
𝑖,𝑜𝐷𝑖(𝑄)𝑄𝑖,𝑜𝑆𝑖,𝑜(𝑃 ), which

is independent of her report. Thus she wants to optimize∑
𝑖,𝑜𝐷𝑖(𝑄)𝑄𝑖,𝑜𝑆𝑖,𝑜(𝑅) by selecting 𝑅. In this case, 𝑆𝑖,𝑜(𝑅)

need not to be proper for 𝐷. In fact, we can replace 𝑆𝑖,𝑜(𝑅)
with any standard proper scoring rule 𝑠(𝑅𝑖) and traders are
incentivized to report their true beliefs. Thus, if traders
believe in the market, the decision maker can simply use a
standard proper scoring rule!
Of course, as Othman and Sandholm’s example shows,

traders may have good reason to believe that the market will
not get it right. In particular, traders near the close of the
market may have an incentive to distort the probabilities.
Luckily, for deterministic decision rules, Corollary 6.1 shows
that the quasi-strictly proper scoring rules we derive are
in fact proper scoring rules in this sense! Thus by using
such a rule we can simultaneously provide myopic traders
an incentive for truthful reporting in many, though not all,
situations and provide traders with faith in the market an
incentive for truthful reporting.

7.2 Differing Beliefs
We saw that one potential way around Othman and Sand-

holm’s example is if some traders have a different belief
about the final market prediction 𝐹 . Another possibility is
some traders have different beliefs about the true probability
matrix. For example, consider a trader arriving with beliefs
(0.79, 0.74) and market probabilities (0.8, 0.81). Depending
on her beliefs about 𝐹 , the trader has an incentive to change
at least one of the probabilities to match her beliefs, so the
market will no longer be “stuck” at (0.8, 0.81).

7.3 Randomized Decision Rules
The negative example involves a deterministic decision

rule. Potentially, randomized rules could have better in-
centive properties. However, simply adding randomness is
not a panacea, as the following example shows.
Suppose 𝒜 = {1, 2} and 𝒪 = {⊤,⊥}. In section 4,

we saw that the scoring rule 𝑆𝑖,⊤ =
∑

𝑗 2𝑃𝑗,⊤ − 𝑃 2
𝑗,⊤ and

𝑆𝑖,⊥ =
∑

𝑗 −𝑃 2
𝑗,⊤ is strictly proper for the decision rule

𝐷𝑖(𝑃 ) = 𝑃𝑖,⊤/(𝑃1,⊤ + 𝑃2,⊤). Suppose the current market
probabilities are (0.8, 0.7) and a myopic trader arrives with
the belief (0.8, 0.7). Ideally, we would like her to not make
a prediction as the current market probabilities match her
belief. However, it turns out to be optimal for her to report
(0.75, 0.75). More generally, we have the following lemma.

Lemma 7.1. Suppose 𝒜 = {1, 2}, 𝒪 = {⊤,⊥}, 𝐷𝑖(𝑃 ) =
𝑃𝑖,⊤/(𝑃1,⊤ +𝑃2,⊤), and 𝑆𝑖,⊤ =

∑
𝑗 2𝑃𝑗,⊤ −𝑃 2

𝑗,⊤ and 𝑆𝑖,⊥ =∑
𝑗 −𝑃 2

𝑗,⊤. Suppose the current market probabilities are 𝑃
and a myopic trader arrives with belief 𝑃 . The trader’s opti-
mal report is 𝑄𝑖,⊤ = (𝑃1,⊤+𝑃2,⊤)/2. Furthermore, suppose
the current market probabilities are 𝑄 when the trader ar-
rives. Then her optimal report is still 𝑄.

The proof is straightforward calculus and is therefore omit-
ted. In many ways this example is worse than Othman and
Sandholm’s. Even if the market reaches the correct proba-
bilities, the next trader to arrive will change them to values
that give the decision maker no useful information. Fur-
thermore, these uninformative values are stable. While this
feature makes this particular randomized decision rule and
scoring rule pair a poor choice for use in a decision market,
the more general question is open.

Open Problem 2. Is there a randomized decision rule
and corresponding scoring rule with good incentive properties
for decision markets?

7.4 Increasing Market Maker Loss
Another option is to consider a more drastic change to

the design of the market. Othman and Sandholm’s example
shows that a decision market can get “stuck” with a predic-
tion like (0.8, 0.81) that no rational agent has an incentive
to fix, because of the form of the expected payment of a my-
opic trader:

∑
𝑖,𝑜𝐷𝑖(𝑅)𝑄𝑖,𝑜(𝑆𝑖,𝑜(𝑅)−𝑆𝑖,𝑜(𝑃 )). Suppose we

gave each trader only the side of the bet based on her predic-
tion (i.e.

∑
𝑖,𝑜𝐷𝑖(𝑅)𝑄𝑖,𝑜(𝑆𝑖,𝑜(𝑅)) assuming she is myopic).

Then if 𝑆 is proper she would have an incentive to report
her true probability rather than leaving the market at the
current probability.
This approach loses the shared nature of market scoring

rules and may create a large loss for the market maker. In
particular, using a market scoring rule, if the initial predic-
tion is 𝑃 0 and traders update this as 𝑃 1, . . . , 𝑃 𝑓 , the market
maker’s total payments to traders when action 𝑖 is chosen
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and outcome 𝑜 occurs are 𝑆𝑖,𝑜(𝑃
1) − 𝑆𝑖,𝑜(𝑃

0), 𝑆𝑖,𝑜(𝑃
2) −

𝑆𝑖,𝑜(𝑃
1), . . . , 𝑆𝑖,𝑜(𝑃

𝑓 )−𝑆𝑖,𝑜(𝑃
𝑓−1), for a total of 𝑆𝑖,𝑜(𝑃

𝑓 )−
𝑆𝑖,𝑜(𝑃

0). If traders’ payments are changed to be based only
on their own predictions, this property disappears.
While paying each trader based solely on her own predic-

tion can be expensive, if this is done occasionally the loss
may be acceptable. For example, once per hour or once per
day the market maker could select a random trader to whom
to make such an offer. The loss of the market maker is linear
in the number of such offers made.

8. CONCLUSION
We examined the problem of information elicitation for

decision making. One agent, a decision maker, wants to
choose a distribution over a set of actions based on the prob-
ability distribution over outcomes for each action. Another
agent, an expert, has a belief about these probabilities that
the decision maker wants to elicit. Such elicitation is done
through scoring rules. Othman and Sandholm [16] studied
this problem for deterministic decision rules, with many of
their results focusing on the MAX decision rule in partic-
ular. Our main result significantly generalized their results
by providing a complete characterization of (strictly) proper
scoring rules for arbitrary decision rules.
This characterization allowed us to give a sufficient condi-

tion for a decision rule to have a strictly proper scoring rule
and a sufficient condition for no strictly proper scoring rule
to exist. As these sufficient conditions do not cover all deci-
sion rules, an open problem remains. We also showed how
our characterization allows us to derive quasi-strictly proper
scoring rules in a number of cases where strictly proper scor-
ing rules do not exist.
Finally, we discussed how the elicitation problem becomes

more complicated when there are multiple experts, an obser-
vation also made by Othman and Sandholm [16]. A natural
approach is to use a proper scoring rule for a decision rule
to make a decision market, in the same way proper scor-
ing rules are used to make prediction markets. However,
this introduces two main problems. First, since only one
decision is made in the end, an agent trading in the mar-
ket has to base her decisions on beliefs about what the final
market probabilities would be, a strategic problem with no
parallel in prediction markets. Second, since no individual
trader controls the final decision, scoring rules that encour-
age truthful revelation when they do have control no longer
have the safe effect. We examined several ways this problem
might be tackled in practice.
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ABSTRACT
An important aspect in systems of multiple autonomous
agents is the exploitation of synergies via coalition forma-
tion. In this paper, we solve various open problems con-
cerning the computational complexity of stable partitions
in additively separable hedonic games. First, we propose a
polynomial-time algorithm to compute a contractually in-
dividually stable partition. This contrasts with previous
results such as the NP-hardness of computing individually
stable or Nash stable partitions. Secondly, we prove that
checking whether the core or the strict core exists is NP-
hard in the strong sense even if the preferences of the players
are symmetric. Finally, it is shown that verifying whether
a partition consisting of the grand coalition is contractual
strict core stable or Pareto optimal is coNP-complete.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Theory, Economics

Keywords
Game theory (cooperative and non-cooperative); teamwork,
coalition formation, coordination; incentives for cooperation

1. INTRODUCTION
Ever since the publication of von Neumann and

Morgenstern’s Theory of Games and Economic Behavior in
1944, coalitions have played a central role within game the-
ory. The crucial questions in coalitional game theory are
which coalitions can be expected to form and how the mem-
bers of coalitions should divide the proceeds of their coop-
eration. Traditionally the focus has been on the latter issue,
which led to the formulation and analysis of concepts such
as the core, the Shapley value, or the bargaining set. Which
coalitions are likely to form is commonly assumed to be set-
tled exogenously, either by explicitly specifying the coalition

Cite as: Stable partitions in additively separable hedonic games, Haris
Aziz, Felix Brandt and Hans Georg Seedig, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 183-190.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

structure, a partition of the players in disjoint coalitions, or,
implicitly, by assuming that larger coalitions can invariably
guarantee better outcomes to its members than smaller ones
and that, as a consequence, the grand coalition of all players
will eventually form. The two questions, however, are clearly
interdependent: the individual players’ payoffs depend on
the coalitions that form just as much as the formation of
coalitions depends on how the payoffs are distributed.

Coalition formation games, as introduced by Drèze and
Greenberg [12], provide a simple but versatile formal model
that allows one to focus on coalition formation. In many
situations it is natural to assume that a player’s apprecia-
tion of a coalition structure only depends on the coalition
he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. [4] and Bogomolnaia
and Jackson [6], much of the work on coalition formation
now concentrates on these so-called hedonic games. Hedonic
games are relevant in modeling many settings such as forma-
tion of groups, clubs and societies [6], and also online social
networking [13]. The main focus in hedonic games has been
on notions of stability for coalition structures such as Nash
stability, individual stability, contractual individual stability,
or core stability and characterizing conditions under which
the set of stable partitions is guaranteed to be non-empty
(see, e.g., [6, 8]). Sung and Dimitrov [21] presented a tax-
onomy of stability concepts which includes the contractual
strict core, the most general stability concept that is guaran-
teed to exist. A well-studied special case of hedonic games
are two-sided matching games in which only coalitions of
size two are admissible [18]. We refer to Hajduková [16] for
a critical overview of hedonic games.

Hedonic games have recently been examined from an al-
gorithmic perspective (see, e.g., [3, 11]). Cechlárová [9] sur-
veyed the algorithmic problems related to stable partitions
in hedonic games in various representations. Ballester [3]
showed that for hedonic games represented by individually
rational list of coalitions, the complexity of checking whether
core stable, Nash stable, or individual stable partitions exist
is NP-complete. He also proved that every hedonic game ad-
mits a contractually individually stable partition. Coalition
formation games have also received attention in the artificial
intelligence community where the focus has generally been
on computing optimal partitions for general coalition forma-
tion games without any combinatorial structure [19]. Elkind
and Wooldridge [13] proposed a fully-expressive model to
represent hedonic games which encapsulates well-known rep-
resentations such as individually rational list of coalitions
and additive separability.
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Additively separable hedonic games (ASHGs) constitute a
particularly natural and succinctly representable class of he-
donic games. Each player in an ASHG has a value for any
other player and the value of a coalition to a particular player
is simply the sum of the values he assigns to the members
of his coalition. Additive separability satisfies a number of
desirable axiomatic properties [5] and ASHGs are the non-
transferable utility generalization of graph games studied by
Deng and Papadimitriou [10]. Olsen [17] showed that check-
ing whether a nontrivial Nash stable partition exists in an
ASHG is NP-complete if preferences are nonnegative and
symmetric. This result was improved by Sung and Dimitrov
[22] who showed that checking whether a core stable, strict
core stable, Nash stable, or individually stable partition ex-
ists in a general ASHG is NP-hard.

Dimitrov et al. [11] obtained positive algorithmic results
for subclasses of ASHGs in which each player merely di-
vides other players into friends and enemies. Branzei and
Larson [7] examined the tradeoff between stability and so-
cial welfare in ASHGs. Recently, Gairing and Savani [14]
showed that computing partitions that satisfy some vari-
ants of individual-based stability is PLS-complete, even for
very restricted preferences. In another paper, Aziz et al. [2]
studied the complexity of computing and verifying optimal
partitions in ASHGs.

In this paper, we settle the complexity of key prob-
lems regarding stable partitions of ASHGs. We present a
polynomial-time algorithm to compute a contractually in-
dividually stable partition. This is the first positive algo-
rithmic result (with respect to one of the standard stabil-
ity concepts put forward by Bogomolnaia and Jackson [6])
for general ASHGs with no restrictions on the preferences.
We strengthen recent results of Sung and Dimitrov [22] and
prove that checking whether the core or the strict core ex-
ists is NP-hard, even if the preferences of the players are
symmetric. Finally, it is shown that verifying whether a
partition is in the contractual strict core (CSC) is coNP-
complete, even if the partition under question consists of
the grand coalition. This is the first computational hard-
ness result concerning CSC stability in hedonic games of any
representation. The proof can be used to show that verify-
ing whether the partition consisting of the grand coalition is
Pareto optimal is coNP-complete, thereby answering a ques-
tion mentioned by Aziz et al. [2]. Our computational hard-
ness results imply computational hardness of the equivalent
questions for hedonic coalition nets [13].

2. PRELIMINARIES
In this section, we provide the terminology and notation

required for our results.
A hedonic coalition formation game is a pair (N,P) where

N is a set of players and P is a preference profile which
specifies for each player i ∈ N the preference relation %i, a
reflexive, complete, and transitive binary relation on the set
Ni = {S ⊆ N | i ∈ S}. The statement S �i T denotes that
i strictly prefers S over T whereas S ∼i T means that i is
indifferent between coalitions S and T . A partition π is a
partition of players N into disjoint coalitions. By π(i), we
denote the coalition of π that includes player i.

We consider utility-based models rather than purely or-
dinal models. In additively separable preferences, a player
i gets value vi(j) for player j being in the same coalition
as i and if i is in coalition S ∈ Ni, then i gets utility

∑
j∈S vi(j). A game (N,P) is additively separable if for each

player i ∈ N , there is a utility function vi : N → R such
that vi(i) = 0 and for coalitions S, T ∈ Ni, S %i T if and
only if

∑
j∈S vi(j) ≥

∑
j∈T vi(j). We will denote the utility

of player i in partition π by uπ(i).
A preference profile is symmetric if vi(j) = vj(i) for any

two players i, j ∈ N and is strict if vi(j) 6= 0 for all i, j ∈ N .
For any player i, let F (i, A) = {j ∈ A | vi(j) > 0} be the
set of friends of player i within A.

We now define important stability concepts used in the
context of coalition formation games.

• A partition is Nash stable (NS) if no player can benefit
by moving from his coalition S to another (possibly
empty) coalition T .

• A partition is individually stable (IS) if no player can
benefit by moving from his coalition S to another ex-
isting (possibly empty) coalition T while not making
the members of T worse off.

• A partition is contractually individually stable (CIS) if
no player can benefit by moving from his coalition S
to another existing (possibly empty) coalition T while
making neither the members of S nor the members of
T worse off.

• We say that a coalition S ⊆ N strongly blocks a par-
tition π, if each player i ∈ S strictly prefers S to his
current coalition π(i) in the partition π. A partition
which admits no blocking coalition is said to be in the
core (C).

• We say that a coalition S ⊆ N weakly blocks a parti-
tion π, if each player i ∈ S weakly prefers S to π(i)
and there exists at least one player j ∈ S who strictly
prefers S to his current coalition π(j). A partition
which admits no weakly blocking coalition is in the
strict core (SC).

• A partition π is in the contractual strict core (CSC)
if any weakly blocking coalition S makes at least one
player j ∈ N \ S worse off when breaking off.

The inclusion relationships between stability concepts de-
picted in Figure 1 follow from the definitions of the concepts.
We will also consider Pareto optimality. A partition π of N
is Pareto optimal if there exists no partition π′ of N such
that for all i ∈ N , π′(i) %i π(i) and there exists at least
one player j ∈ N such that π′(j) �j π(j). We say that a
partition π satisfies individual rationality if each player does
as well as by being alone, i.e., for all i ∈ N , π(i) %i {i}.

Throughout the paper, we assume familiarity with basic
concepts of computational complexity (see, e.g., [1]).

3. CONTRACTUAL INDIVIDUAL STABIL-
ITY

It is known that computing or even checking the existence
of Nash stable or individually stable partitions in an ASHG
is NP-hard. On the other hand, a potential function argu-
ment can be used to show that at least one CIS partition
exists for every hedonic game [3]. The potential function
argument does not imply that a CIS partition can be com-
puted in polynomial time. There are many cases in hedonic
games, where a solution is guaranteed to exist but computing
it is not feasible. For example, Bogomolnaia and Jackson [6]
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Figure 1: Inclusion relationships between stability
concepts. For example, every Nash stable partition
is also individually stable.

presented a potential function argument for the existence of
a Nash stable partition for ASHGs with symmetric prefer-
ences. However there are no known polynomial-time algo-
rithms to compute such partitions and there is evidence that
there may not be any polynomial-time algorithm [14]. In
this section, we show that a CIS partition can be computed
in polynomial time for ASHGs. The algorithm is formally
described as Algorithm 1.

Theorem 1. A CIS partition can be computed in polyno-
mial time.

Proof. Our algorithm to compute a CIS partition can be
viewed as successively giving a priority token to players to
form the best possible coalition among the remaining players
or join the best possible coalition which tolerates the player.
The basic idea of the algorithm is described informally as fol-
lows. Set variable R to N and consider an arbitrary player
a ∈ R. Call a the leader of the first coalition Si with i = 1.
Move any player j such that va(j) > 0 from R to Si. Such
players are called the leader’s helpers. Then keep moving
any player from R to Si which is tolerated by all players in
Si and strictly liked by at least one player in Si. Call such
players needed players. Now increment i and take another
player a from among the remaining players R and check the
maximum utility he can get from among R. If this util-
ity is less than the utility which can be obtained by joining
a previously formed coalition in {S1, . . . , Si−1}, then send
the player to such a coalition where he can get the maxi-
mum utility (as long all players in the coalition tolerate the
incoming player). Such players are called latecomers. Oth-
erwise, form a new coalition Si around a which is the best
possible coalition for player a taking only players from the
remaining players R. Repeat the process until all players
have been dealt with and R = ∅. We prove by induction
on the number of coalitions formed that no CIS deviation
can occur in the resulting partition. The hypothesis is the
following:

Consider the kth first formed coalitions S1, . . . , Sk. Then
neither of the following can happen:

1. There is a CIS deviation by a player from among
S1, . . . , Sk.

2. There is a CIS deviation by a player from among N \⋃
i∈{1,...,k} Si to a coalition in {S1, . . . , Sk}.

Input: additively separable hedonic game (N,P).
Output: CIS partition.

i← 0
R← N
while R 6= ∅ do

Take any player a ∈ R
h←∑

b∈F (a,R) va(b)
z ← i+ 1
for k ← 1 to i do
h′ ←∑

b∈Sk
va(b)

if (h < h′) ∧ (∀b ∈ Sk, vb(a) = 0) then
h← h′

z ← k
end if

end for
if z 6= i+ 1 then // a is latecomer
Sz ← {a} ∪ Sz
R← R \ {a}

else // a is leader
i← z
Si ← {a}
Si ← Si ∪ F (a,R) // add leader’s helpers
R← R \ Si

end if
while ∃j ∈ R such that ∀i ∈ Sz, vi(j) ≥ 0 and ∃i ∈
Sz, vi(j) > 0 do
R← R \ {j}
Sz ← Sz ∪ {j} // add needed players

end while
end while
return {S1, . . . , Si}

Algorithm 1: CIS partition of an ASHG

Base case.
Consider the coalition S1. Then the leader of S1 has no

incentive to leave. The leader’s helpers are not allowed to
leave because, if they did, the leader’s utility would decrease.
For each of the needed players, there exists one player in S1

who does not allow the needed player to leave. Now let us
assume a latecomer i arrives in S1. This is only possible if
the maximum utility that the latecomer can derive from a
coalition C ⊆ (N \ S1) is less than

∑
j∈S1

vi(j). Therefore
once i joins S1, he will only become less happy by leaving
S1.

Any player i ∈ N \ S1 cannot have a CIS deviation to S1.
Either i is disliked by at least one player in S1 or i is disliked
by no player in S1. In the first case, i cannot deviate to S1

even he has an incentive to. In the second case, player i has
no incentive to move to S1 because if he had an incentive,
he would already have moved to S1 as a latecomer.

Induction step.
Assume that the hypothesis is true. Then we prove that

the same holds for the formed coalitions S1, . . . , Sk, Sk+1.
By the hypothesis, we know that players cannot leave coali-
tions S1, . . . , Sk. Now consider Sk+1. The leader a of Sk+1 is
either not allowed to join one of the coalitions in {S1, . . . , Sk}
or if he is, he has no incentive to join it. Player a would al-
ready have been member of Si for some i ∈ {1, . . . , k} if one
of the following was true:

• There is some i ∈ {1, . . . , k} such that the leader of Si
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likes a.

• There is some i ∈ {1, . . . , k} such that for all b ∈ Si,
vb(a) ≥ 0 and there exists b ∈ Si such that vb(a) > 0.

• There is some i ∈ {1, . . . , k}, such that for all b ∈ Si,
vb(a) = 0 and

∑
b∈Si

va(b) >
∑
b∈F (i,N\∪k

i=1Si)
va(b)

and
∑
b∈Si

va(b) ≥∑
b∈Sj

va(b) for all j ∈ {1, . . . , k}.

Therefore a has no incentive or is not allowed to move to
another Sj for j ∈ {1, . . . , k}. Also a will have no incentive
to move to any coalition formed after S1, . . . , Sk+1 because
he can do strictly better in Sk+1. Similarly, a’s helpers are
not allowed to leave Sk+1 even if they have an incentive
to. Their movement out of Sk+1 will cause a to become
less happy. Also each needed player in Sk+1 is not allowed
to leave because at least one player in Sk likes him. Now
consider a latecomer l in Sk+1. Latecomer l gets strictly less
utility in any coalition C ⊆ N \⋃k+1

i=1 Si. Therefore l has no
incentive to leave Sk+1.

Finally, we prove that there exists no player x ∈ N \⋃k+1
j=1 Si such that x has an incentive to and is allowed to

join Si for i ∈ {1, . . . k + 1}. By the hypothesis, we already
know that x does not have an incentive or is allowed to a join
a coalition Si for i ∈ {1, . . . k}. Since x is not a latecomer
for Sk+1, x either does not have an incentive to join Sk+1 or
is disliked by at least one player in Sk+1.

Algorithm 1 may also prove useful as a preprocessing or
intermediate routine in other algorithms for computing dif-
ferent types of stable partitions of hedonic games.

4. CORE AND STRICT CORE
For ASHGs, the problem of testing the core membership

of a partition is coNP-complete [20]. This fact does not im-
ply that checking the existence of a core stable partition is
NP-hard. Recently, Sung and Dimitrov [22] showed that for
ASHGs checking whether a core stable or strict core stable
partition exists is NP-hard in the strong sense. Their re-
duction relied on the asymmetry of the players’ preferences.
We prove that even with symmetric preferences, checking
whether a core stable or a strict core stable partition exists
is NP-hard in the strong sense. Symmetry is a natural, but
rather strong condition, that can often be exploited algo-
rithmically.

We first present an example of a six-player ASHG with
symmetric preferences for which the core (and thereby the
strict core) is empty.

Example 1. Consider a six player symmetric ASHG
adapted from an example by Banerjee et al. [4] where

• v1(2) = v3(4) = v5(6) = 6;

• v1(6) = v2(3) = v4(5) = 5;

• v1(3) = v3(5) = v1(5) = 4;

• v1(4) = v2(5) = v3(6) = −33; and

• v2(4) = v2(6) = v4(6) = −33

as depicted in Figure 2.
It can be checked that no partition is core stable for the

game.
Note that if vi(j) = −33, then i and j cannot be in

the same coalition of a core stable partition. Also, players

1

2

3

4

5

6

4 4

4

6

5 6

5

65

Figure 2: Graphical representation of Example 1.
All edges not shown in the figure have weight −33.

can do better than in a partition of singleton players. Let
coalitions which satisfy individual rationality be called fea-
sible coalitions. We note that the following are the feasible
coalitions: {1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 2, 3}, {1, 3, 5},
{1, 5, 6}, {2, 3}, {3, 4}, {3, 4, 5}, {3, 5}, {4, 5} and {5, 6}.

Consider partition

π = {{1, 2}, {3, 4, 5}, {6}}.
Then,

• uπ(1) = 6;

• uπ(2) = 6;

• uπ(3) = 10;

• uπ(4) = 11;

• uπ(5) = 9; and

• uπ(6) = 0.

Out of the feasible coalitions listed above, the only weakly
(and also strongly) blocking coalition is {1, 5, 6} in which
player 1 gets utility 9, player 5 gets utility 10, and player
6 gets utility 11. We note that the coalition {1, 2, 3} is not
a weakly or strongly blocking coalition because player 3 gets
utility 9 in it. Similarly {1, 3, 5} is not a weakly or strongly
blocking coalition because both player 3 and player 5 are
worse off. One way to prevent the deviation {1, 5, 6} is to
provide some incentive for player 6 not to deviate with 1 and
5. This idea will be used in the proof of Theorem 2.

We now define a problem that is NP-complete in the
strong sense:

Name: ExactCoverBy3Sets (E3C):
Instance: A pair (R,S), where R is a set and S is a
collection of subsets of R such that |R| = 3m for some
positive integer m and |s| = 3 for each s ∈ S.
Question: Is there a sub-collection S′ ⊆ S which is a
partition of R?

It is known that E3C remains NP-complete even if each
r ∈ R occurs in at most three members of S [15]. We will
use this assumption in the proof of Theorem 2, which will
be shown by a reduction from E3C.

Theorem 2. Checking whether a core stable or a strict
core stable partition exists is NP-hard in the strong sense,
even when preferences are symmetric.
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Figure 3: Graphical representation of an ASHG derived from an instance of E3C in the proof of Theorem 2.
Symmetric utilities other than −33 are given as edges. Thick edges indicate utility 10 1

4
and dashed edges

indicate utility 1/2. Each hexagon at the top looks like the one in Figure 4.
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Figure 4: Graphical representation of the ASHG
from Example 1 as used in the proof of Theorem 2.
All edges not shown in the figure have weight −33.

Proof. Let (R,S) be an instance of E3C where r ∈ R oc-
curs in at most three members of S. We reduce (R,S) to an
ASHGs with symmetric preferences (N,P) in which there
is a player ys corresponding to each s ∈ S and there are
six players xr1, . . . , x

r
6 corresponding to each r ∈ R. These

players have preferences over each other in exactly the way
players 1, . . . , 6 have preference over each other as in Exam-
ple 1.

So, N = {xr1, . . . , xr6 | r ∈ R} ∪ {ys | s ∈ S}. We assume
that all preferences are symmetric. The player preferences
are as follows:

• For i ∈ R,
vxi

1
(xi2) = vxi

3
(xi4) = vxi

5
(xi6) = 6;

vxi
1
(xi6) = vxi

2
(xi3) = vxi

4
(xi5) = 5; and

vxi
1
(xi3) = vxi

3
(xi5) = vxi

1
(xi5) = 4;

• For any s = {k, l,m} ∈ S,
vxk

6
(xl6) = vxl

6
(xk6) = vxk

6
(xm6 ) = vxm

6
(xk6) =

vxl
6
(xm6 ) = vxm

6
(xl6) = 1/2; and

vxk
6
(ys) = vxl

6
(ys) = vxm

6
(ys) = 10 1

4
;

• vi(j) = −33 for any i, j ∈ N for valuations not defined
above.

We prove that (N,P ) has a non-empty strict core (and
thereby core) if and only if there exists an S′ ⊆ S such that
S′ is a partition of R.

Assume that there exists an S′ ⊆ S such that S′ is a
partition of R. Then we prove that there exists a strict
core stable (and thereby core stable) partition π where π is
defined as follows:

{{xi1, xi2}, {xi3, xi4, xi5} | i ∈ R} ∪ {{ys} | s ∈ S \ S′}
∪ {{ys ∪ {xi6 | i ∈ s}} | s ∈ S′}.

For all i ∈ R,

• uπ(xi1) = 6;

• uπ(xi2) = 6;

• uπ(xi3) = 10;

• uπ(xi4) = 11;

• uπ(xi5) = 9; and

• uπ(xi6) = 1/2 + 1/2 + 10 1
4

= 11 1
4
> 11.

Also uπ(ys) = 3×(10 1
4
) = 30 3

4
for all s ∈ S′ and uπ(ys) =

0 for all s ∈ S \ S′. We see that for each player, his util-
ity is non-negative. Therefore there is no incentive for any
player to deviate and form a singleton coalition. From Ex-
ample 1 we also know that the only possible strongly block-
ing (and weakly blocking) coalition is {xi1 xi5, xi6} for any
i ∈ R. However, xi6 has no incentive to be part {xi1, xi5, xi6}
because uπ(xi6) = 11 and vxi

6
(xi5) + vxi

6
(xi1) = 6 + 5 = 11.

Also xi1 and xi5 have no incentive to join π(xi6) because their
new utility will become negative because of the presence of
the ys player. Assume for the sake of contradiction that π
is not core stable and xi6 can deviate with a lot of xj6s. But,
xi6 can only deviate with a maximum of six other players
of type xj6 because i ∈ R is present in a maximum of three
elements in S. In this case xi6 gets a maximum utility of
only 1. Therefore π is in the strict core (and thereby the
core).

We now assume that there exists a partition which is core
stable. Then we prove that there exists an S′ ⊆ S such
that S′ is a partition of R. For any s = {k, l,m} ∈ S, the
new utilities created due to the reduction gadget are only
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beneficial to ys, xk6 , xl6, and xm6 . We already know that the
only way the partition is core stable is if xi6 can be provided
disincentive to deviate with xi5 and xi1. The claim is that
each xi6 needs to be in a coalition with exactly one ys such
that i ∈ s ∈ S and exactly two other players xj6 and xk6
such that {i, j, k} = s ∈ S. We first show that xi6 needs to
be with exactly one ys such that i ∈ s ∈ S. Player needs
to be with at least one such ys. If xi6 is only with other
xj6s, then we know that xi6 gets a maximum utility of only
6 × 1/2 = 3. Also, player xi6 cannot be in a coalition with

ys and ys
′

such that i ∈ s and i ∈ s′ because both ys and

ys
′

then get negative utility. Each xi6 also needs to be with
at least 2 other players xj6 and xk6 where j and k are also

members of s. If xi6 is with at least three players xj6, xk6
and xk6 , then there is one element among a ∈ {j, k, l} such
that a /∈ s. Therefore ys and xa6 hate each other and the
coalition {ys, xi6, xj6, xk6 , xk6} is not even individually rational.
Therefore for the partition to be core stable each xi6 has to
be with exactly one ys such that i ∈ s and and least 2 other
players xj6 and xk6 where j and k are also members of s.
This implies that there exists an S′ ⊆ S such that S′ is a
partition of R.

5. CONTRACTUAL STRICT CORE AND
PARETO OPTIMALITY

In this section, we prove that verifying whether a
partition is CSC stable is coNP-complete. Interestingly,
coNP-completeness holds even if the partition in question
consists of the grand coalition. The proof of Theorem 3
is by a reduction from the following weakly NP-complete
problem.

Name: Partition
Instance: A set of k positive integer weights
A = {a1, . . . , ak} such that

∑
ai∈A ai = W .

Question: Is it possible to partition A, into two subsets
A1 ⊆ A, A2 ⊆ A so that A1 ∩A2 = ∅ and A1 ∪A2 = A and∑
ai∈A1

ai =
∑
ai∈A2

ai = W/2?

Theorem 3. Verifying whether the partition consisting
of the grand coalition is CSC stable is weakly coNP-complete.

Proof. The problem is clearly in coNP because a par-
tition π′ resulting by a CSC deviation from {N} is a suc-
cinct certificate that {N} is not CSC stable. We prove NP-
hardness of deciding whether the grand coalition is not CSC
stable by a reduction from Partition. We can reduce an
instance of I of Partition to an instance I ′ = ((N,P), π)
where (N,P) is an ASHG defined in the following way:

• N = {x1, x2, y1, y2, z1, . . . , zk},
• vx1(y1) = vx1(y2) = vx2(y1) = vx2(y2) = W/2,

• vx1(zi) = vx2(zi) = ai, for all i ∈ {1, . . . , k}
• vx1(x2) = vx2(x1) = −W ,

• vy1(y2) = vy2(y1) = −W ,

• va(b) = 0 for any a, b ∈ N for which va(b) is not already
defined, and

• π = {N}.

We see that uπ(x1) = uπ(x1) = W , uπ(y1) = uπ(y2) =
−W , uπ(zi) = 0 for all i ∈ {1, . . . , k}. We show that π is not
CSC stable if and only if I is a ‘yes’ instance of Partition.
Assume I is a ‘yes’ instance of Partition and there exists
an A1 ⊆ A such that

∑
ai∈A1

ai = W/2. Then, form the
partition

π′ = {{x1, y1}∪{zi | ai ∈ A1}, {x2, y2}∪{zi | ai ∈ N \A1}}.
Then,

• uπ′(x1) = uπ′(x1) = W ;

• uπ′(y1) = uπ′(y2) = 0; and

• uπ(zi) = 0 for all i ∈ {1, . . . , k}.

The coalition C1 = {x1, y1}∪{zi | ai ∈ A1} can be consid-
ered as a coalition which leaves the grand coalition so that
all players in N do as well as before and at least one player
in C1, i.e., y1 gets strictly more utility. Also, the departure
of C1 does not make any player in N \ C1 worse off.

Assume that I is a ‘no’ instance of Partition and there
exists no A1 ⊆ A such that

∑
ai∈A1

ai = W/2. We show that
no CSC deviation is possible from π. We consider different
possibilities for a CSC blocking coalition C:

1. x1, x2, y1, y2 /∈ C,

2. x1, x2 /∈ C and there exists y ∈ {y1, y2} such that
y ∈ C,

3. x1, x2, y1, y2 ∈ C,

4. x1, x2 ∈ C and |C ∩ {y1, y2}| ≤ 1,

5. there exists x ∈ {x1, x2} and y ∈ {y1, y2} such that
x, y ∈ C, {x1, x2} \ x * C, and {y1, y2} \ y * C

We show that in each of the cases, C is a not a valid CSC
blocking coalition.

1. If C is empty, then there exists no CSC blocking coali-
tion. If C is not empty, then x1 and x2 gets strictly
less utility when a subset of {z1, . . . , zk} deviates.

2. In this case, both x1 and x2 gets strictly less utility
when y ∈ {y1, y2} leaves N .

3. If {z1, . . . , zk} ⊂ C, then there is no deviation as C =
N . If there exists a zi ∈ {z1, . . . , zk} such that zi /∈ C,
then x1 and x2 get strictly less utility than in N .

4. If |C ∩ {y1, y2}| = 0, then the utility of no player in-
creases. If |C ∩{y1, y2}| = 1, then the utility of y1 and
y2 increases but the utility of x1 and x2 decreases.

5. Consider C = {x, y}∪S where S ⊆ {z1, . . . , zk}. With-
out loss of generality, we can assume that x = x1

and y = y1. We know that y1 and y2 gets strictly
more utility because they are now in different coali-
tions. Since I is a ‘no’ instance of Partition, we
know that there exists no S such that

∑
a∈S vx1(a) =

W/2. If
∑
a∈S vx1(a) > W/2, then uπ(x2) < W . If∑

a∈S vx1(a) < W/2, then uπ(x1) < W .

Thus, if I ′ is a ‘no’ instance of Partition, then there
exists no CSC deviation.
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Figure 5: Graphical representation of the ASHG in the proof of Theorem 3. For all i ∈ {1, . . . , k}, an edge
from x1 and x2 to zi has weight ai. All other edges not shown in the figure have weight zero.

From the proof of Theorem 3, it can be seen that π is
not Pareto optimal if and only if I is a ‘yes’ instance of
Partition.

Theorem 4. Verifying whether the partition consisting
of the grand coalition is Pareto optimal is coNP-complete.

6. CONCLUSION AND DISCUSSION
We presented a number of new computational results con-

cerning stable partitions of ASHGs. First, we proposed a
polynomial-time algorithm for computing a contractually in-
dividually stable (CIS) partition. Secondly, we showed that
checking whether the core or strict core exists is NP-hard
in the strong sense, even if the preferences of the players
are symmetric. Finally, we presented the first complexity
result concerning the contractual strict core (CSC), namely
that verifying whether a partition is in the CSC is coNP-
complete. We saw that considering CSC deviations helps
reason about the more complex Pareto optimal improve-
ments. As a result, we established that checking whether
the partition consisting of the grand coalition is Pareto op-
timal is also coNP-complete.

We note that Algorithm 1 may very well return a partition
that fails to satisfy individual rationality, i.e., players may
get negative utility. It is an open question how to efficiently
compute a CIS partition that is guaranteed to satisfy indi-
vidual rationality. We also note that Theorem 3 may not
imply anything about the complexity of computing a CSC
partition. Studying the complexity of computing a CSC sta-
ble partition is left as future work.
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ABSTRACT
We revisit the coalition structure generation problem in
which the goal is to partition the players into exhaustive
and disjoint coalitions so as to maximize the social welfare.
One of our key results is a general polynomial-time algo-
rithm to solve the problem for all coalitional games pro-
vided that player types are known and the number of player
types is bounded by a constant. As a corollary, we obtain a
polynomial-time algorithm to compute an optimal partition
for weighted voting games with a constant number of weight
values and for coalitional skill games with a constant number
of skills. We also consider well-studied and well-motivated
coalitional games defined compactly on combinatorial do-
mains. For these games, we characterize the complexity
of computing an optimal coalition structure by presenting
polynomial-time algorithms, approximation algorithms, or
NP-hardness and inapproximability lower bounds.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), teamwork,
coalition formation, coordination, and computational com-
plexity

1. INTRODUCTION
Coalition formation is an important issue in multiagent

systems with cooperating agents. Coalitional games have
been used to model various cooperative settings in oper-
ations research, artificial intelligence and multiagent sys-
tems (see e.g, [5, 6, 11]). The area of coalitional game
theory which studies coalition formation has seen consider-
able growth over the last few decades.Given a set of agents
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berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 191-198.
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N , a coalitional game is defined by a valuation function
v : N → R where for C ⊆ N , v(C) signifies the value which
players in C can generate by cooperating.

In a coalitional game, a partition of the players into ex-
haustive and disjoint coalitions is called a coalition structure.
In the coalition structure generation problem, the goal is to
find a coalition structure π of N that maximizes the social
welfare

P
C∈π v(C). We will refer to this problem of find-

ing an optimal coalition structure as OptCS. In this paper,
we conduct a detailed investigation of computing optimal
coalition structures that give the maximum social welfare.
Computing optimal coalition structures is a natural problem
in which the aim is to utilize resources in the most efficient
manner.

OptCS has received attention in the artificial intelligence
community where the focus has generally been on computing
optimal coalition structures for general coalition formation
games [16, 20] without any combinatorial structure. Tradi-
tionally, the input considered is an oracle called a character-
istic function which returns the value for any given coalition
(in time polynomial in the number of players). In this set-
ting, it is generally assumed that the value of a coalition does
not depend on players who are not in the coalition. Comput-
ing optimal coalition structures is a computationally hard
task because of the huge number of coalition structures. The
total number of coalition structures for a player set of size n
is Bn ∼ Θ(nn) where Bn is the nth Bell number. A number
of algorithms have been developed in the last decade which
attempt to satisfy many desirable criteria, e.g. outputting
an optimal solution or a good approximation, the ability
to prune, the anytime property, worst case guarantees, dis-
tributed computation etc. [16, 18, 20, 21]. In all of the cases,
the algorithms have a worst-case time complexity which is
exponential in n. In this paper, we show that the picture
is not that bleak if player types are known and the number
of player types is bounded by a constant. In fact for such a
condition, there is a polynomial-time algorithm for OptCS
for coalitional games. In many multiagent systems, it can be
reasonable to assume that the agents can be divided into a
bounded number of types according to the player attributes.

We also study the complexity of OptCS for a number of
compact coalitional games. Coalitional games can be repre-
sented compactly on combinatorial domains where the val-
uation function is implicitly defined [9, 10]. Numerous such
classes of coalitional games have been the subject of recent
research in multiagent systems: weighted voting games [11];
skill games [5]; multiple weighted voting games [4]; network
flow games [6]; spanning connectivity games [3]; and match-
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ing games [13]. Apart from some exceptions (skill games [7]
and marginal contribution nets [17]), most of the algorithmic
research for these classes of games has been on computing
stability-based solutions. In the paper, we characterize the
complexity of OptCS for many compact games by present-
ing polynomial-time exact algorithms, approximation algo-
rithms, or NP-hardness and inapproximability lower bounds.
Throughout the paper, we assume familiarity with funda-
mental concepts in computational complexity [1].

Contribution.
In this paper, we undertake a detailed and systematic

study of computing optimal coalition structures for many
important combinatorial optimization coalitional games.

Our most important result is a general polynomial-time
algorithm to compute an optimal coalition structure for any
coalitional game when the player types are known and the
number of player types is bounded by a fixed constant. As a
corollary, we obtain a polynomial-time algorithm to compute
an optimal coalition structure for weighted voting games
with a constant number of weight values, linear games with a
constant number of desirability classes, and all known coali-
tional skill games with a constant number of skills.

In contrast to our general algorithmic result, we show that
finding the player types is intractable in general from a com-
munication and computational complexity point of view.

We present a 2-approximation algorithm for the case of
weighted voting games and show that this approximation
bound is the best possible. Our approximation and inap-
proximability results concerning weighted voting games may
be of independent interest since they address a problem in
the family of knapsack problems [12] which has not been
studied before.

We also examine well-known coalitional games based on
graphs and characterize the complexity of computing the
optimal coalition structures. Interestingly for certain com-
binatorial optimization games for which the combinatorial
optimization problem is NP-hard, the problem of computing
an optimal coalition structure is easy.

2. PRELIMINARIES
In this section, we define several important classes of coali-

tional games and formally define the fundamental computa-
tional problem OptCS.

2.1 Coalitional games
We begin with the formal definition of a coalitional game.

Definition 1 (Coalitional games). A coalitional
game is a pair (N, v) where N = {1, . . . , n} is a set of
players and v : 2N → R is a characteristic or valuation
function that associates with each coalition C ⊆ N a
payoff v(C) where v(∅) = 0. A coalitional game (N, v) is
monotonic when it satisfies the property that v(C) ≤ v(D)
if C ⊆ D.

Throughout the paper, when we refer to a general coalitional
game, we assume such a coalitional game with transferable
utility. For the sake of brevity, we will sometimes refer to
the game (N, v) as simply v.

Definition 2 (Simple game). A simple game is a
monotonic coalitional game (N, v) with v : 2N → {0, 1} such

that v(∅) = 0 and v(N) = 1. A coalition C ⊆ N is winning
if v(C) = 1 and losing if v(C) = 0. A minimal winning
coalition (MWC) of a simple game v is a winning coalition
in which defection of any player makes the coalition losing.
A simple game can be represented by (N,Wm), where Wm

is the set of minimal winning coalitions.

For any monotonic coalitional game, one can construct a
corresponding threshold game. Threshold versions are com-
mon in the multiagent systems literature; see for instance
[6, 11].

Definition 3 (Threshold versions). For each
coalitional game (N, v) and each threshold t ∈ R+, the
corresponding threshold game is defined as the coalitional
game (N, vt), where

vt(C) =

(
1 if v(C) ≥ t,
0 otherwise.

It can easily be verified that if a game (N, v) is mono-
tonic, then for any threshold t ≤ v(N), the threshold ver-
sion (N, vt) is a simple game.

2.2 Coalitional game classes
We now review a number of specific classes of coalitional

games. Here we adopt the convention that if CLASS denotes
a particular class of games, we have T-CLASS refer to the
class of threshold games corresponding to games in CLASS,
i.e., for every threshold t, (N, vt) is in T-CLASS if and only
if (N, v) is in CLASS.

Weighted voting games are a widely used class of mono-
tonic games.

Definition 4 (Weighted voting games [11]). A
weighted voting game (WVG) is a simple game (N, v) for
which there is a quota q ∈ R+ and a weight wi ∈ R+ for
each player i such that

v(C) = 1 if and only if
X
i∈C

wi ≥ q.

The WVG with quota q and weights w1, . . . , wn for the play-
ers is denoted by [q;w1, . . . , wn], where we commonly assume
wi ≥ wi+1 for 1 ≤ i < n.

A multiple weighted voting game (MWVG) is the simple
game (N, v) for which there are WVGs (N, v1), . . . , (N, vm)
such that

v(C) = 1 if and only if vk(C) = 1 for 1 ≤ k ≤ m.

We denote the MWVG game composed of
(N, v1), . . . , (N, vm) by (N, v1 ∧ · · · ∧ vm).

Other important classes of games are defined on graphs.
Among these are spanning connectivity games, independent
set games, matching games, network flow games, and graph
games, where either nodes or edges are controlled by play-
ers and the value of a coalition of players depends on their
ability to connect the graph, enable a bigger flow, or obtain
a heavier matching or edge set.

Definition 5 (Spanning connectivity game [3]).
For each connected undirected graph G = (V,E), we define
the spanning connectivity game (SCG) on G as the simple
game (N, v) where N = E and for all C ⊆ E, v(C) = 1 if
and only if there exists some E′ ⊆ C such that T = (V,E′)
is a spanning tree.
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Definition 6 (Independent set game [9]). For
each connected undirected graph G = (V,E), we define
the independent set game (ISG) on G as the game (N, v)
where N = V and for all C ⊆ V , v(C) is cardinality of the
maximum independent set on the subgraph of G induced on
C.

Definition 7 (Matching game [13]). Let
G = (V,E,w) be a weighted graph. The matching
game corresponding to G is the coalitional game (N, v) with
N = V and for each C ⊆ N , the value v(C) equals the
weight of the maximum weighted matching of the subgraph
induced by C.

Graph games are likewise defined on weighted graphs [10].

Definition 8 (Graph game [10]). For a weighted
graph (V,E,w), the graph game (GG) is the coalitional
game (N, v) where N = V and for C ⊆ N , v(C) is the
weight of edges in the subgraph induced by C. In this paper,
we sometimes assume that the graph corresponding to a
graph game has only positive edge weights and denote such
graph games by GG+. We denote the class of graph games
where negative edge weights are allowed by GG. Note that
for this latter general class of graph games, we allow the
characteristic function v to map to negative reals.

A flow network (V,E, c, s, t) consists of a directed graph
(V,E), with capacity on edges c : E → R+, a source vertex
s ∈ V , and a sink vertex t ∈ V . A network flow is a function
f : E → R+, which obeys the capacity constraints and the
condition that the total flow entering any vertex (other than
s and t) equals the total flow leaving the vertex. The value of
the flow is the maximum amount flowing out of the source.

Definition 9 (Network flow game [6]). For a
flow network (V,E, c, s, t), the associated network flow
game (NFG) is the coalitional game (N, v), where N = E
and for each C ⊆ E the value v(C) is the value of the
maximum flow f with f(e) = 0 for all e ∈ E \ C.

Definition 10 (Path coalitional games). For an
unweighted directed/undirected graph, G = (V ∪ {s, t}, E),

• the corresponding Edge Path Coalitional Game
(EPCG) is a simple coalitional game (N, v) such that
N = E and for any C ⊆ N , v(C) = 1 if and only if C
admits an s-t path.

• the corresponding Vertex Path Coalitional Game
(VPCG) is a simple coalitional game (N, v) such that
N = V and for any C ⊆ N , v(C) = 1 if and only if C
admits an s-t path.

Finally, we define the class of skill games, which were re-
cently introduced by Bachrach and Rosenschein [5].

Definition 11 (Coalitional skill games [5]). A
coalitional skill domain is composed of players N , a set of
tasks T = {t1, . . . , tm} and a set of skills S = {s1, . . . , sk}.
Each player i has a set of skills S(i) ⊆ S, and each task
tj requires a set of skills S(tj) ⊆ S. The set of skills a
coalition C has is S(C) =

S
i∈C S(i). A coalition C can

perform task tj if S(tj) ⊆ S(C). The set of tasks a coalition
C can perform is T (C) = {tj | S(tj) ⊆ S(C)}. A task
value function is a monotonic function u : 2T → R. A

coalitional skill game (CSG) in a coalitional skill domain is
a game (N, v) such that for all C ⊆ N , v(C) = u(t(C)). A
weighted task skill game (WTSG) is a CSG where each task
tj ∈ T has a weight wj ∈ R+ and the task value function
u(T ′) =

P
j|tj∈T ′ wj. A threshold version of WTSG can be

defined according to Definition 3.

Definition 12 (Linear games [23]). On a coali-
tional game (N, v), we define the desirability relation �D
as follows: we say that a player i ∈ N is more desirable than
a player j ∈ N (i �D j) if for all coalitions C ∈ N\{i, j}
we have that v(C ∪ {i}) ≥ v(C ∪ {j}). The relations
�D (“strictly more desirable”), ∼D (“equally desirable”),
and �D and ≺D (“(strictly) less desirable”) are defined in
the obvious fashion. Linear games are monotonic simple
games with a complete desirability relation, i.e. every pair
of players is comparable with respect to �D. Weighted
voting games form a strict subclass of linear games. A
linear game on players N = {1, . . . , n} is canonical iff
∀i, j ∈ N, i < j : i �D j. A right-shift of a coalition C is a
coalition that can be obtained by a sequence of replacements
of players in C by less desirable players. A left-shift of
a coalition C is defined analogously. Canonical linear
games can be represented by listing their shift-minimal
winning coalitions: minimal winning coalitions for which
it holds that any right-shift is losing. Similarly they can be
represented by listing their shift-maximal losing coalitions,
defined as obvious.

2.3 Problem definition
We formally define coalition structures and OptCS.

Definition 13 (Optimal coalition structure).
A coalition structure for a game (N, v) is a partition of
N . The social welfare attained by a coalition structure
π, denoted v(π) (we overload notation), is defined asP
C∈π v(C). A coalition structure π is optimal when

v(π) ≥ v(π′) for every coalition structure π′.

We consider the following standard computational prob-
lem in our paper.

Definition 14 (Problem OptCS). For any class of
coalitional games X, and its associated natural representa-
tion, the problem OptCS(X) is as follows: given a coali-
tional game (N, v) ∈ X, compute an optimal coalition struc-
ture.

3. GAMES WITH FIXED PLAYER TYPES
We study the problem of computing an optimal coalition

structure for a coalitional game in the case that the number
of player types is fixed. Shrot et al. [22] considered player
types and showed that some intractable problems become
tractable when only dealing with a fixed number of player
types. They did not address coalition structure generation
in their paper.

Definition 15 (Player type). For a coalitional
game (N, v), we call two players i, j ∈ N strategically
equivalent iff for every coalition C ∈ N\{i, j} it holds that
v(C ∪ {i}) = v(C ∪ {j}). When two players i, j ∈ N are
strategically equivalent, we say that i and j are of the same
player type.
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Definition 16 (Valid type-partition). A valid
type-partition for a game (N, v) is a partition P of N such
that for each player set C ∈ P , all players in C are of the
same player type.

Let OptCS(k-types) be the problem where the goal is
to compute an optimal coalition structure for a coalitional
game (N, v), given as input a partition P of N with |P | ≤ k
and the characteristic function v. Note that if all players
are different, then |P | = n. In general it is not easy to
verify that a given partition for a simple game is a valid
type-partition. But under the assumption that we are given
a valid type-partition, and v is easy to compute, it turns
out that an optimal coalition structure can be computed in
polynomial time.

3.1 A general algorithm
Now we will show that there exists a general polynomial-

time algorithm to compute an optimal coalition structure
for any coalitional game when we are given a valid type-
partition with a number of player types bounded by a con-
stant. Our algorithm utilizes dynamic programming to com-
pute an optimal coalition structure provided there are a con-
stant number of player types.

Theorem 1. There is a polynomial-time algorithm for
OptCS(k-types), provided that querying v takes at most
polynomial time, and the given input partition is a valid
type-partition.

Proof. Let N = {1, . . . , n} be the player set and
P = {T1, . . . , Tk} be the input type-partition. We de-
fine coalition-types as follows: for non-negative integers
t1, . . . , tk, the coalition-type T (t1, . . . , tk) is the set of coali-
tions {C | ∀i ∈ {1, . . . , k} : |C ∩ Ti| = ti}. In words, coali-
tions in coalition-type T (t1, . . . , tk) have ti players of type
Ti, for 1 ≤ i ≤ k. Note that v maps all coalitions of the
same coalition-type to the same value.

First our algorithm computes a table V of values for each
coalition type. In order to do this we need to query v at
most nk times, since 1 ≤ ti ≤ n for all i, 1 ≤ i ≤ k. Let
time(v) denote the time it takes to query v, then computing
V takes O(nk·time(v)) time.

We proceed with a dynamic programming approach in or-
der to find an optimal coalition structure: Let f(a1, . . . , ak)
be the optimal social welfare attained by an optimal coali-
tion structure on a game (N ′, v) with N ′ ∈ {N ′ | ∀i ∈
{1, . . . , k} : |N ′ ∩ Ti| = ai}. Note that it does not mat-
ter which N ′ we choose from this set: the choice of N ′ has
no effect on the optimal social welfare since all N ′ are of
the same coalition-type. We are interested in computing
f(|T1|, . . . , |Tk|). By γ(G), we signify those type-partitions
which generate the same total utility as the empty set.

Since v(∅) = 0, the following recursive definition of
f(a1, . . . , ak) follows:

f(a1, . . . , ak) =

8><>:
0 if ai = 0 for 1 ≤ i ≤ k,
max{f(a1 − b1, . . . , a1 − bk) + v(b1, . . . , bk)

| ∀i ∈ {1, . . . , k} : bi ≤ ai} otherwise.

(1)
The recursive definition of f(a1, . . . , ak) directly implies

a dynamic programming algorithm. The dynamic program-
ming approach works by filling in a |T1| × · · · × |Tk| ta-
ble Q, where the value of f(a1, . . . ak) is stored at en-
try Q[a1, . . . , ak]. Once the table has been computed,

f(|T1|, . . . , |Tk|) is returned. The entries of Q are filled in
according to (1). In order to utilize (1), “lower” entries are
filled in first, i.e. Q[a1, . . . , ak] is filled in before Q[a′1, . . . , a

′
k]

if ai ≤ a′i for 1 ≤ i ≤ k. Evaluating (1) then takes O(nk)
time (due to the“otherwise”-case of (1), where the maximum
of a set of at most nk elements needs to be computed). There
are O(nk) entries to be computed, so the algorithm runs in
O(nk·time(v) + n2k) time.

It is straightforward to extend this algorithm so that it
(instead of outputting only the optimal social welfare) also
computes and outputs an actual coalition structure that at-
tains the optimal social welfare. To do so, maintain another
table |T1| × · · · × |Tk| table R. At each point in time that
some entry of Q is computed, say Q[a1, . . . , ak], now we also
fill in R[a1, . . . , ak]. R[a1, . . . , ak] contains a description of
a set C of coalitions such that

P
C∈C v(C) = f(a1, . . . , an)

and
S C ∈ T (a1, . . . , ak). It suffices to describe C by sim-

ply listing the type of each C ∈ C, and it is straight-
forward to verify that we can set R(a1, . . . , ak) to ∅ if
(a1, . . . , ak) ∈ γ(G), and otherwise we set R(a1, . . . , ak) to
(P (a1 − b1, . . . , a1 − bk), (b1, . . . , bk)), where (b1, . . . , bk) is
the argument in the max-expression of (1).

3.2 Difficulty of finding types
The polynomial-time algorithm given in Theorem 1 relies

on the promise that the type-partition given in the input is
valid. A natural question is now whether it is also possible
to efficiently compute the type-partition of a game in poly-
nomial time when given only the weaker promise that the
number of player types is constant k. We answer this ques-
tion negatively. For randomized algorithms, we show high
communication complexity is necessary, i.e. we show that an
exponential amount of information is needed from the char-
acteristic function v when we are given no information on
the structure of the characteristic function and we rely only
on querying v. In fact, the theorem states that this is the
case even when v is simple and k = 2. It should be noted
that this result also holds for deterministic algorithms, since
they are a special case of randomized algorithms. Despite
this negative result, we show in Section 3.3 that we can do
better for some subclasses of games, when we are provided
information on the structure of function v.

Theorem 2. Any randomized algorithm that computes a
player type-partition when given as input a monotonic simple
game (N, v) that has 2 player types, requires at least Θ( 2n√

n
)

queries to v.

Proof. We use Yao’s minimax principle [24], which
states that the expected cost of a randomized algorithm on
a given problem’s worst-case instances is at least the low-
est expected cost among all deterministic algorithms that
run on any fixed probability distribution over the problem
instances.

Consider the following distribution over the input, where
the player set is N = {1, . . . , n} and n is even, the number
of player types is always k = 2, and the given game (N, v)
is simple and monotonic. Valuation v is drawn uniformly at
random from the set V = {vC | C ⊂ N, |C| = n/2} where in
vC , we call C the critical coalition. Function vC is specified
as follows:

• vC(D) = 0 when |D| < n/2;

• vC(D) = 1 when |D| > n/2;
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• vC(D) = 1 when D = C, i.e. D is the critical coalition;

• vC(D) = 0 otherwise.

Observe that there are exactly two player types in any
instance that has non-zero probability of being drawn un-
der this distribution: when vC is drawn, the type-partition
is (C,N\C). Also observe that for coalitions C of size n

2
,

v(C) = 1 with probability 1

( n
n/2)

, because v is drawn uni-

formly at random from V .
Now let us consider an arbitrary deterministic algorithmA

that computes the type-partition for instances in this input
distribution by queries to v. Let C be the critical coalition
of n/2 players such that v(C) = 1. A will have to query
v(C) in order to know which characteristic function from
V has been drawn, and thus determine the type-partition
correctly. Let Q(v) be the sequence of queries to v that A
generates. Let Q′(v) be the subsequence obtained by remov-
ing from Q(v) all queries v(D) such that |D| 6= n/2 and all
queries that occur after v(C). Because A is deterministic,
the query sequence of A is the same among all instances up
to querying the critical coalition, since the critical coalitions
are the only points in which the characteristic functions of
V differ from each other. Therefore the expected length of
Q′(v) is

`
n
n/2

´
/2. Because A was chosen arbitrarily, we con-

clude that also the most efficient deterministic algorithm is
expected to make at least

`
n
n/2

´
/2 = Θ( 2n√

n
) queries to v,

and the theorem now follows from Yao’s principle.

Shrot et al. [22] showed that checking whether two players
are of the same type is NP-hard for coalitional games defined
by Conitzer and Sandholm [8]. But the games are such that
even computing the value of a coalition is NP-hard. One can
say something stronger.

Proposition 1. There exists a representation of coali-
tional games for which checking whether two players are of
the same type is coNP-complete even if the value of each
coalition can be computed in polynomial time.

Proof. A coalition C ⊆ N \{i, j} such that v(C∪{i}) 6=
v(D ∪ {j}) is a polynomial-time certificate for membership
in coNP. Also, it is well known that checking whether two
players in a WVG have the same Banzhaf index is coNP-
complete [15]. Since two players in a WVG are of the same
type if and only if they have same the Banzhaf index, we
are done.

3.3 Applications of Theorem 1
Theorem 2 and Proposition 1 indicate that finding player

types is in general a difficult task. Despite these negative
results, Theorem 1 still applies to all classes of coalitional
games and many natural settings where the type-partition
is implicitly or explicitly evident:

Corollary 1. There exists a polynomial-time algorithm
that solves OptCS(WVG) in the following cases: 1.) in the
input game (given in weighted form), the number of distinct
weights is constant; 2.) in the input game (given in weighted
form) the number of distinct weight vectors for the players
is constant.

Proof. When two players have the same weight (in the
case of WVGs) or weight vectors (in the case of MWVGs),
they are strategically equivalent. Therefore we can type-
partition the players according to their weights and apply
Theorem 1.

There exists a polynomial-time algorithm for computing
the desirability classes, when given the list of shift-minimal
winning coalitions of a linear game [2]. This immediately
yields the following corollary:

Corollary 2. In the following cases, there exists a
polynomial-time algorithm that computes an optimal coali-
tion structure for linear games with a constant number of
desirability classes: 1.) the input game is represented as a
list of (shift-)minimal winning coalitions; 2.) the input game
is represented as a list of (shift-)maximal losing coalitions;

Bachrach et al. [7] proved that OptCS(CSG) is
polynomial-time solvable if the number of tasks is constant
and the ‘skill graph’ has bounded tree-width. As a corollary
of Theorem 1, we obtain a complementing positive result
which applies to all of the coalitional skill games defined in
[5].

Corollary 3. There exists a polynomial-time algorithm
that computes an optimal coalition structure for WTSGs and
T-WTSGs with at most a fixed number of player types or a
fixed number of skills.

Proof. Assume that there the number of skills is a con-
stant k′. Then there is a maximum of 2k

′
player types. A

polynomial-time algorithm that computes an optimal coali-
tion structure now follows from Theorem 1.

4. WEIGHTED VOTING GAMES AND
SIMPLE GAMES

In this section, we examine weighted voting games
(WVGs) and, more generally, simple games. Weighted vot-
ing games are coalitional games widely used in multiagent
systems and AI. We have already seen that there exists a
polynomial-time algorithm to compute an optimal coalition
structure for WVGs with a constant number of weight val-
ues. We show that if the number of weight values is not a
constant, then the problem becomes strongly NP-hard.

Proposition 2. For a WVG, checking whether there is
a coalition structure that attains social welfare k or more is
NP-complete.

Proof. We prove this by a reduction from an instance
of the classical NP-hard Partition problem to checking
whether a coalition structure in a WVG gets social wel-
fare at least 2. An instance of the problem k-Partition
is a set of n integer weights A = {a1, . . . , an} and the ques-
tion is whether it is possible to partition A, into k subsets
P1 ⊆ A,. . .Pk ⊆ A such that Pi∩Pj = ∅ and

S
1≤i≤k Pi = A

and for all i ∈ {1, . . . , k}, Paj∈Ai
aj =

P
1≤j≤n aj/k.

Without loss of generality, assume that W =
P
ai∈A ai

is a multiple of k. Given an instance of k-Partition
I = {a1, . . . , ak}, we can transform it to a WVG v =
[q;w1, . . . , wk] where wi = ai for all i ∈ {1, . . . , k} and
q = W/k. Then the answer to I is yes if and only if there
exists a coalition structure π for v such that v(π) = k.

Since 3-Partition is strongly NP-complete, it follows that
OptCS(WVG) is strongly NP-hard. This is contrary to the
other results concerning WVGs where computation becomes
easy when the weights are encoded in unary [15]. Note that
any strongly NP-hard optimization problem with a polyno-
mially bounded objective function cannot have an FPTAS
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unless P = NP. Proposition 2 does not discourage us from
seeking an approximation algorithm for WVGs. We show
that there exists a 2-optimal polynomial-time approxima-
tion algorithm:

Proposition 3. There exists a 2-optimal polynomial-
time approximation algorithm for OptCS(WVG).

Proof. Consider the following algorithm: Let
[q;w1, . . . , wn] be the input (so N = {1, . . . , n}). We
assume without loss of generality that wi ≤ q for all i. The
algorithm first sets p[0] := 0, and then computes for some
number c the values p[1], . . . , p[c] using the rule

p[i] :=

8><>:
n if

Pn
k=p[i−1]+1 wk < q,

min{j | Pj
k=p[i−1]+1 wk ≥ q,

(p[i− 1] + 1) ≤ j ≤ n} otherwise,

(2)

where c is taken such that p[c] = n. The algorithm outputs
the coalition structure {C1, . . . , Cc}, where for 1 ≤ i ≤ c,
Ci = {p[i− 1] + 1, . . . , p[i]}.

Observe that the coalitions C1 to Cc−1 are all winning and
Cc is not necessarily winning, so the value of the computed
coalition structure is at least c − 1 By our assumption, the
total weight of any of the coalitions C1, . . . , Cc−1 is less than
2q, and the total weight of Cc is less than q. Therefore, the
total weight of N is strictly less than q(2c−1), so the optimal
social welfare is at most 2c− 2 = 2(c− 1). This is two times
the social welfare of the coalition structure computed by the
algorithm.

A tight example for the algorithm described in the proof of
Theorem 3 would be [q; q − ε, q − ε, ε, ε], where q is a fixed
constant and ε is any positive real number strictly less than
q/2. On this input, the algorithm outputs a coalition struc-
ture that attains a social welfare of 1, while the optimal
social welfare is clearly 2. The following proposition shows
that there does not exist a better polynomial-time approxi-
mation algorithm under the assumption that P 6= NP.

Proposition 4. Unless P = NP, there exists no
polynomial-time algorithm which computes an α-optimal
coalition structure for a WVG where α < 2.

Proof. We would be able to solve the NP-complete
problem Partition in polynomial time if there existed
a (< 2)-optimal polynomial-time approximation algorithm
for OptCS(WVG). We could reduce a partition instance
(w1, . . . , wn) to a weighted voting game [q;w1, . . . , wn] where

q =
Pn

i=1 wn

2
. Because the sum of all weights of the players is

2q, a (< 2)-optimal approximation algorithm would output
an optimal coalition structure when provided with this in-
stance. The output coalition structure directly corresponds
to a solution of the original Partition instance, in case it
exists. Otherwise, the social welfare attained by the output
coalition structure is 1.

Simple games that are not necessarily weighted, and are
represented by the list of minimal winning coalitions, are
even harder to approximate.

Proposition 5. OptCS(MWC), i.e. OptCS for simple
games represented as a list of minimal winning coalitions,
cannot be approximated within any constant factor unless
P = NP.

Proof. This can be proved by a reduction from an in-
stance of the classical NP-hard maximum clique (Max-
Clique) problem. It is known that MaxClique cannot be
approximated within any constant factor [14].

Consider the instance I of MaxClique represented by an
undirected graph GI = (V,E). Transform I into instance
I ′ = (N,Wm) of OptCS(MWC) in the following way. De-
fine N = {{v, v′} : v ∈ V, v′ ∈ V } to be all subsets of V
of cardinality 2. Next, set Wm = {Ci : i ∈ V }, and for
all i ∈ V define Ci = {{i, j} | {i, j} 6∈ E}. Now two coali-
tions Ci and Cj are disjoint if and only if {i, j} ∈ E. Then
the maximum clique size is greater than or equal to k if and
only if there is a coalition structure for (N,Wm) that attains
social welfare k. Now assume that there exists a polynomial-
time algorithm which computes a coalition structure π which
gets social welfare within a constant factor α of the maxi-
mum possible social welfare k. Then we can use π to get
a constant-factor approximation solution to instance I in
polynomial time in the following way. Consider the set of
vertices {i : Ci ∈ π}. Since for Ci, Cj ∈ π, Ci and Cj are dis-
joint, then we know that (i, j) ∈ E. Therefore the vertices
{i : Ci ∈ π} form a clique of size k/α.

5. GAMES ON GRAPHS
Numerous classes of coalitional games are based on

graphs. We characterize the complexity of OptCS for many
of these classes in the section. We first turn our attention
to one such class for which the computation of cooperative
game solutions is well studied [10]. We see that that OptCS
is computationally hard in general for graph games:

Proposition 6. For the general class of graph games
GG, the problem OptCS is strongly NP-hard.

Proof. We prove by presenting a reduction from the
strongly NP-hard problem MaxCut. Consider an instance
I of MaxCut with a connected undirected graph G =
(V,E,w) and non-negative weights w(i, j) for each edge
(i, j). Let W =

P
(i,j)∈E w(i, j) and define P (i) as the

vertices on the same side as as vertex i. We show that
if there is a polynomial-time algorithm which computes an
optimal coalition structure, then we have a polynomial-time
algorithm for MaxCut. There exists a polynomial-time re-
duction that reduces I to an instance I ′ = (V ′, E′, w′) of
OptCS for graph games where V ′ = V ∪ {x1, x2} and E′ =
E ∪ {{x1, i} : i ∈ N} ∪ {{x2, i} : i ∈ N} ∪ {{x1, x2}}. The
weight function w′ is defined as follows: w′(a, b) = −w(a, b)
if a, b ∈ V , w′(a, b) = W + 1 if a ∈ {x1, x2} and b ∈ V ,
w′(a, b) = −(|V |+ 1)W if a = x1 and b = x2.

We now show that a solution to instance I ′ of
OptCS(GG) can be be used to solve instance I of Max-
Cut. Assume that π′ is an optimal coalition structure for
I ′. Then we know that π is of the form {{x1, A

′}, {x2, B
′}}

where (A′, B′) is a partition of V . We also know thatP
a/∈π′(b) w

′(a, b) is minimized in π′. Therefore, we have a

corresponding partition π of V such that
P
a/∈π(b) w(a, b) is

maximized.

Observation 1. It is clear that for GG+, the coalition
structure containing only the grand coalition is the optimal
coalition structure.

We now present some positive results concerning OptCS
for other games on graphs:
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Proposition 7. OptCS(SCG) can be solved in polyno-
mial time.

Proof. For a SCG, OptCS is equivalent to computing
the maximum number of edge disjoint spanning subgraphs.
Clearly, the maximum number of edge disjoint spanning
trees is greater than or equal to the maximum number of
spanning subgraphs. Since the spanning trees are also span-
ning subgraphs, the problem reduces to computing the max-
imum number of disjoint spanning trees. The problem is
solvable in O(m2) [19].

Proposition 8. For EPCGs and VPCGs, OptCS can
be solved in polynomial time.

Proof. The problems are equivalent to computing the
maximum number of edge disjoint and vertex disjoint s-
t paths respectively. There are well-known algorithms to
compute them. For example, the maximum number of edge-
disjoint s-t paths is equal to the max flow value of the graph
in which each edge has unit capacity. The problem of maxi-
mizing the number of of vertex disjoint paths can be reduced
to maximizing the number of of vertex disjoint paths in the
following way: duplicate each vertex (apart from s and t)
with one getting all ingoing edges, and the other getting all
the outgoing edges, and an internal edge between them with
the node weight as the edge weight.

Proposition 9. The coalition structure containing only
the grand coalition is an optimal coalition structure for: 1.)
NFGs and 2.) Matching games.

Proof. 1.) Assume there is a coalition structure π of
the edges which achieves the total social welfare of s. This
means that the sum of the net flow for each E′ ∈ π totals
s. Since each member of π is mutually exclusive, for any
A,B ∈ π, the flows in A and B do not interact with each
other. Now, consider the coalition structure π′ = {E} which
consists of the grand coalition. Then E can achieve a net-
work flow of at least s by having exactly the same flows as
that of π, we know that v(π′) ≥ s. Therefore, the coalition
structure consisting of only the grand coalition attains a so-
cial welfare that is at least the social welfare attained by any
other coalition structure.

2.) Assume there is a coalition structure π = {V1, . . . , Vk}
of the vertices that attains a social welfare of s. Let the
maximum weighted matching of the graphG[Vi] restricted to
vertices Vi be mi. Then we know that

P
1≤i≤kmi = s. Since

each member of π is mutually exclusive, for any Vi, Vj ∈ π,
the matchings in G(Vi) and G(Vj) have no intersection with
each other. Now, consider the coalition structure π′ = {E}
which consists of the grand coalition. Then V can achieve a
maximum matching of at least s by having exactly the same
matchings as that of vertex sets in π. This implies that
that v(π′) ≥ s. Therefore, the coalition structure consisting
of only the grand coalition attains a social welfare that is
at least the social welfare attained by any other coalition
structure.

On the other hand, the threshold versions of certain games
are computationally harder to solve because of their similar-
ity to WVGs [4]. As a corollary of Prop. 4, we obtain the
following:

Corollary 4. Unless P = NP, there exists no
polynomial-time algorithm which computes an α-optimal

coalition structure for α < 2 and for the following classes
of games: 1. T-NFG. 2. T-Matching game and 3. T-GG+.

In some cases, OptCS may be expected to be intractable
because the coalitional game is defined on a combinatorial
optimization domain which itself is intractable. We observe
that even if computing the value of coalitions is intractable,
solving OptCS may be easy:

Observation 2. Given an instance of maximum inde-
pendent set, graph G = (V,E), finding the value of the coali-
tion v(N) is NP-hard, but the optimal coalition structure is
all singletons.

6. CONCLUSIONS
Coalition structure generation is an active area of research

in multiagent systems. We presented a general positive al-
gorithmic result for coalition structure generation, namely
that an optimal coalition structure can be computed in poly-
nomial time if the player types are known and the number of
player types is bounded by a constant. In many large multi-
agent systems, it is a valid assumption that there are a lot of
agents but the agents can be divided into a bounded number
of strategic classes. For example, skill games are well mo-
tivated for coordinated rescue operation settings [5, 7]. In
these settings, there may be a large number of rescuers but
they can be divided into a constant number of types such
as firemen, policemen and medics. We have also undertaken
a detailed study of the complexity of computing an optimal
coalition structure for a number of well-studied games and
well-motivated games in AI, multiagent systems and opera-
tions research. The results are summarized in Table 1.
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ABSTRACT
The class of simulation–based games, in which the payoffs
are generated as an output of a simulation process, recently
received a lot of attention in literature. In this paper, we ex-
tend such class to games in extensive form with continuous
actions and perfect information. We design two convergent
algorithms to find an approximate subgame perfect equilib-
rium (SPE) and an approximate Nash equilibrium (NE) re-
spectively. Our algorithms can exploit different optimization
techniques. In particular, we use: simulated annealing, cross
entropy method, and Lipschitz optimization. We produce an
extensive experimental evaluation of the performance of our
algorithms in terms of approximation degree of the optimal
solution and number of evaluated samples. Finding approx-
imate NE and SPE requires exponential time in the game
tree depth: an SPE can be computed in game trees with a
small depth, while the computation of an NE is easier.

Categories and Subject Descriptors
I.2.11 [Computating Methodologies]: Distributed Arti-
ficial Intelligence.

General Terms
Algorithms, Economics.

Keywords
Game Theory (cooperative and non-cooperative).

1. INTRODUCTION
Non–cooperative game theory provides formal tools to

model situations wherein rational agents interact and de-
scribes the pertinent solution concepts [5]. The central so-
lution concepts are the Nash equilibrium for games in which
agents play simultaneously (said in strategic form) and the
subgame perfect equilibrium when agents play sequentially
(said in extensive form). Game theory proves that any fi-
nite game admits at least an equilibrium (Nash and subgame
perfect), however it leaves open the problem to compute it.
Equilibrium computation is currently one of the most chal-
lenging problem in computer science [17].

Cite as: Equilibrium Approximation in Simulation–Based Extensive–
Form Games, Gatti, Restelli,Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 199-206.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The formal model of a game is based on the concept of
mechanism. It defines the rules of the game, specifying the
number of roles of the agents, the actions available to the
agents, the sequential structure of the game, and the pref-
erences of the agents over the outcomes (usually expressed
as utility functions). Almost the entire game theory deals
with games where the agents’ utility functions are known
in analytical form. Recently, the class of simulation–based
games have been proposed, in which the agents’ utility are
not analytical known, but they are the result of a (usually
continuous) simulation process. The main interest in study-
ing these games lays in developing algorithms able to find
agents’ (approximate) equilibrium strategies without having
any information about the simulation process.

The main work on equilibrium computation for simulation–
based games is described in [21]. The authors provide al-
gorithms based on best response iteration to find an ap-
proximate Nash equilibrium, where the best responses are
approximated by using stochastic optimization techniques
(precisely, simulated annealing). The authors discuss also
the conditions that assure their algorithms to converge (in
probability) to an equilibrium. However, this work is ap-
plicable only to games in strategic form. The study of
simulation–based games in extensive form has not received
enough attention. To the best of our knowledge, the unique
pertinent result is provided in [20], where the authors em-
ploy the simulation–based framework for mechanism design.

In this paper, we provide the first study of simulation–
based (continuous) extensive–form games. After having de-
fined the class of simulation–based extensive–form games
(Section 2), we provide two algorithms to compute an ap-
proximate Nash equilibrium (NE) and an approximate sub-
game perfect (SPE) respectively, that work directly on the
game tree (Section 3). These algorithms exploit black–box
(stochastic) optimization techniques. We develop our algo-
rithms with three different optimization techniques: sim-
ulated annealing (as in [21]), cross entropy method, and
Lipschitz optimization. Then, we experimentally evaluate
the performance of our algorithms (and optimization tech-
niques) in terms of: ǫ value of the found ǫ-approximate equi-
librium, number of evaluated samples, and time (Section 5).
We experimentally show that an NE can be found in game
trees deeper than in the SPE case.

2. SIMULATION-BASED AND EXTENSIVE-
FORM GAMES

The class of simulation–based games was introduced in [21]
and captures situations where the agents’ utility functions
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Figure 1: A two–level continuous game with two
agents: game tree (left), and agents’ utility functions
(middle and right).

are not analytically known, but they are given as the result
of a simulation process. Formally, there is an oracle O that,
given an outcome of the game, produces a (possibly noisy)
sample from the agents’ joint utility functions. Since most
of simulation processes are based on real–valued variables,
a very interesting class of simulation–based games is that
of games where the agents’ actions are continuous. In these
games, the actions available to the agents are the assignment
of values to one or more real–valued variables. In what fol-
lows, we define the concept of simulation–based extensive–
form games and we review the appropriate solution concepts.
As customary in game theory, we distinguish the mechanism,
that specifies the game rules, from the strategies, that spec-
ify the agents’ behavior during the game.

2.1 Mechanism
A finite perfect–information extensive–form game is a tu-

ple (N,A,V,T, ι, ρ,χ,u), where: N is the set of n agents,
A is a set of actions, V is the set of decision nodes of
the game tree, T is the set of terminal nodes of the game
tree, ι ∶ V → N is the agent function that specifies the
agent that acts at a given decision node, ρ ∶ V → ℘(A) re-
turns the actions available to agent ι(v) at decision node v,
χ ∶ V ×A→ V ∪T assigns the next (decision or terminal) node
to each pair composed of a decision node v and an action a
available at v, and u = (u1, . . . , un) is the set of agents’ util-
ity functions where ui ∶ T → R. An extensive–form game is
with imperfect–information when some action of some agent
is not perfectly observable by the agent’s opponents. In
this paper, we limit our study to perfect–information games.
Furthermore, we focus on games with perfect recall, where
every agent recalls all the previously undertaken actions.

In our work, we consider continuous perfect–information
extensive–form games. In these games, sets A, V , and T
are compact. Given a decision node v, agent ι(v) has a
continuous set of actions ⊆ A. Each action can lead to a
different decision or terminal node. (The model can be easily
extended to the case in which A, V , and T are mixed sets
composed of continuous and discrete elements.)

Example 2.1. Consider Figure 1, there are two agents
(i.e., agent 1 and agent 2) that play according to a two–level
game tree where the first agent to play is agent 1. Agent 1
can assign a real value to x1 from the range [0,1]. After the
assignment by agent 1, agent 2 can assign a real value to x2
from the range [0,1]. Agents’ utility functions are defined
on x1 and x2 as shown in figure.
In a simulation–based extensive–form game, players’ utility
functions u are not known. Formally, the component u in the
tuple (N,A,V,T, ι, ρ,χ,u) is substituted by oracle O whose
argument is t ∈ T . We say that (N,A,V,T, ι, ρ,χ,u) where

u = E[O] is the underlying game of the simulation–based
game where the oracle is O. Given u(t), we denote by ui(t)
the component of u reporting the utility of agent i.

2.2 Strategies
In an extensive–form game, a pure strategy σi is a plan

of actions specifying one action for each decision node of
agent i. A mixed strategy σi is a randomization over pure
strategies (plans). When the game is continuous, the def-
inition of a single plan is extremely complex and cannot
be conveniently used. An alternative and more compact
representation is given by behavioral strategies. These de-
fine the behavior of an agent at each node independently of
the choices taken at other nodes. Essentially, a behavioral
strategy σi assigns each decision node v ∈ V a probability
distribution over the actions available at v. With perfect
recall, the two representations (plans and behavioral) are
equivalent. A strategy profile collects the strategies of all
the agents and is defied as σ = (σ1, . . . , σn).

With continuous games, behavioral strategies are usually
expressed as functions that map actions played at previous
nodes to an action (or a probability distribution) available
at the current node.

Example 2.2. Consider the game in Fig. 1, possible strate-
gies for agent 1 and agent 2 are:

σ1 = {x1 = .3

σ2 = {x2 = .6 if x1 ≤ .2

x2 = .9 if x1 > .2

Solving a game means to find a strategy profile in which
agents’ strategies are somehow in equilibrium. Under the
assumption that information is complete and common we
can define the concept of Nash equilibrium (NE) as a strat-
egy profile σ such that for all i ∈ N : σi is a best response to
σ−i where σ−i is given by σ once σi has been removed (eas-
ily, a strategy σi is a best response when no other strategy
provides a larger utility). It is well known that in extensive–
form games some Nash equilibria may be not reasonable with
respect to the sequential structure of the game [5]. When
information is perfect, the appropriate refinement of Nash
for extensive–form games is the subgame perfect equilibrium
(SPE) [5]. With perfect information, a subgame is a subtree
of the game tree. Obviously, in continuous games, there
are infinite subgames. A subgame perfect equilibrium is a
strategy profile that is a Nash equilibrium in every subgame.
Every finite extensive–form with perfect information has at
least one subgame perfect equilibrium in pure strategies [5].
The same result holds when the game is continuous with
bounded utility functions [8]. Since the subgame perfect
equilibrium is a refinement of the Nash equilibrium, every
continuous perfect–information extensive–form game always
admits at least one Nash equilibrium (instead, continuous
one–shot games may not admit any Nash equilibrium).

Example 2.3. Consider the game depicted in Fig. 1. There
is ‘essentially’ a unique SPE (rigorously speaking, there are
infinite SPEs, but they are all equivalent in terms of utili-
ties), represented in Fig. 2 where:

σ1 = {x1 > .5

σ2 = {x2 ≤ .5 if x1 ≤ .5

x2 > .5 if x1 > .5

This game does not admit additional NEs in pure strategies.
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gies.

Example 2.4. Consider a variation of the game in Fig. 1,
where utilities are reported in Fig. 3. There is ‘essentially’ a
unique SPE and an additional NE in pure strategies. In the
(non–SPE) NE , agent 2 makes a non–credible threat, com-
mitting to play x2 = z with z > .5 when agent 1 play x1 = w
with w > 0.5, to force agent 1 to play x1 = w with w ≤ 0.5.

Since our aim is to approximate equilibrium strategies in
simulation–based games, we resort to the concepts of ap-
proximate equilibrium. Several concepts are available in the
literature: ǫ–close, ǫ–Nash, and ǫ–perfect equilibria. An ǫ–
close equilibrium is a strategy profile σ in which the dis-
tance (according to some metric) between every σi and σ∗i
is smaller than ǫ, where σ∗i is the optimal strategy of i in an
NE σ∗. This concept provides a measure of the approxima-
tion degree of the strategy. However, it is usually considered
non–satisfactory and it is preferred the provision of the ap-
proximation degree of the expected utility. An ǫ–Nash equi-
librium is a strategy profile σ where no agent can improve
more than ǫ her utility by a unilateral deviation, while an
ǫ–perfect equilibrium takes into account also the deviations
of the opponents at all the subgames.

3. ALGORITHMS
The approximation of an equilibrium in simulation–based

extensive–form games cannot be tackled with the algorithms
proposed for strategic–form games. To use these algorithms,
we need to represent the agents’ strategies as plans of actions
and this is impractical.1 This pushes for the development of
ad–hoc algorithms that work directly on the game tree.

1
Notice that the game cannot be solved by using the algorithm de-

scribed [21] assuming that agent 1 and agent 2 assign values to x1 and
x2 respectively. This would neglect the game sequential structure.

Algorithm 1 spe approximation(v)

1: if v is terminal then
2: return O(v)
3: else
4: {σk(v)} ← sample initialization(ρ(v))
5: while true do
6: for each σk(v), assign uk = spe approximation(χ(v, σk(v)))
7: if termination condition ({σk(v)}, {uk}) then

8: return arg max
u∈{uk}

uι(v)

9: else
10: {σk(v)} ← samples generation(ρ(v), {σk(v)}, {uk})
11: end if
12: end while

13: end if

We provide two algorithms to compute an approximate
NE and an approximate SPE respectively. For sake of ex-
position, at first we present the algorithm for finding an ap-
proximate SPE. The algorithm for finding an approximate
NE is an extension of the previous one. In both algorithms,
we use σ(v) to specify the agent ι(v)’s strategy at node v.

3.1 Computing an approximate SPE
Formally, for each node v ∈ V an SPE is defined as follows:

σ
SPE(v) = arg max

σ∈ρ(v)
u

SPE
ι(v) (χ(v, σ)) , (1)

where uSPE(v) is defined as

u
SPE(v) = { O(v) if v is terminal

u
SPE (χ(v, σ

SPE(v))) otherwise.

Algorithm 1 reports the pseudo–code to compute an approx-
imate SPE. The algorithm, that works recursively, receives,
as input, the current node v. Initially, the algorithm is called
with v as the root node. If the current node v is terminal,
then the oracle is called and a sample of agents’ utilities are
returned (Line 2). Otherwise, the optimal strategy at v is
searched as follows. Initially, one or more action samples are
generated (Line 4). Then, each sample σk(v) is evaluated by
recursively calling spe approximation on the node reach-
able by application of action σk(v) to node v (Line 6). Given
the evaluation of all the samples, if a termination condition
holds (Line 7), the largest utility among those of all the sam-
ples is returned (Line 8). Otherwise, new samples are gen-
erated (Line 11). Functions sample initialization, sam-
ples generation, and termination condition are based
on black–box non–linear optimization techniques (their de-
scription is provided in Section 4).

Example 3.1. Consider the game in Fig. 1. Algorithm 1
works as follows. At first some samples of x1 are generated,
e.g., {.2, .4, .8}. For each sample, the algorithm is recursively
called and samples for x2 are produced, e.g., {.3, .5, .8} for
x1 = .2. Then, an iterative optimization process based on re-
sampling is carried on to optimize the value of x2 (i.e., ≤ .5
for x1 = .2) and, finally, to return the evaluation of utility
associated with the sample of x1 = .2 (i.e., u1 = 1). Once
utility associated with all the generated samples of x1 are
evaluated, an iterative optimization process based on resam-
pling is carried on to optimize the value of x1 (i.e., u1 = 2).

Provided that the black–box non–linear optimization tech-
nique converges to the global optimum (see Section 4.4), it
is easy to show that the proposed algorithm computes the
solution of problem in Equation 1.
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Algorithm 2 ne approximation (v)

1: if v is non–preterminal then
2: σ(v) ← a random value uniformly distributed in ρ(v)
3: u← ne approximation(χ(v, σ(v)))
4: while true do
5: [û, σ̂(v)]← ne validation(v, v)
6: if ûι(v) ≤ u(v) then

7: return u
8: else
9: σ(v) ← σ̂(v)

10: u← ne approximation(χ(v, σ(v)))
11: end if
12: end while
13: else
14: {σk(v)}← sample initialization(ρ(v))
15: while true do
16: for each σk(v), assign uk = O (χ(v, σk(v)))
17: if termination condition({σk(v)}, {uk}) then

18: return arg max
u∈{uk}

uι(v)

19: else
20: {σk(v)}← samples generation(ρ(v), {σk(v)}, {uk})
21: end if
22: end while

23: end if

3.2 Computing an approximate NE
Surprisingly, although the NE concept poses constraints

less hard than the SPE concept, the algorithm computing
an NE results to be more twisted than the one computing
an SPE. An NE can be formulated as in Equation 1 as far as
the nodes on the equilibrium path are considered, while off
the equilibrium path other agents may be non-maximizers.

Algorithm 2 depicts the pseudo–code computing an ap-
proximate NE. In the computation of an NE, two phases
can be recognized. During the first phase (entirely executed
by Algorithm 2), a strategy profile σ, limited to the equi-
librium path, is searched. During the second phase (mainly
executed by Algorithm 3), a possible strategy profile off the
equilibrium path is searched such that σ is an NE. Essen-
tially, the second phase validates that σ is an NE. The two
phases iteratively alternate during the execution until an
approximate NE has not been found. The details follow.

(First phase) In Algorithm 2, for each non–preterminal
node2 v a random strategy is assigned to σ(v) (Line 2) and
the algorithm is recursively called on the next node reached
by applying σ(v) to the current node (Line 3). If v is preter-
minal, the best strategy of agent ι(v) at v is searched by
using black-box optimization techniques (Lines 14–22). No-
tice that this optimization works exactly as Lines 6-13 of
Algorithm 1 except that here the evaluation of the sample
is directly accomplished by calling the oracle without any
recursive call of the algorithm. Once Line 18 is executed, a
complete strategy assignment σ from the root of the tree to
a terminal node (along a single path) is built.

Example 3.2. Consider the game depicted in Fig. 3. Al-
gorithm 2 randomly assigns a value to x1, e.g., x1 = 0.3, and
subsequently the optimal value of x2 is found, i.e., x2 ≥ .5.

(Second phase) The algorithm tries to validate that the
found strategy profile σ is an NE (Line 5). This is ac-
complished by Algorithm 3. Given a node v, Algorithm 3
searches for a strategy in the subgames such that agent ι(v)
cannot gain more by deviating from her strategy prescribed

2
A node v is preterminal if, once applied an action to v, a terminal

node is reached.

Algorithm 3 ne validation (v, v0)

1: if v is terminal then
2: return O(v)
3: else
4: {σk(v)}← sample initialization(ρ(v))
5: while true do
6: for each σk(v), assign uk = ne validation(χ(v, σk(v)), v0)
7: if ι(v) = ι(v0) then

8: if termination condition({σk(v)}, {uk
ι(v)}) then

9: return [arg max
u∈{uk}

uι(v),best σ
k(v)]

10: else
11: {σk(v)} ← samples generation

(ρ(v), {σk(v)}, {uk
ι(v)})

12: end if
13: else
14: if termination condition({σk(v)}, {−uk

ι(v0)}) then

15: return [arg min
u∈{uk}

uι(v0),best σ
k(v)]

16: else
17: {σk(v)} ← sam-

ples generation(ρ(v), {σk(v)}, {−uk
ι(v0)})

18: end if
19: end if
20: end while

21: end if

by σ. Differently from what happens in the case of SPE, the
strategy in the subgames of v does not need to be sequen-
tially rational. Practically, this means that, while agent ι(v)
will maximize her utility in such subgames, the behavior of
her opponents is free, they do not necessarily maximize their
utility. To assure that there is not any strategy such that
ι(v) can gain more by deviating form her strategy prescribed
by σ at v, we assume that all the opponents of ι(v) behave
in the attempt to minimize the utility of ι(v). In this way,
we find the maxmin value of agent ι(v) from the subgames.
If the maxmin value is larger than the utility given by the
strategy prescribed by σ, then σ is not an NE, otherwise
there is at least a strategy of the subgames such that the
strategy prescribed by σ is optimal. The validation process
must be repeated at every node v. If a strategy is not val-
idated at a given node v, Algorithm 2 assigns the maxmin
strategy of the subgames to σ(v) (Line 8) and phase 1 is
restarted.

Algorithm 3 works similarly to Algorithm 1 except that
the opponents of agent ι(v0), where v0 is the node whose
strategy we are validating, minimize agent ι(v0)’s utility
(Line 15). We use the same black–box optimization tech-
niques used in the previous algorithms, passing {−uk

ι(v0)
}

when we need to minimize (Lines 14 and 17).

Example 3.3. Consider the game depicted in Fig. 3. Sup-
pose that Algorithm 2 has assigned x1 = .3 and x2 = .1, and
that ne validation is executed to validate the strategy of
agent 1. A number of samples are generated for x1. For each
sample of x1, the optimal value of x2 minimizing agent 1’s
utility is found. It can be easily observed that the maxmin
utility of agent 1 from all the subgames is 1 and therefore
the initial strategy is validated.

The efficiency of Algorithm 3 can be improved by using a
pruning procedure similar to the alpha–beta pruning. More
precisely, call v0 the node whose strategy is to validate. To
assert that a given strategy σ is not an NE, we do not need
to compute the maxmin value of v0, but it is enough to find
a strategy σ̂ι(v0) such that agent ι(v0)’s utility is larger than
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the one provided by the strategy to validate. Moreover, in all
the subgames of v0, we do not strictly need that opponents
of agent ι(v0) find the minimum of agent ι(v0)’s utility, but
it is sufficient that they find an action such that agent ι(v0)’s
utility is not larger than the one provided by the strategy
to validate. Therefore, the termination condition at Line 8
can be safely modified in the following way: as soon as a
sample provides agent ι(v0) with a utility larger than the
one provided by the strategy to be validated, the algorithm
returns such utility and the corresponding sample. Similarly,
at Line 14 it is possible to make the algorithm return as soon
as a sample, that provides agent ι(v0) with a utility non–
larger than the one provided by the strategy to be validated,
is found.

Example 3.4. Consider Example 3.3. Every time a sam-
ple of x2 is evaluated and it provides a utility of 1 to agent 1,
no further samples are generated.

4. OPTIMIZATION ALGORITHMS
As shown in the previous section, the computation of an

SPE and an NE in extensive–form games requires to solve a
number of recursive optimization problems. For each node v
we need to maximize an unknown objective function which
depends on the solutions of other optimization problems de-
fined in the nodes of the sub–tree rooted at v. In a contin-
uous extensive–form game, this means to solve a number of
unconstrained continuous optimization problems. In the lit-
erature, researchers have proposed many optimization meth-
ods, which can be split into two main categories: determin-
istic methods (e.g., real algebraic geometry [2], Lipschitz op-
timization [18]) and non–deterministic (or stochastic) ones
(e.g., evolutionary algorithms [7], simulated annealing [10],
cross-entropy method [16], particle swarm optimization [9]).
The optimization process which is common to all these al-
gorithms is synthetically summarized in Algorithm 4. Start-
ing from one or more initial samples within the search space
D, at each iteration, new candidate solutions are generated
and, on the basis of their scores (i.e., the corresponding
objective function values) and eventually other information
about the objective function, the search is directed towards
the most promising regions in the search space. The search
process iterates until some termination condition is met: for
instance, many optimization algorithms stop when the im-
provement in a sequence of consecutive iterations falls be-
low a predefined threshold or a predefined maximum num-
ber of iterations is reached. In the following subsections
we will focus on one deterministic algorithm (Lipschitz op-
timization) and two random–search approaches (simulated
annealing and cross–entropy method), and we will describe
how the main steps of the search process are implemented in
each of them. For sake of simplicity, we will present the al-
gorithms for one–dimensional optimizations, but extensions
to multiple dimensions are straightforward [1].

4.1 Lipschitz optimization
Lipschitz optimization is a deterministic approach to the

global optimization problem. The basic assumption of this
approach is that the objective function u(x) satisfies the Lip-
schitz condition over the closed optimization interval [a, b].
A function is Lipschitz if there exists a finite bound α (called
Lipschitz constant) to its rate of change:

∣ u(x1) − u(x2) ∣≤ α ∣ x2 − x1 ∣, x1, x2 ∈ [a, b]. (2)

Algorithm 4 Optimization Algorithm

1: i ∶= 0
2: {xk

0}1≤k≤N
= sample initialization(D)

3: repeat
4: i ∶= i + 1

5: {xk
i }1≤k≤N

= sample g (D,{xk
[0∶i−1]}1≤k≤N

,{yk
[0∶i−1]}1≤k≤N

)
6: for j = 1 to N , assign yj

i
= u(xj

i
)

7: until termination condition ({xk
[0∶i]}1≤k≤N

,{yk
[0∶i]}1≤k≤N

)
8: return arg max

x∈{xk
i
}
1≤k≤N

u(x)

The key idea of Lipschitz optimization is to select the next
query point by maximizing an upper–bound function which
is built on the sequence of samples generated by the search
process.

Sample initialization. The algorithm starts by generating
two samples placed at the boundary of the optimization in-
terval [a, b]: {xk

0} = {a, b}, and computes the corresponding
scores u(a) and u(b).

Sample generation. In the following iterations, to select
the next sample of the search process, the algorithm, given
all the previously generated samples {x[0∶i−1]} (sorted by
value) and the associated scores {u(x[0∶i−1])}, determines

the interval [xj , xj+1] containing the highest value of the
upper–bound function:

[xj∗
, x

j+1∗ ] = arg max
xj,xj+1∈{x[0∶i−1]}

u(xj) +u(xj+1)
2

+α ⋅
xj+1

− xj

2
.

Once the interval has been identified, the new sample will
be generated in the following point:

xi = u(xj+1∗ ) − u(xj∗)
2α

+

xj∗
+ xj+1∗

2
.

Termination condition. The stop criterion for Lipschitz
optimization is that the difference between the actual objective-
function value and the upper–bound value is lower than a
specified global tolerance ǫstop.

4.2 Simulated Annealing
Simulated Annealing (SA) is a well–known probabilistic

metaheuristics algorithm for finding global maximum (or
minimum) of an objective function. It works by emulat-
ing the physics process whereby a solid is at first heated
and then slowly cooled to find a configuration with lower
internal energy than the initial one. The idea behind SA is
to take a random walk through the search space at succes-
sively lower temperatures (i.e., less exploration), where the
probability of taking a step is given by a Boltzmann distri-
bution. Although SA is often used when the search space
is discrete, here we consider its application to continuous
global optimization problems [12].

Sample initialization. The SA algorithm starts from a
random sample drawn from a uniform distribution over the
search space.

Sample generation. At each iteration i, a new candidate
sample x̂ is generated from a kernel distribution K(⋅, xi−1)
(whose definition is critical to the convergence of SA [6])
centered in the last available sample xi−1 (we used Gaussian
kernels). If the new sample x̂ has a score higher than the
one of xi−1 the sample is accepted. Otherwise, to avoid get-
ting trapped in local maxima, it can be still accepted with

203



a likelihood that is proportional to the temperature param-
eter τ and the score difference u(x̂) − u(xi−1) (Metropolis
algorithm [15]):

xi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̂ if p ≤min{1, e−
u(x̂)−u(xi−1)

τ }
xi−1 otherwise,

where p is a random number drawn uniformly in [0,1].
As the search process goes on, in order to converge to a so-
lution the temperature parameter should decrease according
to some cooling scheme [3].

Termination condition. Usually, SA algorithms stop when
new samples are consecutively rejected for a fixed number of
iterations. In this paper, we use a different criterion (similar
to the one adopted in [19]) based on the score of the sam-
ples considered in the last M iterations. In particular, the
algorithm is stopped at the i-th iteration if:

max
j∈[i−M,i]

u(xj) − 1

M

i∑
j=i−M

u(xj) < ǫSTOP .

In words, the algorithm is stopped when its progress is con-
sidered too small.

4.3 Cross-entropy method
The Cross-Entropy (CE) method is a Monte Carlo tech-

nique to solve optimization problems. The method con-
sists of two main steps: 1) generate samples according to
a probability density defined over the search space, 2) up-
date the probability density parameters by minimizing the
cross-entropy (i.e., Kullback-Lieber divergence [11]) with re-
spect to the best samples (elite samples). In this way, new
samples will be generated in the most promising regions of
the search space. Since considering distributions from an
exponential family such minimization can be solved analyti-
cally, in this paper we use Gaussian densities parameterized
by the mean µ and variance σ2.

Sample initialization. At the first iteration, since no prior
information is available, k samples are randomly generated
using a uniform distribution over the search space.

Sample generation. At each iteration i, given the sample
scores of the previous iteration {u(xk

i−1)}1≤k≤N , a percent-
age ρCE of the best samples is selected to estimate the new
probability density from which new samples will be drawn
in the next iteration. Using Gaussian densities, the mini-
mization of the cross–entropy measure leads to update the
parameters of the distribution by simply computing the sam-
ple mean and sample variance of the elite samples, i.e., the
best ⌈N ⋅ ρCE⌉ samples.

Termination condition. The algorithm is stopped when
the improvement in the (1 − ρCE)-quantile (i.e., the score
of the worst elite sample) does not exceed ǫSTOP for dCE

successive iterations, or when the maximum number of iter-
ations tmax is reached.

4.4 Convergence Properties
Lipschitz optimization allows one to approximate with ar-

bitrary precision the global maximum of Lipschitz functions
when an upper bound to the function derivative (the Lips-
chitz constant) is known. Since Lipschitz optimization is a
deterministic method with very few parameters, there is no
need for multiple runs and parameter tuning is minimized.
On the other hand, when the Lipschitz constant is unknown
or the objective function is not Lipschitz, no guarantees of
accuracy can be given. Furthermore, when objective func-

tions have large Lipschitz constants and/or are defined over
multiple dimensions, the convergence is very slow.

When no information about the objective function is avail-
able, randomized–search methods (e.g., simulated annealing
and cross–entropy method) are usually considered. Both the
algorithms described in this section are simple and effective
approaches to solve continuous optimization problems, even
if simulated annealing is a local search algorithm (whose per-
formance depends critically on a proper choice of the cooling
scheme), while the cross–entropy method is a global opti-
mization method. It is possible to show that, under quite
mild conditions on the kernel distributions and the objective
function, such methods converge to the optimum with prob-
ability approaching one as the number of samples grows to
infinity (for details refer to [6, 13]).

5. EXPERIMENTAL EVALUATION
We implemented our algorithms with Matlab R10 and we

executed them with a UNIX computer with dual quad-core
2.33GHz CPU and 8GB RAM. Our experimental activity
is structured as follows. Initially, we apply our algorithms
to a well–known practical economic problem (i.e., bargain-
ing) modeled as a continuous extensive–form game which
presents piecewise linear utility functions and whose exact
solution is known in closed form. Subsequently, we apply our
algorithms to ad–hoc games with a class of highly non–linear
utility functions widely studied in multi–agent systems.

5.1 The bargaining case study
We chose the alternating–offers game as case study, being

the principal model for strategic bargaining. The alternating–
offers game prescribes that two agents, a buyer b and a seller
s, play alternately at discrete time points. Time t is discrete
and ι(t) is defined as follows: ι(0) is a parameter of the
problem and for t > 0 it is such that ι(t) ≠ ι(t − 1). The
pure strategies available to agent ι(t) at t > 0 are: offer(x),
where x ∈ [0,1]; accept, that concludes the game with out-
come (x, t), where x is the value offered at t − 1, and t is
the time point at which the offer is accepted; and exit, that
concludes the game with outcome NoAgreement. At t = 0
only actions offer(x) and exit are available. Agents’ utility
functions are defined as follows. Each agent i has a dead-
line Ti. Before the deadlines, utility functions are defined as
Ub(x, t) = (1−x) ⋅ (δb)

t for the buyer and Us(x, t) = x ⋅ (δs)
t

for the seller. After the deadline of agent i, her utility is −1.
δi and Ti are parameters. The alternating–offers game ad-
mits a unique SPE that prescribes that at each time t there
is an optimal offer x∗(t) for every t ≤min{Tb, Ts} such that
agent ι(t) makes it and her opponent accepts it at t+1. (For
the computation of x∗ we point the interested reader to [4])
There is no optimal offer at t >min{Tb, Ts}, so agents’ opti-
mal action is exit. That is, the minimal deadline essentially
defines the depth of the game tree (exactly, the tree depth
is min{Tb, Ts} + 1).

We generated some game instances with different mini-
mal deadlines from the range {3,4,5,6}. We developed sim-
ple variations of our algorithms to capture the fact that ac-
tions are mixed, combining discrete and continuous actions.
Moreover, we force agents to exit when the minimal deadline
is expired (otherwise agents can indefinitely play).

At first, we have evaluated the performance of Algorithm 1
with different parameterizations when the minimal deadlines
is 3. The used parameterizations and the obtained results
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best samples per iteration
s.p.i. 2 4 6

E[⋅] std E[⋅] std E[⋅] std

0.078 0.084 0.082 0.157 0.195 0.186 ǫ

10 3⋅104 1⋅104 3⋅104 9⋅103 5⋅104 3⋅104 e.s.
0.763 0.329 1.684 0.613 2.111 0.864 time (s)

0.042 0.045 0.015 0.009 0.017 0.013 ǫ

20 5⋅104 2⋅104 2⋅105 3⋅104 3⋅105 7⋅104 e.s.
2.677 0.730 5.725 0.836 7.987 2.295 time (s)

0.036 0.038 0.0048 0.003 0.010 0.003 ǫ

30 4⋅105 9⋅104 6⋅105 9⋅104 8⋅105 6⋅104 e.s.
10.431 2.290 13.991 1.811 20.511 2.038 time (s)

0.024 0.016 0.015 0.025 0.005 0.007 ǫ

40 9⋅105 1⋅105 1⋅106 2⋅105 1⋅106 2⋅105 e.s.
18.983 3.789 31.244 7.848 36.310 6.102 time (s)

0.013 0.009 0.009 0.008 0.003 0.003 ǫ

50 2⋅106 3⋅105 3⋅106 4⋅105 3⋅106 4⋅105 e.s.
32.801 6.005 49.719 7.551 54.853 7.412 time (s)

Table 1: Experimental results with a bargaining
game with depth 3 obtained by applying CE to com-
pute SPE (‘s.p.i.’ means samples per iteration and
‘e.s.’ means evaluated samples).

temperature (τ)
M 0.3 0.5 0.7

E[⋅] std E[⋅] std E[⋅] std

0.042 0.030 0.082 0.133 0.031 0.033 ǫ

10 3⋅104 1⋅103 4⋅104 1⋅103 4⋅104 2⋅103 e.s.
0.915 0.051 0.946 0.024 0.956 0.055 time (s)

0.027 0.019 0.026 0.024 0.026 0.018 ǫ

20 3⋅105 3⋅103 3⋅105 9⋅103 3⋅105 1⋅104 e.s.
6.741 0.098 6.411 0.353 6.482 0.252 time (s)

0.023 0.017 0.020 0.017 0.029 0.024 ǫ

30 1⋅106 3⋅104 1⋅106 3⋅104 1⋅106 3⋅104 e.s.
22.650 0.782 22.820 0.910 24.390 0.623 time (s)

0.018 0.014 0.022 0.021 0.019 0.019 ǫ

40 2⋅106 5⋅104 2⋅106 7⋅104 2⋅106 7⋅104 e.s.
54.590 1.154 55.152 1.739 54.322 1.426 time (s)

0.018 0.017 0.013 0.181 0.035 0.062 ǫ

50 5⋅106 1⋅105 5⋅106 8⋅104 5⋅106 1⋅105 e.s.
108.627 1.903 107.689 2.865 106.613 2.781 time (s)

Table 2: Experimental results with a bargaining
game with depth 3 obtained by applying SA to com-
pute SPE (‘M ’ is defined in Section 4.2and ‘e.s.’
means evaluated samples).

related to CE optimization are reported in Tab. 1, those re-
lated to SA optimization are reported in Tab. 2, and those
related to Lipschitz optimization are reported in Tab. 3 (no-
tice that the utilities in the bargaining game are no Lips-
chitz, not being continuous). We evaluated our algorithm
in terms of ǫ value of the approximate ǫ–perfect equilibrium
found by the algorithms, number of evaluated samples (e.s.),
and computational time. The results reported in the tables
are averaged over 10 executions (ǫSTOP = 10−2 for CE and
SA).

CE and SA exhibit similar performance in terms of ǫ value.
This value reduces when the number of samples per itera-
tion (s.p.i.) and M increase, while there are not optimal
values of elite samples and temperature independently of
the number of samples per generation. Only with a Lip-
shitz constant larger than 3, Lipshitz optimization returns a
value of ǫ comparable to that returned by the other two op-
timization techniques. On the other hand, CE and SA eval-
uated a strictly smaller number of samples (ǫ being equal,
CE always outperforms SA). Finally, computational times
are proportional to the number of e.s. for all the optimiza-
tion techniques in the same way (for this reason, we omit
the computational time in the following evaluations).

Tab. 4 and Tab. 5 report the performance of Algorithm 1
with CE and SA with their fastest configurations (10 s.p.i.
and 2 elite samples for CE, and M = 2 and τ = 0.3 for SA)
for different values of the minimal deadline. The results are

Lipschitz constant (α)
1 2 3 4

0.221 0.143 0.073 – ǫ

138,359 1,127,485 6,692,909 > 107 e.s.
10.85 108.52 577.221 – time (s)

Table 3: Experimental results when computing SPE
with Lipshitz optimization in a bargaining game
with depth 3 (‘e.s.’ means evaluated samples).

minimal samples per iteration
deadline 10 15 20

ǫ e.s. ǫ e.s. ǫ e.s.

3 0.078 33,017 0.065 41,674 0.042 48,259
4 0.056 954,356 0.033 4,135,410 0.031 6,259,260
5 0.043 14,354,760 0.039 50,714,660 0.035 73,801,294
6 0.051 270,564,843 – > 109 – > 109

Table 4: Experimental results when computing SPE
in a bargaining game using CE with elite samples
equal to 2 (‘e.s.’ means evaluated samples).

averaged over 10 executions. We observe that the ǫ value
is rather small even with minimal deadline equal to 6. The
number of e.s. rises exponentially in the length of the mini-
mal deadline. Also in this case CE outperforms SA in terms
of evaluated samples.

We evaluate Algorithm 2 with the parameterizations used
in Tab. 4 for CE. We report only e.s. because the ǫ–Nash
value is zero for all the executions. Finding an NE requires
less samples than finding an SPE, thus allowing one to ap-
proximate a bargaining problem with deadline 20.

5.2 Games with rugged utility functions
We evaluate the performance of our algorithms when util-

ity functions are highly non–linear. Non–linear utility func-
tions are deeply studied in the negotiation field and a class
of utility functions that has received a lot of attention is
said rugged utility [14]. A rugged utility function is de-
fined as follows. Call (x1, . . . , xn) the arguments of util-
ity function U where xi ∈ [0,1]. Each domain [0,1] is di-
vided into k intervals where the j-th interval is [ j−1

k
, j

k
]. Call

int ∶ [0,1] → {1, . . . , k} the function that, given a continuous
value xi, returns the interval to which xi belongs. Utility
U is defined as U(x1, . . . , xn) = RAND 1

n ∑
n
i int(xi) where

RAND is a number randomly drawn from a uniform prob-
ability distribution over [0,1]. With these utility functions
SPEs can be computed exactly.

We generated game trees with a depth ∈ {3,4,5} and
rugged utility functions. We executed 10 times Algorithm 1
with cross entropy for each configuration reported in Tab 7
(the number of elite samples is equal to 2). We compared
the results returned by our algorithms with respect to the
SPE of the game. We report in Tab. 7 the results with tree
depth equal to 3 (the results with 4 and 5 are similar, but
they require a much larger number of e.s.): the success per-
centage (suc.), the ǫ value of the associated ǫ–approximate
equilibrium, and the number of evaluated samples.

It can be observed that the results with rugged utility
functions are worse than those obtained in the bargaining
case study. More precisely, the ǫ value and the number of
e.s. are larger than those obtained in Section 5.1. The per-
formance decreases with the increasing of k. In order to have
a satisfactory success percentage, the number of s.p.i. must
be rather larger than k. This poses severe limits to the size of
the game trees solvable by the algorithm within reasonable
time. We applied Algorithm 2 with CE using the same pa-
rameterization and with minimal deadline larger than 3. As
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minimal samples per iteration
deadline 10 15 20

ǫ e.s. ǫ e.s. ǫ e.s.

3 0.078 33,017 0.065 41,674 0.042 48,259
4 0.055 1,950,350 0.062 12,295,395 0.057 43,368,477
5 0.047 89,769,110 – > 109 – > 109

6 – > 109 – > 109 – > 109

Table 5: Experimental results when computing SPE
in a bargaining game using SA with τ = 0.3.

minimal samples per iteration
deadline 10 15 20

3 532 874 1,146
4 1,361 1,983 3,214
5 2,841 3,324 5,482
6 5,362 8,641 9,215
10 60,316 93,325 341,513
15 301,142 762,413 1,356,234
20 1,882,582 6,241,562 13,646,221

Table 6: Evaluated samples when computing an NE
in a bargaining game using CE with elite samples
equal to 2 .

in the bargaining case, the computation of an NE requires a
strictly smaller number of evaluated samples: (with 2 elite
samples) 103 e.s. with deadlines 3, 104 e.s. with deadlines
≤ 7, 105 e.s. with deadlines ≤ 12.

6. CONCLUSIONS
Simulation–based games (i.e., games in which the agents’

payoffs are provided as the result of a simulation process)
have received a lot of attention in the scientific commu-
nity. In this paper, we extended such class of games when
the games are in extensive form and have continuous ac-
tions. We provided two convergent algorithms to compute
an approximate subgame perfect and an approximate Nash
equilibrium respectively. We used different black–box op-
timization techniques (simulated annealing, cross entropy,
and Lipshitz optimization) in our algorithms and we experi-
mentally evaluated them with different settings. A subgame
perfect equilibrium can be computed in game trees with a
small depth, while the computation of a Nash equilibrium is
easier. Furthermore, the number of evaluated samples being
equal, cross–entropy optimization demonstrated to outper-
form simulate annealing and Lipshitz optimization.

In future works, we try to improve the efficiency of our
algorithms for all the situations wherein information on the
structure of the problem is available, e.g., when games have
an action–graphical structure.
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ABSTRACT
Motivated by a machine learning perspective—that game-
theoretic equilibria constraints should serve as guidelines for
predicting agents’ strategies, we introduce maximum causal
entropy correlated equilibria (MCECE), a novel solution
concept for general-sum Markov games. In line with this
perspective, a MCECE strategy profile is a uniquely-defined
joint probability distribution over actions for each game
state that minimizes the worst-case prediction of agents’ ac-
tions under log-loss. Equivalently, it maximizes the worst-
case growth rate for gambling on the sequences of agents’
joint actions under uniform odds. We present a convex op-
timization technique for obtaining MCECE strategy profiles
that resembles value iteration in finite-horizon games. We
assess the predictive benefits of our approach by predicting
the strategies generated by previously proposed correlated
equilibria solution concepts, and compare against those pre-
vious approaches on that same prediction task.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory, Algorithms

Keywords
Game theory, correlated equilibria, maximum entropy

1. INTRODUCTION
Agents often need to predict the future behavior of other

agents [9] to appropriately choose their own actions. Equi-
libria solution concepts, such as Nash equilibria [22], and
the more general correlated equilibria (CE) [1], which al-
low agents to coordinate their actions, are important con-
structs for multi-agent games that provide certain individual
or group performance guarantees based on assumed rational-
ity. Agents playing many decentralized, adaptive strategies
(such as no-regret learning) will converge to CE [23, 10,
14, 11], but the particular set of convergence CE will vary
depending on the strategies employed. From an applied ma-
chine learning perspective, existing equilibria concepts are

Cite as: Maximum Causal Entropy Correlated Equilibria for Markov
Games, Brian D. Ziebart, J. Andrew Bagnell and Anind K. Dey, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 207-214.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

often not useful for prediction. First, they generally do
not fully specify a unique strategy profile, making strategy
prediction under-specified without additional assumptions.
Second, they are typically not designed to provide any pre-
dictive performance guarantees.

We introduce the maximum causal entropy correlated
equilibria (MCECE) solution concept to enable equilibria-
based prediction for general-sum Markov games. It ex-
tends maximum entropy correlated equilibria (MaxEntCE)
for normal-form games [24] to the dynamic game setting by
specifying the unique CE strategy profile with the fewest
additional assumptions. This property is useful for three
main purposes. First, for prescriptive settings, the resulting
MCECE strategy profile best conceals the underlying mo-
tives of agents in a manner we specify in Section 3. This
can often be an important consideration when revealing too
much information can lead to future exploitation. Second,
for predictive purposes, the MCECE strategy profile mini-
mizes the worst-case log-loss when predicting the actions of
agents assumed to act according to an unknown CE strategy.
Thus, it is theoretically justified for predicting the actions of
agents assumed to be jointly behaving rationally. Third, for
gambling on the sequence of agents’ actions, the MCECE
strategy profile maximizes the worst-case expected invest-
ment growth rate under uniform odds.

We present in Section 4 an efficient algorithm for obtain-
ing MCECE based on convex optimization that ultimately
reduces to a dynamic programming algorithm over time
steps of finite games. In contrast with our predictive ap-
proach, previously developed CE solution concepts impose
very strong assumptions on agents’ preference over possible
CE strategy profiles to provide unique payoffs [20, 15, 12]. In
Section 5, we evaluate the predictive benefits of the MCECE
and other strategy profiles at predicting the strategies of one
another.

2. BACKGROUND
We first review concepts in game theory and information

theory to properly situate the contributions of this paper.

2.1 Games and Equilibria
The canonical set of games studied within game theory

are one-shot games with matrices of payoffs.

Definition 1. A normal-form game, is defined by a set
of agents N , a set of joint agent actions A, and a utility
vector U : A 7→ RN , specifying the payoffs for each agent
i ∈ N for joint action a ∈ A. Each agent controls a portion
ai ∈ Ai of the joint action a = ×i∈Nai.
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In a normal-form game (Definition 1), each agent (i ∈ N)
simultaneously selects an action (ai ∈ Ai) and receives a
numerical payoff, Ua,i ∈ R, based on the combination of
actions, a ∈ A.

Figure 1: The sequence of states and (Markovian)
actions of a Markov game.

Markov games (Definition 2) generalize normal-form
games to sequential settings. In a Markov game, the joint
actions of N agents at time t, denoted at, stochastically lead
to a next state as shown in Figure 1.

Definition 2. A Markov game is defined by a set of
states (S) representing the joint states of N agents, a set
of actions (A), a probabilistic state transition function, T :
S×A 7→ ∆S, and a utility function, Utilityi : N×S×A 7→ R.

Agents choose strategy profiles, π ∈ ∆A, specifying
next actions for each situation that are either mixed (i.e.,
stochastic) or pure (i.e., deterministic); and either corre-
lated (i.e., joint functions) or independent based on a
(discounted, 0 < γ ≤ 1) cumulative expected utility:

ExpUtilπi (at, st) (1)

, ESt+1:T,At+1:T

[∑
τ≥t

γτUtilityi(s
τ , aτ )

∣∣∣∣∣at, st, π
]
,

where we denote the variables being marginalized over in
the expectation using subscript. We assume in Equation 1
and throughout this paper that the strategy profile is mixed
and Markovian1, meaning it depends only on the current
state and time step.

To obtain strategy profiles, it is useful to consider the
amount of utility gained by switching from a provided ac-
tion, ati, to an alternate action, ati

′
, called a deviation ac-

tion, when: all agents’ actions, at, are known (Equation 2);
or when other agents’ actions, denoted at−i ∈ At−i, are un-
known and averaged over according to the strategy profile,
π (Equation 3):

ExpDevGainπi (at, st, ati
′
) (2)

, ExpUtilπi ({at−i, ati ′}, st)− ExpUtilπi (at, st)

ExpRegretπi (ati, a
t
i
′
, st) (3)

, EAt−i
[
ExpDevGainπi (at, st, ati

′
)
∣∣∣ati, st] .

Definition 3. A correlated equilibrium (CE) for a
Markov game is a mixed joint strategy profile, πCE, where

1Markovian strategy profiles are a consequence of the
MCECE formulation and commonly assumed in other so-
lution concept formulations.

no expected gain is obtained for any agent by substituting an
action, ati

′
that deviates from the strategy. This is guaran-

teed with the following set of constraints:

∀t∈T,i∈N,st∈S,ati∈S,ati′∈S ExpRegretπ
CE

i (ati, a
t
i
′
, st) ≤ 0. (4)

CE (Definition 3) generalize Nash equilibria [22], which
further require agents’ actions in each state to be indepen-
dent. Agents in a CE can coordinate their actions to ob-
tain higher expected utilities. Conceptually, each agent is
provided an action, ati, and knows the conditional distribu-
tion of other agents’ actions, P (at−i|ati). To be in correlated
equilibrium requires that no agent has an incentive to switch
from action ati to a deviation action, ati

′
. Traffic lights are a

canonical example of a signaling device designed to pro-
duce CE strategies. Given other agents’ prescribed strate-
gies (go on green), an agent will have incentive (equivalently,
non-positive deviation regret) to obey its prescribed action
(stop on red) rather than deviating (go on red). this coor-
dination mechanism is not required as long as players have
access to a public communications channel [6]. Past research
has shown that many decentralized, adaptive strategies will
converge to a CE [23, 10, 14, 11], and not necessarily to
more restrictive equilibria, such as the Nash equilibrium.

Figure 2: A CE polytope with a CE-Q equilibria
(point A) maximizing average utility and a Max-
EntCE (point B).

The deviation regret constraints (Equation 4) define an
N-dimensional convex polytope of CE solutions in the space
of agents’ joint utility payoffs (Figure 2). Exactly represent-
ing this polytope is generally intractable for Markov games,
because the number of corners of the polytope grows expo-
nentially with the game’s time horizon. Efficient approxima-
tion approaches have been employed [21, 5], but tractable
applicability has been limited to small games (15 or fewer
joint actions combinations per state) [5]. For the far more
modest goal of finding an arbitrary CE in a range of com-
pact games, algorithms that are polynomial in the number
of agents have been developed [25, 18] and extended to se-
quential games [16].

Our objective is different; we desire neither the (approx-
imate) entire convex polytope of CE strategy profiles nor
an arbitrary CE strategy profile. Rather, we desire a single
CE strategy profile with certain properties that are useful
for predictive purposes. This can be approached using opti-
mization techniques. For a single-shot (i.e., normal-form)
game, there are O(N |Ai|2) regret constraints that are lin-
ear in a total of O(|A|) strategy variables, {π(a)}a∈A, and
CE solutions can be efficiently obtained by solving a linear
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program or a convex program:

max
π

f0(π(A)) such that: (5)

∀i,ai,ai′
∑
a−i

π(a)
(
Utility

({a−i, ai′})−Utility(a)
) ≤ 0,

∀aπ(a) ≥ 0, and
∑
a

π(a) = 1.

depending on the objective function, f0.
A correlated-Q equilibria (CE-Q) [12] employs a linear

or convex function of strategy probabilities for the selection
metric objective of Equation 5 to obtain utility-unique strat-
egy profiles2. A number of objectives have been proposed:

• Utilitarian (uCE-Q) maximizes the sum of agents’

utilities,
∑N
i=1 E[Utilityi(a)|π];

• Dictatorial (dCE-Q) maximizes a specific agent’s
utility, E[Utilityi(a)|π];

• Republican (rCE-Q) maximizes the highest agent’s
utility, maxi E[Utilityi(a)|π]; and

• Egalitarian (eCE-Q) maximizes lowest agent’s util-
ity, mini E[Utilityi(a)|π].

More generally, strategies that penalize one or more agents
are also possible. For example, grim-trigger strategies have
been recognized as viable sub-game strategies that disin-
centivize an agent’s undesirable actions. Two punishment-
based selection criteria that we consider in this work are:

• Disciplinarian (xCE-Q) minimizes a specific agent’s
utility, E[Utilityi(a)|π]; and

• Inegalitarian (iCE-Q) maximizes utility differences
between two (groups of) agents, E[Utilityi(a) −
Utilityj(a)|π].

The strong assumptions about agents’ preferences con-
strain CE-Q solutions to cover corners of the CE polytope
(Figure 2).

2.2 Entropy, Prediction, and Gambling
Information theory provides powerful tools for construct-

ing predictive probability distributions. One of its basic
measures is Shannon’s information entropy, H(P ) ,
−∑x∈X P (x) log2 P (x), which measures the uncertainty of
distribution P . Information theory has many connections to
problems in gambling. For example, the entropy of distri-
bution P , and the exponential rate at which a gambler who
knows P can expect his investment to grow are related by
Theorem 4.

Theorem 4 ([4]). The doubling rate, which specifies

the wealth growth rate, O(2W (P,b)), for random outcomes
distributed according to P with bets in proportion to b and
payoff multipliers, o, such that ∀xo(x) ≥ 1 and

∑
x o(x)−1 =

1, is:

W (P, b) =
∑
x∈X

P (x) log(b(x)o(x)).

It is maximized by b(x)∗ = P (x) for uniform odds and pro-
vides an optimal doubling rate, W ∗(P ) = log |X| −H(P ).
2Unique strategy profiles are not guaranteed by the CE-
Q solution concept—multiple actions can provide the same
agent utility vector. We ignore this ambiguity and employ
a single CE-Q from the possible set.

More generally, a gambler (or predictor) may not know the
distribution P , but instead knows some constraints that P
satisfies. For example, linear equality constraints, g(P ) = 0,
and inequality constraints, h(P ) ≤ 0, are common.

Definition 5. The principle of maximum entropy [17]
prescribes the maximum entropy probability distribu-
tion subject to equality and inequality constraints:

argmax
P

H(P ) such that: g(P ) = 0 and h(P ) ≤ 0.

The maximum entropy distribution (Definition 5) pro-
vides important predictive guarantees (Theorem 6).

Theorem 6 ([13]). The maximum entropy distri-
bution minimizes the worst case predictive log-loss,

inf
P (X)

sup
P̃ (X)

−
∑
x∈X

P̃ (x) logP (x),

subject to constraints g(P ) = 0 and h(P ) ≤ 0.

Additionally, the gambling asset allocation that maxi-
mizes the worst-case growth-rate for this setting is:

b(X)∗ = argmax
b(X)

min
P (X)

W (X) (6)

subject to equality and inequality constraints.

Corollary 7 (Theorem 6 and Theorem 4). The
optimal gambling asset allocation, b(X)∗, is proportional
to the maximum entropy distribution when the payoff
multipliers are uniform.

2.3 Maximum Entropy Correlated Equilibria
The maximum entropy correlated equilibria (Max-

EntCE) solution concept for normal-form games [24] selects
the unique joint strategy profile that satisfies the principle
of maximum entropy (Definition 5) subject to linear devi-
ation regret inequality constraints (Equation 4). This ap-
proach provides the predictive and gambling guarantees of
maximum entropy (Theorem 6 and Corollary 7) to the
one-shot, normal-form multi-agent game setting.

Table 1: The game of Chicken and four strategy
profiles that are in correlated equilibrium.

Stay Swerve
Stay 0,0 4,1

Swerve 1,4 3, 3

CE 1
0 1
0 0

CE 2
0 0
1 0

CE 3
0 1

3
1
3

1
3

CE 4
1
4

1
4

1
4

1
4

Consider the game of Chicken (where each agent hopes
the other will Swerve) and the correlated equilibria that de-
fine its utility polytope in Table 1. We relate these strategy
profiles to the more specific equilibria described in Section
2.1. CE 1 and CE 2 are both dictatorial, disciplinarian,
and inegalitarian CE (for different agents) and republican
CE (but ambiguous). CE 3 is a utilitarian CE and an egali-
tarian CE. CE 4 is the maximum entropy CE. Its predictive
guarantee is apparent: all other CE have infinite log-loss
for at least one other CE; the MaxEntCE is the only CE
that assigns positive probability to the {Stay, Stay} action
combination. We extend these predictive guarantees to the
Markov setting in this work.
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3. MAXIMUM CAUSAL ENTROPY COR-
RELATED EQUILIBRIA

Extension of the MaxEntCE solution concept [24] to the
Markov game setting is not straight-forward. The first diffi-
culty is that the deviation regret constraints of normal-form
games (Equation 5), contain expectations over future actions
(Equation 4) when extended to the Markov game setting.
This creates non-linear constraints that are products of the
unknown variables, making optimization difficult.

Theorem 8. A linear/convex program formulation of CE
for Markov games is possible by considering as variables the
entire sequence of joint agent actions for the sequence of
revealed states, η(A1:T |S1:T ), and employing appropriate in-
equality constraints (deviation regret guarantees) and equal-
ity constraints (forcing the strategy over sequences to factor
into products of Markovian strategies) on marginal distribu-
tions using linear function of η(A1:T |S1:T ) variables.

Näıvely formulating the Markov game CE strategy profiles
into a linear/convex program is possible (Theorem 8), but
the number of constraints and variables grow exponentially
with the time horizon.

The second difficulty is that there are many entropy mea-
sures that could be applied as objective functions. For ex-
ample, the conditional entropy and joint entropy are
natural entropy measures to consider. However, neither ap-
propriately extends the predictive and gambling guarantees
of the maximum entropy approach to the sequential Markov
game setting. They either assume the availability of future
outcome information (violating the problem setting), or are
not risk-neutral to the stochasticity of the Markov game’s
transition dynamics.

We instead advocate the less common causally condi-
tioned entropy measure [19],

H(AT ||ST ) ,
∑
t

H(At|A1:t−1, S1:t). (7)

For the possible sequences of states and actions through
a Markov game, it corresponds to the uncertainty associ-
ated with only the actions in such sequences. It is based
on the causally conditioned probability distribution,
P (AT ||ST ) ,

∏
t P (At|A1:t−1, S1:t), which conditions each

set of correlated actions only on actions and states that
have been revealed at that point in time and not on fu-
ture states, as in the conditional probability distribution
P (A|S) =

∏
t P (At|A1:t−1, S1:t, St+1:T ).

Definition 9. A maximum causal entropy correlated
equilibrium (MCECE) solution maximizes the causal en-
tropy while being constrained to have no action deviation
regrets3:

πMCECE , argmax
π

H(AT ||ST ) (8)

= argmax
π

EA1:T ,S1:T

[
T∑
t=1

− logP (at|st)
]

3Markovian policies are a consequence of the MCECE for-
mulation. See Lemma 13.

such that: ∀t, i, ati, ati′, st ExpRegretπi (ati, a
t
i
′
, st) ≤ 0,

∀t, st, at P (at|st) ≥ 0, ∀t, st
∑
at

P (at|st) = 1,

π factors as: P (AT ||ST ) and given: P (St+1|St, At).
We further constrain the strategy profile to have sub-game
equilibria, meaning that even in states that are unreachable
under the strategy profile and state dynamics, the strategy
profile is constrained to satisfy Equation 8 in all sub-games
starting from those states.

Maximizing the causal entropy (Equation 8) has been pre-
viously employed to match characteristics of demonstrated
behavior in decision settings using equality constraints [26].
MCECE represents the first inequality-constrained applica-
tion of the principle of maximum causal entropy

Based on the view of conditional entropy as a measure of
predictability [4], the MCECE solution concept offers two
important predictive guarantees:

Theorem 10 (extension of [24]). Given an MCECE
strategy profile, no agent may decrease the predictability of
her action sequence without creating deviation regret for her-
self.

Theorem 11 (extension of [13]). The MCECE solu-
tion strategy profile, πMCECE minimizes the worst-case log
prediction loss for the sequences of joint actions, i.e.,

inf
P (AT ||ST )

sup
P̃ (AT ||ST )

−
∑

a∈A,s∈S

P̃ (a, s) logP (aT ||sT ), (9)

of all the CE satisfying deviation regret constraints, where
P̃ (AT ||ST ) is the (worst possible for prediction) empirical

CE strategy and the joint, P̃ (A,S), is the distribution of
states and actions under that strategy profile and the known
state transition dynamics.

The second result (Theorem 11) is particularly relevant
to our machine learning perspective, because it justifies the
MCECE strategy profile as a robust predictive model of
agents’ actions when they jointly behave rationally.

4. CORRELATED EQUILIBRIA FINDING
We turn our attention from the theoretical properties of

the MCECE solution concept to developing an algorithm
that obtains the MCECE for a fixed-horizon Markov game
more efficiently than the näıve convex optimization that
follows the formulation of Theorem 8. Despite the non-
compact formulation of the näive MCECE convex program,
the strategy profile can be expressed compactly.

Lemma 12. The MCECE strategy profile for a Markov
game is also Markovian.

Proof (sketch). Intuitively, independence maximizes en-
tropy. Since the utility structure and game dynamics are
history-independent, nothing prevents the MCECE from
also being history-independent.

Theorem 13. The MCECE strategy profile,
πMCECE
λ (at|st), has the following recursive form (with
λ ≥ 0):

πλ(at|st) ∝ e−
(∑

i,at
i
′ λi,st,at

i
,at
i
′ ExpDevGainπi (at,st,ati

′)
)

+ExpEnt(at,st), (10)
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where ExpEnt(at, st) ,
EP (At+1,St+1)

[
ExpEnt(at+1, st+1) +H(at+1|st+1)

∣∣at, st].
We obtain optimal Lagrange variables, {λ∗i,s,ai,a′i} ≥ 0, by

optimizing the Lagrange dual,

LD(λ) = EA1:T ,S1:T

[
− logPλ(a1:T ||s1:T )

]
(11)

−
∑

t,i,st,ati,a
t
i
′
λt,i,st,ati,ati

′ ExpRegret
πλ
i (ati, a

t
i
′
, st),

using gradient-based optimization and the dual’s gradient,

∇λLD(λ) =

{∑
at−i

P (at|st)
(

ExpUtil
πλ
i ({at−i, ati ′}, st)

−ExpUtil
πλ
i (at, st)

)}
, (12)

as shown in Algorithm 1.

Algorithm 1 Find MCECE equilibria for finite horizon

1: λ(1) = {λ(1)

t,i,st,ati,a
t
i
′} ← (arbitrary) positive initial val-

ues.
2: x← 1
3: while not converged do

4: Compute π
(x)
λ = {πλ(at|st)} from λ(x) using a sub-

routine.
5: Compute LD(λ(x)) and ∇λLD(λ(x)) directly via

Equation 11 and Equation 12 using π
(x)
λ

6: Update λ(x+1) from {λ, LD, ∇λLD}(1:x) using
gradient-based optimization update rules

7: x← x+ 1
8: end while

Remark 14. For time-varying policies, future strategy
probabilities (and dual parameters) are independent of ear-
lier strategy and dual parameters given the state. As a result,
the “parallel” updates for dual parameters across time (Algo-
rithm 1) can be sequentially ordered for improved efficiency.

Following Remark 14, Algorithm 1 can be re-expressed
as a sequential dynamic programming algorithm (Algorithm
2) resembling value iteration [2] that iteratively computes
both future expected utilities and expected entropies. It
also suggests the parallel updating of the dual parameters
(or the primal policy) as a general approach for overcoming
the limitations of value iteration for finding stationary CE
strategy profiles in general-sum Markov games. However,
full discussion is beyond this paper’s scope.

Using interior-point methods, an ε−optimal MCECE

strategy profile is obtained in O(|S|T2 |A|T2 log 1
ε
) time us-

ing the näıve formulation of Theorem 8. Using Algorithm 2,

this is reduced to O(|S|T |A| 12 log |S|T
2ε

) time.
We employ existing sub-gradient optimization methods [3]

for the convex objective and linear inequality constraints
to obtain the strategy profiles for the interior optimiza-
tion (Line 4) of Algorithm 2. This provides looser run-
time bounds than interior-point optimization methods, but
is simpler to implement and still practical for the purposes
of this paper.

Algorithm 2 Value iteration approach for obtaining
MCECE
1: ∀i,a,s ExpUtili(a, s)← Utilityi(a, s)
2: ∀a,s ExpEnt(a, s)← 0
3: for t = T to 1 do
4: For each state, st, obtain {πλ(at|st)} using ExpUtil

and ExpEnt values in the following optimization:

argmax
π(at|st)

H(at|st) + E
[
ExpEnt(a, s)|st, π(at|st)]

such that:
∑

a−i∈A−i
P (at|st)

(
ExpRegret({at−i, ati}, st)

− ExpRegret(at, st)

)
≤ 0

∀atP (at|st) ≥ 0 and
∑
at∈At

P (at|st) = 1.

5: ∀i∈N,a∈A,s∈S ExpUtil′i(a, s) ←
γ
∑
at∈A,st∈S π(at|s)P (st|s, a) ExpUtili(a

t, st)

6: ∀s∈S,a∈A ExpEnt′(a, s) ←
γ
∑
at,st π(at|st)P (st|s, a)

(
ExpEnt(a′, s′)+H(a′|s′))

7: ∀i∈N,a∈A,s∈S ExpUtili(a, s) ← ExpUtil′i(a, s) +
Utilityi(a, s)

8: ∀a∈A,s∈S ExpEnt(a, s)← ExpEnt′(a, s)
9: end for

5. EXPERIMENTAL EVALUATION
In this section, we demonstrate that the theoretical robust

predictive guarantees of the MCECE are realized in practice.
Following Zinkevich et al. [27], we generate random Markov
games for evaluation. We compute different strategy profiles
for each generated game using existing CE solution concepts
and evaluate how well they predict one another.

5.1 Setup
We generate random stochastic Markov games according

to the following procedure. For each of |S| states in the
Markov game, each agent has |Ai| actions from which to
choose, and there are |A| joint actions total. The state tran-
sition dynamics, P (St+1|St, At), depend on the combination
of agents’ actions (and state) and are drawn uniformly from
the simplex of probabilities. The utility obtained by each
agent in each state, Utilityi(s), is drawn uniformly from
{0, 0.1, 0.2, ..., 0.9}. A discount factor of γ = .75 is incor-
porated in each game. It’s important to note that we did
not optimize these random game parameters to obtain de-
sired results; we expect the results for the games we evaluate
to extend to a wide range of games—random or otherwise.

We generate time-varying strategy profiles for MCECE us-
ing Algorithm 2 and for the CE-Q variants using projected
sub-gradient optimization. The CE-Q strategies we evalu-
ate are a subset of those described in Section 2.1. iC-EQ
maximizes the positive margin of agent 1’s utility over agent
2’s utility. We repeat this process for 100 random games for
each choice of game parameters and investigate the proper-
ties of the resulting CE strategy profiles.

As shown in Figure 3, the uncertainty of action sequences
increases linearly with the size of the action set, as one
might expect. Previous experiments have primarily consid-
ered two-player Markov games [12, 27]. The larger number
of players we consider in this paper greatly increases the
game complexity since the game description grows exponen-

211



Table 2: Predictive bake-off evaluation of the first action in a ten timestep horizon using 100 random Markov
games. Log-loss and non-support measures (equivalent to total gambling loss) are evaluated.
Seven equilibria strategy profiles evaluated on random Markov games with three agents, two states, and two actions/agent.

MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
1.951 1.951 1.967 2.010 1.992 1.974 1.974
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
3.377

——–
2.039 1.888 2.647 3.072 2.444 2.578

22.3% 4.5% 5.7% 21.2% 20.8% 13.8% 14.7%

d1CE-Q
3.442 1.866

——–
2.511 3.328 2.321 1.798 2.544

18.9% 3.5% 5.6% 18.8% 17.6% 9.8% 12.4%

d2CE-Q
3.462 1.872 2.536

——–
2.576 3.489 3.060 2.833

17.0% 1.7% 3.3% 15.6% 17.2% 12.1% 11.2%

x1CE-Q
2.897 2.472 2.798 2.450

——–
2.375 2.764 2.626

0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
2.877 2.605 2.251 2.905 2.373

——–
2.116 2.521

0.5% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1%

iCE-Q
3.378 2.279 1.902 2.989 3.116 2.276

——–
2.657

5.3% 1.9% 0.0% 2.5% 5.1% 4.2% 3.2%

Seven equilibria strategy profiles evaluated on random Markov games with four agents, two states, and two actions/agent.
MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
3.451 3.468 3.476 3.518 3.509 3.475 3.483
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
7.308

——–
3.955 3.652 6.495 6.814 5.591 5.636

25.8% 9.4% 8.5% 21.8% 22.0% 17.9% 17.6%

d1CE-Q
6.914 3.831

——–
4.746 7.566 5.536 3.895 5.415

22.5% 5.8% 10.2% 21.2% 17.6% 11.2% 14.8%

d2CE-Q
7.109 3.408 4.767

——–
5.643 7.651 6.976 5.926

23.1% 6.4% 10.7% 18.3% 21.5% 19.7% 16.6%

x1CE-Q
4.603 4.300 5.000 3.849

——–
3.918 4.372 4.340

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
4.633 4.401 3.917 4.986 3.944

——–
3.171 4.175

0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

iCE-Q
6.380 5.070 3.884 6.501 5.991 4.311

——–
5.356

11.5% 5.0% 2.8% 8.0% 8.7% 5.5% 6.9%

Figure 3: The average causal entropy measure of the
10 time step action sequences that are generated by
different correlated equilibria solution concepts for
random 2-state, 2-action Markov games.

tially with the number of players. In our experiments, the
MCECE strategy profile is the most uncertain (by design)
and many of the previously investigated CE-Q solutions are
the most deterministic.

5.2 Evaluation Metrics
The predictive guarantees of the MCECE strategy pro-

files relate to the log-loss of predicting actions distributed
according to Pobs with distribution Ppred:

−
∑
a∈A

Pobs(a) logPpred(a).

In the context of this work, Pobs and Ppred are each proba-

bilities in CE strategy profiles for Markov games. Unfortu-
nately, many of the strategy profiles provide no support for
some action combinations that are possible in other strat-
egy profiles. In other words, they predict that some action
combinations occur with 0% probability when they do in
fact occur with positive probability. This corresponds to an
infinite log-loss.

Instead of using the typical log-loss measures, which is
often infinite except for the MCECE strategy profile, we in-
stead employ two measures. The first is the log-loss on the
action combinations that do have support4. The second is
the percentage of action combinations that have no support.
The latter can be interpreted as the degree of infiniteness
that the log loss would have. Equivalently, under the gam-
bling perspective, it can be interpreted as the percentage of
instances all of a gambler’s money would be lost.

5.3 Action Prediction Comparison
The results of this comparison across strategy profiles are

shown in Table 2 (for three and four agents). We note that
in some cases one C-EQ strategy profile may better predict
another than the MCECE strategy profile when their objec-
tives are closely aligned. For example, the x2CE-Q predicts
iCE-Q fairly accurately since both are punishing agent 2 to
some degree. However, overall the MCECE solution profile
provides a much more robust prediction of other strategy
profiles (and full support) on average (right column).

We employ the relationships between log-loss and dou-

4To address ε approximation error, we employ a minimum
Pobs threshold of 0.1% for assessing non-support and a maxi-
mum penalty threshold of 16.6 bits (− log2 0.00001) for small
support—both to the benefit of CE-Q strategy profiles.
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Table 3: Doubling rates of CE as gambling alloca-
tions in the three and four player game settings.

Three players Four players
MCECE 1.026 0.517
µCE-Q 0.422 -1.636

d1CE-Q 0.456 -1.415
d2CE-Q 0.167 -1.926
x1CE-Q 0.374 -0.346
x2CE-Q 0.479 -0.175

iCE-Q 0.343 -1.356

bling rate from Section 2.2 to illustrate the benefits of dif-
ferent CE for gambling in Table 3. For the three player
experimental setting, all CE strategies are expected to have
positive investment growth rate (under uniform, fair odds).
However, many also have a probability of losing all money
(Table 2). Betting according to the MCECE distribution
provides the largest growth rate—with the expectation of
doubling an investment after each bet. For the four player
setting, the MCECE distribution is the only one with pos-
itive expected investment growth. Thus, the theoretical
properties for prediction under log-loss and gambling un-
der uniform odds provided by the MCECE are realized in
practice.

6. CONCLUSIONS
This paper was motivated by a fundamental question:

given that agents act rationally (i.e., according to an
unknown correlated equilibrium) within a known Markov
game, and no other information is available, what predic-
tions of agents’ action sequences should be employed? We
employed an extension of information theory and the prin-
ciple of maximum entropy to develop a predictive solution
concept that addresses this question. We demonstrated the
robustness of its predictions across a wide range of exist-
ing value-based CE solution concepts. In many settings
where decisions are made based on the action sequences of
self-interested, communicating autonomous agents, this as-
sumption is reasonable. We have shown in theory and in
practice the predictive guarantees of the approach and con-
nected its guarantees to the gambling setting. Generalizing
this approach to extensive form games is of interest, how-
ever it introduces non-convexity. We could replace the joint
entropy measure of past coordinate descent approaches with
the causal entropy measure [7].

Our view in this paper has been agnostic, apart from as-
suming joint rationality. Often, past agent behavior may
be known. Important future work extends this approach
to when such additional information is available. This can
be accomplished with the addition of behavior-matching
equality constraints to the MCECE solution concept opti-
mization. Additionally, since actual behavior may only be
approximately jointly rational, relaxing the inequality con-
straints using dual regularization [8] is another important
direction. Extending the maximum entropy approach to be-
havior that is guided by unknown utility functions remains
as an important future problem.
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APPENDIX
A. PROOFS OF THEOREMS
Theorem 8 (Proof). Consider optimizing over conditional
strategy sequence variables, η(a1:T |s1:T ), that represent the
probability of an entire sequence of actions given the en-
tire sequence of states. Action-state strategy probabilities,
π(at|st:T ), can be obtained by marginalizing over a linear
function of conditional sequence variables:

π(at|st:T ) =
∑
s1:t−1

∑
a1:t−1

∑
at+1:T

P (a1:T , s1:t−1|st:T ) (13)

=
∑
s1:t−1

∑
a1:t−1

∑
at+1:T

η(a1:T |s1:T )

t−1∏
τ=1

P (sτ |aτ−1, sτ−1).

Crucially, to match the Markov game setting, the condi-
tional distribution of actions at time step t should be equiv-
alent regardless of future state variables, st+1:T , since those
variables are not yet known in the Markov game:

∀t,at,st,st+1:T ,s̃t+1:T

π(at|st, st+1:T ) = π(at|st, s̃t+1:T ). (14)

The constraints (Equation 14) are linear of conditional strat-
egy sequence variables via the steps of Equation 13.

The expected regret can similarly be expressed as a linear
function of conditional strategy sequence variables:

ExpRegretπi (ati, a
t
i
′
, st)

=
∑

at−i,at+1:T ,s1:t−1,st+1:T

η(a1:T |s1:T )

∏T
τ=1 P (sτ+1|sτ , aτ )

P (st+1|st, at) ×

(
P (st+1|st, at′)

(∑
τ>t

Util(sτ , aτ ) + Util(st, at
′
)

)

− P (st+1|st, at)
(∑
τ>t

Util(sτ , aτ ) + Util(st, at)

))
All constraints are linear in conditional variables, so when
−f0 is a linear or convex function, the MCECE optimization
(Equation 15) is a linear program or convex program.

argmax
{η(a1:T |s1:T )}

f0({η(a1:T |s1:T )}) (15)

such that: ∀t,i,st,ati,ati′ExpRegretπi (ati, a
t
i
′
, st) ≤ 0

∀t,st,atπ(at|st:T ) ≥ 0, ∀t,st
∑
at

π(at|st:T ) = 1

∀t,at,st,st+1:T ,s̃t+1:T π(at|st, st+1:T ) = π(at|st, s̃t+1:T ).

This formulation has O(T |S|T |A|) non-redundant con-
straints and a total of O(|S|T |A|T ) variables.

Theorem 10 (Proof). Ignoring all the deviation regret con-
straints in our notation, consider the decomposition of the

causally conditioned entropy using the chain rule:

argmax
{π(at|st)}

H(AT ||ST )

= argmax
{π(at|st)}

(
H(ATi ||ST ) +H(AT−i||ST )

)

=
{
πMCECE(at−i|st)

}
∪ argmax
{π(ati|st)}

H(ATi ||ST , AT−i).

As shown, this is equivalent to a causally conditioned en-
tropy maximization of agent i’s strategy profile (with the
suppressed deviation regret constraints) given the combined
MCECE strategy profile of the other agents. By definition
this is the least predictable strategy profile that agent i can
employ (subject to any deviation regret constraints).

Theorem 11 (Proof sketch). As a special case of [13], the
causal entropy can be expressed as:
H(P̃ (AT ||ST )) = infP (AT ||ST ) EP̃ (A,S)[− logP (AT ||ST )].

Choosing P̃ (YT ||XT ) that maximizes this is then:
supP̃ (AT ||ST ) infP (AT ||ST ) EP̃ (A,S)[− logP (AT ||ST )], which
is invariant to swapping the sup and inf operation order.

Theorem 13 (Proof). We find the form of the probability
distribution by finding the optimal point of the Lagrangian.

argmax
π

H(AT ||ST ) such that: (16)

∀t,i,ati,ati′,s1:t,a1:t−1 ExpRegretπi (ati, a
t
i
′
, s1:t, a1:t−1) ≤ 0

and probabilistic/causal constraints on π.

The Lagrangian for the optimization of Equation 16 when
using entire history-dependent probability distributions and
parameters is:

Λ(π, λ) = H(a
1:T ||s1:T )

−
∑
t,i,at

i
,at
i
′,s1:t,a1:t−1

λ
t,i,at

i
,at
i
′,s1:t,a1:t−1 ExpRegret

π
i (a

t
i, a

t
i
′
, s

1:t
, a

1:t−1
) (17)

Taking the partial derivative with respect to a history-
dependent action probability for a particular state, we have:

∂Λ(π, λ)

∂P (at|s1:t, a1:t−1)
= − logP (a

t|s1:t, a1:t−1
) (18)

−
∑

st+1:T ,at+1:T

P (s
t+1:T

, a
t+1:T

) log

T∏
τ=t

P (a
τ |s1:τ , a1:τ−1

)

−
∑
i,at
i
′
λ
t,i,at

i
,at
i
′,s1:t,a1:t−1 ExpDevGain

π
i (a

t
i, a

t
i
′
, s

1:t
, a

1:t−1
).

Equating Equation 18 to zero provides the form of the his-
tory dependent distribution:

P (at|s1:t, a1:t−1) ∝ exp
{

(19)

∑
st+1:T ,at+1:T

P (st+1:T , at+1:T ) log

T∏
τ=t

P (aτ |s1:τ , a1:τ−1)

−
∑
i,ati
′
λt,i,ati,a

t
i
′,s1:t,a1:t−1 ExpDevGainπi (ati, a

t
i
′
, s1:t, a1:t−1)

}
.

Convex duality in this optimization relies on a feasible so-
lution on the relative interior of the constraint set. This can
be accomplished by adding an infinitesimally small amount
of slack, ε, to the constraint set [24]. Following the argu-
ment that the MCECE is Markovian (Lemma 12), Equation
19 reduces to the Markovian form of the theorem.
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ABSTRACT
In multi-agent planning environments, action models for each agent
must be given as input. However, creating such action modelsby
hand is difficult and time-consuming, because it requires formally
representing the complex relationships among different objects in
the environment. The problem is compounded in multi-agent envi-
ronments where agents can take more types of actions. In thispa-
per, we present an algorithm to learn action models for multi-agent
planning systems from a set of input plan traces. Our learning algo-
rithm Lammas automatically generates three kinds of constraints:
(1) constraints on the interactions between agents, (2) constraints
on the correctness of the action models for each individual agent,
and (3) constraints on actions themselves.Lammas attempts to sat-
isfy these constraints simultaneously using a weighted maximum
satisfiability model known as MAX-SAT, and converts the solution
into action models. We believe this to be one of the first learn-
ing algorithms to learn action models in the context of multi-agent
planning environments. We empirically demonstrate thatLammas
performs effectively and efficiently in several planning domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence ]: Learning -Knowledge acquisition;
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence -
Intelligent agents, Multiagent systems.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Multi-Agent Planning, Multi-Agent Learning, Single-Agent Learn-
ing.

1. INTRODUCTION
Multi-agent environments are complex domains in which agents

aim at pursuing their goals while interacting with each other. For
multi-agent planning, each agent requires an action model as in-
put that takes into account the possible prerequisites and outcomes,
as well as interactions with other agents. For example, an agent
φi needs to consider many complex situations wherecooperative
agents provide conditions such thatφi’s actions can be executed.
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Furthermore, the action model should allowcooperativeagents to
delete conditions as side-effects when providing useful precondi-
tions, and be able to represent othernon-cooperativeagents that
might interfere withφi’s action. Creating action models for these
agents by hand is difficult and time-consuming due to the complex
interactions among agents.

Our objective is to explore learning algorithms that can automati-
cally learn action models in multi-agent environments thatcan then
be fed to multi-agent planning systems, such as theplanning first
system [11]. In the past, there have been several works on learning
action models for single agents, such asARMS [16] andSLAF [1].
However, these learning algorithms did not take into account multi-
agent situations. One possibility in tackling this multi-agent learn-
ing problem is to assume that there is anoracle agentthat knows
and executes all the actions of the agents. In this situation, we can
learn the action models for the oracle agent by using asingle-agent
learning algorithm, such asARMS ([16]). This approach, however,
neglects to consider the interactions between the agents and, as a
result, may increase the errors of the learned models due to the po-
tentially large number of interactions among the agents.

In this paper, we present a novel multi-agent action-model learn-
ing system known asLammas. Lammas stands for (LearningAction
Models forMulti-AgentSystems). In order forLammas to explic-
itly capture the interactions between agents,Lammas generates and
exploits an agent-interaction graph in which it captures the interac-
tions between pairs of agents. Such interactions may happenwhen
one agent’s action provides some positive, or negative, effects on
the actions of other agents. For instance, consider a domainwhere
there are two agentstruck andhoist, where the action “drive” of
agenttruck provides an effect “(at truck loc)” for the action “load”
of agenthoist, such that agenthoist can load a package to the
“truck” at location “loc”. In this example, the interactions can be
somewhat complex because the interactions areproblem-specific;
i.e., building such interactions requires to explore all possible po-
tential interactions among agents, and this is difficult to do for a
human designer when there are many agents involved. To solvethis
problem,Lammas builds the relations statistically from a training
data set that consists ofplan tracesfrom observed multi-agent plan
executions in the past. These built relations help discoveragent in-
teractions that can then be transformed to weighted constraints and
used in learning (Section 4).

For modeling the agents’ actions, in this work we adopt a deter-
ministic state-transition model expressed via theSTRIPS planning
representation language [4], slightly extended to associate actions
with agents (i.e., each action is annotated with the agent that per-
forms it). This extended language is calledMA-STRIPS [2]. In
Lammas, we first build three types of constraints fromplan traces
collected from multi-agent environments. The first type of con-
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straints encodes the interactions among agents. The secondtype of
constraint encodes the correctness requirements of plans for each
agent. The third type encodes the constraints of actions required by
STRIPS for each agent. We then satisfy these constraints simul-
taneously using a weighted maximum satisfiability (MAX-SAT)
solver, and transform the solution into action models of each agent.

We organize the paper as follows. We first review related works
in single and multi-agent planning area. Then, we present the for-
malities for our work, and give a detailed description of ourLammas
algorithm. Finally, we empirically evaluateLammas in several
planning domains and conclude our work with a discussion on fu-
ture works.

2. RELATED WORK
In this section we review previous works on multi-agent plan-

ning, learning action models, and multi-agent learning.

2.1 Multi-Agent Planning
Our work is related to multi-agent planning. In [6], Georgeff pre-

sented a theory of action for reasoning about events in multi-agent
or dynamically-changing environments. Wilkins and Myers pre-
sented a multi-agent planning architecture for integrating diverse
technologies into a system capable of solving complex planning
problems [14]. Brafman and Domshlak (2008) established an ex-
ponential upper bound on the complexity of multi-agent planning
problems depending on two parameters quantifying the levelof
agents’ coupling [2]. They quantified the notion of agents’ coupling
and present a multi-agent planning algorithm that scales polynomi-
ally with the size of the problem for fixed coupling levels. Based
on this work, Nissimet al. (2010) presented a distributed multi-
agent planning algorithm [11]. They used distributed constraint
satisfaction (CSP) to coordinate between agents and local planning
to ensure consistency of the coordination points. To solve the dis-
tributed CSP efficiently, they modify some existing methodsto take
advantage of the structure of the underlying planning problem.

2.2 Action Model Learning
Another related work is action model learning for planning.Gil

(1994) described a system called EXPO, which learns by bootstrap-
ping an incomplete STRIPS-like domain description augmented
with past planning experiences [7]. Wang (1995) proposed anap-
proach to automatically learn planning operators by observing ex-
pert solution traces and refining the operators through practice in
a learning-by-doing paradigm [13]. Holmes and Isbell, Jr. (2004)
modeled synthetic items based on experience to construct action
models [9]. Walsh and Littman (2008) presented an efficient al-
gorithm for learning action schemas for describing Web services
[12]. ARMS automatically learns action models from a set of ob-
served plan traces [16] using MAX-SAT. Amir (2005) presented a
tractable, exact solutionSLAF for the problem of identifying ac-
tions’ effects in partially observable STRIPS domains [1].Cress-
well et al. (2009) developed a system calledLOCM designed to
carry out automated induction of action models from sets of exam-
ple plans. Compared with previous systems,LOCM learns action
models with action sequences as input, and is shown to work well
under the assumption that the output domain model can be repre-
sented in an object-centered representation [3]. In [18], an algo-
rithm was presented to learn action models and a Hierarchical Task
Network (HTN) model simultaneously. In [19], an algorithm called
LAMP is presented to learn complex action models with quanti-
fiers and logical implications. Despite these successes in action
model learning, most previous works only focused on learning ac-
tion models forsingle agents, and few work addressed the issue for

multi-agent environments. In contrast, to the best of our knowl-
edge, our systemLammas is aimed at learning action models for
multi-agent environmentsfor the first time.

2.3 Multi-Agent Learning
There has been much related work in multi-agent learning. In

early work, Guestrinet al. (2001) proposed a principled and effi-
cient planning algorithm for cooperative multi-agent dynamic en-
vironments [8]. A feature of this algorithm is that the coordina-
tion and communication between the agents is not imposed, but de-
rived directly from the system dynamics and function approxima-
tion architecture. Bowling (2005) presented a learning algorithm
for normal-form games in multi-agent environment. He proved
that the algorithm is guaranteed to converge at most zero-average
regret, while demonstrating the algorithm converges in many sit-
uations of self-play. Wilkinsonet al. (2005) developed a system
to learn an appropriate representation for planning using only an
agent’s observations and actions [15]. The approach solvedtwo
problems, namely, learning an appropriate state-space representa-
tion and learning the effects of agent’s actions. It required a high-
dimensional data set, such as sequences of images, to be given as
input. Zhang and Lesser (2010) presented a new algorithm that
augmented a basic gradient-ascent algorithm with policy prediction
[17]. The key idea behind this algorithm is that a player adjusts its
strategy in response to forecasted strategies of the other players, in-
stead of their current ones. None of these algorithms, however, can
learn action models for multi-agent planning.

3. PRELIMINARIES

3.1 Satisfiability Problems
The satisfiability problem (SAT) is a decision problem in which,

given a propositional logic formula, an assignment oftrueandfalse
values are to be determined for the variables to make the entire
propositional logic formula true. SAT is known to be NP-Complete
[5], but the flip side is that it is very powerful in its representational
ability: any propositional logic formula can be re-writtenas a CNF
formula. A CNF formulaf is a conjunction of clauses. A clause is
a disjunction of literals. A literalli is a variablexi or its negation
¬xi. A variablexi may take values 0 (for false) or 1 (for true).
The length of a clause is the number of its literals. The size of
f , denoted by|f |, is the sum of the length of all its clauses. An
assignment of truth values to the variables satisfies a literal xi if
xi takes the value 1, satisfies a literal¬xi if xi takes the value 0,
satisfies a clause if it satisfies at least one literal of the clause, and
satisfies a CNF formula if it satisfies all the clauses of the formula.
An empty clause, denoted by�, contains no literals and cannot be
satisfied. An assignment for a CNF formulaf is complete if all the
variables occurring inf have been assigned; otherwise, it is partial.

The Max-SAT problem for a CNF formulaf is the problem of
finding an assignment of values to variables that minimizes the
number of unsatisfied clauses; equivalently, the aim is to maximize
the number of satisfied clauses. There are many SAT solvers for
Max-SAT problems, e.g., Maxsatz [10]. In this paper, we use a
weighted version of Maxsatz1 in ourLammas system.

3.2 Multi-Agent Planning
Our learning problem is to acquire action models for coopera-

tive Multi-Agent (MA) planning systems, in which agents actun-
der complete state information, and actions have deterministic out-
comes. Specifically, we consider problems expressible in a MA-

1http://www.laria.u-picardie.fr/∼cli/EnglishPage.html
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Table 2: An output example
action models

hoist truck airplane
(:action lift
:parameters(?h - hoist ?p - package
: ?l - place)
:precondition (and (available ?h) (at ?h ?l)
: (at ?p ?l))
:effect (and (not (at ?p ?loc))
: (not (available ?h))(lifting ?h ?p)))

(:action drive
:parameters(?t - truck ?from - place
: ?to - place ?c - city)
:precondition (and (at ?t ?from) (in-city
: ?from ?c) (in-city ?to ?c))
:effect (and (not (at ?t ?from)) (at ?t ?to)))

(:action fly
:parameters(?a - airplane ?from - airport
: ?to - airport)
:precondition (at ?a ?from)
:effect (and (not (at ?a ?from)) (at ?a ?to)))

... (other action models omitted)

Table 1: An input example

plan traces

plan trace 1 plan trace 2
s0

(lift hoist1 pkg1 loc1)
(load hoist1 pkg1 truck1 loc1)
(drive truck1 loc1 airport1 city1) ...
(move hoist1 loc1 airport1 city1)
(unload hoist1 pkg1 truck1 airport1)
(load hoist1 pkg1 airplane1 airport1)
(fly airplane1 airport1 airport2)
g

predicates

(in-city ?l - place ?c - city)
(at ?o - physobj ?l - place)
(in ?p - package ?v - vehicle)
(lifting ?h - hoist ?p - package)
(available ?h - hoist)

action
head-
ings

hoist

(lift ?h - hoist ?p - package ?l - place)
(drop ?h - hoist ?p - package ?l - place)
(unload ?h - hoist ?p - package ?v - vehicle ?l - place)
(load ?h - hoist ?p - package ?v - vehicle ?l - place)
(move ?h - hoist ?from - place ?to - place ?c - city)

truck (drive ?t - truck ?from - place ?to - place ?c - city)
airplane (fly ?a - airplane ?from - airport ?to - airport)

s0: (in-city loc1 city1) (in-city airport1 city1) (in-city loc2 city2)
(in-city airport2 city2) (at plane1 airport1) (at truck1 loc1) (at pkg1 loc1)
(at hoist1 loc1) (available hoist1)
g: (at pkg1 airport2) (at plane1 airport2)

extension of the STRIPS language known as MA-STRIPS [4]. For-
mally, a MA-STRIPS planning problem for a system of agents
Φ = {φi}k

i=1 is given by a quadrupleΠ = 〈P, {Ai}k
i=1, s0, g〉

[2], where:

• P is a finite set of atoms (also called propositions),s0 ⊆ P
encodes the initial situation, andg ⊆ P encodes the goal
conditions,

• For 1 ≤ i ≤ k, Ai is the set of action models that the
agentφi is capable of performing. Each action modela ∈
A =

⋃Ai has the standardSTRIPS syntax and semantics,
that is,a = 〈heading(a), pre(a), add(a), del(a)〉, where
heading(a) is composed of an action name with zero or
more parameters,pre(a), add(a) anddel(a) are lists of pre-
conditions, adding effects and deleting effects, respectively.

A solution to anMA-STRIPS problem is aplan which is com-
posed of a sequence of ordered actions〈a1, . . . , am〉. These ac-
tions are executed by different agents to project an initialstates0

to a goalg. A plan traceT is composed of an initial states0, a goal
g, partially observed statessi, and a plan〈a1, . . . , am〉 that projects
the initial state to the goal, i.e.,T = {s0, a1, s1, . . . , am, g}, where
the partially observed statesi can be empty.

3.3 Learning Problem
We formalize our multi-agent learning problem as follows: given

a set of plan tracesT , a set of predicatesP , and a set of action
headingsAi for each agentφi, Lammas outputs a set of action
modelsAi for each agentφi. We show an input/output example in
Tables 1 and 2. The example is taken from thelogisticsdomain2,
extended with theMA-STRIPS conventions (?<string> indicates
that <string> is a variable). In Table 1 we show an example of
plan trace 1, likewise for other plan traces.s0 andg in plan trace
1 are the initial state and the goal, respectively. We assumethat
there are three agentshoist, truck, andairplane, each of which has
its own actions. Agenthoisthas five actionslift , drop, unload, load
andmove, while agentstruck andairplane both have one action,
drive andfly respectively. Note that each parameter of the actions
or predicates is associated with atype. A typecan beprimitive, or
composed of other types. In Table 1, the typephysobjis composed
of the typespackage, hoist, andvehicle; vehicle is composed of
truck andairplane; andplaceis composed oflocationandairport.
Other typeshoist, package, truck, airplane, location, airport and
city are all primitive. In Table 2, we show an example action model
for each agent that is learned by our algorithm.

4. THE LAMMAS ALGORITHM
In a nutshell, ourLammas algorithm performs three steps: (1)

generate constraints based on the inputs, (2) solve these constraints
using a weighted MAX-SAT solver, and (3) extract action models
from the solutions. An overview of theLammas algorithm can be
found in Algorithm 1. In the following subsections, we will give a
detailed description of each step of Algorithm 1 in turn.

Algorithm 1 An Overview of OurLammas Algorithm
Input: (1) a set of plan tracesT ; (2) a set of predicatesP ; (3)
action headings for each agentφi: Ai, i = 1, . . . , n.
Output: action models for each agentφi: Ai, i = 1, . . . , n.
1: build agent constraints;
2: build correctness constraints;
3: build action constraints;
4: solve all the constraints using a weighted MAX-SAT solver;
5: convert the solving result into action modelsAi, i = 1, . . . , n;

4.1 Agent Constraints
The first type of constraints is the coordination constraints among

different agents (see step 1 of Algorithm 1). With these constraints,
we aim at encoding the interactions between the multiple agents,
where one agent provides a condition that another agent needs.

2http://www.cs.toronto.edu/aips2000/
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Specifically, there may be two kinds of actions that any one agent
can perform:interactiveandnon-interactive. The former requires
conditions from other agents or provides conditions for other agents.
For example, in plan trace 1 of Table 1, the action “(drive truck1
loc1 airport1 city1)” of agenttruck1 provides the condition “(at
truck1 airport1)” for the action “(unload hoist1 pkg1 truck1 air-
port1)” of agenthoist1. Non-interactive actions have no interaction
with other agents. For example, in plan trace 1, the action “(lift
hoist1 pkg1 loc1)” of agenthoist1does not affect other agents or is
affected by other agents.3 Agent constraintsencode constraints for
interactiveactions.

To generate agent constraints, we first collect the set of allpos-
sible conditionsPCi(a) for each actiona of agentφi by checking
that the proposition’ parameters are included in the action’s, i.e.,

PCi(a) = {p|para(p) ⊆ para(a), for eachp ∈ P},
wherepara(p) denotes the set of parameters ofp, likewise for
para(a).

Example 1: In Table 1, letφ1, φ2, φ3 be agentshoist, truck,
airplane, respectively. We can build possible conditions for each
agent’s actions as follows:4

PC1(lift) = {(at ?h ?l), (at ?p ?l), (lifting ?h ?p),

(available ?h)};
PC1(drop) = {(at ?h ?l), (at ?p ?l), (lifting ?h ?p),

(available ?h)};
PC1(unload) = {(at ?h ?l), (at ?p ?l), (at ?v ?l), (in ?p ?v),

(lifting ?h ?p), (available ?h)};
PC1(load) = {(at ?h ?l), (at ?p ?l), (at ?v ?l), (in ?p ?v),

(lifting ?h ?p), (available ?h)};
PC1(move) = {(at ?h ?from), (at ?h ?to), (in-city ?from ?c),

(in-city ?to ?c)};

PC2(drive) = {(at ?t ?from), (at ?t ?to), (in-city ?from ?c),

(in-city ?to ?c)};
PC3(fly) = {(at ?a ?from), (at ?a ?to)}.

After collecting all possible conditions, we compute all common
conditions among pairs of actions(a, a′) from agent pairs(φi, φj).
To do this, we identify an one-to-one correspondence from a subset
of parameters ofa to a subset of parameters ofa′ such that the pa-
rameterm and its corresponding parameterm′ can be instantiated
with the same value. Two parameters can be instantiated withthe
same value if (1) they have the same type or (2) one is a subtypeof
the other one (i.e., truck is a type of vehicle). We denote anyone
such one-to-one correspondence as asCRa,a′ and the correspond-
ing parameters inCRa,a′ as pairs(m, m), wherem andm′ are the
indexes of parameters ofa anda’. We denote the common condi-
tions for a pair of actions(a, a′) of two agentsφi andφj relative to
a correspondenceCRa,a′ asPCij(a, a′, CRa,a′). For example,
takePC2(drive) andPC1(unload). Assuming

CRdrive,unload = {(1, 3), (3, 4)}
(i.e., the first parameter ofdrive corresponds to the third parame-
ter of unload, and the third parameter ofdrive corresponds to the

3We considerhoist1andhoist2as instances of the same agent be-
cause they share the same action models.
4For simplicity, we omit thetypeassociated with each parameter of
each predicate (e.g., type “package” of parameter “?p” is omitted).

fourth parameter ofunload), we have

PC21(drive, unload, CRdrive,unload) = {(at ?t ?to)}
or

PC21(drive, unload, CRdrive,unload) = {(at ?v ?l)}.
We say that an actiona of an agentφi is interactivewith another

actiona′ of agentφj , if and only if there exists a correspondence
CRa,a′ such thatPCij(a, a′, CRa,a′) is not empty. Otherwise,
we say that actiona is non-interactive with actiona′, and we say
that actiona is noninteractiveif it is non-interactive with all the
actions of other agents. For example, in Example 1, actiondrive
is interactive with actionunload, while actionlift of agenthoist1is
non-interactive.

In the next step, we generate agent constraints by finding allthe
interactiveactions among agents and building a new structure that
we call aweightedAgent InteractionGraph (w-AIG). We do this
by scanning all the plan traces. We define aw-AIG by a tuple
(N, E, W ), whereN is a set of nodes,E is a set of edges, and
W is a set of weights. The nodesN correspond to agents inΦ. A
directed edge inE from an agentφi to another agentφj is labeled
by PCij(a, a′, CRa,a′), indicating that actionsa ∈ Ai anda′ ∈
Aj satisfy

(Add(a)∩ Pre(a′)) ⊆ PCij(a, a′, CRa,a′).

It is possible that there are multiple edges between the sametwo
agents.

Each weight inW is associated with an edge inE, measuring
the likelihood of the existence of that edge. This likelihood is com-
puted as follows. We scan the set of plan tracesT , looking for
situations in whichφj executes actions immediately afterφi. In
such situations, we conjecture that some actions of agentφi in plan
traces probably provides some conditions for some actions of agent
φj , which corresponds to some edges fromφi to φj in w-AIG. The
same edges may be repeatedly created when scanning plan traces.
Each time the same edge is found, its corresponding weight will be
incremented by one. The procedure for building the graph is shown
in Algorithm 2.

In step 4 of Algorithm 2,lengthof(t) returns the number of
actions int. In step 8,findCR(ak, ak′) returns a set of corre-
sponding parameters betweena anda′. For example, letak and
ak′ be actions “(drive truck1 loc1 airport1 city1)” and “(unload
hoist1 pkg1 truck1 airport1)”. The first parameter “truck1”of ak

is the same as the third parameter ofak′ , and the third parameter
“airport1” of ak is the same as the fourth parameter ofak′ . Thus,
the procedurefindCR(ak, ak′) returns{(1, 3), (3, 4)} as the cor-
responding parameters betweena anda′. In step 13,W (e) records
the times that edgee is repeatedly found.

Example 2: From Example 1, we can easily build aw-AIG after
scanning plan trace 1, as shown in Figure 1. After scanning plan
trace 1, we know that the first two actionslift andload are executed
by agenthoist1, and the third actiondrive is executed by agent
truck1. Since thatlift is noninteractiveholds, it is not included. For
actionload, sincePC12(load, drive, {(3, 1), (4, 2)}) 6= ∅, a new
edgee is created, and its weight is set as one. Likewise, we can
create other edges by scanning plan trace 1.

Once thew-AIG is generated, the last step is to generate agent
constraints. Lete be an edge that connects an agentφi to another
agentφj . We can build the constraints to denote that some action
of agentφi provides some condition for some action of agentφj .
Formally, for each edge connecting agentφi to agentφj with a la-
bel PCij(a, a′, CRa,a′), we create the following constraints (one
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Algorithm 2 Building w-AIG: G = buildwAIG(T )

input: a set of plan tracesT .
output: aw-AIG G = (N, E, W ).
1: letN = Φ, E = ∅;
2: for eacht ∈ T do
3: n = 1;
4: while n ≤ lengthof(t) do
5: find the maximal numberh, such that actions

an, . . . , an+h in t are all executed by agentφi;
6: find the maximal numberh′, such that actions

an+h+1, . . . , an+h+h′ in t are executed by agentφj ;
7: for each two integersk ∈ [n, n + h] andk′ ∈ [n + h +

1, n + h + h′] do
8: assumingak andak′ are instances of actiona anda′

respectively, buildCRa,a′ = findCR(ak, ak′);
9: calculatePCij(a, a′, CRa,a′);

10: if PCij(a, a′, CRa,a′) 6= ∅ then
11: create an edgee, with labelPCij(a, a′, CRa,a′);
12: if e ∈ E then
13: W (e) = W (e) + 1;
14: else
15: E = E ∪ {e}, andW (e) = 1;
16: end if
17: end if
18: end for
19: n = n + h + 1;
20: end while
21: end for
22: return (N, E, W );

12

w

21

w

13

w

21

w

Figure 1: An example ofw-AIG

for eachp ∈ PCij(a, a′, CRa,a′)):

p ∈ Addi(a) ∧ p ∈ Prej(a
′).

The weights of these constraints are directly assigned by the val-
ues ofW .

4.2 Correctness Constraints
In step 2 of Algorithm 1, we buildcorrectness constraints(first

introduced by [16]), where we require that the action modelslearned
are consistent with the training plan traces. These constraints are
imposed on the relationship between ordered actions in the plan
traces to ensure that the causal links in the plan traces are not bro-
ken. That is, for each preconditionp of an actionaj in a plan trace,

eitherp is in the initial state, or there is an actionai (i < j) prior
to aj that addsp and there is no actionak (i < k < j) between
ai andaj that deletesp. For each literalq in a statesj , eitherq is
in the initial states0, or there is an actionai beforesj that addsq
while no actionak deletesq.

We formulate these constraints as follows.

p ∈ Pre(aj) ∧ p ∈ Add(ai) ∧ p 6∈ Del(ak)

and

q ∈ g ∧ (q ∈ s0 ∨ (q ∈ Add(ai) ∧ q 6∈ Del(ak)))

wherei < k < j, Del(aj) is a set of deleting predicates of the
actionaj andg is the goal which is composed of a set of proposi-
tions.

In order to ensure that the correctness constraints are maximally
satisfied, we assign these constraints with a maximal weightamong
all weightsW in w-AIG.

4.3 Action Constraints
In step 3 of Algorithm 1, we build another kind of constraint

known asaction constraints(introduced by [16]). We introduce
two categories of action constraints. The first is the resultof the se-
mantics ofSTRIPS [4], while the second is the result of the statisti-
cal information extracted from the plan traces (i.e., the relationship
between states and actions revealed by plan traces). Specifically,
we build the constraints as follows.

1. In STRIPS, if a predicatep is a precondition of an action
a, i.e., p ∈ pre(a), then it should not be added bya, i.e.,
p 6∈ Add(a); on the other hand, if a predicateq is added by
an actiona, i.e., q ∈ Add(a), then it should not be deleted
by a at the same time, i.e.,q 6∈ Del(a). Formally, these
constraints can be represented by

(p ∈ Pre(a) → p 6∈ Add(a))

and

(q ∈ Add(a) → q 6∈ Del(a))

for any actiona from any agent. The weights of these con-
straints are also set as the maximal value ofW in w-AIG.

2. In general, if a predicatep frequentlyoccurs before an action
a in plan traces (i.e.,p frequently occurs in the state wherea
is executed), thenp is likely a precondition ofa. Similarly, if
a predicateq frequently occurs aftera (i.e.,q frequently oc-
curs in the state aftera is executed), thenq is likely an added
effect of a. This idea can be formulated via the following
constraints:

(p ∈ before(a) → p ∈ Pre(a))

and

(q ∈ after(a) → q ∈ Add(a))

wherebefore(a) indicates a set of predicates that occur fre-
quently beforea, while after(a) indicates a set of predi-
cates that occur frequently aftera, where the termfrequently
is used to indicate that the number of occurrences is larger
than a pre-defined threshold; in each domain we need to ad-
just the threshold value empirically. The weights of these
constraints are set as the number of their occurrences.
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4.4 Attaining Action Models
After all three types of constraints are built, we satisfy all con-

straints using a weighted MAX-SAT solver (Step 4 of Algorithm
1). Before that, we introduce three new parametersλi(1 ≤ i ≤ 3)
to control the relative importance of the three kinds of constraints
(which is similar to [18]). We adjust the weights of each kindof
constraints by replacing their weights withλi

1−λi
wi, wherewi is

the weight of theith kind of constraints. By adjustingλi from 0
to 1, we can adjust the weight from 0 to∞. The weighted MAX-
SAT solution returns a truth value for each atom. We are interested
specifically in the truth values of atoms of the form “p ∈ pre(a)’,
“p ∈ add(a)’,’ and “p ∈ del(a)’. We convert the MAX-SAT solu-
tion to action models directly: if an atom “p ∈ Add(a)” is assigned
with true, p will be converted to an adding effect of actiona. We
can likewise transform an atom to a precondition or a negative ef-
fect of an action.

5. EXPERIMENTS
In order to verify the effectiveness ofLammas, we developed

a prototype system, which we compare to a baseline algorithmon
three multi-agent domains derived from IPC (InternationalPlan-
ning Competition) domains. These domains are multi-agent varia-
tions of logistics5, rovers6 andopenstacks7.

5.1 Dataset and Criterion
In the first domainlogistics, a set of packages should be moved

on a roadmap from their initial to their target locations using the
given vehicles. The packages can be loaded onto and unloaded
off the vehicles, and each vehicle can move along a certain sub-
set of road segments. We extend this domain by introducing three
kinds of agentshoist, truckandairplane, each of which has its own
actions, as it is described in Table 1. These agents cooperate to
achieve the specific goals, e.g., ahoist agent uploads a package to
a truck in its starting location; atruckagent takes the package from
this location to an airport, ahoist agent then unloads the package
from the truck and loads it into an airplane, anairplaneagent takes
the package from an airport to another airport and so forth. The
second domain isrovers, which is inspired by a planetary rovers
planning problem. The domainrovers tasks a collection of rovers
with navigating a planetary surface, finding samples (soil,rock and
image), analyzing them, and communicating the results backto a
lander. We extend this domain by introducing four kinds of agents:
soilrover, rockrover, imageroverandcommunicant, each of which
has its own actions. Specifically, the agentssoilrover, rockrover
andimageroverperform actions related to sampling soil, rocks, and
images, respectively. In other words, they are responsiblefor trans-
porting the soil to agentcommunicant. The agentcommunicantis
in charge of analyzing the soil, rocks and images, and communi-
cating the results back to a lander. In the last domainopenstacks, a
manufacturer has a number of orders, each consisting of a combina-
tion of different products, and can only make one product at atime.
We extend this domain by introducing three kinds of agents:re-
ceiver, produceranddeliveryman. Agent receiverreceives orders
from clients and passes them to producers. Agentproducerpro-
duces products according to the orders and passes them to delivery
men. Agentdeliverymandelivers products to clients according to
the orders. With these extended domains, we can test our learning
algorithm in multi-agent conventions. In what follows, we refer to
these extended multi-agent domains asma-logistics, ma-roversand
5http://www.cs.toronto.edu/aips2000/
6http://planning.cis.strath.ac.uk/competition/
7http://zeus.ing.unibs.it/ipc-5/

ma-openstacks, respectively. The action models of these extended
domains were built by hand and used asground truthaction mod-
els. Using theground truthaction models, we generated 200 plan
traces from each domain, which was used as the training data for
Lammas.

We compare the learned action models with the ground truth ac-
tion models to calculate the error rates. If a precondition appears
in the precondition list of our learned action model but not in the
precondition list of its corresponding ground-truth action model,
the error count of preconditions, denoted byEpre, is incremented
by one (this is a false positive). If a precondition appears in the
precondition list of a ground truth action model but not in the pre-
condition list of the corresponding learned action model,Epre also
is incremented by one (this is a false negative). Likewise, the error
count in the actions’ adding (or deleting) lists is denoted by Eadd

(or Edel). False positives restrict the potential plans that could be
generated, and they measure the loss in terms of the completeness
of planning. False negatives can give rise to incorrect plans, and
thus they measure the loss in the soundness.

We useTpre, TaddandTdel to denote the number of all the possible
preconditions, add-effects and delete-effects of an action model,
respectively. We define the error rate of an action modela as

R(a) =
1

3
(
Epre

Tpre
+

Eadd

Tadd
+

Edel

Tdel
)

where we assume the error rates of preconditions, adding effects
and deleting effects are equally important, and the range oferror
rateR(a) is within [0,1]. Furthermore, we define the error rate of
all the action models from agentsΦ in a domain as

R(Φ) =
1∑

i∈Φ |Ai|
∑

i∈Φ

∑

a∈Ai

R(a)

where, |Ai| is the number of action models that the agentφi is
capable of performing. Using this definition of error rate asthe
performance metric, we present our experimental results inthe next
subsection.

5.2 Experimental Results
We test ourLammas algorithm in the following way. First, we

compare between ourLammas algorithm andARMS. Second, we
vary the weights of each type of constraints and observe the im-
pact on performance. Finally, we report on the running time of
Lammas.

5.2.1 Comparison betweenLammas andARMS
One way to conduct the comparison is to consider the existence

of anoracle agent, which knows all the actions of each agent in the
multi-agent system, such that the multi-agent system can beviewed
as a single-agent system. This will enable the learning of actions
for the oracle agent by using previous single-agent action-model
learning algorithms such asARMS. These single-agent learning al-
gorithms, however, do not consider the coordination information
involved in the various agents. InLammas this information is cap-
tured by the agent constraints. We hypothesize that theLammas
algorithm can handle these interactions better, resultingin reduced
error rates.

We set the percentage of observed states as1/5, which indicates
that one in five consecutive states can be observed. We set the
percentage of observed propositions in each observed stateas1/5.
We also set allλi (1 ≤ i ≤ 3) as 0.5 without any bias. We ran
Lammas andARMS five times by randomly selecting the states and
propositions in plan traces, and calculate the average of error rates.
The comparison result is shown in Figure 2.
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Figure 2: The comparison betweenLammas and ARMS

From Figure 2, we can see that the error ratesR(Φ) of both
Lammas andARMS generally decrease as the number of plan traces
increases, which is consistent with the intuition that whenmore
training data is given the percentage of error will decrease. By ob-
servation, we can also find that the error rateR(Φ) of ourLammas
algorithm is generally smaller than that ofARMS, which suggests
that the agent constraints generated fromw-AIG can indeed help
improve the learning result in multi-agent environments. From
the curves for different domains, ourLammas algorithm functions
much better in both domains ofma-logisticsand ma-openstacks
than in the domainma-rovers. The results are statistically signifi-
cant; we performed the Student’s t-test and the results are 0.0101
for ma-logistics, 0.0416 forma-roversand 0.0002 forma-openstacks.
This suggests that the agent constraints work better inma-logistics
and ma-openstacksthan in ma-rovers. The reason for this dif-
ference is because agents inma-logisticsandma-openstackshave
more interactions between each other than that inma-rovers.

5.2.2 Varying weights of constraints
The importance of different kinds of constraints may be differ-

ent in the learning process. We test this hypothesis by varying the
weights of the different kinds of constraints. We fixλ2 andλ3 as
0.5 and setλ1 as different values of 0, 0.25, 0.5, 0.75 and 1. We
runLammas and calculate the error rates with respect to different
values ofλ1. The error rates are shown in the second/fifth/eighth
columns of Table 3. Likewise, we calculate the error rates with dif-
ferent values ofλ2 or λ3 when fixing the other twoλ values at 0.5,
as shown in Table 3. In the table, we highlight the smallest error
rates of each column with boldface; e.g., in the second column the
smallest error rate is 0.0601 whereλ1 = 0.75.

From Table 3, we find thatλi cannot be set too high (the highest
being 1) or set too low (the lowest being 0); otherwise its corre-
sponding error rates will be high. This suggests that the weights of
constraints cannot be set too high or too low to offset the impact of
other constraints. Hence, all three kinds of constraints are needed
for learning high quality result. For instance, whenλi is set too
high, its corresponding kind of constraints plays a major role while
the other two kinds of constraints play a relatively minor role (in
an extreme case, they play no effect whenλi = 1) on the learning
result. On the other hand, whenλi is set too low, the importance
of its corresponding kind of constraints is reduced. In the extreme
case, they have no effect whenλi = 0.

By comparing theλ1 columns betweenma-logisticsand ma-
rovers, we can see that the value ofλ1 should be higher inma-
logistics (to make error rates smaller) than inma-rovers, which
suggests agent constraints inma-logisticsare more important than
in ma-rovers. The reason for this is because there are more inter-
actions among agents inma-logisticsthan in ma-rovers. Hence,
exploiting the agent’s interaction information helps improve the
learning result.

5.2.3 Running time
To test the running time of theLammas algorithm, we setλi(1 ≤

i ≤ 3) as 0.5 and runLammas with respect to different number of
plan traces. The result is shown in Figure 3. As can be seen from
the figure, the running time increases polynomially with thenum-
ber of input plan traces. This can be verified by fitting the relation-
ship between the number of plan traces and the running time toa
performance curve with a polynomial of order 2 or 3. For example,
the fit polynomial forma-logisticsis −0.0002x3 + 0.0541x2 −
3.1616x + 52.6667.

ARMS also runs in polynomial time on the size of the input
traces. Hence, since both ARMS andLammas are designed to run
off-line there is no real advantage of using one or the other one
based on their running times. However, our experiments showthat
Lammas has the advantage that it can learn more accurate models
than ARMS for multi-agent environments.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an action-model learning sys-

tem known asLammas, which performs well in multi-agent do-
mains. We learn the structure information to reflect agent inter-
actions, which is shown empirically to improve the quality of the
learned action models. Our approach builds aw-AIG graph to re-
veal the potential interactions among agents, which results in agent
constraints that are used to capture agent interactions. Integrating
these agent constraints with previously used action constraints are
shown to give better learning performance. Our experimentsshow
thatLammas is effective in three benchmark domains.

Our work can be extended to more complex multi-agent do-
mains. For example, in a multi-player computer game setting, agents
have their own utilities, and they may cooperate with each other or
work against each other. In such situations, we may incorporate
more types of constraints to model adversarial situations.
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Table 3: Error rates with respect to different λ values

λi values
ma-logistics ma-rovers ma-openstacks

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

1 0.1552 0.1784 0.1744 0.1305 0.1714 0.1552 0.1202 0.1323 0.1544
0.75 0.0601 0.2020 0.1561 0.1329 0.1081 0.1271 0.0986 0.0633 0.1561
0.5 0.0623 0.0623 0.0623 0.1302 0.1302 0.1302 0.0794 0.0794 0.0794
0.25 0.0943 0.1436 0.1594 0.1164 0.1490 0.0962 0.1118 0.1561 0.1294

0 0.1236 0.1934 0.2479 0.1610 0.1648 0.2124 0.1638 0.2134 0.1979

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u 

tim
e 

(s
ec

on
ds

)

(a) ma−logistics

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u 

tim
e 

(s
ec

on
ds

)

(b) ma−rovers

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u 

tim
e 

(s
ec

on
ds

)

(c) ma−openstacks

Figure 3: The running time of the Lammas algorithm
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ABSTRACT
Potential-based reward shaping has previously been proven
to both be equivalent to Q-table initialisation and guaran-
tee policy invariance in single-agent reinforcement learning.
The method has since been used in multi-agent reinforce-
ment learning without consideration of whether the theoret-
ical equivalence and guarantees hold. This paper extends
the existing proofs to similar results in multi-agent systems,
providing the theoretical background to explain the suc-
cess of previous empirical studies. Specifically, it is proven
that the equivalence to Q-table initialisation remains and
the Nash Equilibria of the underlying stochastic game are
not modified. Furthermore, we demonstrate empirically that
potential-based reward shaping affects exploration and, con-
sequentially, can alter the joint policy converged upon.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms
Theory, Experimentation

Keywords
Reinforcement Learning, Reward Shaping,
Multiagent Learning, Reward Structures for Learning.

1. INTRODUCTION
Current trends are showing a rise in interest in Multi-

Agent Systems (MAS). With multiple, distributed agents a
larger set of problem domains can be practically modelled
[35]. To control each agent, a reinforcement learning solu-
tion can provide adaptive, autonomous, and self-improving
agents.

However, whilst reinforcement learning can handle prob-
lems with combinatorial state spaces in single-agent problem
domains [21, 26], adding more agents to the same environ-
ment is a significant challenge [5]. Specifically, as the other

Cite as: Theoretical Considerations of Potential-Based Reward Shap-
ing for Multi-Agent Systems, Sam Devlin and Daniel Kudenko, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 225-232.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agents execute their own actions they subsequently influ-
ence the state of the world. This makes the environment
appear non-stationary to an individual agent because other
agents may concurrently learn and change their behaviour.
Unknown to the agent, the same local state-action pair will
have a different transition function even though the global
state-joint action pair has not changed.

It has been shown in single-agent reinforcement learning
that the quicker a learning agent can reach convergence in
its policy the more it will benefit from instability in the envi-
ronment, as it is better suited to adapt to changes [30]. But
in MAS the state-action space grows exponentially with the
number of agents, which may considerably slow down con-
vergence reducing agents’ ability to adapt quickly. There-
fore, methods of reducing the time to convergence are of sig-
nificant importance when implementing reinforcement learn-
ing solutions to MAS.

One such method, empirically demonstrated to decrease
the time for each individual learning in a common environ-
ment to converge on a stable policy, is incorporating heuris-
tic knowledge [17, 25]. However, most existing reinforce-
ment learning algorithms were proposed under the assump-
tion that there is no knowledge available about the problem.
This is often not the case; in many practical applications
heuristic knowledge can be easily identified by the designer
of the system [23], or acquired using reasoning or learning
[10].

In single-agent reinforcement learning, potential-based re-
ward shaping has been proven to be a principled and theoret-
ically correct method of incorporating heuristic knowledge
into an agent. Provided domain knowledge dependent on
states alone, receiving an additional potential-based reward
of the correct form does not alter the optimal policy of an
agent [20].

To date, applications of potential-based reward shaping
to MAS [2, 16] have been studied without published consid-
eration of whether the proofs, originally intended for single-
agent problem domains, hold for multi-agent reinforcement
learning.

The bulk of our findings, discussed in Section 4, consider
the theoretical implications for reward shaping of changing
from single-agent problem domains to MAS. This work fo-
cuses on the analysis of two fundamental results in single-
agent, potential-based reward shaping; the equivalence to
Q-table initialisation [33] and the invariance of policies be-
tween shaped and non-shaped agents provided [20].

The first remains constant, potential-based reward shap-
ing is equivalent to Q-table initialisation regardless of the
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number of agents learning in the environment. The lat-
ter, however, takes new meanings in a MAS. The goal of
single-agent reinforcement learning is to compute the policy
of maximum reward but with multiple agents, potentially
competing, the goal becomes Nash Equilibrium [19]. There-
fore, the multi-agent equivalent to policy invariance [20],
successfully proven in this paper, is that potential-based re-
ward shaping does not alter the Nash Equilibria of the MAS.

However, potential-based reward shaping can have im-
plications for the joint policy a multi-agent reinforcement
learning solution will converge to. As we will show, the final
joint policy will still be a Nash Equilibrium of the original
system (i.e., before any agents received reward shaping) but
may not be the same as the additional reward alters the
individual agent’s exploration which affects the experiences
all agents will have.

We close, in Section 5 by empirically demonstrating our
findings but first, to begin, the following section will review
existing work and the required background knowledge.

2. EXISTING WORK

2.1 Reinforcement Learning
Reinforcement learning is a paradigm which allows agents

to learn by reward and punishment from interactions with
the environment [28]. The numeric feedback received from
the environment is used to improve the agent’s actions. The
majority of work in the area of reinforcement learning ap-
plies a Markov Decision Process (MDP) as a mathematical
model [22].

An MDP is a tuple 〈S,A, T,R〉, where S is the state space,
A is the action space, T (s, a, s′) = Pr(s′|s, a) is the prob-
ability that action a in state s will lead to state s′, and
R(s, a, s′) is the immediate reward r received when action
a taken in state s results in a transition to state s′. The
problem of solving an MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition prob-
abilities and a reward function) are available, this task can
be solved using iterative approaches like policy and value
iteration [3].

When the environment dynamics are not available, as
with most true environments, value iteration cannot be used.
However, the concept of an iterative approach remains the
backbone of the majority of reinforcement learning algo-
rithms. These algorithms apply so called temporal-difference
updates to propagate information about values of states,
V (s), or state-action, Q(s, a), pairs [27]. These updates are
based on the difference of the two temporally different es-
timates of a particular state or state-action value. The Q-
learning algorithm is such a method [28]. After each tran-
sition, (s, a)→ (s′, r), in the environment, it updates state-
action values by the formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′ Q(s′, a′)−Q(s, a)] (1)

where α is the rate of learning and γ is the discount factor.
It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, and moved to a new state s′.

2.2 Multi-Agent Reinforcement Learning
Applications of reinforcement learning to MAS typically

take one of two approaches; multiple individual learners
or joint action learners [6]. The former is the deployment
of multiple agents each using a single-agent reinforcement
learning algorithm. The latter is a group of multi-agent spe-
cific algorithms designed to consider the existence of other
agents.

Multiple individual learners assume any other agents to
be a part of the environment and so, as the others simul-
taneously learn, the environment appears to be dynamic as
the probability of transition when taking action a in state
s changes over time. To overcome the appearance of a
dynamic environment, joint action learners were developed
that extend their value function to consider for each state the
value of each possible combination of actions by all agents.

Learning by joint action, however, breaks a common fun-
damental concept of MAS in which each agent is self moti-
vated and so may not consent to the broadcasting of their
action choices. Furthermore, the consideration of the joint
action causes an exponential increase in the number of values
that must be calculated with each additional agent added to
the system. Typically, joint action learning algorithms have
only been demonstrated in trivial problem domains [31, 11,
6] whilst applications in complex systems most often im-
plement multiple individual learners [18, 29, 30]. For these
reasons, this work will focus on multiple individual learners
and not joint action learners. However, these proofs can be
extended to cover joint action learners, those we have specif-
ically considered include MiniMax Q-learning [14], Friend-
or-Foe Q-learning [15] and Nash-Q [11].

Unlike single-agent reinforcement learning where the goal
is to maximise the individual’s reward, when multiple self
motivated agents are deployed not all agents can always
receive their maximum reward. Instead some compromise
must be made, typically the system is designed aiming to
converge to a Nash Equilibrium [24]. Multiple individual
learners will, given sufficient learning time, converge to a
point of equilibrium, however, no guarantees can be made
that this will be the optimum Nash Equilibrium [6].

To model a MAS, the single-agent MDP becomes inade-
quate and instead the more general Stochastic Game (SG)
is required [5]. A SG of n agents is a tuple
〈S,A1, ..., An, T,R1, ..., Rn〉, where S is the state space, Ai
is the action space of agent i, T (s,A, s′) = Pr(s′|s,A) is the
probability that joint action A in state s will lead to state s′,
and Ri(s, a, s

′) is the immediate reward r received by agent
i when action a taken in state s results in a transition to
state s′ [9].

3. REWARD SHAPING
The immediate reward r, which is in the update rule given

by Equation 1, represents the feedback from the environ-
ment. The idea of reward shaping is to provide an additional
reward which will improve the convergence of the learning
agent with regard to the learning speed [20, 23]. This con-
cept can be represented by the following formula for the
Q-learning algorithm:

Q(s, a)← Q(s, a)+α[r+F (s, s′)+γmax
a′ Q(s′, a′)−Q(s, a)]

(2)
where F (s, s′) is the general form of the shaping reward.

Even though reward shaping has been powerful in many
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experiments it quickly became apparent that, when used
improperly, it can change the optimal policy [23]. To deal
with such problems, potential-based reward shaping was
proposed [20] as the difference of some potential function
Φ defined over a source s and a destination state s′:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where γ must be the same discount factor as used in the
agent’s update rule (see Equation 1).

Ng et al. [20] proved that potential-based reward shap-
ing, defined according to Equation 3, guarantees learning a
policy which is equivalent to the one learnt without reward
shaping in both infinite and finite horizon MDPs.

Wiewiora [33] later proved that an agent learning with
potential-based reward shaping and no knowledge-based Q-
table initialisation will behave identically to an agent with-
out reward shaping when the latter agent’s value function
is initialised with the same heuristic knowledge represented
by Φ(s). This is an important fact, because when function
approximation is used in big environments, where the struc-
tural properties of the state space are not clear, it is not easy
to initialise the value function. Potential-based reward shap-
ing represents a flexible and theoretically correct method to
incorporate background knowledge regarding states into re-
inforcement learning algorithms.

3.1 Reward Shaping In Multi-Agent Systems
Incorporating heuristic knowledge has been shown to be

beneficial in multi-agent reinforcement learning [2, 16, 17,
25]. However, some of the previous examples did not use
potential-based functions to shape the reward [17, 25] and
could potentially, therefore, suffer from introducing benefi-
cial cyclic policies that cause convergence to an unintended
behaviour as demonstrated previously in a single-agent prob-
lem domain [23].

The remaining applications that were potential-based [2,
16], demonstrated an increased probability of convergence
to a higher value Nash Equilibrium. As it has long been
established that multiple individual learners are not guar-
anteed to converge to the optimal Nash Equilibrium [6], a
number of methods to increase the probability of this occur-
ring have already been devised. Amongst them are COIN
[34] and myopic heuristics [6]. However, these methods re-
quire knowledge of the reward function or the joint action.
Potential-based reward shaping can similarly increase the
probability of convergence to the optimal Nash Equilibrium
provided a good heuristic, but does so without requiring
either of these specific pieces of knowledge which are com-
monly unavailable in MAS applications.

Both applications of potential-based reward shaping were
published with no consideration of whether the proofs of
guaranteed policy invariance hold in multi-agent reinforce-
ment learning or how they affect the joint policy at time of
convergence. Starting in the following section, our contribu-
tion fills this gap in knowledge and provides the theoretical
results to explain these previous empirical studies.

4. THEORY
To discuss the implications of using potential-based re-

ward shaping in MAS we must consider the differences be-
tween single-agent and multi-agent reinforcement learning.
SGs, unlike MDPs, share amongst all agents a common tran-
sition function and common states but neither of these are

affected by shaping the reward function of one or more of
the agents. Although the agents may change their own pol-
icy and alter their exploration path due to the additional
potential-based reward, this does not change the dynamics
(transition function or states) of the environment, nor the
set of actions the agent can take.

In fact the only elements of a SG to change when one or
more agent implements potential-based reward shaping are
the individual reward functions of those agents. If, as we will
later show to be true in Section 4.2, these alterations to the
individual reward functions do not change the best response
policy of a shaped agent given a fixed set of policies followed
by all other agents, the Nash Equilibria of the underlying SG
remain constant regardless of how many agents are using
potential-based reward shaping.

Formally, this argument will be completed by showing, in
the following sub-section, that potential-based reward shap-
ing in MAS is equivalent to Q-table initialisation and then,
in Section 4.2, that it does not alter the Nash Equilibria of
the MAS. Both of these findings, as we will discuss in Sec-
tion 4.3, has implications for the eventual policy that will
be converged upon.

4.1 Potential-Based Reward Shaping And Q-
Value Initialisation Are Equivalent

The proof of Wiewiora [33] of the equivalence of potential-
based reward shaping and Q-value initialisation was pub-
lished in the context of single agent problem domains but
also holds for problem domains with multiple individual
learners.

From [33] we quote:

Theorem 1 Given the same sequence of expe-
riences during learning, ∆Q(s, a) always equals
∆Q′(s, a).

where Q(s, a) is the modelled value function of an agent
learning with potential-based reward shaping and Q′(s, a)
is the modelled value function of an agent learning with Q-
value initialisation.

The original proof uses a fixed sequence of experiences
for both agents. The theory can be extended to multi-
ple individual learners simply by extending the definition
of the sequence experienced from the 4-tuple 〈s, a, r, s′〉 to
the 2n+ 2-tuple 〈s, a1, a2, ..., an, r1, r2, ..., rn, s

′〉. Using the
extended sequence and the inductive proof from [33] the
following proves that Theorem 1 holds also for multi-agent
reinforcement learning.

Proof By Induction
Consider any arbitrary agent i from the set of all agents. As
before, Q(s, a) is the modelled value function when the agent
is learning with potential-based reward shaping and Q′(s, a)
is the modelled value function had the same agent learnt
without reward shaping but with Q-value initialisation. The
former agent will later be referred to as L and the latter as
L′.

Agent L will update its Q-values by the rule:

Qi(s, a) ← Qi(s, a) +

α (ri + F (s, s′) + γmax
a′ Qi(s

′, a′)−Qi(s, a))︸ ︷︷ ︸
δQi(s,a)

(4)
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where F (s, s′) is the potential-based reward shaping func-
tion and δQi(s, a) is the amount (scaled by α) that the Q
value will be updated by. The current Q-values of Agent
L can be represented formally as the initial value plus the
change since:

Qi(s, a) = Q0
i (s, a) + ∆Qi(s, a) (5)

where Q0
i (s, a) is agent i’s initial Q-value of state-action

pair (s, a). Similarly agent L′ updates its Q-values by the
rule:

Q′i(s, a)← Q′i(s, a) + α (ri + γmax
a′ Q′i(s

′, a′)−Q′i(s, a))︸ ︷︷ ︸
δQ′

i(s,a)

(6)
And its current Q-values can be represented formally as:

Q′i(s, a) = Q0
i (s, a) + Φ(s) + ∆Q′i(s, a) (7)

where Φ(s) is the potential for state s.

Base Case
Before either agent experiences anything, the Q-tables of L
and L′ are both their respective initial values, and therefore
both ∆Qi and ∆Q′i are uniformly zero.

Inductive Case
Assuming ∆Qi = ∆Q′i, both L and L′ will be updated by
the same amount in response to experience
〈s, a1, a2, ..., an, r1, r2, ..., rn, s

′〉. First consider the update
performed by L:

δQi(s, a) = ri + F (s, s′) + γmax
a′ Qi(s

′, a′)−Qi(s, a)

= ri + γΦ(s′)− Φ(s)

+γmax
a′ (Q0

i (s
′, a′) + ∆Qi(s

′, a′))

−Q0
i (s, a)−∆Qi(s, a) (8)

Now consider the update performed by L′:

δQ′i(s, a) = ri + γmax
a′ Q′i(s

′, a′)−Q′i(s, a)

= ri + γmax
a′ (Q0

i (s
′, a′) + Φ(s′) + ∆Q′(s′a′))

−Q0
i (s, a)− Φ(s)−∆Q′(s, a)

= ri + γmax
a′ (Q0

i (s
′, a′) + Φ(s′) + ∆Q(s′a′))

−Q0
i (s, a)− Φ(s)−∆Q(s, a)

= ri + γΦ(s′)− Φ(s)

+γmax
a′ (Q0

i (s
′, a′) + ∆Qi(s

′, a′))

−Q0
i (s, a)−∆Qi(s, a)

= δQi(s, a) (9)

Therefore, the Q-tables of both L and L′ are both updated
by the same value and so ∆Qi and ∆Q′i remain equal.

Given that Theorem 1 of [33] holds for the multi-agent
context then so too does Theorem 2, again quoted from [33]:

Theorem 2 If L and L′ have learnt on the same
sequence of experiences and use an advantage-
based policy, they will have an identical proba-
bility distribution for their next action.

where an advantage-based policy is one that chooses ac-
tions based not on the absolute magnitude of the Q-values
but on their relative differences within the current state. Ex-
amples of advantage-based policies include greedy, ε-greedy
and Boltzmann soft-max.

This is immediately apparent when considering both
∆Qi = ∆Q′i from Theorem 1 and Equations 5 and 7. As
the difference between the Q-values of agent L and agent
L′ are the potential of the state, the difference is consis-
tent across all actions in any given state. Therefore, the
actions maintain the same relative differences allowing an
advantage-based policy to make the same action decisions.

Effectively, at any time in learning L and L′ will behave
the same way (make the same decisions with the same prob-
abilities). To conclude, whether an agent is shaped or ini-
tialised it will have the same effect on all other agents in
the environment, the learning dynamics are not changed by
using one method or the other and the agents as a collec-
tive whole will converge or not upon the same joint policy
regardless of whether the agent was shaped or initialised.

Finally, although the proof here was written specifically
for Q-learning, this was simply in keeping with the original
work of [33]. In single-agent problem domains the equiv-
alence of Q-table initialisation and potential-based reward
shaping can be proven also in SARSA and other temporal
difference algorithms [33]. Similar extensions to multi-agent,
as above, are possible also for these extensions.

4.2 Potential-Based Reward Shaping Does
Not Alter The Nash Equilibria Of A
Stochastic Game

As already established the common goal of MARL is a
Nash Equilibrium. The typical concern of modifying a re-
ward function is that the original goals of the agent will be
altered. Ng showed previously that in the single-agent con-
text, the optimum policy was unchanged by the introduction
of reward shaping provided the function was potential-based
[20]. To extend this to MARL we must now consider whether
implementing the same reward shaping in one or more agents
in a SG will alter its points of equilibrium.

Formally a Nash Equilibrium in a SG is:

∀i ∈ 1 . . . n, πi ∈ Πi|Ri(πNEi ∪ πNE−i ) ≥ Ri(πi ∪ πNE−i ) (10)

where n is the number of agents, Πi is the set of all possible
policies of agent i, Ri is the reward function for agent i, πNEi
is a specific policy of agent i and πNE−i is the joint policy of
all agents except agent i following their own fixed specific
policy. If the inequality holds for all agents, the joint policy
of each agent following its policy πNEi is a Nash Equilibrium.

Now consider any arbitrary agent i from the set of all
agents. For the inequality above to hold for agent i, we must
consider the set ΠNE

i of all joint policies consisting of each
possible policy of agent i combined with πNE−i . Formally,
this set contains:

∀πi ∈ Πi|(πi ∪ πNE−i ) (11)
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Each fixed joint policy in the set ΠNE
i will generate a fixed

infinite sequence of experiences when followed consistently
from the current state s0 of the form:

s̄ = s0, a0,0, a0,1, . . . , a0,n, r0,0, r0,1, . . . , r0,n, . . . ,

s∞, a∞,0, a∞,1, . . . , a∞,n, r∞,0, r∞,1, . . . , r∞,n, . . .

(12)

where sj is the state at time j, aj,i is the action taken by
agent i at time j and rj,i is the reward received by agent i
at time j.

Then using the proof of [1], we can show the difference
of the return received by agent i when following any arbi-
trary fixed sequence with or without potential-based reward
shaping is the potential of the state s0.

Proof
The return for agent i when experiencing sequence s̄ in a
discounted framework without shaping is:

Ui(s̄) =

∞∑
j=0

γjrj,i (13)

Now consider the same agent but with a reward function
modified by adding a potential-based reward function. The
return of the shaped agent experiencing the same sequence
s̄ is:

Ui,Φ(s̄) =

∞∑
j=0

γj(rj,i + F (sj , sj+1))

=

∞∑
j=0

γj(rj,i + γΦ(sj+1)− Φ(sj))

=

∞∑
j=0

γjrj,i +

∞∑
j=0

γj+1Φ(sj+1)−
∞∑
j=0

γjΦ(sj)

= Ui(s̄) +

∞∑
j=1

γjΦ(sj)− Φ(s0)−
∞∑
j=1

γjΦ(sj)

= Ui(s̄)− Φ(s0) (14)

Therefore, any policy that previously maintained the in-
equality of Equation 10 will still maintain the inequality.
Formally, and more strictly we can conclude:

∀πi ∈ Πi| (Ri(π
NE
i ∪ πNE−i ) ≥ Ri(πi ∪ πNE−i ))↔

(Ri,Φ(πNEi ∪ πNE−i ) ≥ Ri,Φ(πi ∪ πNE−i )) (15)

where Ri,Φ is the reward function of agent i when receiv-
ing both the environmental reward and the potential-based
reward shaping.

As implementing reward shaping only affects the reward
function of that agent, the remaining agents will also still
maintain the same policies as part of the Nash Equilibria.
Whether the group will converge to this point depends on
the learning algorithm used and is outside of this proof.
However, it suffices to say that regardless of how many
agents in the MAS are or are not implementing potential-
based reward shaping the points of equilibrium will remain
constant.

4.3 Potential-Based Reward Shaping Alters
Exploration

In Section 4.1 we showed that an agent in a MAS receiving
potential-based reward shaping is equivalent to one whose
Q-table was initialised with each state s set to the poten-
tial Φ(s) of that state. However, the implications of this
proof in a MAS extend past showing that two methods of
introducing domain knowledge are equivalent. Instead, it is
worth considering the results of [32], in which Wellman and
Hu showed that the joint policy converged upon in a learn-
ing MAS was highly sensitive to initial belief. This clearly
applies directly to Q-table initialisation, where the initial
values directly represent some initial belief, and therefore,
given that we have shown the equivalence between initial-
isation and shaping, also applies to potential-based reward
shaping. This can be reasoned intuitively by considering the
following.

The MDP of an agent deployed in a common environ-
ment with other learning agents does not hold the Markov
property as the transition probabilities are subject to change
with the unseen but changing policies of the other agents.
Therefore, the convergence to optimal policy guarantees of
Q-learning do not hold. This has been demonstrated empiri-
cally in multi-agent reinforcement applications with multiple
Q-learners converging to sub-optimal joint policies [2].

Shaping alters the path of exploration an agent takes. In
single-agent reinforcement learning, as convergence to the
optimal policy is guaranteed, this only affects the time taken
to reach convergence. If a good heuristic, is used the time
will be reduced as the number of sub-optimal actions taken
will be reduced, but similarly if a bad heuristic is used the
agent will take longer to converge to the optimal policy.

The concept of an optimal policy in MAS is not as clear.
We have identified Nash Equilibrium as the typical goal of
multi-agent reinforcement learning, but this does not nec-
essarily identify a single goal. Most applications, with the
exception of the very trivial, will have multiple points of
equilibrium. Multiple individual learners will converge to
one of these equilibrium, but whether it will be the opti-
mum cannot be guaranteed [6]

With multiple agents in the same environment, altering
the exploration of one will change the experiences of all
agents [12, 13]. The change in actions chosen by even just
one agent now receiving potential-based reward shaping will
result in different state transitions. The agents will then
explore different areas of the joint policy space and, with
multiple points of equilibrium possible, may converge to a
different equilibrium then had the agent not received the
reward shaping and subsequently not have altered its indi-
vidual exploration path.

Therefore, in multi-agent problem domains, without the
guarantee of convergence to a single optimum goal, shaping
can lead to convergence on a different joint policy. This was
empirically demonstrated by Babes and Littman [2], where
a shaped agent was able to lead a non-shaped agent to con-
vergence on a joint policy of higher average reward. When
shaping one or more agents in an environment with multi-
ple learning agents, a good heuristic will encourage higher
global utility similar to how in single-agent problem domains
the use was preferably to reduce the time taken to converge.
Unfortunately, the techniques can also have a detrimental
effect encouraging miscoordination and/or lead the agents
to converge on a less beneficial joint policy by directing the
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Figure 1: Boutilier’s Coordination Game

agents away from frequently, or possibly ever, experiencing
the equilibrium reached by non-shaped agents and instead
trapping them in a sub-optimal point of equilibrium.

To support and illustrate these claims the following sec-
tion will present an empirical study that is typically charac-
teristic of implementing potential-based reward shaping in
a MAS.

5. EMPIRICAL DEMONSTRATION
To demonstrate the theorised effects of potential-based

reward shaping, an empirical study of a game based on
Boutilier’s coordination game [4] will be presented here.

The game, illustrated in Figure 1, has six stages and two
agents, each capable of two actions (a or b). The first agent’s
first action choice in each episode decides if the agents will
move to a state guaranteed to reward them minimally (s3) or
to a state where they must co-ordinate to receive the highest
reward (s2). However, in state s2 the agents are at risk of
receiving a large negative reward if they do not choose the
same action.

In Figure 1, each transition is labelled with one or more
action pairs such that the pair a, ∗ means this transition
occurs if agent 1 chooses action a and agent 2 chooses ei-
ther action. When multiple action pairs result in the same
transition the pairs are separated by a semicolon(;).

The game has three joint policy Nash Equilibria; the joint
policy of opting for the safety state s3 or the two joint poli-
cies of moving to state s2 and coordinating on both choosing
a or b. Any joint policy receiving the negative reward is not
a Nash Equilibrium, as the first agent can choose to change
its first action choice and so receive a higher reward by in-
stead reaching state s3.

Three sets of agents will be the focus of these experiments.
All agents, in all sets, will learn by Q-learning with an ε-
greedy policy and discount factor (γ) of 1. One set will
receive no reward shaping, to illustrate the average perfor-
mance without heuristic knowledge, another set will receive
potential-based reward shaping from a good heuristic whilst
the final set receives shaping from a poor heuristic.

The good heuristic, designed to encourage co-operation,
gives states s1, s2 and s4 the potentials 5, 10 and 15 respec-
tively. All other states receive a potential of 0. Therefore,
any transition from states s1 to s2 or s2 to s4 will receive an
additional reward of +5 but transitioning instead from state
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Figure 2: Optimal Nash Equilibrium

s2 to s5 will receive an additional reward of −10. Alterna-
tively, the bad heuristic is designed to encourage miscoordi-
nation and so potentials of 5, 10 and 15 are given instead
to states s1, s2 and s5 respectively. Again all other states
receive a potential of 0.

Our experimental results are intended to show, provided a
good heuristic, the increased probability of converging to the
joint policies of higher global utility (those achieving coordi-
nation in state s2). Alternatively, provided a bad heuristic,
the agents will demonstrate that the Nash Equilibria have
not changed and so converge still to one of the three original
joint policy Nash Equilibria.

5.1 Results
All experiments were run for 100,000 episodes (300,000

action choices) and repeated 100 times. The results, illus-
trated in Figures 2, 3 and 4, plot the mean percentage of the
last 100 episodes performing the optimal, safety and sub-
optimal joint policies respectively. All figures include error
bars illustrating the standard error from the mean. For clar-
ity, graphs are plotted only up to 30,000 episodes as by this
time all experiments had converged to a stable joint policy.

Figure 2 shows that, for this relatively simple game, mul-
tiple individual learners alone can only converge to the op-
timal behaviour 72% of the time. Whereas, provided a good
heuristic, potential-based reward shaping can increase the
probability of convergence to this Nash Equilibrium to 100%.

As theorised, provided a bad heuristic, the effect on the
global utility can be detrimental. The probability of achiev-
ing optimal behaviour, with a potential function encouraging
miscoordination, rapidly drops and converges on 0%.

Instead, as illustrated by Figure 3, the poorly shaped
agents converge to the safety Nash Equilibrium. Despite the
miscoordination state (s5) receiving the largest potential,
the agents do not converge to the sub-optimal behaviour, as
illustrated by Figure 4.

Figure 4, highlights that agents with no shaping or
potential-based reward shaping never converge to consis-
tently perform the sub-optimal joint policy. This is because
miscoordination in this game is not a Nash Equilibrium,
both with and without potential-based reward shaping. Re-
gardless of which joint policy is encouraged, if the additional
reward is potential based, the Nash Equilibria remain con-
stant.

However, Figure 4 illustrates the behaviour of an addi-
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Figure 3: Safety Nash Equilibrium
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Figure 4: Sub-Optimal Behaviour

tional set of agents. These agents receive an additional re-
ward on state transitions that is not potential based. Specif-
ically they are rewarded 5, 10 and 30 upon entering states
s1, s2 and s5 respectively. These agents converge to a joint
policy representative of the sub-optimal behaviour. This
has occurred because if additional rewards are not potential-
based they can change the Nash Equilibria of a SG.

Finally, the learning performance of both sets of shaped
agents favourably supports the use of potential-based reward
shaping in MAS. The poorly shaped agents converge to the
safety Nash Equilibrium after just 10,000 episodes whilst
without shaping it takes agents 29,000 episodes to converge.
More significantly, after only 2000 episodes agents receiv-
ing reward shaping from a good heuristic are more likely
to achieve the optimal Nash Equilibrium than non-shaped
agents ever will.

6. CONCLUSION
In conclusion, this paper shows how two fundamental pa-

pers in single-agent reward shaping [20, 33] can be extended
to provide similar guarantees in multi-agent reinforcement
learning.

Specifically, we have proven that a potential-based shaped
agent is still equivalent to an agent with initial Q-values set
to the potential of each state regardless of how many exist
within the same environment.

Furthermore, we have also proven that rewarding any

number of agents within a MAS with additional potential-
based rewards has no subsequent effect on the Nash Equi-
libria of the underlying SG.

Potential-based reward shaping affects the exploration of
the shaped agent. Therefore, it can change the joint policy
converged upon as even just one agent’s modified exploration
can sufficiently redirect the search of joint policy space to
converge to a different point of equilibrium.

Although the agents may now converge to a different joint
policy, the latter of the two proofs guarantees that the new
joint policy was also a goal of the unshaped agents.

Whether the goal achieved is the Nash Equilibrium of
highest global utility, is dependent on the agents’ learning
algorithms. With multiple individual learners, no guaran-
tee of convergence to the highest utility Nash Equilibrium
is provided. However, potential-based reward shaping can,
dependent on the heuristic, either increase or decrease the
probability of converging to equilibria of higher global utility
as demonstrated in our empirical study.

Given a joint action learner guaranteed under fixed condi-
tions to converge, such as NashQ [11], it is possible to con-
struct similar proofs as those shown here. Agents learning
by joint action and receiving potential-based reward shap-
ing benefit from consistent Nash Equilibria, modified explo-
ration to decrease the number of sub-optimal action deci-
sions and guaranteed convergence.

It is also the authors’ expectation that potential-based ad-
vice [8], an extension of potential-based reward shaping to
include heuristics based on actions as well as states, could
similarly be extended to guarantee consistent Nash Equi-
libria when applied to multi-agent reinforcement learning.
Recent empirical work supports these expectations [7].

The work here has been based entirely in fully observable
problem domains, which some may consider uncharacteris-
tic of MAS. However, by shaping agents based on the po-
tential of observations (as opposed to fully observed states)
the same arguments and proofs can be used to show simi-
lar theoretical expectations in partially observable problem
domains. Namely, the Nash Equilibria of a partially observ-
able problem domain would remain the same but the agents
exploration will alter and so convergence may be to a dif-
ferent point of equilibrium or, given an unsuitable heuristic,
may not converge at all.

In closing, adding potential-based reward shaping to mul-
tiple individual learners does not alter the Nash Equilibria
but can, provided suitable heuristics, increase the probabil-
ity of convergence to a higher global utility and decrease the
time to convergence.
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for their input during the development of these ideas and
C.Poskitt for his time spent proof reading.

8. REFERENCES
[1] J. Asmuth, M. Littman, and R. Zinkov.

Potential-based shaping in model-based reinforcement
learning. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pages 604–609,
2008.

[2] M. Babes, E. de Cote, and M. Littman. Social reward
shaping in the prisoner’s dilemma. In Proceedings of

231



the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems,
volume 3, pages 1389–1392, 2008.

[3] D. P. Bertsekas. Dynamic Programming and Optimal
Control (2 Vol Set). Athena Scientific, 3rd edition,
2007.

[4] C. Boutilier. Sequential optimality and coordination in
multiagent systems. In International Joint Conference
on Artificial Intelligence, volume 16, pages 478–485.
Citeseer, 1999.

[5] L. Busoniu, R. Babuska, and B. De Schutter. A
Comprehensive Survey of MultiAgent Reinforcement
Learning. IEEE Transactions on Systems Man &
Cybernetics Part C Applications and Reviews,
38(2):156, 2008.

[6] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the National Conference on
Artificial Intelligence, pages 746–752, 1998.
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ABSTRACT
We have proposed the utility-based Q-learning concept that
supposes an agent internally has an emotional mechanism
that derives subjective utilities from objective rewards and
the agent uses the utilities as rewards of Q-learning. We have
also proposed such an emotional mechanism that facilitates
cooperative actions in Prisoner’s Dilemma (PD) games.

However, this mechanism has been designed and imple-
mented manually in order to force the agents to take coop-
erative actions in PD games. Since it seems slightly unnat-
ural, this work considers whether such an emotional mech-
anism exists and where it comes from. We try to evolve
such mechanisms that facilitate cooperative actions in PD
games by conducting simulation experiments with a genetic
algorithm, and we investigate the evolved mechanisms from
various points of view.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Experimentation

Keywords
Reward structures for learning; Multiagent Learning; Evo-
lution, adaptation; Game theory

1. INTRODUCTION
In this paper, we consider a learning agent that chooses

actions seeming appropriate. The most popular learning
method for agents is reinforcement learning [14]. In rein-
forcement learning, an agent is given rewards from the envi-
ronment according to its actions and the states of the envi-
ronment, and the agent learns to take actions that maximize
the rewards.

If there is only one agent in the world, it can take actions
that maximize its own rewards. However, in a multiagent
environment consisting of multiple agents, the maximization
becomes impossible because of interactions among agents.

Cite as: Evolving Subjective Utilities: Prisoner’s Dilemma Game Ex-
amples, Koichi Moriyama, Satoshi Kurihara, and Masayuki Numao, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 233-240.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In this case, cooperative behaviors like yielding are neces-
sary, but reinforcement learning as a reward-maximizer fails
to learn such behaviors.

When we consider the most intelligent agents, i.e., hu-
mans, they take cooperative behaviors in such cases. For
example, Fehr and Schmidt [3] tried to explain human be-
haviors by introducing “inequity-aversion” assumption into
their models. This assumption represented a feeling of aver-
sion to the difference from others and prevented the models
from outsmarting others. Rilling et al. [11] reported that,
when humans took cooperative behaviors, reward processing
areas in their brains were positively activated. They inferred
that the cooperative behaviors themselves became a kind of
rewards in their brains.

Based on them, we have proposed the utility-based Q-
learning concept [8]. This concept supposes that the agent
internally has an emotional mechanism that derives subjec-
tive utilities from objective rewards, and it uses the utili-
ties as rewards of Q-learning [16], a representative method
of reinforcement learning. We have also proposed such an
emotional mechanism that facilitates cooperative actions in
Prisoner’s Dilemma (PD) games [8]. PD games [1, 9] are
the most famous two-person two-action game in game the-
ory, in which if the two players try to maximize individual
payoffs without cooperating with each other, they obtain
less payoffs than those they would obtain when cooperating
with each other. The mechanism we have proposed derives
a larger subjective utility than the payoff each agent is given
when the agents take mutual cooperation in PD games. The
agents learning by the utilities take cooperation afterward.

However, this utility deriving function has been designed
and implemented manually in order to force the agents to
take cooperative actions in PD games. Since it seems slightly
unnatural, this work considers whether such an emotional
mechanism exists and where it comes from. We try to evolve
such mechanisms that facilitate cooperative actions in PD
games by conducting simulation experiments with a genetic
algorithm. Notice that the objective of this work is not to
acquire a strategy itself in PD games, but to know whether
such an emotional mechanism evolves.

This paper consists of six sections. Section 2 introduces
PD games, Q-learning, the utility-based Q-learning concept,
and genetic algorithms, which are used in the following sec-
tions. In Section 3, we see the experiment scheme to obtain
the emotional mechanisms for PD games by evolution. In
Section 4, we investigate the emotional mechanisms we ob-
tained from the experiment. After we check several related
works in Section 5, this paper is summarized in Section 6.
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Table 1: Prisoner’s Dilemma game

A \ B C D
C R, R S, T
D T, S P, P

2. BACKGROUNDS
This section introduces PD games, Q-learning, the utility-

based Q-learning concept, and genetic algorithms, which are
used in the following sections. We use the terms“payoff”and
“reward” in the same sense in this paper.

2.1 Prisoner’s Dilemma Games
A Prisoner’s Dilemma (PD) game [1, 9] is a two-person

two-action game and is often shown by a bimatrix, called a
payoff matrix (Table 1). Each player has two actions C (co-
operation) and D (defection). The players A and B choose
actions from rows and columns, respectively. After choosing
actions, each player obtains a payoff in Table 1. For exam-
ple, when A and B choose C and D, respectively, A and
B obtain payoffs S and T , respectively. Hereafter, (X, Y )
stands for the pair of actions of both players such that X
and Y are the actions of A and B, respectively.

PD has the following relations among payoffs:

T > R > P > S and 2R > T + S.

Under these relations, each player obtains a larger payoff
when he/she chooses D regardless of the opponent’s action.
As a result, the action pair becomes (D, D) and each player
obtains a payoff P . However, it is more desirable for both
players to choose the first actions (C, C) and obtain R which
is larger than P . Since rational decisions of both players give
a worse result, this game is called “dilemma”.

2.2 Q-learning
Suppose an agent senses a state st ∈ S and chooses an

action at ∈ A(st) at a discrete time t. S is a set of possi-
ble states in the environment and A(st) is a set of possible
actions in the state st. After choosing an action, the agent
receives a reward rt+1 ∈ R and senses a new state st+1.
Q-learning [16] updates an action value function Q by the
following rule to make it approach the true value under the
optimal policy π∗, which is the expected sum of rewards dis-
counted by γ ∈ [0, 1) under π∗, i.e., Eπ∗

`P∞
k=0 γkrt+1+k

´
.

Qt+1(s, a) =

(
Qt(st, at) + α δt if (s, a) = (st, at),

Qt(s, a) otherwise.

δt ≡ rt+1 + γ max
a′∈A(st+1)

Qt(st+1, a
′)−Qt(st, at).

α ∈ (0, 1] is a parameter called the learning rate and δt is
called TD error that approaches 0 when Q(s, a) approaches
the true value of the action a in the state s under π∗. For all s
and a, Q(s, a) is proved to converge to the true value Q∗(s, a)
under π∗ with probability one when (i) the environment has
the Markov property, (ii) the agent visits all states and takes
all actions infinitely, and (iii) α is decreased properly [16].

If the true value function Q∗ is known, the agent can
choose an optimal action a∗ in a state s from Q∗ by

a∗ = arg max
a′′∈A(s)

Q∗(s, a′′).

Rewards (external stimulus)

An emotional mechanismUtilities (internal stimulus)
$

Figure 1: An emotional mechanism

However, if the agent always chooses such actions during
learning, Q may converge to a local optimum because the
agent may not visit all states. To avoid it, the agent usu-
ally uses a stochastic method like ε-greedy [14] to choose
actions. ε-greedy method chooses either an action having
the maximum Q with probability 1− ε or a random action
with probability ε.

2.3 Utility-based Q-learning
The utility-based Q-learning concept [8] supposes that the

agent internally has an emotional mechanism that derives
subjective utilities from objective rewards (Figure 1), and it
uses the utilities as rewards of Q-learning. Especially, in
one-state Q-learning, we have also proposed such an emo-
tional mechanism, namely a utility deriving function, that
facilitates mutual cooperation in PD games [8]. This utility
deriving function derives a utility u from a reward r,

u ≡


r + r′(≡ R + r′) if the actions are (C, C),
r otherwise,

(1)

such that

r′ ≥ P − (αR + (1− α)S)

α
(2)

and α ∈ (0, 1) is constant.
The utility u derived from Equation 1 makes the action

value of cooperation larger than (or equal to) that of defec-
tion, i.e., Q(C) ≥ Q(D), after a single mutual cooperation.
It comes theoretically from the number of consecutive mu-
tual cooperation that is necessary to make Q(C) ≥ Q(D),
when Q(D) is the limit value after infinite mutual defections.
See the paper [8] for details.

2.4 Genetic Algorithm
A genetic algorithm (GA) [5, 7] is an algorithm that sim-

ulates the evolution of creatures. GA uses many entities
called genomes consisting of multiple genes. Each genome
represents a solution of the target problem. GA finds a
genome that maximizes a fitness function, which indicates
goodness of a genome for the target problem, by iterating
selection, crossover , and mutation. GA can be applied to
many problems of which we can define fitness functions.

Simple GA first defines genomes and a fitness function
from solution candidates and the objective of the problem,
respectively. After that, GA executes the following proce-
dure iteratively. One iteration is called one generation. Fi-
nally, a genome with the maximum fitness shows the best
solution satisfying the objective of the problem.

1. Generate N genomes in a set named “current” ran-
domly and prepare an empty set named “new”.

234



u(r)

r
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Figure 2: Assumption of a utility deriving function

2. Calculate the fitness of each genome in the current set.

3. According to the fitness, select two genomes from the
current set (selection), copy them, and apply the fol-
lowing procedure to the copied genomes to create new
genomes. After that, the new genomes are added to
the new set.

• Exchange several genes between the two genomes
with probability pc (crossover).

• Modify each gene in each genome with probability
pm (mutation).

4. Until the size of the new set becomes N , repeat 3.

5. If the termination condition is not satisfied, clear out
the current set and move all the contents of the new
set to the current set. Back to 2.

3. EVOLVING UTILITIES
Although the utility-based Q-learning with the utility de-

riving function (Equation 1) was shown to bring out mu-
tual cooperation [8], this function has been designed and
implemented manually in order to force the agents to take
cooperative actions in PD games. Since it seems slightly un-
natural, this work considers whether such a utility deriving
function, i.e., an emotional mechanism, exists and where it
comes from. Humans, who may show mutual cooperation,
appeared as the result of evolution. Therefore, we try to
obtain such an emotional mechanism by evolutionary calcu-
lation using GA.

This work especially investigates how utility deriving func-
tions evolve by GA when N agents having these functions
play PD games in a round-robin fashion.

3.1 Genome Definition
In order to apply GA to evolving utility deriving functions,

first we have to define genomes. Suppose u(r) shows a utility
deriving function that derives a utility u when the reward
is r. If the payoffs T > R > P > S in Table 1 become
u(R) > u(T ), u(S) > u(P ), and u(R) > u(P ), it is obvious
that the action C becomes superior to D. Since this function
u(r) can be depicted as like Figure 2, we assume that u(r)
is a cubic function, i.e.,

u ≡ u(r) ≡ ar3 + br2 + cr + d, (3)

and the coefficients a, b, c, d are evolved by real-valued GA.
Note that we do not assume that the cubic function itself

Start

Initialize

Playing PD & Q-learning

Selection, Crossover
& Mutation

N new agents?

G generations?

Finish

Yes

Yes

No

No

Figure 3: Flowchart of a run of the experiment

promotes cooperation. We simply choose it because it may
be the simplest function that can represent the assumption
of Figure 21.

3.2 Experiment Scheme
Let N and G be the number of agents in a generation

and the total number of generations, respectively. Figure 3
shows the overview of a run of the experiment. This is based
on the simple GA shown in Section 2.4.

Initialize: Two empty sets named “current” and “new” are
prepared. N Q-learning agents each of which has its
own u represented by a genome (Equation 3) are con-
structed and put into the current set. Each gene, i.e.,
the coefficients a, b, c, d of Equation 3, is a random real
value in a finite interval. The action value functions Q
of the agents are initialized.

Playing PD & Q-learning: N agents play iterative PD
games in a round-robin fashion. Each play consists
of M games. After each game, each agent executes
utility-based Q-learning with the utility u derived from
Equation 3.

Let rg
ij be the sum of payoffs an agent i obtains in a

play with an agent j at the generation g. After playing
with all other agents, the agent i calculates the (raw)
fitness fg

i =
P

j rg
ij . Notice that the fitness is the sum

of payoffs, not the sum of utilities.

Selection, Crossover & Mutation: Two agents are cho-
sen from the current set by roulette wheel selection
according to the scaled fitness that is calculated from
fg

i with a linear scaling method [5] with the coefficient
ξ. That avoids premature convergence to extraordi-
nary individuals at the beginning and emphasizes the
differences among genomes at the end.

1Naturally, there are other functions that can represent the
assumption. We need to investigate the cases of using other
functions.
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The genomes of the selected agents are copied. The
copied genomes are crossed, with probability pc, by
the uniform crossover that swaps genes of the genomes
with probability 0.5. Then, each of the two genomes
is mutated by adding a real value from a Gaussian
distribution N(µ, σ) to each gene with probability pm.

After that, two agents having the two new genomes
are constructed and added to the new set. The action
value functions Q of the new agents are initialized.

N new agents? Until the size of the new set becomes N ,
“Selection, Crossover & Mutation” is repeated.

G generations? Until evolving G generations, the current
set is cleared out and all agents in the new set are
moved to the current set. The whole process except
“initialize” is repeated.

We use the following parameters in the experiment: the
number of agents N = 100, the number of generations G =
10000, the number of games in a play M = 1000, the coef-
ficient of the linear scaling method ξ = 1.2, the probability
of crossover pc = 0.9, and that of mutation pm = 0.01. The
interval for each gene is [−10, 10] and the Gaussian distri-
bution for mutation is N(0, 1). We do not employ the elite
strategy that copies the best genome into the next genera-
tion automatically.

The payoffs of PD game are identical with those used in
the Axelrod’s tournament [1], i.e., (T, R, P, S) = (5, 3, 1, 0).

The number of state of Q-learning is set to one. This
means each agent does not remember the action sequences
at all and thus each game becomes identical with a one-
shot PD game for the agents. The parameters of Q-learning
are identical with those in the previous paper [8], i.e., the
learning rate α = 0.25, the discount factor γ = 0.5, ε in
ε-greedy method is 0.05, and the initial values of the action
value function Q are all zero. Since M × (ε/2)2 = 0.625,
both agents take an action that has less Q simultaneously
around 0.625 times in a play.

GAlib2 2.4.7 is used as the implementation of real-valued
GA.

4. RESULTS
The experiment described in Section 3.2 was conducted

100 runs. In this section, we investigate the results of the
experiment.

4.1 Did mutual cooperation occur?
At the end of each run, the average payoff each agent

obtained per game became more than 2.7 in 83 out of 100
runs. This means that mutual cooperation occurred because
(T + S)/2 = 2.5. However, in the remaining 17 runs each
agent obtained around 1.4 in the mean, which showed mu-
tual defection was continuing.

Figure 4 shows the mean payoffs per game at each gener-
ation in a certain run. The function u of the best agent that
obtained the highest payoff at the end of this run became

u(r) = −1.18073r3 + 7.81789r2 − 4.44985r − 10

and the agent obtained 2.95169 per game. There were eight
agents that had same u, and they obtained more than 2.9 in

2http://lancet.mit.edu/ga/
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(b) Closeup at the phase transition (plotting ev-
ery generation)

Figure 4: Mean payoffs per game (line with the left
scale) and the number of genomes making u(R) >
u(T ) (bars with the right scale) in a certain run

the mean. This u is shown by a solid line in Figure 5. It goes
against the assumption of Figure 2 because u(R) ≡ u(3) =
15.13175 is slightly less than u(T ) ≡ u(5) = 15.60675. It is
also obvious that u(S) ≡ u(0) < u(1) ≡ u(P ). Thus, this u
also gives the agent a PD game.

We can see in Figure 4(b) a kind of phase transition where
the average payoffs rose suddenly in a short time of a few
dozen games. Although it depended on runs when the phase
transition occurred, the phase transition period was a few
dozen games in most runs. This is discussed in Section 4.3.

It is clear that the first coefficient a in Equation 3 should
be negative so as to realize the assumption of Figure 2. Al-
though the coefficients of most genomes at the end of the
83 successful runs were negative, those of 16 out of 17 failed
runs were positive. In the remaining one run, the mean pay-
offs per game around the end were fluctuating. It might be
the beginning of the phase transition.

4.2 What property did u have?
In addition to u of the best agent at the end of a certain

run, Figure 5 also shows u of the best agent at the 1700th
generation of this run, which was just after the phase tran-
sition, by a dotted line. We can see that, at the 1700th
generation, u(R) was obviously larger than u(T ) as the as-
sumption of Figure 2, but at the end of the run, as we saw
before, u(R) became less than u(T ).
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Figure 5: Utility deriving functions of agents ob-
taining the highest per-game payoff at the 1700th
generation and at the 10000th generation in the run
of Figure 4, respectively

Hence, let us investigate the relation between u(R) and
u(T ) in all generations. Figure 4 also shows the number of
genomes that made u(R) > u(T ) by bars. Let us call such
genomes “R-preferring”. We can see that, most genomes
were R-preferring until around the 8000th generation, but
the number fluctuated after that. We have not found the
reason why that fluctuation happens. We can only say about
the run that, if the best genome was R-preferring at the start
of decreasing, it was replaced by a non-R-preferring genome
soon. On the other hand, interestingly, when the number
was increasing, the best non-R-preferring genome continued
to stay for a while and R-preferring genomes were prevailing
in the middle level.

We investigated all 83 runs showing the phase transition
and found the following two cases:

1. Most of all genomes were R-preferring at least once,
like the example shown before (Figure 4), and

2. Only a small number of genomes were R-preferring,
like an example shown in Figure 6.

In order to eliminate the effect of random initial values, we
ignore first 20 generations and analyze the remaining 9980
generations of the result of each run. It was 35 out of 83
runs that all genomes were R-preferring at least once and it
was 19 out of 83 runs that R-preferring genomes were in the
minority in all generations. It was only five out of 83 runs
that the best genome were R-preferring at the end of the
runs. Hence, in at least 30 runs, the best genome changed
from an R-preferring one to a non-R-preferring one.

4.3 What happened at the phase transition?
In Section 4.2, we investigated the number of R-preferring

genomes in all generations. In this section, let us focus on
the phase transition period and investigate the number of
R-preferring genomes and generations in this period.

First the period is to be defined. Based on the results like
Figures 4 and 6, we define the start and the end of the period
as the generations when the average payoff first exceeded 1.6
and 2.7, respectively.

Under this definition, Figure 7 shows the length of the
period. Y -axis shows the number of generations in log scale
and x-axis shows each run sorted by the number of genera-
tions. From this figure, we can see that, in most runs, the
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(a) Overall view (plotting every 100 generations)
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Figure 6: A certain run in which only a small num-
ber of genomes made u(R) > u(T )

phase transition period was less than 100 generations, and
the length seems to follow an exponential function.

Figure 8 shows the average numbers of R-preferring ge-
nomes during the period. In each run, the total number of
R-preferring genomes during the period was divided by the
number of generations of the period. X-axis shows each run
sorted by the average number of genomes. We can see that
this graph consists of two linear lines bending around the
37th, where the number of R-preferring genomes is around
10. Eighteen out of the aforementioned 19 runs of the “mi-
nority case”, in which R-preferring genomes were in the mi-
nority in all generations, were left side of the bending point.
On the other hand, 31 out of the 35 runs of the “majority
case”, in which all genomes were R-preferring at least once,
were right side of the point. Therefore, the left side and
the right side may correspond to the minority case and the
majority case, respectively. It suggests that about a half of
the phase transition is similar to the minority case. This
is interesting because it disagrees with the assumption of
Figure 2.

Figure 9 shows the relation between the number of R-
preferring genomes in the phase transition period and the
duration of the period. We can see the variance became
smaller as the number of genomes increased.

More analyses are necessary to know the reason why mu-
tual cooperation occurred even when R-preferring genomes
were in the minority. Perhaps, since the condition u(R) >
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Figure 8: Average number of genomes that made
u(R) > u(T ) in the phase transition period. x: each
run (sorted by the average number), y: average num-
ber of genomes

u(T ) is not a necessary one but a sufficient one, genomes in
such runs may have evolved so as to satisfy only (unknown)
necessary conditions.

4.4 Relation between u and Formula 2
Formula 2 appeared in Section 2.3 is a kind of neces-

sary condition to facilitate mutual cooperation in PD games.
Hence, based on the discussion in Section 4.3, here we in-
vestigate the relation between the result of this work and
Formula 2.

Assigning the learning rate α = 0.25 of the experiment to
Formula 2 gives the following formula:

r′ ≥ 4P −R− 3S.

From this formula, if 4P − R − 3S > 0, i.e., R < 4P − 3S,
r′ should be larger than 0. This means that, in order to
maintain mutual cooperation in one-state Q-learning, it is
necessary to make the payoff larger. On the other hand, if
R ≥ 4P −3S, the mutual cooperation can be maintained by
the original payoff. Hence, we check whether the utilities u
calculated by Equation 3 satisfied

u(R) ≥ 4u(P )− 3u(S) (4)

so as to know whether the mutual cooperation could be
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Figure 9: Relation between the number of genomes
making u(R) > u(T ) in the phase transition period
and the duration of the period. x: average number
of genomes (log scale), y: number of generations (log
scale)

maintained only by the evolved utilities.
The result shows that most of all genomes in most of all

runs satisfied Formula 4 regardless of the phase transition.
It is because, as u(T ) became much larger before the phase
transition, u(R) also became much larger than u(P ) and
u(S)3. It may be a reason why mutual cooperation occurred
even when R-preferring genomes were in the minority.

5. RELATED WORKS
There are several existing works in which agents learn

strategies in PD games. Sandholm and Crites [12] conducted
various experiments in which Q-learning agents played PD
games and investigated whether or not mutual cooperation
occurred. They reported that mutual cooperation did not
occur when both agents did not take their past actions into
account and that the parameters determining exploration
rates had a major impact on the result when both agents
used the past actions. Stimpson et al. [13] investigated what
patterns the satisficing strategy produced in PD games. This
strategy consisted of a parameter named aspiration, a sim-
ple behavior rule, and a simple update rule for aspiration.
Under the behavior rule, the agent (i) continued to take the
current action if it gave a larger payoff than aspiration, or
(ii) took the other action otherwise. This work is interesting
because it tried to derive a satisfactory result instead of an
optimal result.

There are a lot of works that tried to obtain strategies of
PD games by evolutionary algorithms. Here we see only a
few of them. Axelrod [1] held two computer competitions
of PD games, in which all of the attending programs played
iterative PD games in a round-robin fashion. In both compe-
titions, a strategy named Tit for Tat (TFT) became the best
one according to the mean payoffs. After the competitions,
he investigated what strategies of PD games evolved by GA
[2]. First he specified that each locus of a gene indicated the
sequence of past three actions and each gene indicated the
next action. After that, he calculated some representative

3This may depend largely on the fact that u was a con-
tinuous function in which u(T ) and u(R) were (somewhat)
dependent. We also have to investigate the cases where u is a
discrete function, in which they are completely independent.
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strategies statistically from all of the attending programs
of the second competition. He reported that, by playing
PD games with these representative strategies, GA evolved
strategies like TFT. Also, he reported that if all genomes in
the genome set played PD games in a round-robin fashion,
mutual cooperation occurred after growth and decay of de-
fection. Fogel [4] also reported that cooperation occurred in
PD games if genomes were defined as finite state automata.
Vega-Redondo [15] introduced multiple sets of genomes. In
each set, genomes played PD games with each other and
evolved according to payoffs, and, simultaneously, each set
was also under selection pressure according to the sum of
payoffs of member genomes. Under this setting, he showed
mutual cooperation was evolved even in one-shot PD games.
Obviously, the selection of the sets themselves facilitated the
cooperation.

Several works used both learning and evolution. Hingston
and Kendall [6] introduced a kind of “switch” gene into the
traditional genome which represented (fixed) next actions
depending on the past action sequences. The switch gene
determined whether the agent learned the opponent’s ac-
tion model and changed its actions according to the model.
They investigated how the genomes evolved by mutations
and what strategy was spread. The result showed that the
learning genomes did not increase so much. Quek et al. [10]
proposed memetic learning and tried to obtain strategies of
PD games. Memetic learning combined learning and evolu-
tion as an optimizer in an individual and a communicator
between individuals, respectively. They reported that by
combining learning and evolution, both compensated each
other and, as a result, memetic learning could derive good
strategies.

All of those works investigated strategies themselves for
PD games. However, the work of this paper is not to de-
rive strategies themselves for PD games, but to investigate
whether an emotional mechanism that derives subjective
utilities can evolve according to objective payoffs. This is
a major difference between this work and those works.

6. CONCLUSION
The utility-based Q-learning concept supposes an agent

internally has an emotional mechanism deriving subjective
utilities from objective payoffs and it uses the utilities as
rewards of Q-learning. In this work, we tried to obtain such
an emotional mechanism by evolutionary computation using
genetic algorithm (GA). Especially, we tried to evolve such
mechanisms that facilitated cooperative actions in a game
named Prisoner’s Dilemma (PD).

First we assumed that the mechanism could be repre-
sented by a cubic function and used real-valued GA to evolve
its coefficients. We succeeded in obtaining mutual coopera-
tion in 83 out of 100 runs. Although, in at least one genera-
tion, all genomes in 35 out of 83 runs were R-preferring, i.e.,
u(R) > u(T ), there were only five runs in which the best ge-
nome was R-preferring at the end. Even more surprisingly,
R-preferring genomes were in the minority in all generations
of 19 runs.

It was also shown that mutual cooperation followed a
phase transition. In most runs, the phase transition pe-
riod was less than 100 generations. The average numbers
of R-preferring genomes at the phase transition suggested
that about a half of the phase transition might occur even
when R-preferring genomes were in the minority. We also

investigated the relation between the evolved u and For-
mula 2, which was originated in the previous paper [8], so as
to know whether the evolved u could maintain the mutual
cooperation by themselves. The result showed that most of
all genomes in most of all runs satisfied the formula regard-
less of the phase transition. It may be a reason why mutual
cooperation occurred even in the minority case.

Until now, this work is in a preliminary phase of showing
results in a certain setting. We have to discuss the reason
why such the results emerge and also have to investigate
the effect of settings on the results. Especially, we have to
clarify the property of the phase transition rigorously. Also,
we should analyze the dynamics of the evolution process to
elucidate the results of this paper.
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ABSTRACT
The Service Game is a model for reciprocity in multiagent
systems. Here, agents interact repeatedly by requesting and
providing services. In contrast to existing models where
players are matched randomly, players of the Service Game
may choose with whom they play. The rationale behind
provider selection is to choose a provider that is likely to
perform a task as desired. We develop a formal model for
provider selection in the Service Game. An evolutionary
process based on a genetic algorithm allows us to incorpo-
rate notions of bounded rationality, learning, and adaptation
into the analysis of the game. We conduct a series of experi-
ments to study the evolution of strategies and the emergence
of cooperation. We show that cooperation is more expensive
with provider selection than with random matching. Fur-
ther, populations consisting of discriminators and defectors
form a bistable community.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Experimentation

Keywords
Agent cooperation, Formal model, Social simulation, Evolu-
tion

1. INTRODUCTION
In settings without payments between individuals, the

social mechanism of reciprocity is the basis for coopera-
tion [16]. Examples for such settings are peer-to-peer sys-
tems and social search. With direct reciprocity, an individ-
ual A rewards helpful acts or punishes uncooperative acts of
another individual B. Think of tit-for-tat, where A recipro-
cates B’s previous action. With indirect reciprocity in turn,
an action is rewarded or punished by a third individual C,
not involved in the original interaction. Such strategies typ-
ically rely on reputation and status [2]. While cooperation

Cite as: Cooperation through Reciprocity in Multiagent Systems: An
Evolutionary Analysis, Christian Hütter and Klemens Böhm, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 241-248.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

through direct reciprocity can only emerge in repeated in-
teractions between two individuals, it can emerge through
indirect reciprocity in one-shot interactions as well.

Reciprocity has been a prominent research topic, both in
theoretical [3, 16] and in experimental work [8, 10, 12]. In
existing models for reciprocity, players are either matched
randomly (for indirect reciprocity), or the same pairs of in-
dividuals interact repeatedly (for direct reciprocity). In re-
alistic settings, however, individuals can choose whom to
interact with. In the following, we will call this choice pro-
vider selection. Given the choice of interaction, both direct
and indirect reciprocity can emerge. If individual A has done
individual B a favor, A can redeem this favor either directly
by interacting with B again or indirectly by interacting with
another individual C. Thus, comprehensive models should
cover both forms of reciprocity.

In this paper, we study the following research question:
How efficient is reciprocity under provider selection? An-
swering this question is difficult for several reasons. First, we
expect provider selection to change the game substantially,
compared to random matching. This is because cooperative
providers, which are typically preferred by requesters, are
likely to have high workloads. Second, provider selection
has not yet been analyzed in existing studies of reciprocity.
As we will explain, a formal model required for the analysis
cannot be derived directly from existing models where play-
ers are matched randomly. Third, an analytical solution of
evolutionary games is hard if discriminating strategies are
present [2]. Discriminating strategies differentiate between
players according to certain attributes (e.g., their coopera-
tiveness), as opposed to strategies that treat all players as
equal. Simulations have shown that discriminating strate-
gies can lead to cooperative populations [12].

We meet these challenges by proposing the Service Game,
a formal model for reciprocity under provider selection. Here,
players interact repeatedly in the roles of requester and pro-
vider. The requester sends a request to the provider, who
decides on processing the request. Players have a benefit
if other players process their requests, whereas processing
requests for others incurs cost. In contrast to existing mod-
els, ours allows for both direct and indirect reciprocity by
letting players choose with whom they play. Note that, in
our model, all nodes are fully connected. Hence, network
formation is not an issue here.

Traditional game theory assumes that all players are fully
rational and homogeneous. While these assumptions are
crucial for the mathematical tractability of the models, more
recent work has dropped them [14]. In evolutionary game
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theory, the role of perfect rationality is taken over by a learn-
ing process in a heterogeneous society of agents. An evolu-
tionary process modeled by a genetic algorithm updates the
behavior of the agents. Genetic algorithms have frequently
been used in experimental work on cooperation to describe
social learning [1, 10,14].

We have designed and carried out a series of experiments
to study the evolution of strategies and the emergence of
cooperation under provider selection. It shows that coop-
eration is more expensive with provider selection than with
random matching. We deem this a fundamental observation
because it means that direct and indirect reciprocity should
not be analyzed separately. Further, populations consisting
of discriminators and defectors form a bistable community.
That is, provider selection preserves the evolutionary stable
states predicted by theory [3].

2. RELATED WORK
In this section we discuss related work. After examining

existing models for reciprocity, we review studies of the evo-
lution of cooperation. Finally, we delimit our work from
existing studies of provider selection.

While direct reciprocity has been a popular research topic,
more recent work on reciprocity has focused on indirect reci-
procity. One popular model to analyze cooperation through
indirect reciprocity is the helping game [12]. There, pairs of
a donor and a recipient are formed randomly. The recipient
asks the donor he is matched with for costly ‘help’. Nowak
and Sigmund have shown that cooperation can evolve if in-
formation about the past behavior of the players is available.
Each player is assigned a public image score which increases
through cooperation and decreases through defection. Strat-
egies based on image scoring have proven to be evolutionary
stable. A strategy population is called evolutionary stable if
the evolutionary process rejects the invasion of the popula-
tion by mutant strategies [9].

Gal and Pfeffer [5] showed that reciprocity has signifi-
cant implications for the behavior of agents. When they
interact with humans over time, agents need to learn social
factors that affect people’s play. Brandt et al. [3] analyzed
direct and indirect reciprocity theoretically using replicator
dynamics. While replicator dynamics are common to study
the evolutionary dynamics in games, they lack the notions
of learning and adaption [14]. Researchers often resort to
numerical simulations using genetic algorithms [8, 10, 12],
which explicitly model the individual agents. We will make
use of this methodology as well by carrying out an evolution-
ary analysis of cooperation in multiagent systems. Research
has proposed various approaches on cooperation among de-
ceptive agents that misreport the behavior of other agents.
Sen [15] has proposed a probabilistic strategy based on reci-
procity which is able to resist this kind of deception. While
we do not consider deceptive agents, the approach by Sen
might be applied to provider selection as well.

There also are models for the evolution of cooperation
not based on reciprocity. One such model uses so-called
‘tags’ [6] to help agents in identifying the groups they be-
long to. It has been shown that provider selection based on
tags produces stable cooperation. While tags correspond to
the origin of the agents, provider selection in our setting is
based on behavior. Fullam et al. [4] proposed a testbed for
trust and reputation mechanisms. Agents may choose other
agents from which they seek help, and the agents asked for

help decide whether to cooperate or not. Whereas Fullam
et al. compare a fixed set of strategies, we investigate the
evolution of strategies through a genetic algorithm. Provi-
der selection has also been studied in the area of peer-to-peer
systems [13]. However, existing studies we are aware of focus
on performance figures such as the ratio of successful inter-
actions. In the following, we develop a full-fledged economic
model for reciprocity in multiagent systems.

3. THE SERVICE GAME
The Service Game is a repeated game where players may

send requests to other players and decide whose requests
they process. That is, each player actually plays multiple
games in one round—one as requester and zero or more as
provider, depending on the number of requests he receives.
The fee for sending a request to another player is f , with
f > 0. The cost of processing the request of another player
is c, with c > 0. The benefit of a player if another player
processes his request is b, with b > 0. Fee, cost and benefit
are the same for all players. As usual in helping games, we
assume that b > c > f > 0 holds. The Service Game models
a homogeneous system in which all players send and process
requests at the same rate. To simplify matters, we assume
that there is only one kind of service which every player can
provide. Providers may neither pass on requests to other
players, nor postpone the decision on processing a request.
All players make their cooperation decisions simultaneously.

We implement the Service Game as a multiagent system,
i.e., agents act as players. Each agent pursues two so called
‘policies’ which define the actions it performs. A placing
policy specifies the set of players which the agent sends re-
quests to. An accepting policy specifies the set of players
whose requests the agent is willing to process. As described
in Algorithm 1, every round t of the game consists of two
steps: provider selection and service decisions. First, each
agent i evaluates its placing policy pi to select a provider j.
If the placing policy is empty, the agent does not send a
request. If it contains several players, a provider is selected
at random from this set. Second, each agent j decides on
processing incoming requests by evaluating its accepting pol-
icy aj . If the accepting policy contains requester i, the agent
processes the task, otherwise it rejects the request.

Algorithm 1 The Service Game

for all rounds t do
for all players i ∈ I do {provider selection}

provider j ← evaluate(pi)
queue Qj ← Qj ∪ {i}

for all players j ∈ I do {service decisions}
for all requesters i ∈ Qj do

if i ∈ evaluate(aj) then
process the task

else
reject the request

3.1 Formal Model
The Service Game is characterized by the set of players

I = {1, . . . , n}, the policy sets A and P , and the payoff or
net return nt

k of player k ∈ I in round t of the game. A
placing policy pk ⊆ I \ {k} specifies the set of players which
player k sends a request to. E.g., the placing policy pk =
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{l ∈ I \ {k} | rl ≥ 0.8} means that player k sends requests
only to players with a cooperativeness of 80% or more. An
accepting policy ak ⊆ I\{k} specifies the set of players whose
requests player k is willing to process. E.g., the accepting
policy ak = {l ∈ I \ {k} | rl ≥ 0.5} means that player k
processes requests only for players with a cooperativeness
of 50% or more. We denote the set of placing policies as
P = {p1, . . . , pn} and the set of accepting policies as A =
{a1, . . . , an}. We say that player k meets placing policy p
resp. accepting policy a if k ∈ p resp. k ∈ a holds.

We introduce a discount rate δ ≤ 1 to avoid infinite pay-
offs. On the one hand, it takes into account the probability
that another round occurs after the current round. On the
other hand, it represents the economic fact that the current
value of a future income is less than its nominal value. The
present value N t

k of the payoffs in round t is the discounted
sum of all previous rounds.

N t
k = δ ·N t−1

k + nt
k (1)

3.2 Cooperativeness of the Players

Number of requests received
We first count how many requests player k is expected to
receive in round t. Let |pt

l | be the number of players who
meet the placing policy pt

l of some player l in round t. The
reciprocal value 1/|pt

l | then is the probability that a random
player who meets the placing policy pt

l receives a request
from player l. We denote this probability as the expected
number of requests expt

l such a player receives from player l
in round t.

expt
l =


1

|pt
l |

if |pt
l | > 0,

0 otherwise.
(2)

We now sum up expt
l over all players l from which player k

might receive requests because he meets their placing poli-
cies pt

l . This is the expected number of requests rectk player k
receives in round t.

rectk =
∑

l∈{I\{k}| k∈pt
l
}
expt

l (3)

Number of requests processed
Next, we count how many requests player k is expected to
process in round t. He accepts requests from player l if and
only if this player meets his accepting policy at

k. We refer
to the respective indicator function as acctk,l.

acctk,l =

{
1 if l ∈ at

k,

0 otherwise.
(4)

If we multiply acctk,l by expt
l , we get the expected number of

requests which player k processes for player l. We now sum
up this product over all players l from which player k receives
requests because he meets their placing policies pt

l . This is
the expected number of requests proctk player k processes.

proctk =
∑

l∈{I\{k}| k∈pt
l
}
acctk,l · expt

l (5)

Cooperativeness
We define the cooperativeness of a player as the share of
incoming requests he processes. E.g., a player with coop-
erativeness r = 0.5 processes half of the requests. The co-
operativeness rt

k of player k in round t is the quotient of

the number of requests processed proctk and the number of
requests received rectk.

rt
k =


proctk
rectk

if rectk > 0,

0 otherwise.

(6)

The mean cooperativeness Rt
k of player k in round t is the

average over all previous rounds. Since players may change
their behavior during the game, recent interactions are more
important than old ones. We use an exponential moving
average with smoothing factor α ≤ 1 to assign more weight
to recent interactions.

Rt
k = α · rt

k + (1− α) ·Rt−1
k (7)

3.3 Payoff of the Players

Benefit of a successful request
To compute the benefit btk of player k, we first determine
whether this player sends out a request in round t. Player k
sends requests to all players l which meet his placing pol-
icy pt

k. We refer to the respective indicator function as senttk.

senttk =

{
1 if |pt

k| > 0,

0 otherwise.
(8)

Next, we determine whether this request is successful or not.
Player l accepts requests from player k (acctl,k = 1) if and

only if player k meets his accepting policy at
l . If we multiply

acctl,k by expt
k, we get the expected number of requests which

player l processes for player k. We now sum up this product
over all players l to which player k sends requests because
they meet his placing policy pt

k.

succtk =
∑

l∈pt
k

acctl,k · expt
k (9)

Note that the expected number of successful requests succtk
is at most 1. The benefit btk of player k is the product of b
and the number of successful requests sent out in round t.

btk = b · succtk (10)

Cost of processing requests
The cost ctk depends on the number of requests player k pro-
cesses in round t. While player k receives requests from all
players l whose placing policies pt

l he meets, he only pro-
cesses requests from players who meet his accepting pol-
icy at

k. This is exactly the definition of proctk in Equa-
tion (5). In addition, player k has to pay fee f if he sends out
a request in round t. We use the indicator function senttk
from Equation (8).

ctk = c · proctk + f · senttk (11)

Payoff
The payoff nt

k of each player k in round t is the difference
between the benefit btk of a successful request and the cost ctk
of sending and processing requests.

nt
k = b · succtk − c · proctk − f · senttk (12)

In every round t of the game, each player k would ideally
choose the combination of placing policy pt

k and accepting

243



policy at
k which maximizes his payoff. We denote the opti-

mal payoff of player k in round t as n̂t
k:

n̂t
k = maximize

pt
k⊆I\{k}, at

k⊆I\{k}
nt

k (13)

It is hard to determine the optimal payoff analytically if
discriminating strategies are present [2]. Often, pairs of
discriminating strategies perform equally well against each
other, so that their frequencies drift randomly. However, the
success of other strategies depends on the frequencies of the
discriminating strategies. To remove this restriction, we will
resort to numerical simulations.

4. EVOLUTIONARY ANALYSIS
In evolutionary games, players are not assumed to be ra-

tional or able to think ahead. Strategies are simple behav-
ioral programs which specify the actions of each player. In
this section, we will first explain the strategies used in our
analysis and then describe the evolutionary process in detail.

4.1 Strategies
In a previous experiment of ours [7], subjects have for-

mulated plaintext policies which we then used to program
agents playing the Service Game. A cutoff strategy based
on the cooperativeness of the players was the most success-
ful strategy for provider selection. Hence, in this paper, we
will analyze the evolutionary stability of the cutoff strategy
for provider selection. In each round t of the game, player i
sends a request to player j if the mean cooperativeness Rt−1

j

of player j exceeds a threshold value ρi:

pt
i,j =

{
1 if Rt−1

j ≥ ρi,

0 otherwise.
(14)

We will eventually compare the results of our study with
previous studies on reciprocity [2]. In these studies, the three
basic strategies ‘always cooperate’, ‘always defect’, and ‘tit-
for-tat’ have prevailed. Thus, in this paper, we use these
strategies as well for service decisions. Needless to say, there
are many other strategies conceivable for both provider se-
lection and service decisions. Nevertheless, the strategies we
use capture the most important aspects of cooperation [3].

We implement the strategies for service decisions as sto-
chastic reactive strategies [11]. They are described by two
parameters (p, q), which are the probabilities to cooperate
after a cooperation resp. a defection by the co-player in the
previous round. Always cooperate is given by (1, 1), always
defect by (0, 0), and tit-for-tat by (1, 0). In each round t, the
probability that player i accepts a request from player j is
the expected value of the stochastic reactive strategy. Recall
that at−1

j,i denotes the service decision of player j regarding
player i in round t− 1.

at
i,j = p · at−1

j,i + q · (1− at−1
j,i ) (15)

A strategy can be represented as a ‘chromosome’ describ-
ing the action of a player in each different context of the
game. We encode the strategy of each player i by a binary
string of 24 bits. The first 8 bits represent the threshold
value ρi of the cutoff strategy for provider selection. The
second and third 8 bits represent the probabilities pi and qi

of the stochastic reactive strategy for service decisions. We
use a Gray coding of the binary strings to avoid the repre-
sentational bias in binary encoding.

4.2 Evolutionary Process
We update the strategies through an evolutionary process

modeled by a genetic algorithm (GA). GAs mimic a popula-
tion of strategies acting in a well-defined environment which
evaluates the performance of each strategy. New popula-
tions are formed by selecting the better performing strat-
egies and modifying them through genetic operators. The
GA then subjects the resulting offspring to competition with
other strategies in the population. Successful strategies are
allowed to reproduce, while unsuccessful strategies become
extinct. GAs have frequently been used in economics to
characterize a form of social learning [1, 10, 14]. Selection
can be interpreted as learning by imitation, recombination
as learning by communication, and mutation as learning by
experiment. The combination of these three operators re-
sults in a very powerful optimization algorithm.

Algorithm 2 The genetic algorithm

Create initial population m0

Evaluate m0

for round t = 1 to tmax do
Rank mt−1

Select from mt−1 into mt

Recombine mt

Mutate mt

Evaluate mt

The GA used in this paper is shown in Algorithm 2. First,
an initial strategy population m0 is created randomly. Each
strategy is then tested against the environment (composed
of the other strategies) and receives a performance score
(the payoff). Given the performance scores, a fitness value
is assigned to each strategy. We use a rank-based fitness
function with a selective pressure of 2 and linear ranking,
giving the most fit strategy a fitness value of 2 and the least
fit strategy a fitness value of 0. Strategies from the par-
ent population mt−1 are selected for reproduction using a
stochastic universal sampling routine. The strategies mt se-
lected for reproduction are recombined using a single-point
crossover function with probability .7. Having produced the
offspring, mutation may now be applied with probability
.7/Lind, where Lind = 24 is the length of a chromosome.
Finally, the offspring mt is evaluated and the new perfor-
mance scores are calculated. The GA terminates when the
maximum number of rounds tmax is reached. We verify that
the population has converged by analyzing its variance.

5. EXPERIMENTS
To analyze the evolution of strategies and the emergence

of cooperation under provider selection, we formulate the
following research questions:

1. How does provider selection change policy-based help-
ing scenarios?

2. Which states of the game are evolutionary stable, and
how efficient are the resulting equilibria?

3. How do the parameters of the game influence stability
and efficiency?

Regarding the first question, we expect provider selection
to change the game substantially. This is because cooper-
ative providers are likely to receive many requests, making
cooperation expensive. With the second question we inves-
tigate whether the equilibria identified in previous studies
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Table 1: Parameter values used in the experiments
Experiments Parameters

f c b δ α

E1
Random matching 0 2 20 .9 .5
Provider selection 0 2 20 .9 .5

E2
No fee 0 2 20 .9 .5
Low cost 1 2 20 .9 .5
High cost 5 10 20 .9 .5

E3
Low discount 1 2 20 .1 .5
Medium discount 1 2 20 .5 .5
High discount 1 2 20 .9 .5

E4
Low smoothing 1 2 20 .5 .1
Medium smoothing 1 2 20 .5 .5
High smoothing 1 2 20 .5 .9

still hold for the Service Game. We expect the equilibria
to be less efficient because, according to a previous study of
ours [7], players are less cooperative in a game with provider
selection than in a game with random matching. The third
question addresses the parameters of the Service Game (f ,
c, b, δ, α). According to previous studies on reciprocity [2],
we expect the cost-to-benefit ratio c/b to have a significant
influence on the efficiency of the game. While a high dis-
count factor δ causes a low rate of inflation, a low smoothing
factor α indicates a long memory of interactions. We expect
both to increase the efficiency.

5.1 Experimental Design
To answer the research questions, we have designed and

conducted a series of experiments. In these experiments,
we explore all parameters of the game separately (i.e., we
vary one parameter at a time). In Experiment E1, we com-
pare random matching with provider selection, to address
the first research question. We tackle the second question
by analyzing the equilibria of the game and their efficiency.
Regarding the third question, we compare different ratios
of fee/cost and cost/benefit in Experiment E2, different dis-
count rates in Experiment E3, and different smoothing fac-
tors in Experiment E4. Table 1 serves as a summary. Fi-
nally, we identify lessons learned from our experiments that
are of general interest.

Each simulation consists of a population of 100 agents,
which played the Service Game for 100 rounds. In each
round of the game, each player plays against every other
player specified by his placing policy. The payoff then is
the expected value of the play, i.e., the average over the
individual games. Payoffs were calculated using the equa-
tions in Section 3.3. Under each of the conditions, 100 rep-
etitions were conducted to allow for stochastic variations.
The choices of simulation parameters (e.g., population size)
and algorithmic components (e.g., selection function of the
GA) were guided by considerations of robustness and com-
putational constraints. Note that genetic algorithms are ex-
tremely robust to actual parametric and algorithmic choices.
All the results reported in the next section have been con-
firmed using a variety of different simulation parameters and
algorithmic components.

5.2 Methodology
The frequencies of the three strategies for service deci-

sions (cooperate, defect, and tit-for-tat) are given by x, y,

and z with x + y + z = 1. Thus, the three strategies form
a strategy simplex which describes the composition of the
population. The strategy simplex can be imagined as a 2D
triangle in the 3D coordinate system (x, y, z). The three
vertices x = 1, y = 1, and z = 1 of the strategy simplex de-
scribe ‘pure’ populations consisting solely of the strategies
cooperate, defect, and tit-for-tat, respectively. The edges
x = 0, y = 0, and z = 0 describe ‘dual’ populations consist-
ing of the two strategies specified by its vertices. Finally, the
points (x, y, z) within the simplex describe ‘mixed’ strategy
populations.

By definition, the number of points in the strategy sim-
plex is infinite. Thus, we have to create a random sample of
the strategy simplex. In theory, it is possible that the ran-
dom sample misses important aspects of the game. In the
following experiments, we have chosen a large sample size
of 500 points to minimize the possibility of error. To avoid
clutter in the figure, we will depict only 100 points. We run
the GA for each point of the sample and analyze how the
population evolves. The strategies are updated through the
evolutionary process described in Section 4. In the follow-
ing analyses, we will average over the resulting strategies in
each population. The key figures to quantify the efficiency
are the mean cooperativeness R and the total payoff N of
the players. Both figures are strongly correlated because
requesters can only make profit if the providers cooperate.
We focus on the cooperativeness because it is, by definition,
normalized to the interval [0, 1] and thus allows for a direct
comparison.

6. RESULTS
In this section, we first examine a system with random

matching to replicate the effects of existing studies [2] on
reciprocity. It serves as baseline for the following analysis of
provider selection. Our experiments indicate that there are
significant differences between random matching and provi-
der selection.

6.1 Random Matching
In experiment E1, we have analyzed how the matching of

the players affects the evolution of the strategies and the
efficiency of the game. Figure 1a shows the resulting sim-
plex for random matching. To visualize the results, we have
projected the strategy simplex onto a 2D coordinate system.
The three vertices x = 1, y = 1, and z = 1 were mapped to
the coordinates (1, 0), (0, 0), and (1/2,

√
3/2), respectively.

Recall that each point of the simplex represents one popula-
tion of strategies. The coordinates specify the frequencies of
the strategies, i.e., the initial composition of the population.
To visualize the efficiency of each population, we depict the
average cooperativeness as the color of the corresponding
point. Light colors (white to yellow) represent cooperative
populations, dark colors (red to black) uncooperative ones.

During the evolutionary process, the composition of the
population changes because successful strategies prevail. The
arrows in each point visualize the direction which the popu-
lation shifts to. E.g., the points in the center of the simplex
shift to the edge y = 0. A strategy population is in an evolu-
tionary stable state if its composition does not change during
the evolutionary process [9]. A fixed point keeps its position,
i.e., the population is evolutionary stable. A closer look at
the data reveals that the vertex y = 1 consisting solely of de-
fectors is evolutionary stable. Furthermore, all points on the
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(a) Random matching (b) Provider selection

Figure 1: Strategy simplices for random matching and for provider selection.

edge y = 0 are evolutionary stable. I.e., any mixture of co-
operators and discriminators are in equilibrium. All points
on the edge z = 0 are unstable. There is a line of unstable
points connecting a fixed point Fyz on the edge x = 0 with
another fixed point Fxz on the edge y = 0. We call this line
the boundary line. While the states between the defectors
vertex and the boundary line are inefficient (cooperativeness
R ≈ 0), the states between the line and the discriminators
vertex are efficient (R ≈ 1). These findings are consistent
with theoretical results in [3].

6.2 Provider Selection
From now on, we focus on systems with provider selection.

Figure 1b shows the resulting strategy simplex. Apparently,
the system with random matching has a higher fraction of
cooperative (white) states than the system with provider se-
lection. In fact, the mean cooperativeness is .637 (±.431) for
random matching and only .402 (±.435) for provider selec-
tion. A t-test confirms that the difference is significant for
a confidence level of .01.

Observation 1. Games with provider selection are less co-
operative than games with random matching.

This result is expected because, according to their placing
policies, requesters prefer cooperative providers. Thus, co-
operative players have high workloads, making cooperation
expensive. In contrast, random matching balances requests
uniformly between providers.

An analysis of the evolutionary stability shows that the
system with provider selection has the same stable states as
the system with random matching. Again, the vertex y = 1
consisting solely of defectors is evolutionary stable. Along
the edge y = 0, any mixture of cooperators and discrimina-
tors is stable. Finally, a line of unstable states (the boundary
line) connects a fixed point Fyz on the edge x = 0 with a
fixed point Fxz on the edge y = 0.

Observation 2. Populations consisting of discriminators
and defectors form a bistable community.

While the strategies for service decisions are defined by
their coordinates in the strategy simplex, the cutoff strat-
egy for provider selection is defined by its threshold values ρ

(see Equation 14). For each population of strategies, we
have computed the mean and the variance of the thresh-
old values. We visualize the average threshold values as an
additional dimension (the z-axis) of the strategy simplex.
‘Higher’ points represent greater threshold values and thus
stricter cutoff strategies. Figure 2 shows the resulting strat-
egy simplices.

Interestingly, the location of the boundary line strongly in-
fluences the threshold values of the cutoff strategies (height).
The boundary line divides the simplex into two areas. In the
area between the defectors vertex and the boundary line, the
cutoff thresholds reach their maximum values, and the sys-
tem is inefficient (R ≈ 0). The threshold maximum can
be visualized as a ‘range’ of strict cutoff strategies. On the
other side, between the boundary line and the discrimina-
tors vertex, the threshold values are much lower. Visually,
the boundary line forms the ‘rim’ of the cutoff range. If we
descend the cutoff range towards the discriminators vertex,
the system becomes more efficient. In the ‘valley’ along the
edge y = 0, the system is highly efficient (R ≈ 1).

6.2.1 Benefit, Cost, and Fee
In experiment E2, we have investigated how the parame-

ters benefit, cost, and fee affect the efficiency. First, we have
conducted an analysis of variance (ANOVA) to test whether
the means of the three treatments (no fee, low cost, high
cost) are all equal or not. The test indicates that at least
one sample mean is different from the other two (F = 60.89)
with a significance level of .01. Next, we have analyzed the
ratio f/c of fee to cost by comparing the no-fee and the low-
cost treatment. The statistics do not show any significant
difference. Thus, we leave aside the no-fee treatment in the
remaining analysis.

The ratio c/b of cost to benefit can be analyzed by compar-
ing the low-cost and the high-cost treatment. Figures 2a–b
show the resulting strategy simplices for both treatments.
The mean cooperativeness is .37 (±.43) for the low-cost and
only .148 (±.316) for the high-cost treatment. A t-test con-
firms that the difference is significant for a confidence level
of .01. We observe that the ratio c/b also affects the location
of the boundary line. As the cost-to-benefit ratio increases,
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(a) Low cost/high discount: f=1, c=2, b=20, δ=.9 (b) High cost: f=5, c=10, b=20

(c) Low discount rate: δ=.1, α=.5 (d) Medium discount/smoothing: δ=.5, α=.5

(e) Low smoothing factor: δ=.5, α=.1 (f) High smoothing factor: δ=.5, α=.9

Figure 2: Strategy simplices for different game parameters under provider selection.
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the fixed point Fyz moves closer towards the discriminators
vertex and thus the efficiency decreases.

Observation 3. The lower the ratio of cost to benefit, the
more efficient the system.

An important lesson learned is that the benefit of a success-
ful request should be at least one order of magnitude higher
than the cost of processing. A fee for sending requests does
not affect the efficiency of the system.

6.2.2 Discount Rate and Smoothing Factor
In experiments E3 and E4, we have investigated how dis-

count rate and smoothing factor affect the efficiency. First,
we have compared low, medium and high discount rates δ.
A low discount rate indicates a high rate of inflation and
thus a decline of the present value of the payoffs. For the re-
sults of low, medium, and high discount rates see Figures 2c,
d, a. The mean cooperativeness is .092 (±.213) for the low
discount and .370 (±.43) for the high discount treatment. A
t-test confirms that the difference is significant for a confi-
dence level of .01. Apparently, the discount rate affects the
‘height’ of the cutoff range. The lower the discount rate, the
higher the cutoff range and thus the stricter the strategies.

Observation 4. A higher discount rate (i.e., a lower infla-
tion) results in a more efficient system.

Finally, we compared low, medium, and high smoothing
factors α. A higher factor assigns more weight to recent in-
teractions and thus causes a shorter memory. For the results
of low, medium, and high smoothing factors see Figures 2e,
d, f. The mean cooperativeness is .422 (±.412) for the low
smoothing and .362 (±.429) for the high smoothing treat-
ment. A t-test confirms that the difference is significant for
a confidence level of .01. Apparently, the smoothing factor
affects the ‘width’ of the cutoff range. The lower the factor
is, the wider the cutoff range.

Observation 5. A lower smoothing factor (i.e., a longer
memory) increases the efficiency of the system.

Thus, a second lesson learned is that reputation systems for
multiagent systems should consider the complete history of
interactions.

7. CONCLUSIONS
In settings without payments between individuals, reci-

procity is the basis for cooperation. Examples for such set-
tings are peer-to-peer systems and social search. In existing
models for reciprocity, individuals are either matched ran-
domly, or the same pairs of individuals interact repeatedly.
However, in realistic settings, individuals can choose whom
to interact with. In this paper, we have investigated how
efficient reciprocity is under provider selection. To do so,
we have developed a formal model for reciprocity in mul-
tiagent systems. Strategies are updated through an evolu-
tionary process based on a genetic algorithm. This lets us
incorporate the notions of bounded rationality, learning, and
adaptation into the analysis.

We have designed and carried out a series of experiments
to study the evolution of strategies and the emergence of
cooperation. Our results show that cooperation is more
expensive in a system with provider selection than in a
system with random matching. Thus, existing models for

reciprocity overestimate the efficiency of real-world systems
where both direct and indirect reciprocity may occur in com-
bination. Further, populations consisting of discriminators
and defectors form a bistable community.
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ABSTRACT
We present a game-theoretic self-organizing approach for
scheduling the radio activity of wireless sensor nodes. Our
approach makes each node play a win-stay lose-shift (WSLS)
strategy to choose when to schedule radio transmission, re-
ception and sleeping periods. The proposed strategy relies
only on local interactions with neighboring nodes, and is
thus fully decentralized. This behavior results in shorter
communication schedules, allowing to not only reduce en-
ergy consumption by reducing the wake-up cycles of sen-
sor nodes, but also to decrease the data retrieval latency.
We implement this WSLS approach in the OMNeT++ sen-
sor network simulator where nodes are organized in three
topologies — line, grid and random. We compare the per-
formance of our approach to two state-of-the-art scheduling
protocols, namely S-MAC and D-MAC, and show that the
WSLS strategy brings significant gains in terms of energy
savings, while at the same time reduces communication de-
lays. In addition, we show that our approach performs par-
ticularly well in large, random topologies.
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) are a recent class of

networks able to monitor our daily environment with a high
spatiotemporal accuracy [10, 2]. WSNs are composed of
small sensing devices, also known as wireless sensor nodes,
endowed with sensing, processing and wireless communi-
cation capabilities. Given the current technological trend,
WSNs are envisioned to be mass produced at low cost in
the next decade, for applications in a wide variety of do-
mains. These include, to name a few, ecology, industry,
transportation, or defense [2].

A typical WSN scenario consists of a set of sensor nodes,
scattered in an environment, which report their data pe-
riodically to a centralized entity called base station. The
resources of the untethered sensor nodes are often strongly
constrained, particularly in terms of energy and communi-
cation. The base station usually possesses much larger re-
sources, comparable to those of a standard laptop or desktop
computer [10, 2].

The limited resources of the sensor nodes make the de-
sign of a WSN application challenging. Application require-
ments, in terms of latency, data throughput, or lifetime, of-
ten conflict with the network capacity and energy resources.
The standard approach for addressing these tradeoffs is to
rely on wake-up scheduling [10], which consists in alternat-
ing the active and sleep states of sensor nodes. In the active
state, all the components of a node (CPU, sensors, radio)
are active, allowing the node to collect, process and commu-
nicate information. In the sleep state, all these components
are switched off, allowing the node to run with an almost
negligible amount of energy. However, nodes in sleep mode
cannot communicate with others, since their radio transmit-
ter is switched off. The fraction of time in which the node
is in the active mode is referred to as duty cycle [19].

Wake-up scheduling offers an efficient way to significantly
improve the lifetime of a WSN application, and is well illus-
trated by S-MAC, a standard synchronized medium access
control (MAC) protocol for WSN [20]. In S-MAC, the duty-
cycle is fixed by the user, and all sensor nodes synchronize in
such a way that their active periods take place at the same
time. This synchronized active period enables neighboring
nodes to communicate with one another. The use of rout-
ing then allows any pair of node to exchange messages. By
tuning the duty-cycle, wake-up scheduling therefore allows
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to adapt the use of sensor resources to the application re-
quirements in terms of latency, data rate and lifetime [19].

In this paper we demonstrate how the performance of a
WSN network can be further improved, if nodes not only
synchronize, but also desynchronize with one another. Desyn-
chronization refers to the term where nodes on different
branches of the routing tree are active at different times
to avoid radio interference. In WSNs nodes can be logically
organized in groups. More precisely, the activity schedules
of nodes that need to communicate with one another are
synchronized to improve message throughput. We say that
those nodes belong to one coalition. At the same time, the
schedules of groups of nodes which do not need to communi-
cate are desynchronized in order to avoid radio interferences
and packet losses. We refer to this type of coordination for
short as (de)synchronization.

We show that coordinating the activities of the sensor
nodes can successfully be done using a win-stay lose-shift
(WSLS) strategy, drawn from game theory. We call the
approach DESYDE, which stands for DEcentralized SYn-
chronization and DEsynchronization. The coordination is
achieved by rewarding successful interactions (e.g., trans-
mission of a message) and penalizing the ones with a neg-
ative outcome (e.g., message loss or overhearing). This be-
havior drives the sensor nodes to repeat actions that result
in positive feedback more often and to decrease the prob-
ability of unsuccessful interactions. Nodes that tend to se-
lect the same successful action naturally form a coalition.
The main benefit of the proposed approach is that global
(de)synchronization emerges from simple and local inter-
actions without the need of central mediator or any form
of explicit coordination. An additional advantage is that
DESYDE works with any routing algorithm that forms a
routing tree connecting the nodes to the base station.

We implement DESYDE in the OMNeT++ simulator [9],
and study three different wireless sensor network topolo-
gies, namely line, grid, and random. We compare it to
S-MAC [20] and D-MAC [12], two state-of-the-art coordi-
nation mechanisms for WSNs, and show that nodes form
coalitions which improve data communication and reduce
packet collisions. This enables a quicker delivery of the data
packets to the base station, allowing shorter active periods
and lower energy consumption.

The rest of the paper is organized as follows: Section 2
presents the background of our research. It outlines the ap-
plication domain, explains the communication and routing
protocols and guides the reader through related work. The
DESYDE approach is described in Section 3, and experi-
mentally compared on different topologies in Section 4. We
finally discuss the results in Section 5 shortly before we con-
clude in Section 6.

2. BACKGROUND AND RELATED WORK
A Wireless Sensor Network is a collection of densely de-

ployed autonomous devices, called sensor nodes, which gather
data with the help of sensors [10, 2]. The untethered nodes
use radio communication to transmit sensor measurements
to a terminal node, called the base station or sink. The sink
is the access point of the observer, who is able to process
the distributed measurements and obtain useful information
about the monitored environment. Sensor nodes communi-
cate over a wireless medium, by using a multi-hop commu-
nication protocol that allows data packets to be forwarded

3

2 1

4

Sink

Figure 1: Sensor nodes connected to a base station
by means of a multi-hop routing tree. Grayed circles
indicate overlapping communication regions.

by neighboring nodes to the sink.
When the WSN is deployed, the routing protocol requires

that the nodes determine a routing path to the sink [3, 10].
This is achieved by letting nodes broadcast packets immedi-
ately after deployment in order to discover their neighbors.
Nodes in communication range of the sink propagate this
information to the the rest of the network. During the prop-
agation process, each node chooses a parent, i.e. a node to
which the data will be forwarded in order to reach the sink.
The choice of a parent can be done using different metrics,
the standard one being the hop distance, i.e. the minimum
number of nodes that will have to forward their packets [4,
18]. An example of multi-hop shortest path routing struc-
ture is given in Fig. 1, together with the radio communica-
tion ranges of sensor nodes.

Since wireless sensor nodes operate in most cases on finite
energy resource, low-power operation is one of the crucial de-
sign requirements in sensor networks [2, 10]. The challenge
of energy-efficient operation must be tackled on all levels of
the network stack, from hardware devices to protocols and
applications. Although sensing and data processing may in-
cur significant energy consumption, it is commonly admitted
that most of the energy consumption is caused by the radio
communication. A large amount of research has therefore
been devoted in recent years to the design of energy-efficient
communication protocols [10, 20].

Fig. 2 reports the radio characteristics of two represen-
tative and often used radio platforms: the CC2420 (used
in TelosB and IMote2) and the Xbee-802-15.4 (used in the
Waspmote). An important observation is that for these typ-
ical radios, the sleep power is at least two orders of magni-
tude lower than the transmit and receive power. Therefore,
the only way to significantly reduce power consumption is to
have the radio switched off most of the time, and to turn it
on only if messages must be received or sent. This problem
is referred to as wake-up scheduling.

Wake-up scheduling in wireless sensor networks is an ac-
tive research domain, and a good survey on wake-up strate-
gies in WSNs is presented in [19]. Three types of wake-up
solutions can be identified, namely, on-demand paging, syn-
chronous and asynchronous wake-up.

In on-demand paging, the wake-up functionality is man-
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CC2420
50/100m
250 Kbps

60 µW sleep
63 mW receive

57 mW wmit
1 ms setup

Xbee-802.15.4
500 m

20 Kbps
<30 µW sleep

150 mW receive
135 mW xmit
2 ms setup

Radio
Outdoor range

Data rate
Sleep power

Receiving power
Transmit power

Startup time

Mote
Year

Tmote Sky
2005

Waspmote
2009

Imote 2
2007

Figure 2: Typical wireless sensor hardware devel-
oped in the recent years, together with their main
radio characteristics.

aged by a separate radio device, which consumes much less
power in the idle state than the main radio. The main radio
therefore remains in a sleeping state, until the secondary ra-
dio device signals that a message is to be received on the ra-
dio channel. This idea was first proposed with the PicoRadio
and PicoNode projects [7] for extremely low power systems,
and extended in [16, 1] with hand-held devices. On-demand
paging is the most flexible and energy-efficient solution, but
adds non-negligible costs in the hardware design.

Active ActiveSleep Sleep

Frame

Figure 3: Structure of S-MAC with duty cycle and
synchronous wake-up scheduling.

In synchronous wake-up approaches, nodes duty-cycle their
radio in a coordinated fashion. Several MAC (Medium Ac-
cess Control) protocols have been proposed, allowing nodes
to wake-up at predetermined periods in time at which com-
munication between nodes becomes possible. A standard
paper detailing this idea is that of S-MAC (Sensor-MAC)
[20]. The basic scheme is that nodes rely on a fixed duty-
cycle, specified by the user, where nodes periodically switch
between the active and sleep states. The period is called a
frame, and an example of periodic schedule is illustrated in
Fig. 3. Several extensions to S-MAC have been proposed.
In particular, authors in [12] proposed D-MAC, which aims
at improving the efficiency by both reducing the latency and
the active period of the sensor nodes. This is achieved by
dividing the frame into slots, and by staggering the wake-up
cycles along the routing tree, as illustrated in Fig. 4. The
active period consists in receiving and sending only one data
packet, and active periods are staggered so that nodes send
data when their parent’s radio is in the receive mode. If
multiple packets need to be sent by a node, a more data flag
is set to warn the parent node that additional data must
still be received. If the flag is set, the node and its par-
ent schedule the pending communication to happen after a
small backoff period (a few milliseconds), to avoid collisions.
This approach was recognized in the MAC review of Lan-
gendoen [11] to be particularly compelling for collecting data
from a WSN in a timely and energy-efficient manner. The
main concern with protocols based on synchronous wake-up
is however the overhead which can be caused by maintaining

the nodes synchronized.

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Frame
Slot

..........

Additional reception/transmission slots possible 

Figure 4: D-MAC scheduling protocol: Nodes are
synchronized so that data flows from leaf nodes to
the root node in the routing tree.

Finally, in asynchronous wake-up solutions, the wake-up
schedules need not be coordinated, and may possibly be dif-
ferent. The communication therefore comes at an increase
cost for either the sender or the receiver. In sender-based
asynchronous wake-up, the sender continuously sends bea-
cons until the receiver is awake. Once the receiver gets the
beacon, it sends an acknowledgment to notify the sender
that it is ready to receive a packet. This scheme is the ba-
sis for the low-power listening [8] and preamble sampling [5]
protocols. The receiver-based wake-up solution is the mir-
ror image of sender-based, and was exposed in the Etiquette
protocol [6]. Sender-based and receiver-based asynchronous
protocols can achieve very low power consumption. Asyn-
chronous wake-up solutions however require an overhead due
to the signaling of wake-up events, which makes them inef-
ficient when wake-up events are relatively frequent [19].

3. DESYDE
This section presents DESYDE, an acronym for DEcen-

tralized SYnchronization and DEsynchronization, which aims
at improving communication performances in wireless sensor
networks by coordinating the radio activity of neighboring
sensor nodes. Our approach belongs to the category of syn-
chronous wake-up strategies, and is intuitively motivated by
an important (although not apparent at first sight) weakness
of D-MAC. Recall from the previous section that D-MAC
schedules the radio activity of sensor nodes in such a way
that children and parents in the routing tree synchronize
their radio transmission/reception slots. While this strat-
egy appears at first sight to offer great benefits over S-MAC,
it only works well if nodes are arranged in a line topology
(cf. Fig. 5, middle). Indeed, whenever the routing tree
contains several branches, neighboring nodes which are the
same number of hops away from the base station may in-
terfere, causing packet losses, and possibly important delays
(once a transmission fails in D-MAC, the packet is queued
until the next frame).

A better schedule is therefore one where nodes along the
same branch of a routing tree are staggered, as in D-MAC (so
that end-to-end latency is improved), while at the same time
being desynchronized with nodes on neighboring branches
of the routing tree (so that communication interference is
minimized). Synchronized groups of nodes will be referred
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Figure 5: Examples of routing and coalition forma-
tion

to as coalitions. Figure 5 illustrates the concept of coalitions
in three different topologies. Intuitively, nodes on the same
branch of a routing tree should form a coalition so that data
can be relayed efficiently from a leaf node to the root node.
At the same time, nodes which are the same same number of
hops away from the base station should desynchronize since
they belong to separate branches of the routing tree.

The resulting schedule of DESYDE for the 2 by 2 grid
in Fig. 5 (left) is illustrated in Fig. 6. In this example, the
frame contains 10 slots, and the four schedules reported are
those of the four nodes in the grid, arranged in the same
order as in Fig. 5 (left). At slot 2, the upper left node
transmits when the lower left node receives, while the right
nodes are synchronized for communication at slot 5. The
lower left node send its data to the base station at slot 7
and forwards that of the upper left node at slot 9. The lower
right node does the same at slots 4 and 6, respectively. Thus,
we observe the same coalitions as in our schematic model in
Figure 5 (left).

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

 

 

Transmit

Listen

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

Slots in a frame
1 2 3 4 5 6 7 8 9 10

Sleeping

Active

Slots in a frame

Figure 6: Examples of DESYDE schedule for the
2x2 grid. Upper transmission slots are synchro-
nized with lower reception slots. Left active slots
are desynchronized with right active slots.

3.1 Learning Model
We present here the underlying approach that makes nodes

coordinate their behavior in a decentralized manner. We see
the WSN as a Multi-Agent System (MAS), where agents are
the sensor nodes. Recall that the frame stands for the fixed-
length activity period that nodes periodically repeat over
time. Each frame is divided in a number of slots that con-
stitute discrete time units, where agents can select only one
of three actions, namely transmit, listen or sleep.

At each slot, agents are therefore involved in a game with
their neighbors where all nodes have to independently choose

an action. The goal of agents is to forward all their messages
to the sink, minimizing the end-to-end latency of packets.
Upon executing any of the three actions, each agent receives
feedback from the environment. This feedback depends on
the event that the actions produced (for example successful
transmission, collision, or idle listening). These events will
be detailed in section 3.2, and may be either successful or
unsuccessful. The success of the resulting event is used by
the node to assess the quality of its action.

One can notice that the game our agents are involved
in at each time slot has certain characteristics of Graphical
Games [17], where neighboring agents have to independently
decide on an action. In our network, however, the graphical
game at each time step is dependent on the one played at
the previous slot, due to forwarding of messages. In other
words, our agents are engaged in sequential graphical games,
where each game is closely related to the preceding one. The
dependence between these sequential games is a result of the
forwarding of packets between nodes. Put differently, the
transmission of messages between neighbors influences their
choice of action at each time step. These actions, however,
have no immediate effect on agents further in the network.

Formally, we represent our learning system with the fol-
lowing notation:

• Each frame F is divided in N slots, and the set of time
slots in a frame is denoted S = {s1, . . . , sN}.
• A is the set of available actions a for each agent at

each slot.

• R : S × A → [0, 1] is the reward signal R(s, a) for
taking action a in slot s.

As specified above, the action space A at each time slot s for
each agent is identical and restricted to the following three
actions: atransmit, alisten and asleep. At every time step
each agent may detect a communication event, caused by
its own actions and those of its neighbors. Upon executing
action a, the agent receives a reward R(s, a), determined by
the outcome of the actions its neighbors chose at slot s and
its own action. This interaction between neighboring nodes
is further elaborated in the following subsections.

3.2 Rewards, Updates and Action Selection
We use Q(s, a) to indicate the expected reward (or “qual-

ity”) of taking action a at slot s. It represents the latest
reward obtained at that slot for that action. At first, this
value is initialized to 0 for Q(s, atransmit) and Q(s, asleep)
and 1 for Q(s, alisten). Upon executing action a at slot s,
the agent updates its action quality, based on the reward it
receives: Q(s, a)← R(s, a). Note that only one of the three
actions can be taken during a slot. Therefore, at every slot
s, Q(s, a) is 1 for exactly one action a and 0 for the two
others.

We classify each communication event, that a node can
detect, using a boolean value to signalize whether the event
was positive or negative for that node. Based on our sim-
ple update rule a boolean representation is sufficient in our
learning model. We modeled six different events, namely
successful transmission (if ACK received), successful recep-
tion, overhearing, idle listening, unsuccessful transmission
(if no ACK received), and collision. We consider these six
events to be the most energy expensive or latency crucial in
wireless communication. The reward for the two events is 1
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(successful transmission or reception) and for the rest it is
0.

Recall that only one action can have a quality of 1 for
each slot. We use policy π(s) to denote the action a that
the agent selects at slot s, based on the quality Q(s, a) for
that action in that slot. More precisely,

π(s) =

 atransmit, if Q(s, atransmit) = 1
alisten, if Q(s, alisten) = 1
asleep, if Q(s, asleep) = 1

(1)

This behavior resembles a win-stay lose-shift strategy [15],
where agents repeat successful actions and avoid unsuccess-
ful ones. In particular, at slot s an agent will repeat action
a only if it had a positive outcome at slot s in the previ-
ous frame. Recall that frames capture the periodic behavior
of nodes. Thus, in every frame the agent repeats those ac-
tions that had positive outcome in the previous frame. For
example, according to policy π(s), if Q(s, atransmit) = 1
for slot s, the node will choose to transmit a packet dur-
ing that slot (provided that it has a packet in its queue).
As a result, a reward R(s, atransmit) will be generated and
stored in Q(s, atransmit). If its transmission was acknowl-
edged, Q(s, atransmit) will stay 1 and the agent will repeat
the same action next frame at slot s. Otherwise, based on
the event that occurred, it will choose a different action. In
the same way the agent will select an action in every slot
within the frame F .

3.3 Exploration
We would like to note that the outcome of each of the

actions atransmit and alisten gives us information about the
quality of the other two actions as well. Both these actions
require that the radio transmitter of the node is switched
on, which enables the agent to detect events in its environ-
ment and therefore obtain feedback. Consider the following
example. If π(s) = atransmit, upon observing the outcome
the agent will know whether it would have been more bene-
ficial to listen or sleep during slot s instead. Provided that
its message is acknowledged, transmitting is indeed the best
action. If no acknowledgment is received, its parent is prob-
ably busy (or sleeping) and therefore it would be better to
listen for packets at slot s next frame, rather than transmit.
In case it detects a collision during that slot, for next frame
sleeping would be most beneficial in order to avoid receiving
in vain. The same reasoning holds if the agent selects action
alisten.

Action asleep on the other hand turns the energy-consuming
antenna off and consequently prevents the agent from receiv-
ing any information from its environment. For this reason,
during a short exploration stage, fixed by the user, the agent
never selects the latter action to keep its radio transmitter
on. In other words, during exploration if π(s) = asleep the
agent will select alisten at that slot instead. This behavior
enables the node to constantly acquire feedback and there-
fore update its quality values. In the WSN domain, such an
exploration is very costly in terms of battery consumption.
However, we determined empirically that nodes require no
more than 3 to 4 frames of exploration for their policies
to converge. After the exploration stage expires, the agent
reverts to the policy described in Formula 1. Intuitively,
when an agent finds a “win” action for a certain slot, its
win-stay lose-shift strategy will prevent it from choosing a
different action at the same slot next frame. Thus, every

agent learns a periodical schedule based on the events that
happen as a result of its actions. We therefore say that no
explicit form of agent coordination is necessary to achieve
equilibrium. Instead, coordination “emerges” as a result of
packet forwarding and reasoning based on local interactions.

4. EXPERIMENTAL STUDY

4.1 Experimental Setup
We apply our approach on three networks of different size

and topology – a 4-hop line, a 16-node (4 by 4) grid topology
and one with 50 nodes scattered randomly with an average
of 5 neighbors per node. The first topology requires nodes
to synchronize in order to successfully forward messages to
the sink. Intuitively, if any one node is awake while the
others are asleep, that node would not be able to forward
its messages to the sink. The second topology illustrates
the importance of combining synchronization and desyn-
chronization, as neither one of the two behaviors alone is
an efficient strategy. The random topology shows the scala-
bility of our approach to larger networks where the topology
is not known a priori. In our simulations we use a shortest
path routing scheme that creates a static routing tree. A
similar experimental setup is also used in [13, 14].

Each of the three networks was ran for 200 seconds in the
OMNeT++ simulator [9] and results were averaged over 30
runs. This network runtime was sufficiently long to eliminate
any initial transient effects. To illustrate the performance of
the network at high data rates, we set the sampling period of
nodes to one message every 10 seconds. To simulate periodic
data collection, this message is generated at the beginning
of each frame for all nodes. Frames have the same length as
the sampling period and were divided in N = 2000 slots of 5
milliseconds each. The duration of the slot was chosen such
that only one DATA packet can be sent and acknowledged
within that time. All hardware-specific parameters, such as
transmission power, bit rate, etc., were set according to the
data sheet of our radio chip — CC2420 (cf. Table 2). In
addition, we chose the protocol-specific parameters, such as
packet header length and number of retransmission retries
as specified in the IEEE 802.15.4 communication protocol.
We set the duration of the exploration stage to 5 frames, or
50 seconds. It was empirically measured that this duration
was enough for the policies of all agents to converge.

To better illustrate the importance and effect of combining
synchronization and desynchronization in these topologies,
we compare our approach to two state-of-the-art MAC pro-
tocols, viz. S-MAC and D-MAC. In addition, we present the
case where all nodes remain active for the entire duration of
the simulation and never switch off their radio transmitter
(called ALL-ON for short). The latter behavior serves only
as a benchmark in terms of end-to-end latency, because the
energy consumption of this protocol renders it impractical
for real-world scenarios. Since nodes have a duty cycle of
100%, packets will not experience any sleep latency and will
be quickly forwarded to the sink. The S-MAC protocol il-
lustrates network performance under synchronized behavior,
where all nodes are active at the same time. D-MAC on the
other hand shows whether staggering the short duty cycles
across hops is an efficient strategy to improve latency and
lifetime.
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4.2 Evaluation
Figures 7 and 8 display the average battery consumption

and latency for all three topology using the S-MAC protocol.
According to S-MAC, all nodes wake up at the beginning of
the frame for a duration specified by the user. We there-
fore vary the duty cycle and observe the performance of the
system in terms of lifetime and throughput. Intuitively, the
energy consumption under S-MAC increases linearly with
increasing duty cycle for all three topologies, as Figure 7
displays.
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Figure 7: Average battery usage under the S-
MAC protocol for different duty cycles (same for
all topologies)

Since collisions constitute the biggest obstacle in the pur-
suit of low latency, each node contends for the channel for
a small random duration within a fixed contention window.
To facilitate the throughput of messages at high data rates,
we deviated from the contention policy of S-MAC that uses
the entire active time as a contention window. Instead, in
our simulations we fixed the maximum contention window of
S-MAC to 5 slots for a more fair comparison. Even though
short duty cycles are appealing from an energy perspective,
nodes do not manage to forward all their packets within one
active interval for all three topologies. The latter result can
be observed in Figure 8, where error bars signify one stan-
dard deviation across 30 runs. For duty cycles below 2% (or
1% in the line topology) nodes do not manage to forward
all their packets within one active interval. The reason for
this high latency is the large number of collisions when all
nodes wake up at the same time. This phenomenon is par-
ticularly visible in the grid topology, where every node has
exactly one parent and at least one neighbor who belongs to
a different branch of the routing tree.

For duty cycles larger than 2% nodes in the line and grid
topologies manage to send all their packets within one ac-
tive interval and therefore the average end-to-end latency is
reduced to around 0.1 seconds. Nodes in the random net-
work, however, require two active periods to forward their
messages and therefore the latency settles at around 10 sec-
onds, or 1 frame duration. Still, we measured around 20%
packet loss on average for the latter topology, due to the
large number of retransmissions necessary when all nodes

are active at the same time. The large standard deviation
is due to the different random topologies across runs.
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Figure 8: End-to-end latency under the S-MAC pro-
tocol for different duty cycles

S-MAC illustrates the effect of full synchronization on the
network performance. We see that large networks suffer
from high sleep latency for small duty cycles. D-MAC on
the other hand makes sure that sleep latency is reduced by
“staggering” the wake-up cycles of nodes according to their
hop distance to the sink (cf. Figure 4). In other words, all
nodes that lie at the same distance from the sink are syn-
chronized to wake up at the same time and send a packet
to their parents, who wake up at the slot just after their
children. This behavior is designed to reduce the sleep la-
tency that S-MAC suffers from. The duty cycle of each node
under D-MAC is dependent on its traffic load (i.e., its po-
sition in the data gathering tree), as it is the case with our
learning algorithm. Similar to S-MAC, to reduce collisions
we let each node contend for the channel for a small random
time within a fixed contention window. The size of this win-
dow, however, affects performance. Large contention win-
dow will lower the probability of collision, but at the cost
of delayed transmissions. A small one, on the other hand,
will speed up communication, but will cause more unsuc-
cessful transmissions. We therefore present the performance
of each protocol for different contention window sizes. To
abide by the specifications of D-MAC, we define the size of
its contention window in terms of the duration of a DATA
packet. The design of DESYDE, however, requires us to set
the contention window as a factor of the slot length instead
(which is a DATA packet + an acknowledgment). We use
the latter setting in S-MAC and ALL-ON as well. Since the
difference between the two contention windows is negligible,
we use the same axis in Figures 9 and 10 to plot the perfor-
mance of both protocols. We write “contention window size”
to signify the factor of the contention window, which is fixed
for each run. Due to space limitations we graph the battery
consumption of D-MAC and DESYDE for each topology on
the same plot.

In Figure 9 we see that in all three topologies DESYDE
outperforms D-MAC in terms of energy consumption, irre-
spective of the contention window size. Due to the “win-stay
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Figure 9: Battery usage under D-MAC and
DESYDE for different contention windows across
different topologies

lose-shift” strategy, after the exploration stage our learning
algorithm remains invariant to the contention window size.
In other words, contention is used only during exploration.
Each node, thereafter, learns to transmit in a different time
slot within the frame and thus contention for the channel is
not necessary. Nodes under D-MAC, however, always wake
up for one listen and one transmit slot, regardless of the node
position in the network. A disadvantage is that leaf nodes
still listen for one slot, when they need not, while all other
nodes need to hold an additional listen + transmit slot for
every packet they generate. The energy consumption of D-
MAC is therefore higher than the one of DESYDE for each
topology. Moreover, according to specifications the active
period of D-MAC includes the time for channel contention.
Therefore its battery consumption increases with the size of
the contention window.

Lastly, we present the difference between ALL-ON, DESYDE
and D-MAC in terms of the end-to-end latency averaged over
30 random topologies, each consisting of 50 nodes. Figure 10
compares the three protocols for different contention win-
dows. One can notice that DESYDE once again outperforms
D-MAC. DESYDE enables nodes to both synchronize with
their parents and desynchronize with their same-hop neigh-
bors. Recall the example we presented in Figure 6, which
shows the resulting schedule of nodes under DESYDE in a
sample 2 by 2 grid topology. In some routing schemes, such
as ours, all nodes that lie on the same hop belong to different
branches of the routing tree. In D-MAC, however, all those
nodes wake up at the same time and therefore cause radio in-
terferences, followed by packet retransmissions. Intuitively,
latency under D-MAC decreases for larger contention win-
dows, but nodes still require more than one active period to
deliver all their packets. DESYDE, on the other hand, has
comparable latency to ALL-ON, where nodes never switch
off their antenna and therefore packets incur no sleep de-
lay. While ALL-ON requires 100% duty cycle, DESYDE is
able to achieve the same latency with only 0.8% active time
within a frame.

2 4 6 8 10
!5

0

5

10

15

20

25

30

Contention Window Size

L
a

te
n

c
y
 (

s
)

50 nodes, random topology

 

 

All!on

DESYDE

D!MAC

Figure 10: End-to-end latency under ALL-ON,
DESYDE and D-MAC for different contention win-
dows

5. DISCUSSION AND FUTURE WORK
The experimental results presented in the previous section

illustrate that DESYDE is able to significantly improve the
performance of a data collection task in wireless sensor net-
works. The two main metrics considered were the latency
and the energy consumption. For both metrics, large gains
could be observed, over a wide range of networking param-
eters. These results were particularly remarkable for large
and random topologies. The main reason is that DESYDE
relies on a learning strategy which can adapt to complex
topologies and traffic patterns.

The win-stay lose-shift (WSLS) strategy which underlies
DESYDE is a key aspect of the proposed approach. Several
research directions can be pursued in order to further im-
prove its performance. First, an advantage of the WSLS is
that it provides a way to reduce the exploration space and
to accelerate the convergence of the learning stage. A di-
rect drawback of this “aggressive” exploration is that more
efficient solutions to the coordination of sensor nodes may
be too quickly discarded. One of the research axes we plan
to focus on consists in relying on “smoother” updating rules
for the quality values of the actions. This could be done by
using a learning factor which keeps tracks of past rewards
during the learning process.

A second important parameter is the convergence time of
the learning process. We observed in all our experiments
that this time is in practice very short, in the order of a few
data collection rounds (around 5). It is still unclear under
which conditions convergence proofs can be brought. One
can easily notice that, using the WSLS approach, the con-
vergence is guaranteed if no node modifies its policy for two
consecutive rounds. This unfortunately does not seem to be
detectable without all nodes exchanging information about
their status, which would be energy costly. Further research
is therefore required to better characterize the convergence
criteria.

Finally, we assumed, as most protocols which fall in the
synchronous category, that the traffic patterns and the net-
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work topology are stationary for every run. As proposed,
DESYDE is not robust to topology changes, or to variations
in the data collection rate. The common solutions to these
issues is to rely on periodic checks concerning the amount
of dropped packets, or queue sizes on the sensor nodes, and
to restart the coordination of the nodes if necessary. While
not specific to the approach presented in this paper, further
research is also required in this area.

6. CONCLUSION
Synchronous wake-up strategies can greatly reduce the

duty cycle of sensor nodes in a WSN. We however high-
lighted in this paper that they suffer from potential high la-
tency and energy waste due to radio interferences and packet
collisions. These deficiencies stems from the fact that neigh-
boring sensor nodes should only synchronize their activities
when they engage in a communication, and desynchronize
otherwise. The proposed approach, DESYDE, a DEcentral-
ized SYnchronization DEsynchronization strategy, aims at
tackling this problem. The core of the approach is based
on a win-stay lose-switch strategy, which we implement in a
fully decentralized way.

Our OMNeT++ implementation showed that state-of-the-
art synchronized protocols only perform well in simple net-
works, such as line topologies. As the network complexity
grows, these protocols resulted in high latency and energy
costs, due to the increased number of packet collisions and
packet retransmissions. DESYDE was able in all our exper-
iments to compete with standard approaches, and exhibited
significant gains in latency and energy especially for larger
networks.
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ABSTRACT
We propose coalitional normative system (cns), which can
selectively restrict the joint behavior of a coalition, in this
paper. We extend the semantics of atl and propose Co-
ordinated atl (co-atl) to support the formalizing of cns.
We soundly and completely characterize the limitation of
the normative power of a coalition by identifying two frag-
ments of co-atl language corresponding to two types of
system properties that are unchangeable by restricting the
joint behavior of such a coalition. Then, we prove that the
effectiveness checking, feasibility and synthesis problems of
cns are ptime-complete, np-complete and fnp-complete, re-
spectively. Moreover, we define two concepts of optimality
for cns, that is, minimality and compactness, and prove that
both minimality checking and compactness checking are co-
np-complete while the problem of checking whether a coali-
tion is a minimal controllable coalition is dp-complete. The
relation between ns and cns is discussed, and it turns out
that nss intrinsically consists of a proper subset of cnss and
some basic problems related to cns are no more complex
than that of ns.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
Theory

Keywords
normative systems, logic, model checking, complexity

1. INTRODUCTION
Normative system (ns) (or social law) was firstly proposed

by [12, 13] as an off-line approach for coordinating multia-
gent systems, and then extended by, e.g., [17, 14, 1], based
on introducing the formalisms of modal and temporal logics,
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especially Alternating-time Temporal Logic (atl) [4, 5] and
its variations, which can be used for the specification and
verification of mechanisms such as social choice procedures.
So work on this aspect is also considered as a part of the
logics for automated mechanism design research [10, 16].

Although the various approaches to nss proposed in the
literature differ on technical details, they all share the same
basic intuition that an ns is a set of constraints on the be-
havior of agents; by imposing these constraints, it is hoped
that some desirable objectives will emerge [3], corresponding
to a logic formula that is originally false to become true, or
the reverse. The idea is that the imposing of an ns will lead
to certain updating in the semantic model, and thus cause
changes in the interpretations of some formulas.

But we find that nss update the semantic model in a some-
what too coarse way, that is, when an action is forbidden in
a state, all related transitions from this state are deleted 1.
This means the task of deleting a certain set of prescribed
transitions, which corresponds to the necessary condition for
fulfilling a certain objective, may exceed the abilities of all
nss. To overcome this shortcoming, we propose coalitional
normative system (cns), which is a set of behavioral con-
straints for a coalition (i.e., agent set) that restrict its joint
actions. By adopting a cns, we can restrict the set of tran-
sitions to an arbitrary subset of it, thus we can achieve all
possible updating in the semantic model.

Intuitively, the coalition represents a system we can con-
trol (it is a distributed open system formed by several agents);
and the cns specifies in every state for the coalition which
sets of actions (that can be chosen by it) cannot be executed
simultaneously, thus should be forbidden. We assume that
the agents in the coalition will negotiate with each other
before making any decisions on action selection in order to
avoid adopting any joint actions that are forbidden by the
cns. So, compared with conventional ns, cns can more effec-
tively capture the overall effects of joint actions and prevent
the destructive interactions from taking place. In this paper,
we aim to present a framework for cns based on atl, and
study its related reasoning and computational problems.

The remainder of this paper is structured as follows. We
begin by introducing the basics of atl and ns. Next, as
the effects of cnss cannot be captured by atl directly, we
propose co-atl to support the formalizing of cns. Then for
each coalition C, by identifying the L+C and L−C fragments
of the co-atl language, we “soundly and completely” char-
acterize its limitation of normative power. Afterward, we

1When concurrent action models are adopted, an action of
an agent in a state may be related to several transitions.
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establish the computational complexity of some key prob-
lems related to cnss. Finally, we present some conclusions.

2. ATL AND NORMATIVE SYSTEMS

2.1 Alternating-time Temporal Logic
The syntax of Alternating-time Temporal Logic (atl) [4,

5] is an extension of the syntax of ctl via replacing the path
quantifiers ∀ and § with the path quantifier ty, which can
express the α-ability [15] in game theory. And the formulas
of atl are interpreted by concurrent game structures (cgss).

A concurrent game structure is a tuple S = `k,Q,Π, π, d, δe
with the following components:

• A natural number k C 1 of agents. We identify the
agents with the numbers (or IDs) 1, ..., k.

• A finite set Q of states.

• A finite set Π of propositions.

• For each state q > Q, a set π(q) b Π of propositions
true at q. The function π is called labeling function.

• For each agent a > �1, ..., k� and each state q > Q, a
natural number da(q) C 1 of actions available to agent
a at state q. We identify the actions of agent a at state
q with the numbers 1, ..., da(q). A joint action of all
the agents at state q is a tuple `j1, ..., jke such that
1 B ja B da(q) for each agent a. We write D(q) for
the set {1,...,d1(q)�� ...��1, ..., dk(q)� of joint actions.
The function D is called move function.

• For each state q > Q and each joint action `j1, ..., jke >
D(q), a state δ(q, j1, ..., jk) > Q will result from state
q if every agent a > �1, ..., k� chooses action ja. The
function δ is called transition function.

Note that, every agent set A b �1, ..., k� can be seen as
a coalition (with the agent set �1, ..., k� � A represents the
environment). The grand coalition �1, ..., k� is denoted as
Ag. In the following of this paper, we will sometimes use Ñm
to refer to a joint action `j1, ..., jke (of all the agents), use
ÑmA to refer to a joint action of the coalition A ⊂ Ag2 (called
an A-action) and use DA(q) to refer to all the possible A-
actions at the state q. Moreover, we introduce the notation
ÑmASA′ to mean the joint action of the agent set A9A′ when
the agent set A takes the joint action ÑmA.

Some important concepts with respect to concurrent game
structures are specified as follows: For two states q and q′, q′

is called a successor of q if there is a joint action Ñm > D(q)
such that q′ = δ(q, Ñm). A computation of S is an infinite
sequence λ = q0, q1, q2, ... of states such that for all positions
i C 0, the state qi+1 is a successor of the state qi. We refer to
a computation starting from state q as a q-computation. For
a computation λ and a position i C 0, we use λ[i], λ[0, i],and
λ[i,ª] to denote, respectively, the ith state of λ, the finite
prefix q0, q1, ..., qi of λ, and the infinite suffix qi, qi+1, ... of λ.
A strategy for agent a > Σ is a function fa that maps every
nonempty finite state sequence λ > Q+ to an action such
that if the last state of λ is q, then fa(λ) > �1, ..., da(q)�.
2For the joint actions of an arbitrary agent set A b Ag, we
always consider them as action vectors arranged in order of
increasing IDs of the corresponding agents in A, instead of
action sets.

And, the outcomes of a set of strategies FA, called an A-
strategy, one for each agent in A b Ag, from a state q > Q is
the set out(q,FA) of computations, such that a computation
λ = q0, q1, q2, ... is in out(q,FA) if q0 = q and there is a joint
action `j1, ..., jke > D(qi) such that (1) ja = fa(λ[0, i]) for
all agents a > A, and (2) δ(qi, j1, ..., jk) = qi+1.

The language of atl L is generated by the following gram-
mar:

ϕ ��= pS ϕSϕ1 - ϕ2StAy◯ϕStAy j ϕStAyϕ1Uϕ2,

where p > Π is a proposition, and A b Ag is a set of agents3.
As an abbreviation, we write tAyn ϕ for tAy�Uϕ.
We write S, q à ϕ to indicate that the formula ϕ holds at

state q of a cgs S. When S is clear from the context, we
write q à ϕ. The relation à is defined, for all states q of S,
inductively as follows:

• For all p > Π we have q à p iff p > π(q).
• q à  ϕ iff q à ϕ.

• q à ϕ1 - ϕ2 iff q à ϕ1 or q à ϕ2.

• q à tAy◯ϕ iff there exists a A-strategy, FA, such that
for all computations λ > out(q,FA) we have λ[1] à ϕ.

• q à tAyjϕ iff there exists a A-strategy, FA, such that
for all computations λ > out(q,FA) and all positions
i C 0, we have λ[i] à ϕ.

• q à tAyϕ1Uϕ2 iff there exists a A-strategy, FA, such
that for all computations λ > out(q,FA) there exists a
position i C 0 such that λ[i] à ϕ2 and for all positions
0 B j < i we have λ[j] à ϕ1.

2.2 Normative Systems
Given a concurrent game structure S = `k,Q,Π, π, d, δe, a

normative system (ns) is a function η such that

η(a, q) ⊂ �1, ..., da(q)�
for all agents a > Ag and states q > Q.

Intuitively, η(a, q) is the set of “forbidden” (or “illegal”)
actions for agent a in state q. The structure obtained from
a cgs S by implementing an ns η, denoted as S†η, is the
structure obtained from S by deleting all the forbidden ac-
tions. Note that, ns is defined as a proper subset of all the
available actions to guarantee every agent will has at least
one available actions in every state after having implemented
an ns. Apparently, S†η is still a concurrent game structure.

An existential and a universal sublanguage of atl, de-
noted Le and Lu, respectively, were defined in [14] by the
following grammars ε and υ respectively:

ε ��= pSε , εSε - εStAgy◯εStAgy j εStAgyεUε

υ ��= pSυ , υSυ - υSty◯υSty j υStyυUυ
where p > Π.
Suppose we have a cgs S, an ns η, a state q in S, and

formulas ε > Le, υ > Lu. Then,

3We always assume that we are studying a fixed set Ag of
agents and a fixed set Π of propositions. So, the language of
atl is a fixed set of formulas, and when we refer to “concur-
rent game structure” we actually mean a concurrent game
structure with SAgS and Π as its components.
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1. S†η, q à ε� S, q à ε;
2. S, q à υ� S†η, q à υ.
The first result tells us that the satisfaction of a Le for-

mula cannot be established by implementing a ns4. The
second result, in contrast, tells us that the satisfaction of a
Lu formula cannot be avoided by implementing a ns.

3. COALITIONAL NORMATIVE SYSTEMS

3.1 The Formal Framework
A coalitional normative system (cns) for a concurrent

game structure S = `k,Q,Π, π, d, δe is a tuple Γ = `C,ϑe
with the following components:

• A coalition C b �1, ..., k�.
• For each state q > Q, a set ϑ(q) ⊂ DC(q) of C-actions

the agents in coalition C cannot collaboratively choose.
The function ϑ is called coordination function.

Sometimes we call a cns Γ = `C,ϑe as a C-norm. When
cnss are taken into consideration, certain joint action choices
and computations will be ruled out. As in [17], we adopt the
prefix “Γ-conformant” to mean “permitted by Γ”:

• A joint action Ñm >D(q) is called a Γ-conformant joint
action iff ¨ ÑmC > ϑ(q) such that ÑmSC = ÑmC .

• A state q′ is called a Γ-conformant successor of state
q if there is a Γ-conformant joint action Ñm >D(q) such
that q′ = δ(q, Ñm).

• A Γ-conformant computation of S is an infinite se-
quence λ = q0, q1, q2, ... of states such that for all posi-
tions i C 0, the state qi+1 is a Γ-conformant successor
of the state qi.

• In each state q > Q, an A-action ÑmA for the agent
set A b Ag, is called a Γ-conformant A-action in q iff
§ ÑmC ¶ ϑ(q) such that ÑmASA 9C = ÑmC SA 9C.

• A set FA = �faSa > A� of strategies, one for each agent
in A, is called a Γ-conformant A-strategy iff for all
nonempty finite state sequences λ > Q+, the A-action
ÑmA, given by FA, is a Γ-conformant A-action.

• Finally, the Γ-conformant outcomes of a Γ-conformant
A-strategy from a state q > Q is the set outΓ(q,FA),
such that, a Γ-conformant computation λ = q0, q1, q2, ...
is in outΓ(q,FA) if q0 = q and there is a Γ-conformant
joint action Ñm > D(qi) such that (1) ja = fa(λ[0, i])
for all players a > A, and (2) δ(qi, Ñm) = qi+1.

Similarly, we can define the structure obtained from S
by implementing a cns Γ = `C,ϑe, denoted as S†Γ, as the
structure obtained from S by deleting all the joint actions
forbidden by Γ. Notice that, in most cases S†Γ is not an
ordinary concurrent game structure any longer – agents in
C will “discuss” in advance on which C-action should be
selected, so a kind of “coalitional coordination” is explicitly
represented in the structure.

4As result 1 is equivalent to S, q à  ε� S†η, q à  ε.
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Figure 1: Implementing a CNS

CNS vs. NS: Coalitional normative system extends the
concept of normative system by enabling selective restricting
a coalition’s joint behavior. It is not difficult to discover
that every ns is intrinsically a special cns. Suppose that an
action i of agent a is ruled out by an ns η, it actually means
all the joint actions of the grand coalition that adopting i
as a member are ruled out. So, for an arbitrary ns η we can
always find an equivalent cns Γη = `Ag,ϑηe for the grand
coalition, just let ∀q > Q � ϑη(q) = η(1, q)� ...�η(k, q). That
is, the following result hold.

Proposition 1. Given a cgs S. For every ns η, there
exists a cns Γ such that S†η = S†Γ.

But apparently there are some cnss without equivalent
ns. This means ns can be seen as a proper subset of cns.
Notice that although we can modify the original cgs in more
ways by using cnss, the resulting structure remains a cgs if
and only if the cns has an equivalent ns.

Example 1. Consider a cgs S depicted as Figure 1(a),
that is, S = `k,Q,Π, π, d, δe where k = 2; Q = �q0, ..., q4�; Π =
�P1, ..., P4�; π(qi) = Pi for all 1 B i B 4; d1(q0) = d2(q0) = 2;
d1(qi) = d2(qi) = 1 for all 1 B i B 4; and δ(q0,1,1) = q1;
δ(q0,1,2) = q2; δ(q0,2,1) = q3; δ(q0,2,2) = q4; δ(qi,1,1) = qi

for all 1 B i B 4. The following statements hold:

1. An ns η such that η(1, q0) = �1�; η(2, q0) = �2�; η(i, qj) =
g for all i > �1,2� and j > �1, ..., 4� has the same effect
with the cns Γ = �C,ϑ� where C = �1,2�; and ϑ(q0) =
�`1,1e, `1,2e, `2,2e�; ϑ(qi) = g for all i > �1, ..., 4�.

2. A cns Γ′ = `C′, ϑ′e, where C′ = �1,2�; and ϑ′(q0) =
�`1,2e�, ϑ′(qi) = g for all i > �1, ..., 4�, can transform
S to the structure depicted as Figure 1(b), but there
doesn’t exist any ns which can achieve this transfor-
mation.

3. The structure depicted as Figure 1(b)cannot be modeled
by any cgs.

3.2 Coordinated ATL
Consequently, in the presence of a cns, we need to refine

the interpretation for the atl formulas. We call this new
logic Coordinated atl (co-atl), which directly inherits the
atl syntax but assumes slightly different semantics.
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CO-ATL Semantics: We write S,Γ, q à ϕ to indicate
that the formula ϕ holds at state q of a concurrent game
structure S under the cns Γ. When S and Γ is clear from
the context, we write q à ϕ. The relation à is defined, for
all states q of S, inductively as follows:

• For all p > Π, we have q à p iff p > π(q).
• q à  ϕ iff q à ϕ.

• q à ϕ1 - ϕ2 iff q à ϕ1 or q à ϕ2.

• q à tAy◯ϕ iff there exists a Γ-conformant A-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) we have λ[1] à ϕ.

• q à tAyjϕ iff there exists a Γ-conformant A-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) and all positions i C 0, we have λ[i] à ϕ.

• q à tAyϕ1Uϕ2 iff there exists a Γ-conformantA-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) there exists a position i C 0 such that
λ[i] à ϕ2 and for all positions 0 B j < i we have
λ[j] à ϕ1.

Model Checking CO-ATL: Because of its significance
both in theory and practice, model checking is an impor-
tant computational problem for any modal or temporal logic.
The model checking problem for co-atl is defined as follows.

co-atl model checking:
Given: cgs S = `k,Q,Π, π, d, δe, cns Γ = `C,ϑe,

state q > Q, and co-atl formula ϕ.
Question: Is S,Γ, q à ϕ?

The lower bound of co-atl model checking is trivial,
for we can reduce the atl model checking problem, which is
ptime-complete [5], to it in polynomial time.

To show the upper bound, we can find a polynomial time
algorithm for this problem. The algorithm is obtained from
the atl model checking algorithm proposed in [5] by rewrit-
ing the Pre function which given a set A b Σ of agents and a
set ρ b Q of states, returns the set of states q such that form
q the agents in A can cooperate and enforce the next state
to lie in ρ. Formally, in the algorithm for co-atl, Pre(A,ρ)
contains state q > Q if there exists a Γ-conformant A-action
ÑmA in q such that for all Γ-conformant joint actions Ñm in q

satisfying ÑmSA = ÑmA, we have δ(q, Ñm) > ρ. Finally, we can
prove that this algorithm for co-atl is still a polynomial
time algorithm.

Theorem 2. co-atl model checking is ptime-complete,
and can be solved in time O(m ċ l) for a cgs with m tran-
sitions and a co-atl formula ϕ of length l. The problem is
ptime-hard even for a fixed formula.

Proof. We follow the steps of the proof for the atl
model checking complexity given by Alur et al. [5]. We re-
duce games played on cgss with the constraint of a cns
to games played on turn-based synchronous game struc-
tures. The only difference is in building the correspond-
ing 2-player turn-based synchronous game structure SA =
`2,QA,ΠA, πA, σA,RAe with respect to a cgs S, an ns Γ,
and a set of agents(players) A > Σ. The components in SA

are defined as usual, but we have to redefine some related
basic concepts based on the semantics of co-atl: For a state
q > Q, an A-move c at q is a Γ-conformant A-action defined

in this paper; An state q′ > Q is a c-successor of q if there
is a Γ-conformant joint action Ñm such that (1) ÑmSA = c, and
(2) q′ = δ(q, Ñm). It is easy to see that the aforementioned
changes add no additional complexity to the structure of SA,
that is, if the original game structure S has m transitions,
the turn-based synchronous structure SC has O(m) states
and transitions. This means we can find an algorithm for
co-atl model checking which requires time O(m ċ l).

So, with respect to the computational complexity of co-
atl model checking we get the same result with that of atl
model checking.

CO-ATL vs. ATL: By adopting the empty cns ΓC
g =

`C,ϑge where ϑg(q) = g for all q > Q, we can identify the
following relation between co-atl and atl.

Proposition 3. Given a cgs S = `k,Q,Π, π, d, δe, then
for all q > Q, C b Ag and ϕ > L, we have

S,ΓC
g , q à ϕ� S, q àATL ϕ.

Remark that, compared with atl, co-atl can represent
and reason about α-abilities in a wider range of structures,
that is, the class of structures obtained from concurrent
game structures by implementing cnss5. To differentiate
between the two semantics, we use “àATL” to denote the
satisfaction relation in atl.

3.3 Objectives and Effectiveness
We define the concept of objective for expressing the aim

of the designer in cns synthesis. Formally, an atomic ob-
jective is a state-formula pair, e.g. `q,ϕe, indicating that
in state q the co-atl formula ϕ should be satisfied; Then
objectives are generated by the following grammar o:

o ��= `q,ϕeS oSo1 , o2So1 - o2
where q is a state and ϕ is a co-atl formula. That is,
an objective is a Boolean combination of atomic objectives
which can express complex requirements about the system.

We adopt the expression “S†Γ   o” to mean the cns Γ
is effective for the objective o (in the cgs S), where the
relation “ ” is inductively defined as follows:

• S†Γ  `q,ϕe iff S,Γ, q à ϕ;

• S†Γ   o iff not S†Γ  o;

• S†Γ  o1 , o2 iff S†Γ  o1 and S†Γ  o2;

• S†Γ  o1 - o2 iff S†Γ  o1 or S†Γ  o2.

Intuitively, an effective cns is a cns that can fulfill the
aim of the cns designer, which is expressed as an objective.

3.4 Concepts of Optimality
Usually, there might be more than one effective cnss for

an objective. So it would be helpful if we can define some
concepts of optimality for selecting among effective cnss.

Minimality: The idea of minimality was firstly proposed
in [6, 7], attempting to minimize the amount of constraints

5All concurrent game structures are in this class, because an
arbitrary concurrent game structure S is also the structure
obtained from S by implementing an empty cns.
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set on the agents and as such, capture the notion of maximal
individual flexibility. We are going to transplant this idea
to coalitional normative systems.

Given two cnss Γ1 = `C,ϑ1e and Γ1 = `C,ϑ2e. Γ1 is said
to be less restrictive than Γ2, denoted as Γ1 l Γ2, if and
only if ∀q > Q ϑ1(q) b ϑ2(q). Γ1 is said to be strictly less
restrictive than Γ2, denoted as Γ1 h Γ2, if and only if Γ1 l Γ2

and §q > Q ϑ1(q) ⊂ ϑ2(q). And Γ is a minimal cns if and
only if ¨Γ′ such that Γ′ is effective and Γ′ h Γ.

So a minimal cns is one of the effective cnss that put the
least amount of constraints on the coalition.

Compactness: Notice that, in our framework the agents
in the coalition have to negotiate with each other before
selecting any joint actions. Basically, this process requires
agents in the coalition sending messages to each other until
an agreement on action selection has been reached. Obvi-
ously, more agents in the coalition means more complex the
process is and more prone to cause error.

In this sense, with respect to an objective o if both Γ =
`C,ϑe and Γ′ = `C′, ϑ′e are effective coalitional normative
systems, Γ is better than Γ′ if C is a proper subset of C′

(that is C ⊂ C′) – we say Γ is more compact than Γ′. An cns
Γ = `C,ϑe is a compact cns if and only if it is an effective cns
and there doesn’t exist any effective cns Γ′ which is more
compact than Γ, and in this case, we say C is a minimal
controllable coalition.

In other words, the key idea of compactness is minimizing
the amount of agents in the coalition in order to minimize
the communication cost in the system.

4. COALITIONAL NORMATIVE POWER
AND ITS LIMITATION

Intuitively, the normative power of a coalition C is mani-
fested by its ability of changing properties in cgss by imple-
menting C-norms. But very naturally the class of C-norms
is not omnipotent, for we can show that some properties
are inevitably beyond the reach of all the C-norms. In other
words, the normative power of a coalition has its limitations.
It is interesting to show what exactly the limitation is.

Power Limitation Characterization: For all formulas
ϕ > L, we say ϕ’s satisfaction cannot be established by (im-
plementing) a C-norm if and only if for all cnss S, there
doesn’t exists any C-norm Γ, such that there is a q > Q sat-
isfying S,ΓC

g , q à ϕ and S,Γ, q à ϕ; we say ϕ’s satisfaction
cannot be avoided by (implementing) a C-norm if and only
if for all cnss S, there doesn’t exists any C-norm Γ, such
that there is a q > Q satisfying S,ΓC

g , q à ϕ and S,Γ, q à ϕ.
Then the power limitation of the class of C-norm can be
characterized by answering the following two questions:

1. which fragment of L is the set of formulas whose sat-
isfaction cannot be established by a C-norm?

2. which fragment of L is the set of formulas whose sat-
isfaction cannot be avoided by a C-norm?

We then define two fragments of the co-atl language,
L+C and L−C , which are generated by the grammars ϕ and ψ
below respectively.

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StC+y◯ϕStC+y j ϕStC+yϕ1Uϕ2S ψ

ψ ��= pSψ1 , ψ2Sψ1 - ψ2StC−y◯ψStC−y j ψStC−yψ1Uψ2S ϕ
where p > Π, C b C+ b Ag, g b C− b Ag �C.

In the following, we will show that L+C and L−C are exactly
the answers to the above two questions respectively. That is,
by L+C and L−C we can soundly and completely characterize
the the limitation of the normative power of coalition C.

Soundness and Completeness: First of all, we prove
the following two lemmas, which implies that a C-norm can-
not add any thing new to the strategic ability of a coalition
that consists of a superset of C, and cannot avoid any strate-
gic ability of a coalition that consists of a subset of Ag �C.

Lemma 4. Given an arbitrary cgs S, a state q0 in S and
an arbitrary C-norm Γ. If C+ is a set of agents satisfying
C b C+ b Ag and FC+ is a Γ-conformant C+-strategy, then
there is a C+-strategy F ′

C+ such that

out(q0, F ′
C+) = outΓ(q0, FC+).

Proof. Always, we can define F ′
C+ = FC+ . And in all

states q, after the agents in C+ selected a C+-action, the
available joint actions and available Γ-conformant joint ac-
tions for the agents in Ag �C+ are the same, that is, all the
joint actions in DAg�C+(q), as Γ put no constraint on the
agents in Ag �C+.

Lemma 5. Given a cgs S, a state q0 in S and an ar-
bitrary C-norm Γ. If C− is a set of agents satisfying g b
C− b Ag � C and FC− is a C−-strategy, then there is an
Γ-conformant C−-strategy F ′

C− such that

outΓ(q0, F ′
C−) b out(q0, FC−).

Proof. As Γ actually cannot put any constraints on the
behavior of the agents in C−, all the C−-strategies are Γ-
conformant joint strategies for C−. So, we can define F ′

C− =
FC− . And in all states q, for the agents in Ag �C−, the set
of Γ-conformant joint actions is a subset of the joint actions,
because of the effect of Γ.

Then, soundness of our characterization can be estab-
lished by the following theorem.

Theorem 6. Given an arbitrary cgs S, an arbitrary C-
norm Γ and an arbitrary state q in S. Then

1. ∀ϕ > L+C , we have S,Γ, q à ϕ� S,ΓC
g , q à ϕ.

2. ∀ψ > L−C , we have S,ΓC
g , q à ψ� S,Γ, q à ψ.

Proof. By induction on the structure of ϕ and ψ. For
the case of propositions the conclusion trivially hold. For the
other cases, suppose for all ϕ > L+C and ψ > L−C the conclusion
holds. Then the satisfaction for the cases of ϕ1,ϕ2, ψ1,ψ2,
ϕ1 - ϕ2, ψ1 - ψ2,  ϕ and  ψ are immediate.

Moreover, for all C b C+ b Ag and g b C− b Ag �C:
S,Γ, q à tC+y◯ϕ � (by the co-atl semantics) there is a

Γ-conformant C+-strategy FC+ such that for all Γ-conformant
q-computations λ > outΓ(q,FC+), S,Γ, λ[1] à ϕ � (by the
induction hypothesis) for all λ > outΓ(q,FC+) , S,ΓC

g , λ[1] à
ϕ � (by lemma 4 and proposition 3) there is a F ′

C+ such
that for all λ′ > out(q,F ′

C+) we have S,λ′[1] àATL ϕ � (by
the atl semantics and proposition 3) S,ΓC

g , q à tC+y◯ϕ.
S,ΓC

g , q à tC−y◯ψ � (by proposition 3 and the atl se-
mantics) there is a C−-strategy FC− such that for all λ >
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out(q,FC−), S,λ[1] àATL ψ � (by lemma 5) there is a Γ-
conformant C−-strategy F ′

C− for all λ′ > outΓ(q,F ′
C−) we

have S,λ′[1] àATL ψ � (by proposition 3 and the induction
hypothesis) for all λ′ > outΓ(q,F ′

C−) we have S,Γ, λ′[1] à ψ
� (by the co-atl semantics) S,Γ, q à tC−y◯ψ.

Analogously, we can prove that the conclusion hold for
tC+y j ϕ, tC+yϕ1Uϕ2, tC−y j ψ, and tC−yψ1Uψ2.

Finally, we can justify the completeness of our character-
ization by the following theorem.

Theorem 7. (1) If ϕ ¶ L+C , then the satisfaction of ϕ
can be established by a C-norm. (2) If ϕ ¶ L−C , then the
satisfaction of ϕ can be avoided by a C-norm.

Proof. We are only going to prove the first part of this
theorem, as the proof for the second part is similar.

To show the satisfaction of all the formulas in L�L+C can
be established by implementing a C-norm. Our method is
mainly based on constructing the required concurrent game
structure for each such formula.

Let A b Ag and A 9 C x C (i.e., A is not a C+). For
all formulas of the form tAyγ where γ is of the form ◯ϕ,
jϕ, or ϕ1Uϕ2, and ϕ,ϕ1, ϕ2 are arbitrary co-atl formu-
las, we can construct a concurrent game structure S with
a state q in its state space, satisfying S, q àATL tAyγ, but
S, q àATL tA 8Cyγ. So, in such S, agents in the set A 8C
have a joint strategy FA8C such that all computations in
out(q,FA8C) satisfy ψ. According to [5, 11], FA8C can be
a set of “memory-free” strategies that map states to A 8C-
actions. We construct the C-norm Γ to restrict the joint
actions of the agents in set A 9 C to only those are con-
sistent with FA8C . Then, by Γ, we have S,Γ, q à tAyγ.
That is, the satisfaction of tAyγ can be established by im-
plementing a C-norm. Proving the result “if ϕ ¶ L−C then
the satisfaction of  ϕ can be established by implementing
a C-norm” can be transformed to proving “if ϕ ¶ L−C then
the satisfaction of ϕ can be avoided by a implementing a
C-norm”.

Moreover, it is straightforward to prove that if the satis-
faction of ϕ can be established by a implementing C-norm,
then the satisfaction of ϕ , ϕ′, ϕ - ϕ′, tAy◯ϕ, tAy j ϕ,
tAyϕ′Uϕ, tAyϕUϕ′,  tAy◯ϕ,  tAy j ϕ,  tAyϕ′Uϕ, and
 tAyϕUϕ′, where A b Ag and ϕ′ is an arbitrary co-atl for-
mula, can also be established by implementing a C-norm.

Interesting Corollaries: It is easy to show that all
the co-atl formulas are beyond the normative power of an
empty coalition, and the power limitation characterization
for ns given by [14] is not complete.

Corollary 8. (1) The limitation of the normative power
of coalition g can be characterized by L+g and L−g, where both
L+g and L−g are the class of co-atl formulas generated by the
following grammar ϕ (i.e., all the co-atl formulas):

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StAy◯ϕStAy j ϕStAyϕ1Uϕ2S ϕ
where p > Π, and g b A b Ag.

(2) The limitation of the normative power of coalition Ag
can be characterized by L+Ag and L−Ag, which are the classes
of co-atl formulas generated by the following grammars ϕ
and ψ respectively:

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StAgy◯ϕStAgy j ϕStAgyϕ1Uϕ2S ψ

ψ ��= pSψ1 , ψ2Sψ1 - ψ2Sty◯ψSty j ψStyψ1Uψ2S ϕ
where p > Π.

As the set of nss is a strict subset of the class of Ag-norms.
We can conclude that L+Ag and L−Ag soundly characterize the
limitation of the power of nss. Although the completeness
result doesn’t hold for L+Ag and L−Ag with respect to nss, we
are sure that L+Ag and L−Ag is a more comprehensive char-
acterization for the power limitation of nss compared to Le

and Lu given by [14], because Le ⊂ L+Ag and Lu ⊂ L−Ag.
Moreover, we can compare the normative power of differ-

ent coalitions. We say coalition C1 is more powerful than
coalition C2 if and only if L+C1

b L+C2
and L−C1

b L−C2
. Then

immediately we can show that for two arbitrary coalitions
C1 and C2 if C1 b C2 then C2 is more powerful than C1.
Hence, with respect to normative power, g is the weakest
coalition and Ag is the strongest coalition.

5. COMPLEXITY

5.1 Basic Computational Problems
The basic computational problems related to cnss may in-

clude checking whether a cns is effective, checking whether
there is an effective cns, and finding an effective cns. We
formalize them respectively as follows:

cns effectiveness:
Given: cgs S, cns Γ and objective o.
Question: Is Γ effective for o?

cns feasibility:
Given: cgs S, coalition C and objective o.
Question: Is there a C-norm which is effective for o?

cns synthesis:
Given: cgs S, coalition C and objective o.
Output : A C-norm Γ that is effective for o.

Note that, similar problems have been proposed for ns
in [14]. It has been established that the effectiveness problem
for ns is in ptime and the feasibility problem for ns is np-
complete. For cns, we have the following results.

Theorem 9. cns effectiveness is ptime-complete, and
can be solved in time O(m ċ n ċ l) for a cgs with m transi-
tions, and an objective of length n, where the max length of
the co-atl formulas in the objective is bounded by l.

Proof. To see whether an objective is effective we can
firstly determine the effectiveness of all the atomic objec-
tives which requires time O(m ċ l ċ n), then the remain work
equals verifying an assignment for a Boolean formula, which
requires time O(n). So the overall time complexity is O(mċlċ
n). Thus this problem is in ptime. With respect to the lower
bound, ptime-hardness is trivial, for verifying S,Γ, q à ϕ can
be directly reduced to verifying S†Γ  `q,ϕe.

While cns effectiveness is tractable, cns feasibility
is possibly intractable according to the following theorem.
Note that, our result is based on the atl assumption that the
agent number, i.e., k, is a constant. But the state number
SQS, and the max available action number of every agent in
every state, i.e., d, are considered as variables.

Theorem 10. cns feasiblity is np-complete, even for
concurrent game structures with only one agent.
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Figure 2: The reduction from sat to cns feasibility

Proof. Membership in np can be seen by the following
nondeterministic algorithm:

(1) guess a C-norm Γ;
(2) verify that Γ is effective for o.
Since step (1) can be done in non-deterministic polynomial

time O(dk ċ SQS), and step (2) requires only polynomial time.
To see np-hardness we reduce sat to it. Given a sat in-

stance φ(x1, ..., xn). We create a cgs S depicted as Figure 2.
That is, Sφ = `k,Q,Π, π, d, δe where k = 1; Q = �q0, ..., qn+1�;
Π = �X1, ...,Xn�; π(qi) = �Xi� for all i > �1, ..., n�; d1(q0) =
�1, ..., n�, d1(qi) = �1� for all i > �1, ..., n�; and δ(q0, i) = qi

for all i > �1, ..., n�, δ(qi,1) = qi for all i > �1, ..., n�. Let φ� be
the result of systematically substituting for every Boolean
variable xi in φ the co-atl expression t1y◯Xi. Then it
is easy to see that φ is satisfiable if and only if there is a
�1�-norm which is effective for the objective `q0, φ�e.

The synthesis problem for cns is a function problem that
requires an answer more elaborate than “yes” or “no”.

Theorem 11. cns synthesis is fnp-complete, even for
concurrent game structures with only one agent.

Proof. Membership in fnp: Let L be the language for
the cns feasibility problem. By Theorem 10 we know that
for all string x, to decide whether x > L is np-complete. And
we can define a relation RL such that RL(x, y) if and only if
x > L and y is an output of cns synthesis given the instance
x. It is easy to check that RL is polynomial-time decidable
and polynomially balanced.

To see fnp-hardness we reduce fsat to it. The reduction
is similar to that of Theorem 10. Given a boolean formula
φ(x1, ..., xn) we can create the cgs Sφ and the co-atl for-
mula ϕ�. Then we can see that x1, ..., xn satisfy φ if and
only if the cns Γ = `�1�, ϑe, where ϑ(q0) = �iS0 B i B n and
xi = 0�, ϑ(qi) = g for all i > �1, ..., n�, is effective for the
objective `q0, φ�e.

It is easy to see that the synthesis problem for ns is also
fnp-complete. So now we can conclude that the effective-
ness, feasibility and synthesis problems of cns are no more
complex than the corresponding problems of ns.

5.2 Complexity of Minimality Checking
The problem of Checking whether a cns is a minimal cns

is a basic problem related to the concept of minimality.

minimal cns checking:
Given: cgs S, cns Γ and objective o.
Question: Is Γ a minimal cns for o?

Theorem 12. minimal cns checking is co-np-complete.

Proof. We can show that the complement problem to
minimal cns checking is np-complete. That is, given a
cgs S, a cns Γ, and an objective o, determining whether
there is a cns such that Γ′ h Γ and Γ′ is effective for o. Note
that, an arbitrary cns feasibility instance is an instance
of this problem that taking Γ to be all the transitions in the
cgs. So this problem subsumes cns feasibility and thus
is np-hard. And the membership in np is trivial.

5.3 Complexity of Compactness Checking
With respect to compactness, there are two basic decision

problems, that is, deciding whether a cns is a compact cns,
and deciding whether a coalition is a minimal controllable
coalition. We define them formally as follows:

compact cns checking:
Given: cgs S, cns Γ and objective o.
Question: Is Γ a compact cns for o?

minimal controllable coalition checking (mcc):

Given: cgs S, coalition C and objective o.
Question: Is C a minimal controllable coalition for o?

Theorem 13. compact cns checking is co-np-complete.

Proof. The problem complement to compact cns check-
ing is as follows: given a cgs S, a cns Γ = `C,ϑe and an
objective o, is it true that Γ is not effective for o or there is
a C′ such that C′ ⊂ C and there is an effective C′-norm for
o? We can show this problem is np-complete: np-hardness
is immediately, for it subsumes cns feasibility; and since
the amount of agents is a constant, the amount of subsets of
C is bounded by a constant. So we can guess a cns for ev-
ery subset of C respectively in nondeterministic polynomial-
time, and then verify that every cns is an effective cns in
polynomial-time. This establishes the np upper bound .

The problem of deciding whether a coalition is a minimal
controllable coalition seems a harder problem, we can show
that it is a problem that complete for the class dp6.

Theorem 14. minimal controllable coalition check-
ing is dp-complete.

Proof. Membership in dp can be seen from the following
algorithm using an oracle for cns feasibility:

(1) query the oracle to see whether C is effective for o;
(2) query the oracle to see whether there is an agent a > C

such that C � �a� is effective for o;
(3) if step (1) returns “yes” and step (2) returns “no” then

return “yes”, otherwise return “no”.
To prove dp-hardness we reduce sat-unsat [9] to it. Given

a sat-unsat instance (φ(x1, ..., xm), φ′(y1, ..., yn)), we can
create a cgs S depicted as Figure 3.

Let Ψ be the formula ty◯(PX ,φ�)-(PY ,φ′�), where φ�

is the result of systematically substituting for every Boolean
variable xi in φ the co-atl expression t1,2y◯Xi, and φ′�

is the result of systematically substituting for every Boolean
variable yi in φ′ the co-atl expression t1,2y◯Yi. Then
we can prove that (φ,φ′) is a “yes” instance of sat-unsat if

6dp is a complexity class “between” np and pspace, and
consists of all languages that are intersections of a language
in np and a language in co-np (see [9] for the details of dp).
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Figure 3: The reduction from sat-unsat to mcc

and only if �1,2� is a minimal controllable coalition for the
objective `q0,Ψe.

For the � direction, we can define a �1,2�-norm that
delete all the transitions from q0 to q2, and delete some
transitions started from q1 to make Ψ satisfied in state q0.
But for any �1�-norm or �2�-norm the transitions from q0
to q2 cannot be completely deleted at the same time, and
since φ′ is unsatisfiable, Ψ cannot be true in state q0.

For the
 direction, the existence of effective �1,2�-norms
requires φ or φ′ is satisfiable. And the fact of Ψ cannot be
satisfied in state q0 by implementing any �1�-norm or �2�-
norm means φ′ is unsatisfiable, otherwise we can delete the
transition from state q0 to state q1 and delete some transi-
tions started from state q2 by a �2�-norm to make Ψ satisfied
in state q0. So, φ is satisfiable and φ′ is unsatisfiable.

6. CONCLUSIONS AND FUTURE WORK
We have proposed the framework for coalitional normative

systems in this paper. Three aspects of theoretical work
have been done: firstly, we have extended the semantics
of atl and proposed Coordinated atl (co-atl) to support
the formalizing of cnss; secondly, we have proved that the
limitation of the normative power of an arbitrary coalition
C can be soundly and completely characterized by the co-
atl fragments L+C and L−C ; and thirdly, we have established
the computational complexity of some key problems related
to coalitional normative systems.

One opportunity for further research is to more systemat-
ically investigate the related computational complexity. As
our current results are built on the conventional assump-
tion that the amount of agents k is a constant. So it may
be interesting to study the complexity when k is considered
as a variable (as in [8]). Another possible further research
is modeling the problem of finding an optimal cns as an
optimization problem (as the work in [2]).
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ABSTRACT
An abstract argumentation framework and the semantics,
often called Dungean semantics, give a general framework
for nonmonotonic logics. In the last fifteen years, a great
number of papers in computational argumentation adopt
Dungean semantics as a fundamental principle for evaluat-
ing various kinds of defeasible consequences. Recently, many
papers address problems not only with theoretical reason-
ing, i.e., reasoning about what to believe, but also prac-
tical reasoning, i.e., reasoning about what to do. This pa-
per proposes a practical argumentation semantics specific to
practical argumentation. This is motivated by our hypoth-
esis that consequences of such argumentation should satisfy
Pareto optimality because the consequences strongly depend
on desires, aims, or values an individual agent or a group of
agents has. We define a practical argumentation framework
and two kinds of extensions, preferred and grounded exten-
sions, with respect to each group of agents. We show that
evaluating Pareto optimality can be translated to evaluating
preferred extensions of a particular practical argumentation
framework. Furthermore, we show that our semantics is a
natural extension of Dungean semantics in terms of consid-
ering more than one defeat relation. We give a generality
order of four practical argumentation frameworks specified
by taking into account Dungean semantics and Pareto opti-
mality. We show that a member of preferred extensions of
the most specific one is not just Pareto optimal, but also it
is theoretically justified.
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tonic reasoning and belief revision

General Terms
Theory
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1. INTRODUCTION
An abstract argumentation framework and the semantics,
often called Dungean semantics, give a general framework
for nonmonotonic logics [6]. In the last fifteen years, a great
number of papers in computational argumentation adopt
Dungean semantics as a fundamental principle for evaluat-
ing states of arguments. Dungean semantics is defined on
an abstract argumentation framework, denoted by AF , con-
sisting of a set of arguments and a defeat relation on the set
of arguments. Its main feature is that nonmonotonic rea-
soning can be realized without any internal structures of
arguments such as languages or inferences. Recently, many
papers address problems not only with theoretical reasoning,
i.e., reasoning about what to believe, but also practical rea-
soning, i.e., reasoning about what to do, and apply Dungean
semantics to these problems described as instances of AF or
their expansions.
This paper shows that there exists a different kind of se-

mantics specific to practical argumentation. Practical ar-
gumentation is known as the form of argumentation which
aims at answering the question: ‘What is to be done [11]?’
The declaration is motivated by our hypothesis that deci-
sions by practical argumentation must satisfy Pareto op-
timality. Consequences of practical argumentation are de-
cisions of a course of action that an agent or a group of
agents takes, and the decisions strongly depend on desires,
aims, or values that it has. In such argumentation, agents
are certain to avoid Pareto improvable decisions because if
it is not Pareto optimal, there exists another decision that
makes some agents better off and no one worse off. From this
standpoint, there is no basis for believing that Dungean se-
mantics gives an adequate principle for evaluating practical
argumentation because it does not explain a relationship to
social efficiency. The same holds true for the modification
of Dungean semantics defined on a value-based argumen-
tation framework [3]. Furthermore, many argument-based
approaches for practical reasoning do not provide a sufficient
explanation for applying Dungean semantics. In our view,
Dungean semantics is specialized in evaluating acceptance
of propositions as true, but it is insufficient for evaluating
acceptance of actions as desirable.
In this paper, we propose practical argumentation seman-

tics specific to practical argumentation. Practical argumen-
tation semantics is defined on a practical argumentation
framework consisting of a set of arguments without any in-
ternal structures, a set of agents, and a function from the
set of agents to the power set of a binary relation on the
set of arguments. The function outputs a defeat relation
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that an inputted agent has. On the framework, we define
two kinds of extensions, preferred and grounded extensions,
with respect to each group of agents. In order to show the
correctness of our theory, we show that evaluating Pareto op-
timality can be translated to evaluating preferred extensions
of a particular practical argumentation framework. Further-
more, we show that evaluating defeasible consequences with
Dungean semantics can also be translated to evaluating ex-
tensions of a particular practical argumentation framework.
We give a generality order of four practical argumentation
frameworks specified by taking into account Dungean se-
mantics and Pareto optimality. We show that a member
of preferred extensions of the most specific one is not just
Pareto optimal, but also it is theoretically justified.
This paper is organized as follows. Section 2 shows a mo-

tivational example for addressing practical argumentation
semantics. Section 3 gives preliminaries. In Section 4, we
propose practical argumentation semantics, and in section
5, we show properties of the semantics. Section 6 gives an
order relation of practical argumentation frameworks and
Section 7 shows illustrative examples. Section 8 shows re-
lated works and Section 9 describes conclusions and future
works.

2. MOTIVATIONAL EXAMPLE
Let us consider simple deliberative argumentation by which
agents i and j try to decide what to do about buying an
apartment. Agent i has concerns about safeness and quiet-
ness, and she prefers getting a safe neighborhood, avoiding
an unsafe neighborhood, getting a quiet place, and avoid-
ing a noisy place, in this order. In contrast, agent j has
concerns about access to transportation, sunlight and safe-
ness, and he prefers getting good access to transportation,
avoiding bad access to transportation, getting a place with
sufficient sunlight, and getting a safe neighborhood, in this
order. Consider the following arguments put forward by
agents i and j at some point in argumentation.

• Ai : We ought to buy apartment ‘a’ because it is lo-
cated in a safe area.

• Bj : We ought to buy apartment ‘b’ because it is quiet
and it has sufficient sunlight.

• Cj : We ought not to buy ‘a’ because it has bad access
to transportation.

• Di : We ought not to buy ‘b’ because the public secu-
rity is poor and the access to transportation is bad.

What is the consequence of the argumentation? In other
words, what actions would be taken by rational agents. We
think that rational agents are certain to decide to take so-
cially efficient actions. Pareto optimality is a formal crite-
rion for evaluating efficiency, and a solution is Pareto op-
timal if no agents can be made better off without making
someone else worse off. Our idea here is that we evaluate
efficiency of practical argumentation semantics, proposed in
this paper, by checking whether the consequences defined by
the semantics are Pareto optimal or not. However, it is diffi-
cult to evaluate the above argumentation in terms of Pareto
optimality because it differs completely from the problem
setting that Pareto optimality assumes. It assumes that
each agent has his/her individual preferences on outcomes

and implicitly assumes that any two distinct outcomes are
incompatible. Our detailed idea is that we reduce the origi-
nal argumentation to restricted ones that can be handled in
a problem of Pareto optimality, and conclude that our se-
mantics is efficient based on the fact that the consequences
of the restricted argumentation are identical to Pareto opti-
mal solutions. For example, consider the situation that they
evaluate the arguments based on his/her own preference on
the arguments. If we consider the restricted argumentation
consisting of arguments A and B, then both A and B are
Pareto optimal because agent i prefers A to B and agent j
prefers B to A. If we consider the restricted argumentation
consisting of arguments B and D, then only D is Pareto op-
timal because both agents prefer D to B. Our practical ar-
gumentation semantics must define defeasible consequences
that are consistent with the evaluation of Pareto optimality
in each restricted argumentation.
We have to take into account arguments about not only

what to do, but also, what to believe in practical argumen-
tation. Consider the following arguments put forward by
agent j at the end of argumentation.

• Ej : ‘a’ is not located in a safe area because a murder
occurred and the murderer is still at large.

• Fj : It takes five minutes from ‘b’ to the closest station
and the station has two train lines. Further, there is
a police office near the station. Therefore, the public
security and the access to transportation are not bad.

In this situation, what is the consequence of the argumen-
tation, or what actions would be taken by rational agents?
A and D fail to justify their own actions because they can-
not defeat the defeating arguments E and F , respectively.
Therefore, the effects of these arguments on the decision
should be canceled. We benefit from Dungean semantics for
evaluating this kind of arguments, and combine our practical
argumentation semantics and Dungean semantics in order to
handle not only practically efficient, but also theoretically
justified arguments.

3. PRELIMINARIES
Let G be a set and R be a binary relation on G, i.e., R ⊆ G×
G. R is called reflexive if (x, x) ∈ R, for all x ∈ G, transitive
if whenever (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R, for
all x, y, z ∈ G, and antisymmetric if whenever (x, y) ∈ R
and (y, x) ∈ R then x = y, for all x, y ∈ G. R is called
quasi-order if it is reflexive and transitive, and partial order
if it is reflexive, transitive, and antisymmetric. The inverse
relation of R, denoted by R−1, and the complement relation
of R, denoted by R, are defined as R−1 = {(x, y) | (y, x) ∈
R} and R = {(x, y) | (x, y) /∈ R}, respectively. The inverse
complement relation of R is the complement relation of the
inverse relation of R, i.e., R−1.
Welfare economics is a branch of economics that is con-

cerned with the evaluation of alternative economic situations
(states, configurations) from the point of view of the soci-
ety’s well being [10]. One of the prominent measures for
evaluating society’s well being is Pareto optimality defined
as follows.

Definition 1. An outcome o1 ∈ O is Pareto optimal (or
Pareto efficient) if there is no other outcome o2 6= o1 such
that ∀i ∈ I, o2 �i o1 and ∃j ∈ I, o2 �j o1.
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In other words, a solution is Pareto optimal if no agents can
be made better off without making someone else worse off.
The abstract argumentation framework [6] is one of the

argument-based approaches for nonmonotonic reasoning. Its
main feature is that nonmonotonicity arises from the in-
teractions between conflicting arguments, not in the pro-
cess of constructing arguments. The abstract argumenta-
tion framework is especially abstract because it takes no ac-
count of the internal structures of arguments and only takes
account of the external structures between arguments, i.e.,
defeat relation. The framework allows us to define various
semantical notions of argumentation extensions. These no-
tions are intended to capture various types of nonmonotonic
consequence. The basic formal notions, with some termino-
logical changes, are as follows.

Definition 2. [6] The abstract argumentation framework
is defined as a pair AF =< AR, defeat > where AR is a
set of arguments, and defeat is a binary relation on AR, i.e.
defeat ⊆ AR×AR.

• A set S of arguments is said to be conflict-free if there
are no arguments A, B in S such that A defeats B.

• An argument A ∈ AR is acceptable with respect to a
set S of arguments iff for each argument B ∈ AR: if
B defeats A then B is defeated by an argument in S.

• A conflict-free set of arguments S is admissible iff each
argument in S is acceptable with respect to S.

• A preferred extension of an argumentation framework
AF is a maximal (with respect to set inclusion) admis-
sible set of AF .

For argumentation framework AF , an argument is justified
with respect to AF if it is in every preferred extension of
AF , and is defensible with respect to AF if it is in some but
not all preferred extensions of AF [13].

4. PRACTICAL ARGUMENTATION
SEMANTICS

Practical argumentation semantics is a general rule for defin-
ing notions of defeasible consequences of a practical argu-
mentation. Practical argumentation is known as the form of
argumentation which aims at answering the question: ‘What
is to be done [11]?’ Practical argumentation as shown in
Section 2 handles two different kinds of arguments. One
is the argument concluding actions that a group of agents
should do or should not do, and the other is the argument
concluding truth of propositions. We call these two kinds
of arguments practical and theoretical arguments, respec-
tively. In this paper, we assume that a set Args of argu-
ments is divided into a set P args of practical arguments
and a set T args of theoretical arguments where Args =
P args ∪ T args and P args ∩ T args = ∅ hold. The assump-
tion is based on the observation that these two kinds of
arguments should be formally distinguished not at the level
of abstract arguments without any internal structures of ar-
guments, but at the level of internal structures of arguments
such as logical languages or inferences. We define a practical
argumentation framework as follows.

Definition 3. A practical argumentation framework, de-
noted by P RAF , is a pair P RAF =< Args, Agents,

Figure 1: Arguments and subjective defeat relations

Defeat >, where Args is a set of arguments, Agents is
a set of agents, and Defeat is a function that maps Agents
into 2Args×Args.

P RAF characteristically has each agent i’s defeat relation
defined by Defeat(i). This reflects the fact that defeat re-
lations between practical arguments are subjective because
they strongly depend on preferences, desires, aims, values,
morality, or ethics that an individual agent has. The in-
dividual agent’s defeat relation might be substantiated by
subjective preferences, values, and/or ethics, objective log-
ical contradiction, or any combination thereof. P RAF ab-
stracts any such internal information about arguments, and
it consists of a minimal number of elements that practical
argumentation semantics can be defined. In what follows,
we say that x defeats y under i if there exist i ∈ Agents and
(x, y) ∈ Defeat(i).

Example 1. The following is the practical argumentation
framework consisting of some arguments and defeat relations
shown in Section 2.

P RAF = < {A, B, C, D}, {i, j}, Defeat >

Defeat(i) = {(A, B), (A, C), (D, B)}
Defeat(j) = {(B, A), (C, A), (D, B)}

The arguments and the defeat relations can be shown in
Figure 1. There exists an arrow from x to y with label i if
x defeats y under i.

In what follows, we assume an arbitrary but fixed practical
argumentation framework. Consequences of practical argu-
mentation are decisions of a course of action that an agent or
a group of agents takes. Therefore, the consequences must
be consistent. One of the properties that a set of arguments
has is conflict-freeness.

Definition 4. A set S ⊆ Args of arguments is conflict-free
to a set N ⊆ Agents of agents if for all arguments A, B ∈ S,
A does not defeat B under any agent i ∈ N .

We define a notion of acceptability. The basic idea of ac-
ceptability is that a set N of rational agents would accept
an argument A if each argument defeating A under some
agent is defeated by some argument under an agent in N .

Definition 5. An argument A ∈ Args is acceptable to a
set N ⊆ Agents of agents with respect to a set S ⊆ Args
of arguments if each argument defeating A under an agent
i ∈ Agents is defeated by an argument B ∈ S under an
agent j ∈ N .
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In contrast to acceptable arguments defined in Dungean se-
mantics, our acceptable arguments differ from one set of
agents to another. Note that acceptability does not require
that each argument defeating A is defeated by an argument
B ∈ S under all agents j ∈ N . The notion of admissibility
is defined on the basis of conflict-freeness and acceptability.

Definition 6. A set S ⊆ Args of arguments is admissible
to a set N ⊆ Agents of agents if S is conflict-free to N and
each argument in S is acceptable to N with respect to S.

Self-admissibility is defined in this paper. Intuitively, every
argument A in a self-admissible set can defeat every argu-
ment defeating A by A itself. In other words, A can defend
itself without relying on any other arguments.

Definition 7. A set S ⊆ Args of arguments is self-
admissible to a set N ⊆ Agents of agents if S is conflict-free
to N and each argument A ∈ S is acceptable to N with
respect to {A}.

We call an element of a self-admissible set a self-admissible
argument. Note that it is not always true that a self-
admissible set has only one element. The credulous or pre-
ferred semantics of a practical argumentation framework is
defined by the notion of preferred extension.

Definition 8. A set S ⊆ Args of arguments is a preferred
extension to a set N ⊆ Agents of agents if S is a maximal
admissible set to N .

The credulous semantics provides defeasible consequences
of a practical argumentation framework. Another defeasible
consequence of a practical argumentation framework is pro-
vided by a skeptical or grounded semantics. The semantics
is defined by using the following operator.

Definition 9. Let S ⊆ Args and N ⊆ Agents. Then the
operator F N for N is defined as follows.

• F N (S) = {A ∈ Args | A is acceptable to N with
respect to S}

Definition 10. A set of S ⊆ Args of arguments is a
grounded extension to a set N ⊆ Agents of agents if S
is the least fixed point of F N .

Example 2. Both {A, D} and {C, D} are preferred exten-
sions to {i, j}, and {D} is a grounded extension of {i, j} in
Example 1.

5. PROPERTIES OF PRACTICAL
ARGUMENTATION SEMANTICS

In this section, we aim to show the relationships between
our practical argumentation semantics and both Pareto op-
timality and Dungean semantics. For Pareto optimality,
we show that evaluating Pareto optimal solutions can be
translated to evaluating preferred extensions of a particular
practical argumentation framework. The following lemma
shows the relationship between preferred extensions and self-
admissible arguments.

Lemma 1. Let P RAF =< Args, Agents, Defeat > be a
practical argumentation framework where the complement
of Defeat(i) is transitive, for all i ∈ Agents. An argument
A ∈ Args is a member of some preferred extension to Agents
iff A is self-admissible to Agents.

Proof. (⇐) From Definition 8, a preferred extension is a
conflict-free admissible set. Thus, if {A} is admissible set to
Agents then there exists a preferred extension S to Agents
such that {A} ⊆ S. (⇒) We show that the contradiction is
derived under the assumptions that A is a member of some
preferred extension S to Agents and A is not self-admissible
to Agents. Under the assumptions, there exists an argument
B ∈ Args defeating A, under an agent i ∈ Agents, that
is not defeated by A under any agent j ∈ Agents and is
defeated by a third argument C ∈ S under an agent k ∈
Agents. Formally, the following formulas hold for S.

∃B ∈ Args(∃i ∈ Agents((B, A) ∈ Defeat(i))
∧∀j ∈ Agents((A, B) /∈ Defeat(j))
∧∃k ∈ Agents∃C ∈ S((C, B) ∈ Defeat(k)))

⇒ ∃B ∈ Args∃i ∈ Agents((B, A) ∈ Defeat(i))
∧∃j ∈ Agents∃C ∈ S((A, B) /∈ Defeat(j)
∧(C, B) ∈ Defeat(j)) (1)

⇒ ∃B ∈ Args∃i ∈ Agents((B, A) ∈ Defeat(i))
∧∃j ∈ Agents∃C ∈ S((C, A) ∈ Defeat(j)) (2)

(2) can be derived from (1) under the following assumption
that the complement of Defeat(i) is transitive.

∀A, B, C ∈ Args∀i ∈ Agents((A, B) /∈ Defeat(i)
∧(C, A) /∈ Defeat(i)→ (C, B) /∈ Defeat(i))

⇔ ∀A, B, C ∈ Args∀i ∈ Agents((A, B) /∈ Defeat(i)
∧(C, B) ∈ Defeat(i)→ (C, A) ∈ Defeat(i))

A, C ∈ S and there exists j ∈ Agents such that (C, A) ∈
Defeat(j) in (2). This contradicts the assumption that S is
conflict-free to Agents.

In Lemma 1, Defeat(i) is assumed to be transitive. In The-
orem 1, Defeat(i) is substituted by the inverse complement
of i’s preference expressed as quasi-order. The transitivity
in Lemma 1 is a minimal assumption that makes Lemma 1
hold. The following lemma shows the relationship between
self-admissible arguments and Pareto optimal solutions.

Lemma 2. Let O be a set of outcomes, Agents be a set
of agents, and %i (i ∈ Agents) be a quasi-order on O.
An outcome o ∈ O is Pareto optimal with respect to each
agent i’s preference %i iff o is self-admissible of P RAF =<
O, Agents, Defeat > to Agents where Defeat(i) = 6-i, for
all i ∈ Agents.

Proof. o ∈ O is self-admissible to Agents iff the follow-
ing formula holds.

@i ∈ Agents(o 6-i o) ∧ ∀o1 ∈ O(∃i ∈ Agents

(o1 6-i o)→ ∃j ∈ Agents(o 6-j o1)) (3)

(3) can be transformed to the following formulas based on
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the assumption that %i is a quasi-order.

∀o1 ∈ O(∃i ∈ Agents(o1 6-i o)→ ∃j ∈ Agent

(o 6-j o1))
⇔ ∀o1 ∈ O(∃i ∈ Agents(o1 �i o ∨ o 6-i o1 ∧ o1 6-i o)
→ ∃j ∈ Agents(o 6-j o1))

⇔ ∀o1 ∈ O(∃i ∈ Agents(o1 �i o) ∨ ∃k ∈ Agents

(o 6-k o1 ∧ o1 6-k o)→ ∃j ∈ Agents(o 6-j o1))
⇔ ∀o1 ∈ O((∃i ∈ Agents(o1 �i o)→ ∃j ∈ Agents

(o 6-j o1)) ∧ (∃k ∈ Agents(o 6-k o1 ∧ o1 6-k o)→
∃l ∈ Agents(o 6-l o1)))

⇔ ∀o1 ∈ O(∃i ∈ Agents(o1 �i o)→ ∃j ∈ Agents

(o 6-j o1))
⇔ ∀o1 ∈ O(@i ∈ Agents(o1 �i o) ∨ ∃j ∈ Agents

(o 6-j o1))
⇔ @o1 ∈ O(∃i ∈ Agents(o1 �i o) ∧ ∀j ∈ Agents

(o -j o1)) (4)

(4) is equivalent to the definition of Pareto optimality, and
therefore, o is Pareto optimal.

From Lemma 1 and Lemma 2, we can reach the following
theorem.

Theorem 1. Let O be a set of outcomes, Agents be a set
of agents, and %i (i ∈ Agents) be a quasi-order on O. An
outcome o ∈ O is Pareto optimal with respect to each agent
i’s preference %i iff o is a member of some preferred exten-
sion of P RAF =< O, Agents, Defeat > to Agents where
Defeat(i) = 6-i, for all i ∈ Agents.

Theorem 1 shows that evaluating Pareto optimal solutions
can be translated to evaluating preferred extensions of a par-
ticular practical argumentation framework. This fact pro-
vides a theoretical basis for concluding that the practical
argumentation semantics credulously justifies Pareto opti-
mal solutions. Note that due to the particularity of the
practical argumentation framework, it is generally the case
that evaluating preferred extensions cannot be translated to
evaluating Pareto optimal solutions.
For Dungean semantics, a link exists between our practical

argumentation semantics and Dungean semantics.

Proposition 1. Let AF =< Args, defeat > be an ab-
stract argumentation framework. The preferred extensions
and the grounded extension of AF are equivalent to the pre-
ferred extensions and the grounded extension of P RAF =<
Args, Agents, Defeat > to Agents where Agents = {i} and
Defeat(i) = defeat.

Proposition 1 shows that our practical argumentation se-
mantics justifies defeasible consequences instead of Dungean
semantics. Furthermore, it provides a theoretical basis for
concluding that our practical argumentation semantics is a
natural extension of Dungean semantics in terms of handling
subjective defeat relations. Note that due to the particular-
ity of the practical argumentation framework, it is generally
the case that evaluating extensions of a practical argumen-
tation framework cannot be translated to evaluating exten-
sions of an abstract argumentation framework.

6. GENERALITY ORDER FOR
PRACTICAL ARGUMENTATION
FRAMEWORKS

This section gives a generality order of four practical ar-
gumentation frameworks specified by taking into account
Dungean semantics and Pareto optimality. A practical ar-
gumentation framework and our practical argumentation se-
mantics are insufficient to handle the practical argumenta-
tion shown in Section 2 because it takes no account of the-
oretical arguments that play a role of evaluating the truth
of statements in practical arguments. Hence, we take into
account theoretical arguments and the defeat relations that
are unrelated to agents’ subjective preferences, desires, val-
ues, morality, and ethics. A possible way to handle theo-
retical evaluation in practical argumentation is to unify our
practical argumentation semantics and Dungean semantics
into one semantics. However, it does not always work well.
We sometimes take an attitude that reasoning about beliefs
should be skeptical while reasoning about action should be
credulous [12]. A unified semantics cannot evaluate these
two types of reasoning in different ways, i.e., by preferred
or grounded semantics. We take a different approach that
stratifies a practical argumentation framework by taking
into account an abstract argumentation framework evalu-
ated by Dungean semantics. In addition, we further stratify
the framework by considering Pareto optimality.

Definition 11. Let AF =< Args, defeat > be an ab-
stract argumentation framework where Args = T args ∪
P args and defeat ⊆ T args × Args, and P RAF =<
S, Agents, Defeat > be a practical argumentation frame-
work where S ⊆ Args.

1. P RAF is a justified practical argumentation frame-
work with respect to AF , denoted by JP RAF , if all
arguments in S are members of the grounded extension
of AF .

2. P RAF is a practical argumentation framework for
Pareto optimality, denoted by P RAFP O, if the com-
plement of Defeat(i) is quasi-order, for all i ∈ Agents.

3. P RAF is a justified practical argumentation frame-
work for Pareto optimality, denoted by JP RAFP O, if
P RAF is a justified practical argumentation frame-
work with respect to AF and P RAF is a practical
argumentation framework for Pareto optimality.

AF does not allow practical arguments to defeat any argu-
ments while it allows theoretical arguments to defeat the-
oretical and practical arguments. Figure 2 shows a gener-
ality order of practical argumentation frameworks in Def-
inition 11. Top of the order is a general argumentation
framework and bottom of the order is the most special-
ized practical argumentation framework, i.e., JP RAFP O.
Note that it is generally the case that the intersection of
the grounded extension of AF and the union of all pre-
ferred extensions of P RAF to a set of agents is not equal
to the union of all preferred extensions of JP RAF to the
set of agents. It means that we cannot obtain the same
consequences with the preferred extensions of JP RAF to a
set of agents by parallel evaluation of the grounded exten-
sion of AF and the preferred extensions of P RAF to the
set of agents. From Theorem 1, an argument A ∈ Args
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Figure 2: The generality order of practical argumen-
tation frameworks

is a member of some preferred extension of P RAFP O =<
Args, Agents, Defeat > to Agents iff A is Pareto optimal
with respect to each agent i’s preference defined by the in-
verse complement of Defeat(i). JP RAFP O is P RAFP O.
Therefore, it is noteworthy that a member of preferred ex-
tensions of JP RAFP O is not just Pareto optimal but also it
is theoretically justified with respect to AF .

7. ILLUSTRATIVE EXAMPLES
This section shows illustrative examples of specialized prac-
tical argumentation frameworks and consequences of the
frameworks. We make the specialized frameworks by re-
stricting a general practical argumentation framework. Re-
striction is defined as follows.

Definition 12. Let P RAF =< Args, Agents, Defeat >
be a practical argumentation framework. The restriction of
P RAF to S ⊆ Args is the practical argumentation frame-
work P RAF ↓S=< S, Agents, Defeat′ > where Defeat′(i)
= Defeat(i) ∩ (S × S) for all i ∈ Agents.

Consider the set P args = {A, B, C, D, E, F} of practi-
cal arguments and the set T args = {G, H} of theoretical
arguments. Each argument states that we ought to buy
apartment ‘a’ because it is located in a safe area, denoted
by an argument A, we ought to buy apartment ‘b’ because
it is quiet and it has good access to transportation, by B,
we ought to buy apartment ‘c’ because it has good access to
transportation, by C, we ought not to buy ‘a’ because it is
beyond the budget, by D, we ought not to buy ‘b’ because
it is beyond the budget and located in a unsafe area, by E,
we ought not to buy ‘c’ because it does not have sufficient
sunlight, by F , ‘b’ is not located in a safe area because an
airstrip is now under construction in that area, by G, and we
can buy ‘a’ within the budget because the real estate gives
us discount, by H. Furthermore, the objective defeat rela-
tion defeat = {(G, B), (H, D)} and the following subjective
defeat relations are given.

Defeat(i) = {(A, B), (A, C), (A, D), (B, C), (E, B)}
Defeat(j) = {(B, A), (C, A), (C, F ), (D, A), (E, B),

(F, C)}

Figure 3 shows these arguments and the objective and sub-
jective defeat relations where the filled arrows depict the
objective defeat relations. Consider following abstract ar-
gumentation framework AF and practical argumentation

Figure 3: The whole defeat relations between argu-
ments

framework P RAF .

AF = < T args ∪ P args, defeat >

P RAF = < P args, Agents, Defeat >

The preferred extension, and the grounded extension as
well, of AF is {A, C, E, F, G, H}. Moreover, the preferred
extensions of P RAF to {i, j} are {A, E, F} and {C, D, E},
and the grounded extension of P RAF to {i, j} is {E}.
The following is a justified practical argumentation frame-
work with respect to AF obtained by restricting P RAF to
{A, C, E, F}.

JP RAF =< {A, C, E, F}, {i, j}, DefeatJP RAF >

DefeatJP RAF (i) = {(A, C)}
DefeatJP RAF (j) = {(C, A), (C, F ), (F, C)}

{C} is the grounded extension of JP RAF to {i, j} and
both {A, E, F} and {C, E} are the preferred extensions of
JP RAF to {i, j}. Following P RAFP O is a practical ar-
gumentation framework for Pareto optimality obtained by
restricting P RAF to {A, B, C}.

P RAFP O =< {A, B, C}, {i, j}, DefeatP RAFP O >

DefeatP RAFP O (i) = {(A, B), (A, C), (B, C)}
DefeatP RAFP O (j) = {(B, A), (C, A)}

The grounded extension of P RAFP O to {i, j} is the empty
set and the preferred extensions of P RAFP O to {i, j} are
{A} and {B}. Therefore, both A and B are Pareto opti-
mal arguments with respect to agents’ preferences defined
by the inverse complements of DefeatP RAFP O (x), for x =
i, j. Note that these inverse complements are quasi-order.
Following JP RAFP O is a justified practical argumentation
framework with respect to AF for Pareto optimality ob-
tained by restricting P RAF to {A, C}.

JP RAFP O =< {A, C}, {i, j}, DefeatJP RAFP O >

DefeatJP RAFP O (i) = {(A, C)}
DefeatJP RAFP O (j) = {(C, A)}

The grounded extension of JP RAFP O to {i, j} is the empty
set and the preferred extensions of JP RAFP O to {i, j} are
{A} and {C}. Therefore, both A and C are not just Pareto
optimal but also they are theoretically justified with respect
to AF .
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8. RELATED WORK
Deliberation is a type of dialogue in which a group of agents
or a single agent tries, through looking at a set of alter-
natives, to make a decision about which course of action
among the possible alternatives to take [18]. Our practical
argumentation semantics can be applied to the evaluation
of argument-based deliberation. Many argument-based ap-
proaches for deliberation or practical reasoning, however,
apply Dungean semantics as a fundamental principle for
evaluating arguments. For instance, a decision of a single
agent’s course of action, who has more than one desire, is
formalized by instances of an abstract argumentation frame-
work [18, 12]. In [18], the authors propose two kinds of prac-
tical reasoning, positive and negative practical syllogisms,
denoted by P P S and NP S. They are incorporated into
arguments for drawing desirable and undesirable actions,
respectively. Dungean semantics is used for evaluating ar-
guments, and consequently decides what the best action is.
In [12], the author gives a combined formalization for skepti-
cal epistemic reasoning interleaved with credulous practical
reasoning. He distinguishes practical arguments from the-
oretical arguments by informally dividing logical formulas
into epistemic and practical ones. Epistemic and practical
arguments are evaluated by skeptical semantics and credu-
lous semantics defined by Dungean semantics, respectively.
On the other hand, these approaches do not discuss the re-
lationship to efficiency. We think that a decision of a course
of action and the notion of efficiency are inseparable even
when single agent’s argumentation.
In [16], the authors introduce seven dialectical inference

rules on dialectical logic DL and weaker dialectical logic DM
[15] in order to realize concession or compromise from in-
consistent theory. They apply the inferences into argument-
based negotiation for reaching agreement. Similarly, in [9],
the authors propose compromise reasoning on an abstract
lattice, and illustrate that compromise arguments incorpo-
rating the reasoning realize compromise-based justification.
Furthermore, in [1], the authors propose an abstract frame-
work for argument-based negotiation, and introduce the no-
tion of concession as an essential element of negotiation.
We think that concessions and compromises should be cho-
sen from Pareto optimal solutions. However, none of them
discuss the relationship between Pareto optimality with the
notions of concession and compromise.
Recently, in [14], the authors analyze Dungean semantics

by means of Pareto optimality. Pareto optimal solutions
are defined based on each agent’s preferences on extensions
of an abstract argumentation framework. However, it does
not provide new argumentation semantics that is consistent
with Pareto optimality. In [8], the authors introduce Pareto
optimality into argument-based negotiation. The notion,
however, is used in a process of negotiation, and it is not
evaluated by argumentation semantics.
From the point of view of argumentation semantics, some

authors introduce nonclassical semantics such as stage se-
mantics [17], semi-stable semantics [4], ideal semantics [7],
CF2 semantics [2], and prudent semantics [5] on Dung’s ab-
stract argumentation framework. All of them intend to over-
come or improve some limitations or drawbacks of Dungean
semantics. On the other hand, our practical argumentation
semantics is defined on the different framework, i.e., practi-
cal argumentation framework consisting of minimal number
of elements that our semantics can be defined. Further-

more, it specializes in evaluating practical argumentation,
and it does not address the improvement of Dungean seman-
tics. In order to evaluate practical argumentation involving
agents’ values, the author proposes value-based argumenta-
tion frameworks, denoted by V AF , and modifies Dungean
semantics [3]. The modified semantics corresponds to ap-
plying Dungean semantics to each abstract argumentation
framework constructed from an individual agent’s defeat re-
lation. The paper, however, does not explain the relation-
ship between the modified semantics with another theory.
We think that it is essential for establishing the correctness
of the modified semantics.

9. CONCLUSIONS AND FUTURE WORK
We proposed a practical argumentation semantics specific
to practical argumentation. This attempt was motivated by
our hypothesis that extensions of practical argumentation
are certain to be efficient in terms of Pareto optimality. We
showed that an outcome is Pareto optimal iff the outcome is
a member of some preferred extension of a particular prac-
tical argumentation framework. This fact established that
our practical argumentation semantics is efficient in terms of
Pareto optimality. We showed that our practical argumenta-
tion semantics is a natural extension of Dungean semantics
in terms of handling more than one defeat relation. We de-
fined four ordered practical argumentation frameworks and
gave illustrative examples of these frameworks by restrict-
ing the most general one. We need to formalize dialectical
proof theory for our semantics, i.e., procedures determining
whether an argument is a member of some extension or not.
In particular, we are interested in formalizing proof theory of
JP RAF that need to be calculated based on two semantics,
Dungean semantics and our semantics.
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ABSTRACT
Reasoning about the mental states of agents is important in
various settings, and has been recognized as vital for team-
work. But the complexity of some of the more well-known
agent logics that facilitate reasoning about mental states
prohibits the use of these logics in practice. An alterna-
tive is to investigate fragments of these logics that have a
lower complexity but are still expressive enough for reason-
ing about the mental states of (other) agents. We explore
this alternative and take as our starting point the linear
time variant of BDI logic (BDILTL). We summarize some of
the relevant known complexity results for e.g. LTL, KD45n,
and BDILTL itself. We present a tableau-based method for
establishing complexity bounds, and provide a map of the
complexity of (various fragments of) BDILTL. Finally, we
identify a few fragments that may be usefully applied for
reasoning about mental states.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification

Keywords
reasoning about mental states, linear time BDI logic, satis-
fiability, complexity

1. INTRODUCTION
In a social context, and more specifically for teamwork,

the ability of an agent to reason about other agents has been
recognized as vital [7]. In particular, reasoning about ones
own and the mental states of other agents is important to
be successful in such contexts. Reasoning about the mental
states of others is needed to establish joint commitments and
joint intentions [17, 4], collaboration and cooperation [17],
teamwork [4, 7, 20], and coordination more generally [8].

Cite as: Taming the Complexity of Linear Time BDI Logics, Nils
Bulling and Koen V. Hindriks, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 275-282.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

One application area is socio-cognitive robotics and human-
robot teamwork [15], where modeling of social behavior is
needed and it has been recognized that “consideration of
the knowledge, abilities, goals, and even feelings of others”
is required.

In practice, however, little use is made of logical approaches
such as [4, 18, 9] that support reasoning about mental states
due to the inherent complexity of the logics. For example,
the satisfiability problem for agent dynamic logic, a logic
closely related to the KARO framework, is in 2EXPTIME
[19] and for the TeamLog framework including group atti-
tudes as well as propositional dynamic logic it is EXPTIME-
complete [9]. Practical approaches typically do not maintain
many of the formal properties of mental attitudes, and, as
noted in [11], “the need for high-level logic-based languages
capturing the key components of the BDI model remains.”
This problem has also motivated the work reported in [9].
More generally, the issue is related to “the gap between the-
ory and practice” [21] since complexity bounds at least the-
oretically determine what can be done in principle to bridge
this gap. In practice, agent platforms typically have been
restricted to reason with the beliefs and goals of a single
agent [2, 3] and do not allow reasoning about the beliefs and
goals of other agents, e.g. having a belief about the goal of
another agent. Identifying such extended fragments there-
fore is important as it may allow the use of logical fragments
in practice for reasoning about other agents.

One approach to deal with this problem is to study and
identify fragments of agent logics that have a lower com-
plexity but still support reasoning about other agents’ men-
tal states. There are general techniques for identifying such
fragments and reducing the complexity. For example, it is
known that restricting the number of propositional atoms
used or the depth of modal nesting may reduce the com-
plexity of a modal logic [12]. It is not cognitively plausible
either that humans use unlimited depth of reasoning [7].

The problem we explore in this paper is the satisfiabil-
ity problem of fragments of BDILTL. We present a tableau-
based proof method for a family of BDILTL. The tableau-
method can also be used to analyze the complexity of this
family and we show BDILTL is in PSPACE. We then ex-
plore which fragments have a significantly lower complexity
than full linear time BDI logic. More specifically, the aim is
to identify fragments for which the satisfiability problem is
in NP. Identifying such fragments is a first step towards es-
tablishing reasonable computational performance as typical
problem instances may be easier to solve [13], and, as even
satisfiability for propositional logic is an NP-complete prob-
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lem we cannot do better without restricting this underlying
logic. Our main motivation for doing so is that agents need
a tool for reasoning about other agents’ mental states in or-
der to coordinate their actions and a logic-based approach
seems most suitable. We also briefly informally consider the
expressivity of these fragments.

The paper is organized as follows. Section 2 reviews rel-
evant related work. Section 3 briefly introduces BDILTL

and discusses some fragments that are promising from a
computational point of view. In Section 4 a tableau-based
method for proving satisfiability is introduced. This method
provides the basis for some of the complexity results for
BDILTL. Section 5 then presents the main complexity results
for BDILTL and for fragments of the logic. Section 6 infor-
mally discusses whether some minimal requirements are met
for these fragments to be useful for reasoning about other
agents. Finally, Section 7 concludes the paper.

2. RELATED WORK AND RESULTS
Although significant work has been done in isolating frag-

ments of various modal logics including LTL [5], logics of
knowledge and belief [13], and combinations thereof [6] for
which the satisfiability problem is in NP, as far as we know,
no existing work has identified fragments with similar com-
plexity that allow the combination of informational and mo-
tivational attitude operators with time. However, if we want
our agents to reason about both the informational as well as
the motivational states of other agents we need exactly this
combination. We believe that incorporating time is essen-
tial to be able to differentiate various types of goals such as
achievement and maintenance goals (cf. also Section 6).1

Here we build on the work of [18] which introduces (a
family of) linear time BDI logic(s) BDILTL. BDILTL pro-
vides a logical framework that allows an agent to distin-
guish between different mental attitudes, i.e. beliefs ver-
sus desires/intentions, and between different types of de-
sires/intentions by means of temporal operators. This sets
our work apart from [9] where complexity issues of a multi-
agent logic called TeamLog are investigated in a setting
without time. Before we explore fragments of BDILTL itself,
we first review relevant complexity results for linear tem-
poral logic and logics of mental attitudes available in the
literature. This will be useful for identifying fragments of
BDILTL for which the satisfiability problem is in NP. In the
remainder we assume that Φ denotes a set of propositions.

Normal modal logics. A starting point for our search for
a computational logic for reasoning about the mental states
of (other) agents is provided by the extensive work on logics
of knowledge and belief reported [13]. [13] presents results
that show that the complexity of the satisfiability problem
for single agent logics of knowledge S5 and belief KD45 are
NP-complete, for multi-agent logics of knowledge S5n and
belief KD45n are PSPACE-complete, and extensions with
a common knowledge operator are EXPTIME-complete.

For conative logics that are used for modeling the moti-
vational attitudes of agents typically the modal logic KD
is used [21]. The logic KD is in between K and S4, i.e.
K ⊆ KD ⊆ S4 = KT4. According to Ladner’s Theo-
rem [1] this means that the satisfiability problem for KD
is PSPACE-complete.

1We will sometimes also talk about goals if there is no need
to differentiate between desires and intentions.

In [9] it is shown that combining the multi-agent logic of
belief and the multi-agent conative logic does not increase
the complexity of the satisfiability problem which remains
PSPACE-complete.

Restricted settings for the logics K,K45,KD45,S5,S4, and
their multi-agent versions are considered in [12] and [9]. The
main results are that satisfiability checking can be done in
linear-time for many standard multi-agent extensions of K
by bounding the number of propositional atoms and the depth
of modal operators. Here, we will just present the result for
KD45n which are of interest for our purposes. It is shown
that satisfiability checking can be done in linear time if the
number of propositions and nestings is fixed. The problem
remains in this class for the single-agent setting (n = 1) even
if nestings are not bounded. The problem gets harder if there
is no restriction on the number of propositions and only a
bound on the number of nestings. In this case satisfiability
checking is NP-complete. [9] shows that by bounding the
modal depth by a constant the satisfiability problem of com-
binations of multi-agent belief and multi-agent conative logic
is also NP-complete. Only bounding the number of propo-
sitional atoms does not lower complexity. Bounding both
the number of propositional atoms and the depth of modal
operators reduces complexity to linear time, however. This
is true even when group attitudes such as common belief
and collective intentions are added [9]. We use depthm(ϕ)
to denote the modal depth of ϕ (i.e. the number of nested
modal operators); e.g. Kip∧KiKjq as modal depth 2. (Cf.
Section 3.2 for a formal definition.) In the following table
we use md ≤ c, c ∈ N0, to denote the restriction to formulae
ϕ with depthm(ϕ) ≤ c. We use |Φ| to denote the number
of propositions. The first cell of a row is understood as a
constraint, e.g. |Φ| ≤ c, md ≤ c′ characterises the case in
which the number of propositions and the modal depth is
bounded by some natural numbers c and c′, respectively. In
the table below we summarize some complexity results of
the satisfiability problem which are relevant for our study:

K45,KD45,S5 K,KDn,K45n,KD45n,S5n

no constraints NP-compl. PSPACE-compl.
|Φ| ≤ c linear time PSPACE-compl.
md ≤ c NP-compl. NP-compl.
|Φ| ≤ c, md ≤ c′ linear time linear time

Temporal Logics. It is well-known that the complexity of
the satisfiability problem for LTL is PSPACE-complete and
for CTL EXPTIME-complete. In [5] a large number of
propositional fragments of LTL is considered and complexity
results for both model checking and satisfiability are estab-
lished. Restrictions on the temporal operators that may be
used, the number of propositional atoms, and the temporal
depth are considered. Satisfiability for a limited number of
fragments turns out to be in the class NP. This is shown for
the following fragments of LTL: (1) The “future-only” frag-
ment; (2) The “next-time” fragment; and (3) the fragment of
LTL that allows no nesting of temporal operators. Satisfia-
bility for the fragment with a fixed number of propositional
atoms and limited temporal depth (but no restrictions on
the temporal operators) can be solved in deterministic log-
arithmic space L. The table below summarises the rele-
vant results. LTL(U) is used to denote the fragment with U
being the only temporal operator. Similarly to the modal
depth, we define the temporal depth, deptht(ϕ), of ϕ. In this
case the number of nested temporal operators is considered.
td ≤ c is also defined and used analogously to md.
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LTL LTL(U)
|Φ| ≤ c, td ≤ c′ L L
td=0 NP-compl. NP-compl.
|Φ| = 1 PSPACE-compl. P
td = 2 PSPACE-compl. PSPACE-compl.

Logics of Knowledge and Time. It is natural to com-
bine linear time with combinations of other modal operators
(for representing mental attitudes) but only work on combin-
ing belief/knowledge and time is known to us. In [14] results
related to numerous logics of knowledge and time are consid-
ered. A result of this work is that agents that do not forget
or do not learn greatly increasing the complexity of reason-
ing about knowledge and time. It is shown that combining
the logic of knowledge and linear time results in a logic for
which the satisfiability problem is PSPACE-complete and
the satisfiability problem for the combination of knowledge
and branching time is EXPTIME-complete.

3. LINEAR TIME BDI LOGIC
In the literature surveyed, the complexity of fragments

that combine time, and multi-agent belief and motivational
attitudes is not discussed. Of course, closely related work
does exist, and some of the more important work has been
discussed above. We take the work reported in [18] as our
starting point, which introduces a linear time BDI logic and
presents decision methods for satisfiability using a tableau-
based approach. Below, we first define the language and its
semantics and then continue to discuss potentially interest-
ing fragments from a complexity point of view.

3.1 Language and Semantics
The logic BDILTL introduced here is based more or less on

[18]. We use the same language but extend it with multiple
modal operators to be able to represent the mental atti-
tudes of multiple agents. The semantics has also been set
up slightly differently, and we use runs and time points as
the basis for accessibility relations instead of worlds that are
related through states in [18]; our setup is similar to that in
[10].

The language of BDILTL includes temporal operators, and
multiple belief, desire, and intention operators, one for each
agent out of a finite set of agents. The temporal operators
are the usual linear time temporal operators for next time
and the until operator.

Definition 1 (The language of BDILTL). Let Φ be
a set of propositional atoms with typical element p and Agt
be a finite set of agents with typical element i:

ϕ ∈ L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | fϕ | Biϕ | Diϕ | Iiϕ

Models for the language L of BDILTL consist of runs and of
indexed relations on these runs used to define the semantics
of mental attitudes of agents. Runs are derived from a given
set of states and a transition relation on those states and are
used to interpret temporal operators.

A run r over a set of states Q is an infinite sequence
from Qω. We use r[i] to denote the ith state on run r,
starting from i = 0. r[i,∞] is used to denote the sub-run of
r that starts at i. That is, r[i,∞] = r[i]r[i + 1] . . . . Given
a set of states Q and a transition relation →, the set of all
runs induced by (Q ,→) is denoted by R(Q,→). R(Q,→) thus
consists of all runs r for which we have that: ∀i ∈ N0 : r[i]→
r[i+ 1]. Finally, the set of time points (r,m) given a set R
of runs is defined by: PointsR = {(r,m) | r ∈ R,m ∈ N0}.

Definition 2 (Models for BDILTL). A model for the
language of BDILTL is a tuple: M = (Q ,→,
R, {Bi}i∈Agt, {Di}i∈Agt, {Ii}i∈Agt, π) where

• Q is a non-empty set of states,
• →⊆ Q ×Q a serial (temporal) accessibility relation,
• R ⊆ R(Q,→) is a non-empty set of runs,
• Bi ⊆ PointsR × PointsR is a transitive, serial, and

Euclidean belief accessibility relation,
• Di ⊆ PointsR×PointsR is a desire accessibility rela-

tion,
• Ii ⊆ PointsR × PointsR is called an intention acces-

sibility relation, and
• π : Q → P(Φ) a labelling or valuation function.

Models for BDILTL include the usual restrictions on the
type of accessibility relations in the definition of a model.
We are also interested in some additional restrictions that
may be imposed on models. For example, B may also be
reflexive, to obtain the usual semantics for knowledge, and
we consider the additional constraint where D is serial to ex-
clude inconsistent desires. It is well-known that these con-
straints correspond with particular axiom schema labeled
K, T, D, 4, 5. This gives rise to a family of BDI logics and
we introduce some notation to refer to different variants.
We use BDILTL to refer to BDIKD45,K,KD

LTL , i.e. the logic with
KD45 belief operators, K desire operators, and KD inten-
tion operators. Alternatively, by varying the restrictions on
the accessibility relations, we obtain, for example, the logic
BDIS5,KD,KD

LTL which combines knowledge, consistent desires,
and intentions. In the following we define L := {K,KD,

KD45,S4,S5 } and often write BDIX,Y,Z
LTL where we implicitly

assume that X,Y,Z ∈ L.
It is usual to consider a range of additional constraints on

models, which give, for example, rise to interaction axioms
[9, 18]. For reasons of space, we consider only two of the
more interesting interaction axioms. That is, we consider
the constraint Di ⊆ Bi giving rise to the axiom Biϕ→ Diϕ
that is called realism and the constraint

∀t ∈ PointsR∃t′ ∈ PointsR : tDit
′ and tBit

′

giving rise to the axiom Diϕ → ¬Bi¬ϕ that is called weak
realism [18].

Definition 3 (Semantics).
Let M be a model with associated set PointsR and (r,m) ∈
PointsR. Then the relation |= is defined by:
M, r,m |= p iff p ∈ π(r[m])
M, r,m |= ¬ϕ iff M, r,m 6|= ϕ
M, r,m |= ϕ ∧ ψ iff M, r,m |= ϕ and M, r,m |= ψ
M, r,m |= fϕ iff M, r,m+ 1 |= ϕ
M, r,m |= ϕUψ iff ∃k ≥ m with M, r, k |= ψ and ∀l with

m ≤ l < k we have that M, r, l |= ϕ
M, r,m |= Biϕ iff M, r′,m′ |= ϕ for all (r′,m′) with

(r,m)Bi(r
′,m′)

M, r,m |= Diϕ iff M, r′,m′ |= ϕ for all (r′,m′) with
(r,m)Di(r

′,m′)
M, r,m |= Iiϕ iff M, r′,m′ |= ϕ for all (r′,m′) with

(r,m)Ii(r
′,m′)

We say a formula ϕ is satisfiable in M if there is a run
r ∈ R and m ∈ N0 such that M, r,m |= ϕ, and simply
satisfiable if it is satisfiable in some model M. ϕ is said to
be valid if M, r,m |= ϕ for all runs r ∈ RM and m ∈ N0

in all models M. We define the logic BDILTL as the set of
formulas that are valid on the class of BDILTL-models.
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3.2 Fragments
We are interested in establishing lower complexity bounds

for fragments of the logic BDILTL that are still expressive
enough to allow reasoning about mental states of other agents.
We have reviewed relevant results in Section 2. Based on the
summary overview provided there, there are just a few frag-
ments of BDILTL that may be in NP (or even have a lower
complexity). A number of options to lower complexity are
not that interesting since we want to be able to reason about
the mental states of agents. Therefore, single agent frag-
ments, or single proposition fragments are not interesting.
Fragments that may be interesting clearly need to restrict
the temporal depth (i.e. nesting of temporal operators),
modal depth (i.e. depth of nesting of mental attitude opera-
tors), and may need to restrict the number of propositional
atoms used.

By inspecting the tables for linear time logic and multi-
agent knowledge/belief logics, to obtain fragments that pos-
sibly are in NP the following is clear:

• modal depth, i.e. nesting of B, D, and I operators
needs to be bounded, and

• no nesting of temporal operators is allowed at all if
unbounded number of propositional atoms are allowed,
or temporal depth needs to be bounded.

This means that there are only two fragments of the lan-
guage that we need to consider in the remainder when we are
looking for fragments for which satisfiability is in NP: (1)
the fragment with finitely many propositional atoms, lim-
ited temporal height, and bounded nesting of other modal
operators representing mental attitudes, and (2) the frag-
ment with no nesting of temporal operators and bounded
nesting of other modal operators representing mental at-
titudes. Apart from the language, we also consider slight
modifications of the semantics as discussed above as well as
the interaction axioms below.

Formally, we use depthm(ϕ) to denote the modal depth of
ϕ with respect to modal operators Bi, Ii, and Di. We define
depthm(p) = 0, depthm(¬ϕ) = depthm(ϕ), depthm( fϕ) =
depthm(ϕ), depthm(ϕ ◦ ψ) = max{depthm(ϕ), depthm(ψ)}
for ◦ ∈ {∧,U}, and depthm(Oiϕ) = depthm(ϕ) + 1. Simi-
larly, we define the temporal depth deptht(ϕ) of ϕ. In this
case the number of nested temporal operators are counted.

4. TABLEAU METHOD FOR BDI LOGIC
We will present a tableau-based method for the satisfia-

bility problem of BDIX,Y,Z
LTL . We also consider settings where

mental attitudes interact such as the conditions of realism
and weak realism introduced above. The method has been
used by others as well and our approach builds upon the
work of [23] which discusses the tableau method for tempo-
ral logic extended with either a belief or a knowledge oper-
ator. The extension we propose also uses ideas presented in
[9, 13, 18]. Although a tableau algorithm for linear time and
BDI-operators has been provided in [18] as well, the main

concern of our paper, i.e. the complexity of BDIX,Y,Z
LTL and

associated bounded fragments is not discussed in [18].

4.1 Basic Definitions
We use sub(ϕ) to denote the set of subformulas of ϕ. For-

mulas are classified as either α- or β-formula (or none of
these). Figure 1 shows which formulas are α- and which for-
mulas are β-formulas. We also refer to αO -formulas (see Fig-

α α1 α2

¬¬ϕ ϕ ϕ
¬ fϕ f¬ϕ f¬ϕ
ϕ ∧ ψ ϕ ψ
¬(ϕUψ) ¬ψ ¬ϕ ∨ ¬ f(ϕUψ)

β β1 β2

¬(ϕ ∧ ψ) ¬ϕ ¬ψ
ϕUψ ψ ϕ ∧ f(ϕUψ)

αO αO
1 αO

2

Oiϕ ϕ Oiϕ

Figure 1: α, β, αO-rules with O some modal operator

ure 1) as α-formulas; the reason for introducing this separate
class of rules is that they are needed when the accessibility
relation associated with Oi is reflexive, a case that is treated
differently from other properties. (Note, that some formu-
las match non of these cases, e.g. ¬Oiϕ.) We note that for
each α-formula (resp. β-formula) we have that α↔ α1 ∧α2

(resp. β ↔ β1 ∨ β2). A set Σ of formulas is said to be
α-closed (resp. β-closed, αO -closed), if for each α-formula
(resp. β-formula, αO -formula) we have {α1, α2} ⊆ Σ (resp.
{β1, β2} ∩ Σ 6= ∅, {αO

1 , α
O
2 } ⊆ Σ). A set Σ of formulas is

said to be fully expanded if for each ϕ ∈ Σ and for all sub-
formulas ψ ∈ sub(ϕ), ψ ∈ Σ or ¬ψ ∈ Σ. A set of formulas
is called blatantly inconsistent (b-inconsistent for short) if
it contains ⊥, ¬>, or two complementary pairs of formulas
ϕ,¬ϕ. If a set is not b-inconsistent it is b-consistent.

In the remainder of this paper, we use O to refer to arbi-
trary BDI operators, i.e. O ∈ {B,D, I}, and O to refer to
the corresponding accessibility relation. We say that an op-
erator O is a T-operator if the associated accessibility rela-
tion O is reflexive. Similarly, we say that O is a KD-operator
if the relation is serial, etc. We also write X ∈ schema(O)
if O is an X-operator, X ∈ L and so on.

Definition 4 (PC-tableau). We call a set Σ of for-
mulas a PC-tableau if Σ is b-consistent, α- and β-closed,
and fully expanded. Moreover, we assume that it is αO -
closed if O is a T-operator.

A PC-tableau derived from Σ′ is a PC-tableau Σ such
that Σ′ ⊆ Σ. The set of all PC-tableaux derived from Σ′

is denoted PC(Σ′). (Note that if Σ′ is b-inconsistent then
PC(Σ′) = ∅.)

As noted, the use of the rule αO (see Figure 1) differs
from others in that it is applied to all formulas Oϕ iff O is
a T-operator; it is therefore easier to incorporate this rule
into the definition of a PC-tableau. Note that for reflexive
relations O we actually have αO ↔ αO

1 ∧ αO
2 .

4.2 Tableau Construction
We now discuss the tableau-based method for showing

satisfiability of the family of logics BDIX,Y,Z
LTL . Each vari-

ant within this family of logics requires that some modi-
fications are applied to the general and generic algorithm
below. We begin with explaining the idea for the particular
logic BDIKD,KD,KD

LTL , and thereafter discuss the modifications
that are needed for the other members of our family.

BDIKD,KD,KD
LTL -pseudo-structure algorithm.

The tableau approach is based on the idea that tableaux can
be used to construct models. Pseudo-structures have the
important property that they can be extended to a model if
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The algorithm specifies S = (Q̂ , →̂, {B̂i}i∈Agt, {D̂i}i∈Agt,

{Îi}i∈Agt, π̂) on input ϕ0.

1. (Initialisation) For each ∆ ∈ PC({ϕ0}) add a state q with

π̂(q) = ∆ to Q̂ .

2. Repeat until convergence:

(a) (Modal transitions) For any q ∈ Q̂, if ¬Oiψ ∈ π̂(q) set

(?) Σ = {¬ψ}∪{χ | Oiχ ∈ π̂(q)}∪create labelischema(O)(π̂(q)).

If such a formula does not exist then define

Σ = {χ | Oiχ ∈ π̂(q)} ∪ create labelischema(O)(π̂(q)).

For each ∆ ∈ PC(Σ) if there is a state q′ ∈ Q̂ with π̂(q′) = ∆

add the relation qÔiq
′. Otherwise,

(??) create a node q′ with π̂(q′) = ∆ and add relation qÔiq
′.

(b) (Temporal transitions) For any q ∈ Q̂, if ©ψ ∈ π̂(q) then for

each ∆ ∈ PC(π̂(q)/ e) if there is a state q′ ∈ Q̂ with π̂(q′) = ∆
add the transition q→̂q′ else add a new state q′ with π̂(q′) = ∆
and add the transition q→̂q′.
3. (Deletion) Delete a state q ∈ Q̂ if one of the following
conditions applies:
(a) ∃ψ ∈ π̂(q) such that ψ is (S, q)-temporally inconsistent.
(b) ∃ψ ∈ π̂(q) such that ψ = eχ and there is no q′ with q→̂q′.
(c) ∃ψ ∈ π̂(q) such that ψ = ¬Oiχ and there is no q′ with qÔiq

′
and ¬χ ∈ π̂(q′).
(d) ∃ψ ∈ π̂(q) such that ψ = Oiχ and there is no q′ with qÔiq

′
and χ ∈ π̂(q′) (only if O is a D-operator).

Figure 2: BDIX,Y,Z
LTL -pseudo-structure algorithm for se-

rial accessibility relations and input ϕ0. We assume
that O ∈ {Bi, Di, Ii} and that Ô denotes the corre-
sponding accessibility relation.

The procedure returns the following set:

1. ∅ if X ∈ {K,KD}.
2. {Oiψ | Oiψ ∈ Σ}∪{¬Oiψ | ¬Oiψ ∈ Σ} if X ∈ {KD45,S5}.
3. {Oiψ | Oiψ ∈ Σ} if X = S4.

Figure 3: create label i
X(Σ) procedure.

and only if the input formula is satisfiable. Accordingly, we
present an algorithm that generates pseudo-structures.

Definition 5. A pseudo-structure is a tuple S = (Q̂ , →̂,
{B̂i}i∈Agt, {D̂i}i∈Agt, {Îi}i∈Agt, π̂) where Q̂ is a (possibly empty)

set of states, and →̂, B̂i, D̂i, and Îi are binary relations be-
tween states, and π̂ : Q̂ → P(L) assigns sets of formulae to
states.

The basic algorithm is called BDIKD,KD,KD
LTL -pseudo-structure

algorithm and is presented in Figure 2. If the algorithm
returns a pseudo-structure and the input formula is satisfi-
able, a BDILTL-model can be extracted from the structure
that witnesses the truth of the formula. In Theorem 2 it is
shown that the pseudo-structure contains a state q whose
label contains ϕ if, and only if, the pseudo-structure can be
extended to a BDIKD,KD,KD

LTL -model satisfying ϕ.
The first step in the algorithm generates nodes each la-

beled with a PC-tableau derived from {ϕ}. Then, steps
(2a) and (2b) are performed until none of these cases can be

applied anymore. Step (2a) generates Ôi transitions. De-

pending on the properties of Ôi (referred to by procedure
schema(O)) the procedure create label i

schema(O)(Σ) which is

shown in Figure 3 creates the label of a (possibly new) node.
Different logics require a different procedure. π̂(q)/ fis de-
fined as {ψ | fψ ∈ π̂(q)} and π̂(q)/Oi analogously.

Condition (??) corresponds to the seriality condition of Ô.
In (2b) temporal successors are created. The idea is that if
the current state contains a formula fϕ there has to be a
→-related state satisfying ϕ. Finally, in step (3) the algo-
rithm deletes states which are not consistent – one way or
another. Of particular interest is step (3a) which removes
nodes in which an eventuality formula cannot be satisfied
anymore. This step involves the notion of temporally con-
sistent formulas, which is defined next.

Definition 6 (Temporally consistent). Given a

pseudo-structure S and a state q ∈ Q̂S a formula ϕ is said
to be (S, q)-temporally consistent iff if ϕ = ψ1Uψ2 then there
is a state q′ reachable from q via the transitive closure of →̂
such that ψ2 ∈ π̂(q′). If ϕ is not (S, q)-temporally consistent
it is said to be (S, q)-temporally inconsistent.

In step 3(d) states are deleted that are not consistent with
the fact that an operator O is a KD-operator, which requires
a successor state in the corresponding models.

Modifications: BDIX,Y,Z
LTL -pseudo-structure algorithms.

Before we state our general result, we briefly consider what
needs to be modified to cater for other logics than BDIKD,KD,KD

LTL .

We consider the general case and define a generic BDIX,Y,Z
LTL -

pseudo-structure algorithm as follows. First, for operators
and associated relations O that have other properties than
seriality the labeling of nodes in (?) needs to be modified.
The required modifications are listed in Figure 3 for the dif-
ferent cases that we consider here.

Finally, for operators that are not D-operators, the cases
that relate to the seriality of the accessibility relation in the
algorithm need to be disregarded. This applies in particular
to condition (??) which should be ignored when dealing with
such operators. Finally, also the deletion of states needs to
be modified and only the cases 3(a)-3(c) should be executed
while case 3(d) in Figure 2 needs to be ignored.

4.3 Soundness and Completeness
We now consider the soundness and completeness of the

algorithm. The proofs of the results are fairly standard (cf.
[23, 9, 13, 18]) and we focus on some of the basic ideas.

A pseudo-structure S = (Q̂ , →̂, {B̂i}i∈Agt, {D̂i}i∈Agt,

{Îi}i∈Agt, π̂) is said to be a BDIX,Y,Z
LTL -tableau for ϕ if the fol-

lowing 8 conditions are satisfied: (1) There is a state q ∈ Q̂

such that ϕ ∈ π̂(q). (2) For each q ∈ Q̂ , π̂(q) ∈ PC(π̂(q)).
(3) If T ∈ schema(O) then if Oiψ ∈ π̂(q) then ψ ∈ π̂(q). (4)
If D ∈ schema(O) then if Oiψ ∈ π̂(q) then there is a state

q′ with qÔiq
′. (5) If 4 ∈ schema(O) then if Oiψ ∈ π̂(q) then

for all q′ with qÔiq
′, Oiψ ∈ π̂(q′). (6) If 5 ∈ schema(O) then

if qÔiq
′ and qÔiq

′′ and Oiψ ∈ π̂(q′) then {Oiψ,ψ} ⊆ π̂(q′′).
(7) If fψ ∈ π̂(q) then there is a q′ ∈ Q̂ such that q→̂q′. (8)

If fψ ∈ π̂(q) then for all q′ ∈ Q̂ with q→̂q′ it holds that
ψ ∈ π̂(q′).

Conditions 3, 4, 5, and 6 correspond to reflexivity, serial-
ity, transitivity, and Euclideanity, respectively. The follow-
ing theorems are more or less standard.

Theorem 1 (Tableau satisfiability). A formula ϕ

is BDIX,Y,Z
LTL -satisfiable iff there is a BDIX,Y,Z

LTL -tableau for ϕ.
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Proof sketch. ⇒: It is easily seen that one can define a
tableau from a satisfying model. ⇐: The set of timelines R
is obtained by unravelling the relation →̂, enforcing the sat-
isfaction of eventuality formulae (cf. [23] for details). The

definition of the state-based Ô-relations to point-basedO ac-
cessibility relations is also done according to [23]: For exam-

ple we set (r,m)Oi(r
′,m′) if r(m)Ôir

′(m′). Minor modifica-
tion are necessary to ensure that O is a schema(O)-operator
(e.g. taking the reflexive transitive closure, etc.). �

Theorem 2 (Sound-, Completeness). The algorithm

terminates on all inputs and ϕ is BDIX,Y,Z
LTL -satisfiable iff the

BDIX,Y,Z
LTL -algorithm on input ϕ returns a BDIX,Y,Z

LTL -tableau
for ϕ iff the structure returned by the algorithm contains a
state q containing ϕ.

Proof sketch. Termination of the algorithm is guaran-
teed as there are only finitely many different PC-tableaux
and the algorithm does not create nodes twice. Soundness
is proved following similar steps as in [23]: It is shown that
if the algorithm returns a pseudo-structure for ϕ then it is
actually a tableaux for ϕ (this is achieved by verifying the
8 conditions of a tableau). For the completeness one shows
that if there is no state q in the returned structure, then ϕ
is not satisfiable (cf.[23, Th.4]). The modal operators are
treated independently. �

4.4 Interaction Axioms
Finally, we consider the interaction axioms. The realism

axiom is given by Biϕ → Diϕ. In order to extend our
tableau method an additional alpha rule is introduced: α =
Biϕ and α1 = Biϕ and α2 = Diϕ. The condition that we
need to add to cover for this axiom is the requirement that
a PC-tableau is also closed under this new rule (see Df. 4).

Similarly, for the weak realism axiom Diϕ → ¬Bi¬ϕ, a
second new α-rule is introduced: α = Diϕ and α1 = Diϕ
and α2 = ¬Bi¬ϕ, and the definition of a PC-tableau needs
to be modified accordingly.

It is not difficult to see that the sound- and completeness
results from Section 4.3 also hold with these extensions. The
additional α-rules for realism and weak realism give rise to
the corresponding rules

9. If Biϕ ∈ π̂(q) then Diϕ ∈ π̂(q); and

10. if Diϕ ∈ π̂(q) then ¬Bi¬ϕ ∈ π̂(q), respectively,

in the BDIX,Y,Z
LTL -tableau (see also [18, 23]). The correspond-

ing model is constructed from such a table in the same way
as in the cases without interaction (cf. Theorem 1) and the
completeness proof of Theorem 2 is done analogously (see
e.g. [18, 9]).

5. COMPLEXITY OF SATISFIABILITY
In this section we consider the complexity of the BDIX,Y,Z

LTL -
satisfiability problem. In [13] a tableau-based decision pro-
cedure has been used to prove PSPACE membership of
the multi-agent logics K, T, S4, S5, and KD45. In [9] a
PSPACE tableau algorithm for a BDI logic combining S4,
K, and KD operators has been presented and in [18, 23]
tableau-based algorithms for linear-time and combinations
of other modalities were given. However, the complexity of
the latter algorithms has not been analysed.

“Standard” LTL-tableau constructions have been shown
implementable in PSPACE [22]. The algorithm presented
here when executed with purely temporal formulae is essen-
tially equivalent to that of [22]. The next result shows that
the addition of other modal operators does not increase the
complexity.

Theorem 3. The BDIX,Y,Z
LTL -satisfiability problem is

PSPACE-complete for all X,Y,Z ∈ L.

Proof sketch. The lower bound follows from LTL-satisfi-
ability, cf. e.g. [5]. We sketch the upper bound. In the

following we take d = depthm(ϕ)O(1).
(I) Purely modal part (step 2(a) in our algorithm): In [13]

it was shown that the length of sequences of subsequent
states generated by the tableau algorithm is bounded by
d. (Note, that we abstracted from the calculation of PC-
tableaux. The treatment is standard.) The “tree” consisting
of all these polynomial length sequences is searched in a
depth first search manner using only polynomial space. This
procedure generalizes to multiple modal operators.

(II) Purely temporal part (step 2(b) in our algorithm):
In [22] a PSPACE-tableau algorithm for LTL is presented.
The main observation is that if an LTL formula is satisfi-
able then it is satisfiable on a path q0q1 . . . qm such that for
some qj , j ≤ m with qm→̂qj and m ≤ 2O(|ϕ|). The follow-
ing polynomial space algorithm implements this idea: Guess
state qj and guess valid subsequent successor states q (for at

most 2O(|ϕ|) steps) until q = qj for some state in which all
eventualities are fulfilled (ϕ is satisfiable). In memory, only
the counter, the current state and qj are kept.

(III) We consider BDILTL. As noted in [10] time and epis-
temic operators are independent from each other which al-
lows for a combination of (I) and (II). From (I) we know
that the number of consecutive epistemic steps is bounded
by d. Now, each time we are in step 2(a) we apply the depth
first search strategy from (I) and each time we execute step
2(b) we try to build the infinite trace as in (II). The number
of “temporal traces” is bounded by |ϕ| ·d. Hence, one has to
store at most |ϕ| · d counters, current states, and the states
guessed to indicate the entry point of a loop for the tempo-
ral part and |ϕ| ·d states constituting the current “epistemic
path” which is kept in memory (possibly interrupted by a
temporal path). (In addition to some other book keeping
operations needed for the depth first search.) �

In a non-temporal setting, it was shown that adding vari-
ous interaction axioms does not increase the complexity [9].
This is also the case in the temporal setting considered here.
The result follows immediately since the interaction axioms
do only require the application of some additional α-rules as
explained above.

Corollary 4. The BDIX,Y,Z
LTL -satisfiability problem assum-

ing realsim or weak realism is PSPACE-complete.

5.1 Bounded Temporal and Modal Depth
Here we consider fragments of BDIX,Y,Z

LTL with bounds on
the temporal depth deptht(ϕ) and modal depth depthm(ϕ)
of a formula ϕ.

To be precise, we define the fragments of BDIX,Y,Z
LTL consid-

ered here using the notions of temporal and modal depth.
We define Li,j as the set of formulas ϕ ∈ L with deptht(ϕ) ≤
i and depthm(ϕ) ≤ j.
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The upper bound of the next result follows from Theo-
rem 3 and the lower bound from [5] where the satisfiability
problem for LTL with a temporal bound of ≥ 2 is shown to
be PSPACE-complete.

Proposition 5 ([5]). Let i, j ∈ N and i ≥ 2. The

BDIX,Y,Z
LTL -satisfiability problem over the language Li,j is

PSPACE-complete. The same result holds over the class
of models that satisfy (weak) realism.

The previous result is negative. However, the complexity
improves if the temporal depth is at most 1.

Theorem 6. Let i ∈ N. The BDIX,Y,Z
LTL -satisfiability prob-

lem over the language L1,i is NP-complete. The same result
holds over the class of models that satisfy (weak) realism.

Proof sketch. In [5] it is shown that if an LTL formula
with deptht(ϕ) ≤ 1 is satisfiable then satisfiability can be
witnessed by an initial polynomial length prefix of a path.
This prefix can be non-deterministically guessed and verified
in polynomial time. Moreover, as shown in [13, 9] the purely

modal tableaux have |ϕ|O(i) many nodes. Combining both
results and inspecting the proof sketch of Theorem 3 shows
that for the full logic the number of nodes in the tableau is
also bounded by |ϕ|O(i). (Here, it is important to note that
there can be at most one alternation between epistemic and
modal transitions along each path in the tableau.) Thus, we
can guess a tableau of polynomial size and check whether it
satisfies ϕ. �

Finally, we consider the case in which the temporal and
modal depth are bounded and additionally only finitely many
propositional symbols are available. We note that a finite
set of propositions is often of less practical interest (e.g.
settings requiring natural numbers usually require an un-
bounded number of propositional symbols). For the purely
temporal fragment it has been proven that the problem can
be checked in logarithmic deterministic space [5]. In [12], on
the other hand, satisfiability of the purely modal fragment
has been shown to be solvable in linear deterministic time.
The proof of [5], however, can directly be used to show that

BDIX,Y,Z
LTL -satisfiability for formulae of Li,j , i, j fixed, can be

checked in logarithmic deterministic space. The basic idea
relies on the observation that there are only finitely many
inequivalent formulae over Li,j . For each class of equivalent
formulae we identify a “canonical formula”. Then, given a
formula ϕ of which the satisfiability should be checked sim-
ple rewrite rules can be applied to determine the canoni-
cal representation ψ of ϕ. If ψ does not correspond to the
canonical representation of ⊥ it is satisfiable.

Theorem 7. Let i, j ∈ N. The BDIX,Y,Z
LTL -satisfiability

problem over Li,j over a finite set of propositional atoms
can be solved in deterministic logarithmic space. This is also
true for the class of models that satisfy (weak) realism.

6. REASONING ABOUT MENTAL STATES
We have studied various fragments of the linear time BDI

logic BDILTL and obtained results on the complexity of the
corresponding satisfiability problems. Our motivation for
examining these fragments has been that agents need to be
able to reason about other agents’ mental states and logic
seems one of the most suitable tools to do so. However,

an agent also needs to be able to do so within reasonable
amounts of space and time. We have shown that fragments
exist of which the complexity can be reduced to NP. As
argued above, as a first step towards a logic that can actually
be used, these results are promising. Here we briefly consider
informally whether these fragments are also satisfactory for
the main task we had in mind, i.e. for the representation
and reasoning with mental states of other agents.

In order to evaluate this, we briefly introduce and dis-
cuss some minimal criteria. In order to support reasoning
about other agents’ mental states, we argue that the mini-
mal requirement a logic needs is that the logic (i) is able to
discriminate between informational attitudes such as beliefs
and knowledge and motivational attitudes such as desires,
goals, and intentions; (ii) facilitates reasoning about a finite
number of nestings of mental attitudes; (iii) facilitates rea-
soning about any finite number of agents; and (iv) is able
to discriminate between types of motivational states, and,
ideally would support reasoning about the class of deadline
goals which subsumes achievement and maintenance goals.

Criterium (i) has motivated us to study fragments of BDILTL.
This is one of the more well-known types of agent logics
and clearly distinguishes between informational and moti-
vational states as parts of an agent’s state.

Criterium (ii) is in part motivated by results from cogni-
tive science which inform us that a limited depth of mental
operators seems sufficient for reasoning about mental states
as humans are not able to nest such operators to a depth of
more than 3 [7]. On the other hand, in the context of agent
communication and reasoning about speech acts, one finds
that one quickly needs at least three levels of nesting (see
e.g. the example of a decision rule to inform another agent
below). Given these basic results about depth of nesting
of mental attitude operators, it seems reasonable to bound
the depth of such operators. The BDILTL fragments that we
showed to be in NP clearly support such limited nesting.

Criterium (iii) is an obvious criterium given that we are
motivated by logics that allow agents to reason about other
agents’ mental state. This motivated us to introduce the
multi-agent variant of BDI logic. From a semantic and a
complexity perspective this requirement poses no problems.

Criterium (iv) most clearly distinguishes our work from
that of others, in particular [9], which studies a multi-agent
logic called TeamLog that does not incorporate time. Being
able to support some form of reasoning about time, however,
greatly increases the expressivity and in particular allows to
distinguish between various kinds of goals. For example,
using a single U operator we are already able to represent
deadline goals. Moreover, it is clear that achievement goals
can be represented by 3φ and maintenance goals by 2φ.
The fragments we showed to be in NP support making these
distinctions. However, only the fragment with finitely many
atoms supports nesting of temporal operators (Th. 7). The
fragment that allows for infinitely many atoms (Th. 6) thus
does not allow reasoning about e.g. persistence goals 32ϕ.
It would be interesting to investigate if that fragment could
be extended with such specific combinations (while not al-
lowing nesting of arbitrary temporal operators).

Clearly, group attitudes such as common knowledge and
common or joint intentions cannot be defined using the bounded
fragments we discussed. Introducing these concepts imme-
diately blows up complexity (e.g. [9, 13]). Of course, we
can define more basic notions such as “everybody in a group
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believes ϕ”, i.e. E-BG(ϕ)↔ ∧
i∈G Biϕ. Even without such

stronger notions, however, agents can coordinate their be-
havior. The idea would be that agents can incorporate rea-
soning based on a BDILTL fragment into their decision mak-
ing algorithms. This would already allow for action choices
based on decision rules of the form: (i) if BiIjϕ then do(a),
(ii) if BiBjϕ then do(a), and (iii) if BiDj(Kjϕ ∨Kj¬ϕ) ∧
Biϕ then inform (ϕ).

7. CONCLUSION AND FUTURE WORK
We have discussed the issue of reasoning about mental

states of other agents and argued that the BDI logic BDILTL

offers a suitable tool to do so. We have studied several frag-
ments of BDILTL and showed complexity of the satisfiability
problem for these fragments to be in NP. We also intro-
duced a very generic tableau method to do so.

From a complexity point of view there are many ways
to continue the search for practical and useful fragments of
BDILTL. For example, in [6] it is shown that the satisfiabil-
ity problem for a special semantics for temporal logic with
knowledge called XL5 is NP-hard and it is interesting to
study whether similar techniques can be applied to BDILTL.
[16] discusses the complexity of the satisfiability problem for
a range of multi-modal logics restricted to the Horn fragment
including e.g. KDn, KD45n, etc. The restriction to the Horn
fragment is relevant because it may provide practical exten-
sions to e.g. Prolog. [16] also investigates bounded modal
depth but does not discuss fragments that include both in-
formational and motivational operators and does not discuss
temporal operators either. Another line of research would
involve looking at CTL instead of LTL, and identify com-
plexity classes for fragments of BDICTL.

In the future, we would also like to consider agents that
have perfect recall or do not learn and extend our analysis
in this respect. Both properties are of practical importance.
However, usually reasoning becomes computationally much
harder in the presence of these properties.

Finally, it is interesting to experiment in practice with
implemented reasoners to determine what is feasible. More-
over, if we want to incorporate a restricted BDI logic into
the decision making component of a software agent, we not
only need a reasoner, but we will also need ways to efficiently
update sets of BDILTL formulas when the agent receives new
information from its environment or through communication
with other agents.
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ABSTRACT
Scenarios in current design methodologies, provide a natural
way for the users to identify the inputs and outputs of the
system revolving around a particular interaction process. A
scenario typically consists of a sequence of steps which cap-
tures a particular run of the system and satisfies some aspect
of the requirements. In this work we add additional struc-
ture to the scenarios used in the Prometheus agent develop-
ment methodology. This additional structure then facilitates
both traceability and automated testing. We describe our
process for mapping the scenarios and their steps to the ini-
tial detailed design, where we then maintain the traceability
as the design develops. The structured action lists that we
define for both scenarios and their variations provides the
basis for facilitating automated testing of system behavior.
We describe how we use the newly defined structure within
the scenarios to facilitate testing, describing how we auto-
mate test case generation, execution and analysis.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering

General Terms
Design, Reliability, Verification

Keywords
Agent Oriented Software Engineering, Requirements Testing

1. INTRODUCTION
Agent Oriented Software Engineering (and the related

agent development platforms or languages) is an approach
to building complex systems which has been shown to be
very efficient (on average 350% faster development time)
compared to standard Java development [1]. Many of the
agent system development methodologies (e.g. Tropos [4],
Prometheus [8], Roadmap [9]) use some kind of scenario or
use case development in the initial stages of agent system
specification and design as a way of exploring and develop-
ing the specification of a software system.
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In this work we extend the scenarios used in the Prometheus
methodology to provide a more precise and better structured
scenario specification, which can then be used for the impor-
tant aspects of traceability and requirements testing.

Scenarios provide a natural way for end users or clients to
understand the system that is being specified/designed. As
such they are a very useful tool for fleshing out what is ex-
pected of a system. By making them more precise and struc-
tured they can also play an important role in understanding
the implementation, and ensuring that things specified in
scenarios are in fact implemented. They are then also a nat-
ural candidate for a model based approach to requirements
testing.

The scenarios used within Prometheus are already more
structured than standard object-oriented use cases, in that
the steps of a scenario are specified objects within the de-
sign: percepts, actions, goals and sub-scenarios. This allows
reasoning about the relationship of scenarios to other design
entities - for example it is possible to ensure that the set of
scenarios “covers” the system goals.1 In this work we show
how the goals within scenarios (and their sub-scenarios) can
be mapped down to structures of events and plans that are
then mapped to code. This provides traceability from spec-
ification, through code, to design.

The Prometheus scenarios allow for specification of alter-
natives to the sequence described. However, the alternatives
are described only in natural language. It would of course
be possible to develop alternatives as fully specified scenar-
ios. However there is a balance between specifying sufficient
for a good understanding of the system, versus burying the
reader in unnecessary detail which can make it harder to
understand the system essentials. In this work we slightly
extend the notion of scenario alternatives, to require the
specification of actions that would be generated from each
alternative. This then provides us with a model which we
can use as a basis for requirements testing. Essentially we
can test the system by providing the trigger for each scenario
(in various situations), and then ensuring that the actions
generated are consistent with either the main scenario, or
one of the alternatives specified.

In the following sections we first describe the existing rep-
resentation of scenarios in Prometheus, and then describe
our extensions, including the consistency checking that these
allow us to accomplish. Secondly we show how we use sce-

1Coverage of the system goals by a scenario involves a cut
through the goal hierarchy so that each goal is “covered”
either by having an ancestor that is in the cut, or by having
all of its children in the cut.
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narios (in particular the goals within scenario steps) to gen-
erate skeleton designs which we then annotate in order to
maintain traceability back to the scenario descriptors. Fi-
nally we describe how these scenario specifications are used
to provide the oracle for testing when scenario triggers are
inserted into the system that has been initialized to different
configurations. We then conclude with a summary of what
has been accomplished, and a brief discussion of the future
directions for this work.

2. SCENARIO SPECIFICATION
In this section we provide a specification for scenarios,

by extending the current representation in the Prometheus
methodology.

The Prometheus methodology supports the complete de-
velopment of agent systems from specification, design, im-
plementation and testing/debugging [8]. It consists of three
key phases that guide the developer with a well defined set
of artifacts and process: System specification is where the
system interface is specified in terms of inputs (percepts),
outputs (actions), the actors, scenarios (akin to use cases in
traditional Object-Oriented design) and the functionality is
identified via goals and roles of the system; Architectural de-
sign where the internals of the system are specified in terms
of agents and communication protocols between them; and
detailed design where each agents internals are detailed to
a level that can be readily implemented in a BDI based
agent platforms such as JACKTM 2. The methodology is
supported by the Prometheus Design Tool (PDT) [7].

A scenario captures a particular run of the system that
typically covers a subset of the requirements. In other words,
scenarios are a way of describing and extending the under-
standing of the requirements at the specification phase. In
Prometheus a scenario is defined as a sequence of steps that
is initiated by a trigger such as a percept, an internal event of
the agent or time. Possible steps in a scenario are achieving
a goal, performing an action3, receiving a percept, perform-
ing another (sub) scenario or other step types not covered by
the above (for example, awaiting a response). For example,
in building an on-line bookstore application, two possible
scenarios that need to be covered are, a user placing a new
book order and querying about a delay in the delivery of an
order. Prometheus also allows for a textual description of
scenario variations. For example in the book ordering sce-
nario shown in figure 1 there may be a scenario variation
described, stating that if there is insufficient stock, then the
user is notified that the book is out of stock and the system
will engage in a process to order more stock.

2.1 Extended Scenario Specification
At present these scenarios are used only for requirements

elicitation and not as a basis for generating system tests. We
extend the current definition of scenarios with a structure
and detail that allows us to propagate the scenario informa-
tion to the implementation constructs through the detailed
design process of Prometheus and use them in generating
scenario based system test cases. Using the new structure
of the scenario, we are also able to assist the developer in

2JACK is the commercial platform developed by Agent Ori-
ented Software www.aosgrp.com.
3An action may map to one or more implementation con-
structs.

Figure 1: Example: Book Order Scenario Steps

Figure 2: Example: Get Payment Sub-Scenario
Steps

checking the consistency of scenarios when sub-scenarios are
used.

All the percepts consumed and actions produced by an
agent system need to be attached to one or more scenarios.
We also require that a scenario lists all the actions that
are generated by the system as part of the execution that is
covered by the scenario. Figure 1 is an example of a possible
sequence of steps for the book order scenario for an on-line
book store, and the steps of its sub-scenario step is shown
in Figure 2.

We make three different extensions to the scenario defini-
tion in Prometheus. Firstly we define a scenario IO-sequence
list to capture allowable sequences of percepts and actions
for a scenario and its variations. Secondly, we add a parame-
ter based test descriptor that identifies relevant variables for
the scenario; and thirdly we add traceability links that prop-
agate scenario information into the detailed design. Each of
these extensions are explained below.

Scenario IO-sequence list
We wish to be able to use the scenarios as a basis for an
initial form of system testing, that focuses on the percepts
coming into the system, and the actions coming out. To
assist with this we add an additional structured field to a
scenario, which we call the scenario IO-sequence list. This
list captures all valid sequences of percepts and actions for
the particular scenario. We note that each default version
of the scenario, as well as each variation, may have multiple
allowable IO-sequences as there may be parallelism or non-
determinism allowed in some of the orderings. Each valid
ordering is specified as a separate IO-sequence in the list.
Percepts and actions arising from sub-scenarios must also
be represented in each IO-sequence. Figure 3 illustrates the
IO-sequence list for the BookOrder scenario.

An initial IO-sequence list, with a single sequence, can be
generated by extracting out the percepts and actions as iden-
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Figure 3: Book Order Scenario default IO-Sequence

tified in the scenario and its specified sub-scenarios such as
in Figure 3. However the designer must add to this list with
alternative valid sequences. In addition the IO-sequence list
must be specified for scenario variations as we now describe.

The original version of Prometheus scenario descriptors
has only one Variation field as it is a free text field that
can explain multiple variations. In our extension we allow
multiple Variation fields, in order to capture separately each
logical variation, along with its structured IO-sequence list.
Figure 4 shows possible variations for the BookOrder sce-
nario. Variation 1 is for when a book is out of stock. It pro-
duces two actions, a notification to the user that the book
is out of stock and an order for more stock to the supplier.
The two actions may be produced in any order hence there
are two possible IO-sequences as shown in the figure.

Figure 4: Example Scenario Variations

When reusing a scenario as a sub-scenario, the developer
must consider the alternate scenarios of the sub-scenario in
defining the parent level alternate scenarios. Consistency
checking can be done by PDT to ensure that the sub-scenario
IO-sequences used in the parent scenario, are legitimate sub-
scenario sequences. However it is not necessarily the case
that all IO-sequences of the sub-scenario will be reflected
in the parent scenario or its variations.4 Nevertheless it is
useful to have the tool alert the user to cases where all the
sub-scenario variations are not covered in the parent sce-
nario.

Scenario test descriptor
We also add a test descriptor to the scenario design descrip-
tor in order to specify information relevant for testing. This
is following the principle of test descriptors used for unit
testing in the work of Zhang et al. [12, 11]. The test de-
scriptor is defined based on a set of scenario variables, which
are parameters identified as important for the particular sce-

4Some variations in the sub-scenario may be valid only in
contexts other than the parent scenario under consideration.

nario and initialization procedures which must be executed
prior to triggering the scenario execution.

The scenario variables are described in terms of their type
and domain-range, as in Zhang et al. [12]. We also allow a
similar specification of relevant relationships between vari-
ables as in that work (for example, the number of books
ordered is less than the stock available). The test descriptor
must also provide the mapping to the implementation.

Figure 5: Book Order Scenario Test Descriptor

In the book ordering scenario, an example variable that
would be important is the variable that captures the num-
ber of books in stock, stock quantity. Figure 5 shows how
this variable is specified as part of the test descriptor, with
type int and domain range ≥ 0. It also specifies that the
variable belongs at the agent-level (opposed to system-level
for example) to the SalesManager agent class and mapped
to the variable orderBookStock which is of variable type sim-
ple. The type of the variable determines how the variable is
assigned values at run time. We refer the reader to [12] for
further details on this matter.

The initialization procedures are also specified as in Zhang
et al. [12]. For example, in Figure 5, a static method initDB,
which is part of the agent class salesManager is specified to
initialize connections to the stock databases which is used
during the execution of the scenario.

It is intended that test descriptors are filled out after im-
plementation, although some aspects of important variables
may be identified during scenario specification. It is clear
at the stage of scenario development that stock quantity is
important for the above scenario. However details of the
valid range may well be specified after implementation - we
may for example choose to have negative numbers indicat-
ing number of pending orders for which there is no available
stock, or we may choose to have valid values lie between zero
and some maximum. The details must be filled in prior to
testing, in order to ensure that test cases are generated with
all equivalence classes of values for this variable.

Traceability links
Our third modification to scenarios is to introduce links be-
tween scenarios and other entities. In the current Prometheus
Design Tool (PDT), the design model contains a list of rela-
tionship links between entities for traceability. We introduce
the following relationship links to ensure traceability of sce-
narios:

scenario-goal: A link is created between the scenario and
the goal that represents the scenario. A link each is also
created between the scenario and the goals that are steps of
the scenario. These links are used, for example, when a goal
is attempted to be deleted, if the goal is part of a scenario
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the user is notified of this and prompted to reconsider the
deletion or to also delete the goal-step from the scenario.
Similarly, when a goal-step is deleted from a scenario the
user is asked if the goal representing that goal-step is also
to be deleted from the model.

scenario-percept, scenario-action: A link each is created
between the scenario and its action and percept steps. This
link is used when a percept or action is deleted to prompt the
user to also delete the respective scenario step, or reconsider
the deletion. When an action or percept is deleted from a
scenario, if it is not part of any other scenario then the user
is asked if it is to be deleted from the model as well.

goal-event: When a goal is mapped to an event following a
process described in the following section, a relationship link
is created between the goal and the corresponding event and
the goal is annotated with the event that represents it. We
note that this is a new field of the goal entity type that we
introduce in PDT as it necessary for traceability as follows.
If the event of the goal-event link is deleted then the user
is notified that the event is associated with the goal and
requested to specify an alternative event that represents the
goal. If the user provides such an event then the link is
modified and the goal is annotated accordingly.

When a goal is deleted, if there is a link to an event (this
will be true for all goals assigned to an agent via roles)
then the user is prompted to check if the event is also to
be deleted5.

The goal-event link also enables the consistency check of
ensuring the scenario and its goal-steps are mapped to an
event.

3. FROM SCENARIOS TO IMPLEMENTA-
TION

In this section we describe how scenarios are mapped from
design to implementation in the Prometheus Design Tool
(PDT) for the purpose of traceability. We note that we only
describe the process and rules for propagation relevant to
scenarios and any new techniques that we introduce. We
refer the reader to [8] for details on the other aspects. In
order to better illustrate the process we use the example of
an electronic bookstore similar to that used in [8] with a
single scenario of a user ordering a book as illustrated in the
previous section, for simplicity.

System Specification In the current methodology, Scenar-
ios are created in the System Specification stage. They are
first identified in the Analysis Overview Diagram, where the
actors6, actions and percepts are specified. Each percept,
action and actor is associated with a scenario that responds
to the percept, produces the action and interacts with the
actor (see Figure 6).

These scenarios are then detailed in the Scenarios descrip-
tor where the trigger and steps of each scenario are identified
(Figure 1 details the BookOrder Scenario). Further, as de-
scribed in the previous section, the IO-sequence lists for the
default case and any variations are specified. The scenarios

5We note that here we only outline the reasoning around
scenarios as these are the additions we propose. There are
however, many other rules such as when a goal is deleted,
the user is prompted to check if all its sub-goals are also to
be deleted and so on.
6Entities external to the system that interact with it.

Figure 6: Analysis Overview

and their steps (including the actions and percepts that are
part of the IO-sequence lists of variations) are propagated
to the level of implementation as follows.

When a scenario is created a corresponding Goal (sce-
nario goal) is automatically created and added to the Goal
diagram. This is to ensure that the system has a goal to
fulfill the scenario. The Goal Diagram captures the goals of
the system. These goals may be further decomposed into
subgoals which maybe an “AND” or “OR” decomposition,
where “AND” requires all subgoals be satisfied for the goal
to be successful and “OR” requires at least one of them to
be satisfied. (See Figure 7.)

Figure 7: Goals Diagram

For each goal-step of a scenario a corresponding goal is
automatically created and associated as a subgoal to the
scenario goal in the Goal Diagram. Multiple goal-steps are
added as an “AND” decomposition as steps are not optional
in a scenario.

Action and percepts are typically created in the Analysis
Overview Diagram and used by scenarios as steps. However,
new actions and percepts may be created when describing
the steps of a scenario, which would cause the actions and/or
percepts to be automatically added to the Analysis Overview
Diagram as associated with the Scenario.

Each scenario step follows the same process as above, with
the exception that its corresponding goal is associated as a
subgoal of the top level scenario goal.

The goals, actions and percepts are propagated to the
Roles Diagram where roles are created and associated with
them. We note that the steps of a single scenario may be
associated with different roles and that not all goals may
be assigned to a role, as the goals may be abstract goals.
However, all goals must be covered by a role, where a goal
is considered to be covered if:
a) it is explicitly mentioned in the goal descriptor in the de-
sign; or
b) all of its children are covered; or
c) its parent is covered.
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This recursive definition ensures a “coverage cut” through
the goal hierarchy, where all the goals in the cut are asso-
ciated with some role and some scenario. Figure 8 is an
example of role assignment for the bookstore example.

Figure 8: Roles Diagram

We also note that, when a goal is assigned to a role, the
subgoals of that goal are by default assigned to the same
role, unless they are explicitly assigned to another role.

Architectural Design In the Architectural Design stage,
the roles are associated with agents in the Agent-Roles Di-
agram (see Figure 9). Consequently, the scenario goals and
the steps of the scenarios are associated with agents. Note
that if a goal is an abstract goal, it is associated with its
sub-goals and therefore the agents that the sub-goals belong
to.

Figure 9: Agent-Role Diagram

The System Overview Diagram illustrates the agents and
the percepts that the agent responds to and the actions it
produces (see Figure 10).

Figure 10: System Overview Diagram
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Figure 11: Goals to Events/Plans

Detailed Design
The actions and percepts associated with each agent are

propagated into the Agent Overview diagram where the de-
signer then develops plans to handle the percepts and pro-
duce the actions.

Currently in PDT goals are not propagated into the De-
tailed Design, however, the designer may annotate the plans
to indicate which goal it satisfies. We extend PDT to auto-
matically propagate goals into the Agent Overview Diagram
as described below. The aim is to guide the designer in de-
veloping plans to satisfy its goals using the goal hierarchies
in the Goal diagram in such a way that it follows the BDI
principles of allowing a choice of plans to achieve a particu-
lar goal. This also allows goals to be traceable throughout
the design and consequently scenarios, which are mapped to
goals, to also be traceable.

For each (top-level) goal associated with an agent (which
is automatically determined from the Agent-Role Diagram,
and stored in the agent descriptor), depending on the goal
decomposition attained from the Goal Diagram, correspond-
ing (empty skeleton) plan and event structures are created
in the Agent Overview Diagram as follows:

An event is created to represent the goal, which we term
the goal-event, and;

- If the goal has no decomposition then a plan is created to
handle the goal-event. The designer may add further plans
which represent the different ways of achieving the goal.

- If the goal has “AND” decomposed subgoals (e.g. G has
G1, G2 and G3 in Figure 11(a)), a plan is created to handle
the goal-event (e.g. P in Figure 11) which posts the subgoals
as follows:

If the subgoal is associated with the same agent, a corre-
sponding (subgoal) event is posted by the plan, and a plan
that handles that event is created (e.g. event e1, and plan
P1 in Figure 11(b)). The designer may add further plans to
handle the event, if there is more than one way of achieving
the subgoal.

If the subgoal is associated with another agent, then a
message is created as outgoing from the plan (e.g. M1 in
Figure 11(b)) and the message is propagated into the Agen-
tOverview Diagram of the other agent.

- If the goal has “OR” decomposed subgoals (e.g. G2 has
G4 and G5 in Figure 11(a)) then a plan is created for each

289



subgoal so that the designer may encode the choice between
the subgoals as context conditions of the plans (e.g. P3 and
P4 in Figure 11(b)). This supports the BDI principles in
programming agents.

For each subgoal that is part of the same agent, an event
is posted by the subgoal plan, and a plan that handles the
event is created (e.g. e4 and P5 in Figure 11(b)). The reason
for posting an event to handle the goal rather than handling
the goal as part of the plan that posts it, is to allow the
designer to add alternate ways of achieving the subgoal if
any.

For each subgoal that is part of another agent, a message
is created as outgoing from the plan (e.g. M2 in Figure
11(b)) and propagated into the AgentOverview Diagram of
the other agent.

A similar process is applied recursively down the tree until
all the goals are either mapped to an event and at least one
plan that handles that event, or a message that is delegated
to another agent. Figure 12 shows the AgentOverview Di-
agram for the SalesManager agent which incorporates the
propagation process described.

Figure 12: Agent Overview Diagram: SalesManager

Consistency Cross-Check for Scenarios:

PDT provides a consistency check feature that checks the
model against a set of rules and alerts the user if any rule
is violated. The following rules ensures that Scenarios and
all their steps are mapped to the detailed design which is
used to generate the code for the system (PDT provides an
automated code generation feature that generates skeleton
code in the JACK agent language). For a given scenario:

• All action and percept steps are associated with at
least one plan. This includes the actions specified as
alternative outputs of the scenario.

• The scenario goal and all its subgoals (as specified in
the Goal Diagram) are associated with a role. A goal is
associated with a role if one of the following is satisfied:
- the goal is assigned to a role.
- all its subgoals are associated with a role: note this is
recursive and that different subgoals may be associated
with different roles.
- the goal’s parent goal is assigned to a role: by default
a goal is assigned to the same role as its parent unless
explicitly assigned to another.

• All goals that are part of the scenario and assigned
to a role are mapped to an event and the event is
handled by at least one plan (this is automated via
the propagation process described above, however, the
check is to ensure that changes made by the designer
does not violate it)

• If a percept is a trigger to the scenario then it must
be associated with the same role associated with the
scenario goal or, if the scenario goal is abstract, the
role associated with the first non-abstract goal-step.

• Each (sub)scenario step also satisfies the above.

4. TEST FRAMEWORK
One of the motivations for the greater structure in the sce-

nario descriptors is to be able to do testing of scenarios as
part of requirements or acceptance testing. At this level we
want to initiate a particular interaction (scenario) in a wide
range of different situations with respect to input variations,
and ensure that the system behavior is as expected. “As ex-
pected” in this context is defined precisely by the sequences
of actions and percepts defined in the IO-sequence lists for
the scenario, including its variations. Testing then requires
that the environment exists, and perhaps is initialized (e.g.
stock levels of books established), the trigger is provided to
start off the scenario, and the ensuing sequence of actions
and percepts are recorded.

The following analysis may be performed from the recorded
sequence of percepts and actions:

• If the sequence matches one of that in the IO-sequence
lists for the scenario and its variations, then the test
succeeds.

• If a sequence is observed which has not been specified,
then a trace of the program, using a tool within the im-
plementation platform, can help in identifying where
the sequence has diverged from what was expected.
It may also be the case that the unexpected sequence
is valid and wasn’t identified by the developer in the
design, in which case the scenario specification be re-
vised to include the IO-sequence as a variation to the
scenario.

• The IO-sequences observed by the different success-
ful test cases are noted. If there are some specified
IO-sequences that are not observed, then the tester is
notified of this. This could be due to (a) insufficient
test cases to cover all possibilities, (b) a fault in the
implementation (for example, no plan produces an ac-
tion that is part of the sequence), or (c) a fault in the
IO-sequence specification (for example, the sequence
is not achievable).

It is often the case that it is not practical to test the sys-
tem “in situ”. In this case we need some kind of mechanism
to collect the actions and provide the percepts. To achieve
this we propose the use of an agent based simulation plat-
form such as Repast [6]. These simulation platforms already
provide a sound and well-adopted infrastructure for simulat-
ing complex environments such as those that agent systems
typically operate in.

We leverage these concepts to provide the basic infrastruc-
ture necessary for testing scenarios which we now describe.
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The simulator acts as an environment for generating per-
cepts and consuming actions. In other work we have inte-
grated a BDI agent platform (JACK) with an agent based
simulation platform (Repast) via percepts and actions with
message passing that synchronises the two systems. In the
integrated model, each BDI agent that interacts with the
simulation environment has a corresponding simulation agent
that acts as a sensor-actuator for sending percepts from the
environment to the BDI agent and executing actions of the
BDI agent within the simulated environment (See Figure
13). While it is possible to achieve the same with a single
simulation agent, having individual simulation agents pro-
vide an independent thread of execution for each agent and
also simplifies the implementation.

Test Agent
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Figure 13: Interaction with the Sim environment

For the purpose of testing the system, we introduce a BDI
Test Agent (BDI-TA) and a Simulator Test Agent (SIM-
TA), to set up and execute the test cases. Whilst the BDI-
TA will be able to directly access and set-up any system level
information, in order to set-up information that is internal
to an agent, each agent is required to have a HandleTestData
plan which is triggered by a TestData message sent by the
BDI-TA.

An overview of the testing process is as follows:

• The SIM-TA sends the relevant test data, such as the
initial values for the test variables and initialization
procedures to the BDI-TA via a StartTest percept which
is handled by the HandleStartTest plan in the BDI-TA.
This marks the start of a test case execution. The test
descriptor for the scenario to be tested is used to de-
termine the appropriate information that needs to be
initialized.

• The BDI-TA sets up any system level information and
runs initialization procedures and sends a TestData
message to the relevant agents for setting up agent
internal beliefs or variables. For example, in test-
ing the BookOrder scenario, the value for the variable
stock quantity and the initDB initialization procedure
will be established by the SalesManager agent (refer
Figure 5). When all initializations are complete, the
BDI-TA informs the SIM-TA of this by sending the
action StartSimulation.

• The SIM-TA also provides the simulator agents that
may generate percepts during the scenario execution

with information to be contained in the percept, which
corresponds to a particular test case. It is possible
to identify which agent handles the triggering percept
for the particular scenario from the design specifica-
tion using the traceability links as described in sec-
tion 2.1. For example, in the BookOrder scenario the
data required by the SalesManager agent to populate
the BookOrderPercept such asorder details will be pro-
vided by the SIM-TA. These state variable initializa-
tion is achieved by calling the appropriate “set meth-
ods” of the simulation agents.

• Once the above set-up process is complete (including
receiving the action StartSimulation from BDI-TA) the
SIM-TA starts the execution of the rest of the simula-
tion agents. For example in the BookOrder scenario,
this will make the SalesManager simulation agent send
the BookOrderPercept to the SalesManager BDI agent.
Once the system execution starts the SIM-TA does not
interact with any of the agents in the system as part
of the usual execution, but simply records actions gen-
erated and percepts received.

• Any action produced by an agent is executed via its
corresponding simulator agent, which simulates the ef-
fects of the action on the environment. Which may
in turn produce percepts. For example, the Payment-
Manager agent produces the PaymentRequest action,
which when executed in the simulator generates the
PaymentDetailsPercept which is delivered back to it.

• Apart from action triggered percepts, the scenario may
also require percepts at particular time intervals, or
when a particular state of the environment is true.
Simulator agents execute routines at every simulation
cycle. Therefore, the tester/developer should encode
the routines for producing these percepts within the
corresponding simulator agents. It might also be the
case that not sending an intermediate percept is part
of a test case that tests the behavior of the system
when the percept is not received (does the system fail
gracefully?).

• The test case execution ends when a pre-defined time-
out is reached for the complete scenario execution. It
could also end if a pre-defined timeout for a particular
action is not met.

• All the actions and percepts generated during the ex-
ecution of a particular test case is recorded. The data
for all test case executions for a particular scenario is
gathered and later analyzed.

Note that we currently only support the testing of a single
scenario at a time. We assume the execution of the scenario
under test in isolation where interacting scenarios are not
considered. Testing interacting scenarios is part of the future
work.

In order to assist the developer in the above process the
following automated code generation can be performed:

• Using the design specification it is possible to obtain
the percepts and actions relevant to a particular agent.
The code stubs for executing these actions and gener-
ating the percepts are created in the corresponding
simulator agent which the developer can then fill-in.
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• When generating test cases, the initialization proce-
dures and variables are extracted from the test de-
scriptor of the scenario and presented to the user as a
test specification. The user can then set the values of
the variables that form the different test cases.

• The code stubs of the SIM-TA, BDI-TA and the Han-
dleTestData plan for each agent are created.

The specification of the variables that influence a scenario
in the test descriptor of that scenario allows automated test
case generation, using the domain range for the variables and
any comparative relationships specified. Such an approach
is already fully implemented in PDT for the unit testing
framework of Zhang et al. [12].

5. DISCUSSION/CONCLUSION
In this paper we have extended the specification of sce-

narios in Prometheus methodology to include information
that allows (a) a structured specification of the variations of
a given scenario in terms of percept and action sequences;
(b) traceability of the scenario throughout the various design
stages; and (c) the scenario to be tested for the expected out-
comes in terms of the specified percept and action sequences.
We then provide a detailed process for mapping scenarios to
implementation, using the Prometheus Design Tool, auto-
matically propagating information where possible. Finally,
we provide an approach for testing the scenarios, using an
agent based simulation platform.

Given the nature of an agent system behavior, which in-
cludes asynchronous handling of percepts from the envi-
ronment and simultaneous execution of multiple intentions
(plans), it is not trivial to use standard test automation
frameworks for testing agent systems. Moreover, existing
scripting based automation tools [3] require extensive set up
to simulate a complex environment that an agent system
operates in. Therefore, we use an agent simulation platform
such as Repast for simulating the environment for the agent
system and enabling the test case execution for scenarios.

While formal verification is one approach that can be
used for validating requirements (such as the Z specifica-
tion), these methods require additional knowledge in the
developers part to apply them and are also not well sup-
ported by practical agent implementation platforms (such
as JACK) based on main stream programming languages
(such as Java). Hence, even if the design model is verified,
the implementation should still be tested via a practical ap-
proach as proposed in this work.

The testing approach developed compliments other work
on testing agent systems such as the unit testing framework
of Zhang et. al. [12] which we build upon, the goal-oriented
testing approach of the eCAT tool [5] which is based on the
goal models associated with the Tropos methodology [4], the
JAT framework [2] for testing agents developed in the JADE
platform 7 that specifies a fault model based on general agent
features and provides skeleton code for testers to manually
develop test cases and the SUNIT framework based on the
SEAGENT model [10].

One of the limitations of the current approach is that it
tests a given scenario in isolation. This simplification has
helped us focus on building a framework for using scenar-
ios for system testing. However, in a “live” agent system

7jade.tilab.com/

simultaneous scenarios are in execution giving rise to action-
percept sequences influenced by each other. More work is
required in supporting the test developer and extending the
simulation environment to be able to support interacting
scenarios.

To our knowledge this is the first work that explores the
use of an agent simulation platform as a test automation
tool to test an agent system. We intend to explore this fur-
ther in two directions. Firstly, we intend on evaluating our
framework by testing several agent systems from different
application domains in order to gain further insight into the
effectiveness of our approach. Secondly, we plan to extend
the PDT design interfaces to allow developers to graphically
define the simulation agent details, providing a unified in-
terface for designing system(BDI) and test(SIM) agents.
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ABSTRACT
The introduction of affect or emotion modeling into soft-
ware opens up new possibilities for improving user experi-
ence. Yet, current techniques for building affective appli-
cations are limited, with the treatment of affect in essence
handcrafted in each application. The multiagent middle-
ware Koko attempts to reduce the burden of incorporating
affect modeling into applications. However, Koko can be ef-
fective only if the models it needs to function are suitably
constructed.

We propose Kokomo, a methodology that employs expres-
sive communicative acts as an organizing principle for af-
fective applications. Kokomo specifies the steps needed to
create an affective application in Koko. A key motivation is
that Kokomo would facilitate the construction of an affective
application by engineers who may lack a prior background
in affective modeling.

We empirically evaluate Kokomo’s utility through a devel-
oper study. The results are positive and demonstrate that
the developers who used Kokomo were able to develop an
affective application in less time, with fewer lines of code,
and with a reduced perception of difficulty than developers
who worked without Kokomo.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Design—Methodologies; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Design, Experimentation, Human Factors

Keywords
Software engineering, Affective computing, Computational
architectures for learning

1. INTRODUCTION
The term affect is used in psychology to refer to feelings or

emotions. The term is also used more narrowly to describe
an expressed or observed emotional response of a human
to some relevant event. Expressed responses can be most
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easily demonstrated in a 3D virtual environment where vir-
tual characters use gestures and dialog to emulate human
emotional responses [7]. In contrast, we concentrate on the
observation aspects of affective computing. In particular,
we focus on enabling software developers to use affective
computing techniques in order to create a superior user ex-
perience.

We take as our point of departure the Koko middleware
developed by Sollenberger and Singh [17, 19]. Koko is a
service-oriented middleware that observes and maintains a
predictive model of a user’s affective state, and thus relieves
application developers from the challenge of maintaining
such a model. However, Koko needs to be suitably con-
figured so as to work effectively.

We propose a methodology called Kokomo that steps an
application developer through a process for configuring Koko
and incorporating it into an application. Interestingly, Ko-
komo is based on the notion of expressives, an important
but little-known (especially in the agents community) class
of communicative acts.

Further, we conducted a developer study to determine the
actual and perceived benefits of Koko and Kokomo to ap-
plication developers. Our hypothesis is simple: developers
who use Koko and Kokomo can more easily construct an af-
fective application than those who do not, while at the same
time not diminishing the quality of their application. The
study consisted of the same application assigned to groups
of developers employing Kokomo (with Koko), Koko alone,
and neither (just traditional techniques).

Our evaluation measured the ease of constructing an ap-
plication both subjectively and objectively. We collected
subjective developer feedback on their perceived difficulty
via surveys which we obtained throughout the duration of
the study. The feedback indicates a lower perception of
difficulty for the affective portions of the assignment when
using Kokomo than without it. Analysis of objective diffi-
culty measures (code metrics and effort analysis) shows that
Kokomo yields the best results on nearly every measure of
code complexity and effort. However, the results were not
uniformly strong for developers employing Koko alone (we
revisit this point in Section 6).

It is important to note, that this work does not intro-
duce any new theories or paradigms for the field of affective
computing, but rather seeks to employ existing affective the-
ories in a compelling new way. The main contributions of
this work are focused on software engineering as we seek
to expand the scope of agent-oriented methodologies into
the realms of expressive communication and affective agents.
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Additionally, unlike many agent-oriented methodologies, we
have subjected our methodology to an empirical evaluation
in the form of a developer study where the developers are
not the authors of the methodology.

2. BACKGROUND
Smith and Lazarus [16] are credited with developing a the-

ory of emotions, called appraisal theory, which has become
the baseline model for affect in computational systems. As
Figure 1 shows, an appraisal (for our purposes, an expres-
sion of affect) arises from how a user interprets or construes
an event in the environment.

Environment Goals/Beliefs/ 
Intentions

Appraisal Outcome
 
 Physiological

Response Affect Action
Tendencies

Appraisal

Situational
Construal

Figure 1: Components and process of an appraisal.

Further, the affective state contained within an appraisal
outcome can be interpreted as a vector of discrete states,
each with an associated intensity. For instance, upon suc-
cessfully completing a task, a user could arrive at an ap-
praisal that he or she is simultaneously happy with an in-
tensity of α and proud with an intensity of β.

Appraisal theory finds broad application because of its
computational nature. Its applications include educational
games [1], similar to the task in our developer study. We
note that affective computing extends beyond our discus-
sion of appraisal theory. Picard [12] provides an excellent
overview of the affective computing field which includes a
more detailed discussion of appraisal theory.

A major challenge in applying appraisal theory is its do-
main dependence: it yields models of affect that are tied
to a particular domain and context. The common prac-
tice when creating a new affective application have been to
copy and modify an existing model to meet the specifica-
tions of the new domain. Recent approaches have begun
to address this challenge. The EMotion and Adaptation
(EMA) system [7] for modeling virtual characters incorpo-
rates a domain-independent model to be populated with the
necessary context at runtime. CARE [10] does the same for
modeling human subjects.

2.1 Koko
Koko is a multiagent and service-oriented middleware,

which enables the prediction of a user’s affective state [17].
Koko is not an affect model, but a platform within which
(existing and future) models of affect can operate.

Koko provides an ontology of emotions and an ontology of
the primitives for describing an application’s state. A devel-
oper uses these ontologies to configure Koko by specifying
(1) which emotions to model and (2) the relevant compo-
nents of the application’s state. From the configuration,
Koko generates a model specific to the application. At run-
time Koko receives inputs, described using the configured

primitives, from the sensors and the application.

Koko

User Agent

Application Logic

          Ontology of Emotions and Event Primitives

Affect Model
Container

 Affect 
Vector

Event Repository Affect
Repository

Environmental
Sensors

Figure 2: A Koko user agent (arrows represent data
flow).

Koko supports appraisal theory models, as described ear-
lier in this section. Appraisal theory dictates that each time
an input is received an output must be produced. The out-
put produced by a Koko model is a vector of probabilities,
called an affect vector. The vector contains an element for
each emotion as configured for the application. Each ele-
ment is the probability that the user is currently experi-
encing the corresponding emotion. Koko makes each user’s
affect vector available to the appropriate applications.

Koko follows the cognitive-based user affect modeling (CB-
AUM) approach [8]. Koko supports one model per applica-
tion for each user and exposes these models to applications
using a formal set of interfaces [17]. A CB-AUM model re-
lies heavily on machine learning techniques. Koko includes
a repository for CB-AUM models from which a developer
may choose the most appropriate model for a new applica-
tion. The basic flow of such a model can be conceptualized
in the following steps.

1. Seed the model with information about the user’s en-
vironment. This seeding is based on the application-
specific configuration.

2. Provide training data. Either the user or someone ob-
serving the user must record the user’s emotional state
in conjunction with data from the application or the
sensors, preferably both. This is simplest if the ap-
plication itself is appropriately instrumented, e.g., to
query the user for their emotions. The data can op-
tionally be acquired offline.

3. Learn a model from the training data. Koko does this
using the Weka toolkit. In general, user affect mod-
eling [8] makes heavy use of various machine learning
techniques to adapt to the behavior patterns of indi-
vidual users.

4. Provide probabilistic predictions regarding the user’s
affective state, represented in Koko as an affect vector,
as described above.

Additionally, Koko is designed to support affective inter-
actions among the user agents. The traditional Koko run-
time is deployed in a cloud environment where there is one
Koko agent per end user regardless of how many different
Koko based applications are associated with the user. These
agents are equipped to share affective information with other
agents in the user’s social circle, even across application
boundaries.
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2.2 Koko-ASM
Koko-ASM is a methodology for configuring a social (mul-

tiagent) affective application using Koko [18]. The configu-
ration process of Koko is important because the affect mod-
els contained in Koko are dependent on the quality of infor-
mation they receive from the application. The purpose of the
methodology is to guide the application developer through
Koko’s configuration process in an intuitive manner.

Instead of simply listing the requirements for Koko’s con-
figuration, Koko-ASM uses the concept of agent interaction
to guide the developer through the process. The metho-
dology makes use of speech act theory [15] as a means of
modeling communication between agents in a social environ-
ment. The primary focus of the methodology is to identify
the communicative actions among agents and then through
a series of steps decompose those interactions into the arti-
facts needed to configure Koko.

3. KOKOMO
We now describe Kokomo, our proposed configuration me-

thodology for Koko. Kokomo addresses the same goal as
Koko-ASM, namely, to guide the application developer to
configure Koko for an application. Koko-ASM and Kokomo
share some commonalities: both are based on agents, both
use the concept of agent roles, and both employ speech act
theory.

However, Kokomo has some critical and fundamental dif-
ferences in terms of how it achieves its goal. First, although
Koko is designed to operate in environments ranging from
those that are highly social to those containing only a single
agent, Koko-ASM only considers applications that involve a
high degree of interaction among Koko’s user agents. Ko-
komo, in contrast, is broader in its scope and applies to all
settings where Koko can be used. Second, Kokomo expands
its treatment of agents beyond a Koko user agent (standing
in for a user) to include both Koko user agents and virtual
AI-controlled entities (e.g., virtual character). The third and
final difference is that no two steps are equivalent across the
methodologies. In fact, Kokomo adds two additional steps
to provide more granular guidance for developers.

Upon completion of a design exercise with Kokomo, a de-
veloper will have identified or constructed all the artifacts
needed to configure Koko for an application. Table 1 lists the
steps used to create an affective application with Koko. The
documentation below highlights the key concepts of Steps 1–
5, which are the primary steps in Kokomo.

Step 1 requires the developer to identify the set of roles
an agent may assume in the context of the application. Ex-
amples of such roles include teacher, student, coworker, en-
emy, and rival. A single agent can assume multiple roles
and a role can be restricted to apply to the agent only if
certain criteria are met. For example, the role of coworker
may only apply if the two agents communicating work for
the same organization.

Step 2 requires the developer to describe the expres-
sive messages or expressives exchanged between various roles
[15]. Searle defines expressives as communicative acts that
enable a speaker to express their attitudes and emotions to-
ward a proposition. Examples include statements like “Con-
gratulations on winning the prize!” where the attitude and
emotion is congratulatory and the proposition is winning the

Table 1: The main steps of Kokomo.

# Description Artifacts Produced

1 Define the set of possible
roles an agent may assume

Agent Roles

2 Describe the expressives
exchanged between roles

Expressive Messages

3 Derive the modeled emo-
tions from the expressives

Emotions

4 Describe a set of nonex-
pressive application events

Application Events

5 Construct the appropriate
event definitions

Event Definitions

6 Select the sensors to be in-
cluded in the model

Sensor Identifiers

7 Select the affect model
from Koko’s repository

Model Identifier

8 Register with Koko’s run-
time environment

Source Code

prize. Formally, the structure of an expressive is

〈sender, receiver, type, proposition〉
The type of the expressive refers to the attitude and emo-

tion of the expressive and the proposition to its content,
including the relevant events. The sender and receiver are
selected from the set of roles defined in Step 1. The devel-
oper then formulates the expressives that can be exchanged
among agents assuming those roles. In the case that both the
selected roles can only be assumed by artificially intelligent
agents then formulate expressives only for communicative
acts that are observable by a user agent. The result is a set
of all valid expressive messages allowed by the application.

Step 3 requires the developer to select a set of emotions
to be modeled from Koko’s emotion ontology. The selected
emotions are based on the expressives identified in the pre-
vious step. To compute the set of emotions, we evaluate
each expressive involving a user agent and select the most
relevant emotions from the ontology for that particular ex-
pressive. The selected emotions are then added to the set
of emotions required by the application. This process is re-
peated for every expressive and the resulting emotion set is
the output of this step.

Expressive
Message

Self Others

Events Actions Objects

Attraction
+ like

- dislike

Well-Being
+ joy

- distress

Prospects
+ hope
- fear

Hope Confirmed
+ satisfaction

- dissapointment

Fear Confirmed
+ relief

- fear-confirmed

Self
+ pride
- shame

Others
+ admiration
- reproach

Desirable
+ happy-for
- resentment

Undesirable
+ pity

- gloating

Figure 3: Expressive message hierarchy.

Koko offers support for expressives because it provides a
well-delineated representation for affect. Koko can thus ex-
ploit a natural match between expressives and affect to help
designers operationalize the expressives they use in their ap-
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plications. The recommended approach to selecting an emo-
tion is to structure Elliott’s set of emotions [4] as a tree (Fig-
ure 3). Each leaf of the tree represents two emotions, one
that carries a positive connotation and the other a negative
connotation. Given an expressive, you start at the top of
the tree and using its type and proposition you filter down
through the appropriate branches until you are left with only
the applicable emotions. For example, say that you have a
message with a type of excited and a proposition equal to
“I won the game.” Now using the tree you determine that
winning the game is an action the user would have taken
and that excited has a positive connotation, so the applica-
ble emotion must therefore be pride. In general, the sender
and receiver would have different interpretations of the same
event. For example, if the recipient of the above message is
the agent who lost the game, then the emotions that are
relevant to the recipient would be admiration or reproach
depending on their perception of the winner.

If the proposition of the expressive message is composite
or even ambiguous as to whether or not the type applies to
an event, action, or object, then more than one path of the
tree may apply. Such is the case when an agent conveys its
mood via an expressive message. Mood is an aggregation
of emotions and therefore does not have a unique causal
attribution. For example, an expressive might convey that
a agent is generally happy or sad without being happy or
sad at something. Therefore, we do not select any specific
emotion when evaluating an expressive pertaining to mood
as the emotions that comprise the mood are captured when
evaluating the other expressives. In other words, mood is
not treated directly upon the reception of an expressive.

Step 4 requires the developer to describe a set of nonex-
pressive events in their application. A nonexpressive appli-
cation event occurs when the user has an interaction with
the application that may effect their emotions. In particu-
lar, we are interested in the emotions selected in Step 3. The
nonexpressive aspect of these events is that they are not a
direct result of interaction between two users, but rather of
the user with their environment.

A developer could encode the entire state of the applica-
tion as a set of events, but this is not necessary as we are only
interested in the parts of the application that may effect the
emotions we have selected. For example, the time the user
has spent on a current task would likely influence their emo-
tional status, whereas the time until the application needs
to clear its caches or garbage collect its data structures is
likely irrelevant.

We guide developers by helping them think about the in-
teractions (direct and indirect) a user can have with their
application and how those interactions relate to the set of
emotions defined in Step 3. For example, if the application
monitored phone calls and the user had not sent or received
a call all day then that may affect the user’s emotional state.
Further, after identifying an event we must quantify it. In
the previous example, the quantification could be the time
since the last call was received.

Step 5 requires the developer to construct the appropriate
event definitions using Koko’s event ontology. The events
described are a combination of the expressives in Step 2 and
nonexpressive application events identified in Step 4. Each
expressive identified in Step 2 is modeled as two event defi-
nitions, one for sending and another for receipt. The decom-
position of a message into two events is essential because we

cannot make the assumption that the receiving agent will
read the message immediately following its receipt and we
must accommodate for its autonomy.

Step 6 and Step 7 both have trivial explanations. Koko
maintains a listing of both the available sensors and affect
models, which are accessible by their unique identifiers. The
developer must simply select the appropriate sensor and af-
fect model identifiers.

Step 8 completes the methodology by providing the de-
veloper with details on how to register their application
within Koko’s runtime environment. Given the artifacts
gathered from the previous steps we can configure the ap-
plication via the interfaces defined by the Koko middleware.
Upon success, the Koko registration interface returns an ap-
plicationID, which acts as the identifier for the application.
The developer uses the applicationID in all subsequent inter-
actions with the Koko runtime, such as sending information
about the user to Koko or querying for the user’s current
affective state.

4. APPLICATION FOR OUR STUDY
Our study involves the development of a math tutoring ap-

plication for high-school students. This application centers
around a dynamic lesson planning agent called the virtual
teaching assistant (vTA). The goal of the vTA is to sharpen
the user’s mathematical skills in a variety of areas, such as
probability and geometry. The target audience is students
preparing for the standardized end-of-grade tests that are
given to US students at the conclusion of the 8th and 12th
grades.

This application satisfies three essential criteria. First, it
is simple enough to implement in a short period of time,
yet complex and open enough that multiple solutions are
possible. Second, the application can be compartmentalized
into discrete units, thereby enabling us to compare individ-
ual components across all developers. Third, the education
domain lends itself to affective interactions, where the role
of affect in learning is well documented [14].

Let us further explain the role of affect in the learning
process. The primary motivation comes from Cśıkszentmi-
hályi’s theory of flow [2]. In highly simplified terms, the
ideas is that individuals learn best in situations where they
are neither bored (because the challenge appears trivial)
nor frustrated (because the challenge appears impossible),
but instead in an intermediary state called the flow chan-
nel. This concept has successfully (from an education stand-
point) been applied in virtual learning environments [11].

4.1 Application Details
Figure 4 describes our application. At all times the user

interface is under the control of either the virtual teaching
assistant (vTA) or the testing algorithm. The remaining
boxes represent the various services that are available to be
used by either the vTA or the testing algorithm.

The expected application usage is as follows. A user can
elect to start a tutoring session from a welcome screen. A
tutoring session is comprised of 15 mathematical problems
where the first ten problems are selected by the vTA and the
remaining five by a testing algorithm. The goal of the vTA
is to select the ten best training problems in order to prepare
the user for the test. The vTA has at its disposal a database
of all possible questions as well as a set of physical sensors
that can provide information on the user’s current state.
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Figure 4: Application components.

Using those sensors and by collecting other data such as the
user’s history, environment, and current affective state the
vTA crafts a customized dynamic lesson plan for each user.
The application presents the user with a series of problems
(defined by the plan), who is then tested via the testing
algorithm as a means of evaluating the effectiveness of the
vTA’s plan.

Each developer is provided working code for all compo-
nents of the application with the exception of the vTA. In
this manner, we reduce nonaffect-related variability in the
solutions and in our measurements of quality and effort, and
force our developers to focus on the logic of the application.
Using the theory of flow as motivation, the developers are
responsible for designing and implementing their own cus-
tomized vTA.

Now we describe each component of the application from
the developer’s perspective. Some components are used by
the vTA and others serve as an outlet for information pro-
duced by the vTA.

Problem Set (Question Database)
The problem set is a subset of a question bank that is
maintained by the National Center for Educational Statis-
tics (http://nces.ed.gov). We extracted all multiple choice
mathematics questions asked to 8th through 12th grade stu-
dents based on data collected by the National Assessment
of Educational Progress.

Each problem in the dataset contains an ID, question,
grade level (targeted), content area (properties and opera-
tions, geometry, analysis and probability, or algebra), dif-
ficulty (percentage of students who correctly answered the
question on national standardized tests), and answer. The
questions are text based, some with a greyscale illustration,
and include five multiple choice options as answers.

A developer can retrieve a set of questions based on any
permutation of the problem components in a manner anal-
ogous to SQL queries, with which our intended developers
are familiar. Or, a developer can request a randomly se-
lected problem that meets specified criteria, e.g., a random
geometry problem that fewer than 20% of students answered
correctly.

User Interface
As Figure 4 shows, the vTA controls the user interface (UI).
The developer determines the UI via predefined control points,
which help limit developer effort and provide uniformity
across implementations. Figure 5 shows the two primary

screens of the four screens in the UI. Using these basic
screens the vTA may configure the user experience with the
following four actions.

Pre-Session Questionnaire. Just before a training ses-
sion begins, the vTA may present the user with a set
of up to three questions, and use the answers received
to initialize the lesson plan for the user.

Ask Question. After initialization, the UI requests a ques-
tion from the vTA, who responds with the ID of a
question, which the UI displays on the screen.

Record Result. The UI conveys the user’s answer to the
vTA and shows the user the correct answer.

Post-Question Feedback. After each question, the vTA
can optionally ask the user one multiple choice affect-
related question, which can provide the vTA with bet-
ter insight into the user’s current affective state.

(a) Question Presentation (b) Result and Feedback

Figure 5: The application’s user interface.

The vTA controls the user interface for the first ten prob-
lems to train the user, at which point the testing algorithm
assumes control and asks the final five questions. The testing
algorithm interacts the same as the vTA, but may addition-
ally display the most recent user’s history on the applica-
tion’s start page.

Mobile Sensors
A unique advantage of building a mobile application is the
availability of sensory inputs. Most smart-phones today
come equipped with sensors such as GPS, accelerometer, mi-
crophone, and proximity sensors. Access to data provided
by these sensors is useful for determining the environment
in which the user is operating as well as for evaluating the
emotional state of the user. Using this data, developers can
track the performance of users in specific environments and
customize the lesson plan accordingly.

We employ Android as our development platform. Each
developer had access to an Android phone with real sensor
inputs. Android provides utility classes for a variety of sen-
sors to use interfaces for extracting data from the sensors.

Virtual TA
The virtual TA is at its core an intelligent agent that main-
tains a reasoning engine. It is in this engine where the de-
veloper must use the available tools, such as sensors and the
question database, to craft a unique lesson plan for the user.
The vTA has one simple goal: Create the lesson plan for the
user that gives them the best chance of success when tested.

In general, a vTA could carry out complex reasoning, such
as based on the user’s previous standardized test scores and
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available national statistics. However, allowing such exten-
sive approaches would have introduced too many variables
into the evaluation. To reduce the variability, we instructed
all developers to consider only three categories of informa-
tion (exam, environmental, and emotional data) in their rea-
soning algorithms to formulate a lesson plan.

Exam data is any data that can be computed from the
user’s past performance. It is up to the developer how com-
plex the analysis of the exam data is, but they must at least
consider the previous question and the overall performance
of the user on the previous exam.

Environmental data is any data gathered from a physical
sensor. For instance, by using the microphone on the device
a developer could monitor how well the user performed in
noisy environments. The developers must integrate data
from at least one sensor into the reasoning logic of their
vTA.

Emotional data is qualitative feedback from the user on
their current status, which can be obtained after each math
question as a means to determine how the user felt about
the last question. A developer would use this feedback along
with the theory of flow as a basis for updating the lesson
plan. Developers are required to use such feedback to in-
fluence the next question as well as store the feedback for
future analysis when selecting questions.

The developer must construct a reasoning algorithm that
uses the data to generate a lesson plan. In addition to writ-
ing the algorithm, each developer was required to provide
written documentation detailing how the algorithm func-
tioned.

Testing Algorithm
The testing algorithm selects the five questions used to eval-
uate the user at the end of each training session. The al-
gorithm considers the question category, difficulty, and re-
currence, and asks no more than two questions from any
category. Therefore, since there are only four categories,
the test always covers a minimum of three categories. The
algorithm also ensures that the national average for correctly
answering at least one question is above 70% correct (easy)
and one is below 30% (hard). Finally, the algorithm ensures
that no question is repeated in the next three exams for the
user.

The details of this algorithm were provided to the devel-
opers so they were aware of the testing strategy. Further,
we store each user’s past performance on exams and make
it available to the vTA.

5. EVALUATION
We selected 30 students to participate in the developer

study. Each developer had experience programming in Java,
and had no prior experience in affective computing. The
developers were paired into teams of two and given basic
programming assignments in order to evaluate their pro-
gramming abilities. The assignments were evaluated by a
third-party reviewer who ranked each team based on its pro-
gramming proficiency.

Additionally, each developer was given a survey asking
them to rate their software engineering experience and de-
scribe projects they had worked on. Over 97% of the devel-
opers had a minimum of two years experience programming
in Java, but for 88% of developers the initial programming
assignments were their first exposure to programming in the

Android operating system.
Using the results of the developer surveys and the pro-

gramming assignments, we ranked each developer with re-
spect to their peers. Using those rankings, we then divided
the teams into three groups so as to equalize the estimated
programming ability across the groups. Each team within
a group was assigned a variation of the same task. The
control group did not have access to Koko or Kokomo, one
of experimental groups had access to Koko, and the second
experimental groups had access to Koko and Kokomo.

All groups are given identical instructions regarding vTA.
The Koko and Kokomo groups were additionally provided
instructions for using Koko and Kokomo, respectively. Each
team was given four weeks in which to complete the assign-
ment. They had to design and develop the vTA agent using
either the components provided (e.g., question database and
user interface) or any API provided by the Android SDK.

We conducted a baseline quality check for each applica-
tion. This check ensured that all applications ran appropri-
ately and did not omit any of the features in the required
feature set. This test was done in order to strengthen our
claim that the introduction of Koko and Kokomo does not
diminish the quality of the application. All applications from
all three groups passed the baseline check. In fact, we ob-
served that applications using Koko and Kokomo had ad-
ditional features, in particular, affective features that were
not present in the control groups applications. However, our
statistical measures disregard such extra features.

Each team was evaluated in the same manner regardless
of its group. We evaluated the study in both objective and
subjective ways. The objective portion involved measuring
the time spent by each developer and various measurements
on the source code. The subjective portion was based on pe-
riodic surveys of the developers to measure their perceptions
regarding their feelings on the complexity of each aspect of
the project and the utility of the tools provided.

In-study surveys. These were completed by each developer
every time they worked on the project. A minimum of one
survey was required for each day (and within one day) the
developer worked on the project. The survey collected in-
formation such as the time spent on each component of the
application as well as their perceptions and comments on
difficulty.

Post-study surveys. There were completed by each devel-
oper at the end of the development cycle to describe their
perception of the entire project. Additionally, this survey
was used as a mechanism for developers to recommend im-
provements to the project and the tools.

The remainder of this section focuses on the evaluation
of our hypothesis. Our hypothesis stated that developers
who use Kokomo can more easily an construct affective ap-
plication than those who do not, while at the same time not
diminishing the quality of their application. The following
two sections evaluate the objective and subjective metrics
respectively. Finally, after viewing each category of met-
rics independently we take a holistic view of the results to
determine if our claim is satisfied.

5.1 Objective Results
Measuring the complexity of a project based on the result-

ing source code is nontrivial because there are no definitive
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measures of complexity. Complexity can relate to the size
of the code base and also to less measurable notions such
as extensibility and maintainability. Here we adopt some
well-known metrics from software engineering [5, 13], and
use them to analyze each project independently. Finally, we
compare the metrics across all three developer groups. Fig-
ure 6 highlights the results for four of the most well-known
metrics. In all cases except Figure 6(d), the lower value
indicates a better result.

(a) Cyclomatic Complexity (b) Number of Levels

(c) Number of Statements (d) Number of Methods

Figure 6: Software metrics from our study.

CC McCabe’s Cyclomatic complexity [9] indicates the num-
ber of “linear” segments in a method (i.e., sections of
code with no branches) and therefore helps determine
the number of tests required to obtain complete cover-
age. It also indicates the psychological complexity of
a method.

NoLm The number of levels per method reflects the num-
ber of logical branches each method has on average.
NoLm is a key factor in determining code readability,
and is also used to determine how well the code adheres
to in object oriented design patterns.

NoS The number of statements in the project is a common
measure of the amount of time spent developing and
the general maintainability of the code.

NoM The number of methods in the project reflects in-
creasing modularity and readability of the code (for a
fixed NoS value).

We had the developers log the time they spent on each
portion of the assignment. Figure 7 gives an overview of the
time spent on the project as a whole as well as its affective
components specifically. It is important to note that though
the total project time did not drastically decrease with Ko-
komo, the percentage of time spent on affect fell sharply.
Additionally, the drastic reduction of time and minimal vari-
ance for Kokomo in Figure 7(c) illustrate the benefit of the
methodology.

5.2 Subjective Results
Several survey questions asked the developer to either

rank components against one another or rate the individual

(a) Total Time (b) Percentage of Time

(c) Affective Time

Figure 7: Development time metrics.

components on a difficulty scale. Table 2 shows the average
difficulty rankings given by each development group for the
five key components of the project. You can see that the
introduction of both Koko and Kokomo reduced the devel-
oper’s perception of difficulty for the affective aspects of the
project.

Table 2: Difficulty ranking of project components.

Rank Control Koko Kokomo

1 (Easiest) Heuristic Heuristic Affect
2 Programming Affect Heuristic
3 Exam Programming Environment
4 Affect Environment Programming
5 (Hardest) Environment Exam Exam

Further, we asked developers to individually rate each
component of the assignment on a difficulty scale of 1 (least)
to 5 (most). As shown in Figure 8(a), 90% of the developers
using Kokomo rated the difficulty of the affective component
as a 1 or 2. However, 70% of the control development group
gave the same component a rating of 3 or higher. Finally,
Figure 8(b) shows how developers rated the benefit obtained
from the Koko tools on a benefit scale of 1 (none) to 5 (high).
Of the developers using Kokomo, 70% perceived Koko to of-
fer a high benefit to them (a rating of 4 or 5) whereas only
40% of those without Kokomo gave a similar rating.

(a) Affective Difficulty Rank-
ing

(b) Koko’s Perceived Benefit

Figure 8: Subjective developer distributions.

5.3 Conclusions
Using both objective and subjective data, we have empiri-

cally shown that the introduction of Kokomo results in both
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perceived and tangible benefits for developers. With respect
to software metrics the applications written using Kokomo
had either equivalent or better results than those written
without Kokomo. The use of Kokomo resulted in significant
time savings and also significantly reduced the time variance
for constructing the affective component. The reduction of
the time variance is important in that it enables developers
to more accurately budget their time. More accurate time
estimates in turn enable them to better scope the cost of
incorporating affect into an application.

Further, in all cases where developers were asked their
perceptions of the project those using Kokomo had a more
positive perception than those who did not. This positive
perception of Kokomo combined with the tangible benefits
make a compelling case for its practical adoption by software
developers.

6. DISCUSSION
The most perplexing result of our study was that the data

showed that the introduction of Koko without Kokomo did
not result in a marked improvement. Upon evaluating the
source code and developer surveys, we realized that sev-
eral developers who were only given Koko were not able to
completely grasp the affect modeling concepts that under-
lie Koko. As a result, they were unsure of how to config-
ure the Koko middleware. Whereas the above observations
strengthen the case for Kokomo’s usefulness, we plan to im-
prove our documentation regarding Koko for future studies
and deployment.

Existing agent-oriented software engineering methodolo-
gies specify messages at a high level and therefore are not
granular enough to support the expressive communication
employed by Kokomo [3]. Further, Kokomo’s applicability
has a much narrower scope than these methodologies since
it is restricted to affective applications that may or may not
employ multiagent systems in their implementation. These
distinctions are simply the result of a difference in focus. It
is quite possible, given the narrow scope of Kokomo, that
it could be integrated with broader methodologies in order
to leverage their existing processes and tools. For exam-
ple, many methodologies have detailed processes by which
they help developers identify all possible messages that are
exchanged among agents. Kokomo would benefit by inte-
grating such processes, thereby making it easier to identify
the expressive messages.

Further, model-driven development methodologies, such
as INGENIAS [6] or ASEME [20], are relevant. Kokomo
could benefit from such methodologies by using a specific
agent modeling description language to describe the expres-
sive interactions among agents. Such a model could be used
to produce the source code needed to configure the Koko
runtime automatically. This would reduce the amount of
time spent translating the expressive messages into a for-
mat understood by Koko and would also facilitates improved
agility in developing such as in changing the agent interac-
tion model without having to rewrite the source code.

Koko is a multiagent middleware supporting affective in-
teraction among agents, but this study involved only a sin-
gle agent. This choice was intentional in that it enabled
us to demonstrate that unlike Koko-ASM, the Kokomo me-
thodology could be used in single agent environments. In
the future, we plan to demonstrate the utility of Kokomo
in multiagent settings by using it in social applications that

take full advantage of Koko’s social design.
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ABSTRACT
Many multi-agent system applications involve software agents
that reason about the behavior of other agents with which
they interact in cooperation or competition. In order to de-
sign and develop those systems, the employed programming
languages should provide tools to facilitate the implementa-
tion of agents that can perform such reasoning. This paper
focuses on BDI-based programming languages and proposes
a nonmonotonic reasoning mechanism that can be incorpo-
rated into agents, allowing them to reason about observed
behavior to infer others’ beliefs or goals. In particular, it is
suggested that the behavior-generating rules of agents are
translated into a nonmonotonic logic programming frame-
work. A formal analysis of the presented approach is pro-
vided and it is shown that it has desirable properties.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents—mental state ascription,nonmonotonic reasoning

General Terms
Design, Theory

Keywords
Modeling other agents and self, Logic-based approaches and
methods, Reasoning (single and multiagent)

1. INTRODUCTION
A fundamental principle of multi-agent systems is that

they involve multiple agents, often situated in a (virtual)
environment where they interact in cooperation or compe-
tition. For implementation of individual software agents
in a multi-agent system there exists a range of agent pro-
gramming languages, such as 2APL, GOAL, Jadex and Ja-
son [5, 9], most of which find their roots in the Belief-Desire-
Intention (BDI) paradigm of agency [8, 19]. If such agents
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have the ability to perceive and interpret the behavior of
others, then the principle of mental state ascription comes
into focus as a possible explanatory abstraction for reason-
ing about that behavior. This principle has solid theoretical
foundations in terms of the intentional stance [10], which is
encountered throughout A.I. literature in various guises [6,
7, 13, 21, 4]. However, there exist few principled instantia-
tions specific to BDI-based agent programming of explana-
tory reasoning about the behavior of other agents. This pa-
per presents such an instantiation, a possible application of
which is in computer games where virtual characters are to
exhibit believable interaction with other virtual characters.
Multiple requirements for character believability (as found
by Loyall [17]) are fulfilled by BDI-based software agents
(e.g. proactiveness, resource-bounded agency, adaptivity),
and some of those which are not (particularly those concern-
ing social interaction) can be met using our approach. This
is desirable as it has been shown that characters’ believabil-
ity (and players’ enjoyment) increases if characters appear
to incorporate mental state ascription into their decision-
making [16], and specifically for role-playing games user
feedback furthermore indicates that players consider char-
acters to be deficient in this regard [1].

Because the work which is the foundation of this paper is
logic-based, and because most agent programming languages
utilize logic programming, it is natural that the implemen-
tation presented in this paper is a logic program. And since
explanatory reasoning is in general defeasible, answer set
programming [12] is employed as it is the state-of-the-art
programming paradigm for nonmonotonic reasoning. Most
systems for answer set programming share their syntax with
Prolog, a language which is incorporated into several current
agent programming languages (e.g. [9]), making integration
of answer set programming natural from a syntactic point
of view. In select cases this integration already exists [18].

The work presented in this paper is based on our earlier
work on explanatory ascription of mental states to software
agents [21], and is presented in the following steps: first, the
theoretical underpinnings are briefly explained in Section 2;
second, this existing work is formalized in classical logic to
lay the foundation for our implementation (Section 3); and
third, this implementation is presented and analyzed (Sec-
tions 4–6). Sections 7 and 8 conclude with a reflection on
related work and our own, respectively.

2. PRELIMINARIES
In this section our work on mental state abduction [21] is

restated, in relation to an agent programming language that
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contains constructs shared by most state-of-the-art agent
programming languages (cf. [5, 9]).

2.1 Agent Programming
This section describes the agent programming language

APL used in this paper. The behavior of agents is generated
by goal achievement rules of the form n : γ <-β |π, stating
that the rule with identifier n is suitable for achieving goal
γ if β is believed, in which case the plan π can be selected
by the agent. The BNF grammar of rules is given below,
where it should be noted that it concerns ground programs
(i.e. without variables), which suffices for our purposes.

〈 library 〉 : := 〈 pgrule 〉+;

〈 pgrule 〉 : := 〈n 〉“:”〈 gq 〉“ <- ”〈 q 〉“ | ”〈 plan 〉;
〈 gq 〉 : := 〈 atom 〉 | 〈 gq 〉“and”〈 gq 〉 | 〈 gq 〉“or”〈 gq 〉;
〈 q 〉 : := 〈 literal 〉 | 〈 q 〉“and”〈 q 〉 | 〈 q 〉“or”〈 q 〉;
〈 literal 〉 : := 〈 atom 〉 |“not”〈 atom 〉
〈 plan 〉 : := 〈 action 〉 | 〈 test 〉 | 〈 seq 〉 | 〈 cond 〉 | 〈 iter 〉;
〈 test 〉 : := “B(”〈 q 〉“)”|“G(”〈 q 〉“)”| 〈 test 〉“and”〈 test 〉;
〈 seq 〉 : := 〈 plan 〉“;”〈 plan 〉;
〈 cond 〉 : := “if”〈 test 〉“then”〈 plan 〉“else”〈 plan 〉;
〈 iter 〉 : := “while”〈 test 〉“do”〈 plan 〉

The semantics of rule interpretation are omitted for space
conservation and also because the above is a theoretical
agent programming language. Nevertheless, this language
is subsumed by some existing agent programming languages
and is strongly related to others, such that a substantiated
discussion of rule interpretation can be given.

In most agent programming languages interpretation of
rules occurs as part of a deliberation cycle (or ‘sense-reason-
act’ cycle), in which the applicability of rules is considered
in relation to the configuration of the agent (i.e. its beliefs,
goals, intentions, etc.). An agent has a library of rules at its
disposition, and if a rule is applicable then it can be fired
such that the accompanying plan is adopted by the agent
and becomes the agent’s active plan. A plan describes be-
havior, composing primitive and test actions by means of
standard programming constructs (sequence, choice, itera-
tion). It is assumed with regard to rule interpretation that
1) the agent executes the actions of its active plan until this
plan is finished or dropped (in which case it is not active any-
more); 2) the agent executes actions sequentially (i.e. not
concurrently); and 3) the agent has at most a single active
plan (i.e. no interleaving of actions from different plans).

2.2 Mental State Abduction
Mental state abduction [21] computes a set of explana-

tions for a software agent’s observed behavior, based on
knowledge of its rules. It employs the abductive scheme
{φ → ψ,ψ} |≈φ, which is further clarified in Section 3.1, in
inferring beliefs and goals in relation to rules, plans and ob-
served behavior. In order to do so a relation is established
between observed actions and plans, and for this purpose
a propositional language and a process language [3] are de-
fined here that allow us to formally describe the rules of the
agent program. Those languages are assumed to have a com-
mon ground with the agent program; specifically they have
shared sets of atomic actions Act and propositions Atom, re-
spectively. The propositional language L0 and process lan-

guage LΠ are then defined through φ ∈ L0 and the typical
element π ∈ LΠ, as follows, given p ∈ Atom and α ∈ Act.

φ : := p | ¬φ |φ1 ∨ φ2

π : := α |Bφ? |Gφ? |π1;π2 |π1 + π2 |π∗

The operator ? defines (unobservable) test actions which can
be composed by sequential composition, non-deterministic
choice, and iteration (;, +, and ∗, respectively), along with
observable actions α ∈ Act.

It is here assumed that for APL programming rules of
the form n : γ <-β |π holds that n ≥ 1, γ, β ∈ L0 and
π ∈ LΠ. Just like in [21], we treat such rules as implica-
tions for the purpose of abduction. The preconditions γ, β
of a rule n : γ <-β |π are considered abducible, and can
be abduced if observed actions are related to π. To relate
primitive actions to a plan, observable sequences which are
generated by this plan are considered. Given α ∈ Act the
language of observables L∆ is defined through its typical el-
ement δ : := α | δ1δ2 to consist of sequences of actions, such
that the function OS : LΠ −→ ℘(L∆) translates complex ex-
pressions (which may involve tests and looping or branching
constructs) to sets of observable sequences, as follows.

OS(α) = {α}
OS(Bφ?) = ∅
OS(Gφ?) = ∅
OS(π1;π2) = OS(π1) •OS(π2)

OS(π1 + π2) = OS(π1) ∪OS(π2)

OS(π∗) =
⋃
n∈N

OS(πn), where π0 = skip & πn+1 = π;πn

The composition operator • : ℘(L∆) × ℘(L∆) −→ ℘(L∆)
takes arguments ∆1,∆2 ⊆ L∆ and maps them to {δ1δ2 | δ1 ∈
∆1, δ2 ∈ ∆2} if ∆1 6= ∅& ∆2 6= ∅, to ∆1 if ∆2 = ∅, to ∆2 if
∆1 = ∅, or to ∅ otherwise. Note that OS(skip) = ∅.

In this paper we focus on the case of complete observation,
in which all actions of an agent are observed. The relation
characterizing this condition is the prefix relation on observ-
able sequences 4 = {(δ, δ), (δ, δδ′) | δ, δ′ ∈ L∆}, because if
all actions are observed then an observed sequence must be
the prefix of the observable sequence of some plan. Mental
state abduction under the assumption of complete observa-
tion is then functionally implemented by msaR, defined as
follows, based on a set R of APL rules.

msaR(δ) = {(γ, β) | ∃(n : γ <-β |π) ∈ R∃δ′ ∈ OS(π) : δ 4 δ′}
In the next section mental state abduction is cast in the mold
of classical abduction, which is introduced in Section 3.1.

3. MENTAL STATE ABDUCTION VIEWED
AS CLASSICAL ABDUCTION

This section presents an account of mental state abduc-
tion in terms of classical logical abduction, focusing on the
relating between rule application on the one hand, and ac-
tion sequences and the agent’s mental state on the other.

3.1 Classical Abduction
Abduction in classical logic is typically considered in the

context of explanation [2]. Given a logical theory Θ and an
observed fact O, under certain conditions a hypothesis H
can be abduced which explains the observation. The fact
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that H is abduced as explanation for O with respect to Θ is
denoted Θ, O |≈H, and defined as follows in terms of clas-
sical entailment |=, where cl(Φ) denotes the consequential
closure of the set Φ; i.e. all facts logically following from Φ.

Θ, O |≈H iff Θ ∪H |= O& Θ 6|= O&H 6|= O& Θ ∪H 6|= ⊥
&¬∃H ′ : (cl(H ′) ⊂ cl(H) & Θ ∪H ′ |= O)

The definition of |≈ varies per context, but the above is
often encountered [2]. Note that the last clause expresses
the minimality of H: there should not exist a hypothesis H ′

such that the consequential closure of H ′ is a strict subset
of that of H, where H ′ also accounts for O. Also note that
the term ‘theory’ is used without requiring closure under cl.

An example of abductive explanation which is regularly
found in literature [2, 15] goes as follows. Let Θ = {r →
w, s → w} be a logical theory stating that the grass is wet
(w) both if it rains (r) and if the sprinklers are on (s). The
grass being wet as such is not accounted for by the theory
(i.e. Θ 6|= w) but it would be accounted for if it were the case
that it rains or that the sprinklers are on, i.e. Θ, {w} |≈ r
and Θ, {w} |≈ s. Note, though, that Θ, {w} 6|≈ r ∧ s under
the above definition of |≈, because the hypothesis r∧s is not
minimal. Also note that |≈ is nonmonotonic: if it is learned
at some point that it rains, such that if Θ′ = Θ ∪ {r}, then
it is evident that Θ, {w} |≈ s and Θ ⊆ Θ′, but Θ′, {w} 6|≈ s.

3.2 Translating Rules
As stated earlier, we (informally) treat APL rules of the

form n : γ <-β |π as implications ‘γ, β ⇒ π’ for the sake of
employing the classical abductive syllogism. However, this
is formally not correct because it need not hold that the
agent selects plan π if it has goal γ and belief β. The reason
for this lies in the fact that rules cannot be fired if the agent
has an active plan, even if they are in principle applicable.
A more precise implicative treatment of rules of the above
form is therefore ‘n ⇒ γ, β, π’, to be interpreted as stating
that the application of the rule implies that the agent has a
particular mental state and has selected a particular plan.
Thus, ‘mental state abduction’ is better viewed as ‘applied
rule abduction’, where the abduced rule implies a particu-
lar mental state. A logical description of rules can then be
provided that allows for treating mental state abduction as
a case of classical abduction, which is done in the present
section by formulating a logical theory that describes rule
application by the agent in relation to its mental state and
behavior. It is noteworthy in this respect that a single rule
is accompanied by a single plan, but that a single plan can
give rise to multiple observable sequences. Specifically, if a
plan gives rise to multiple observable sequences then it also
gives rise to multiple computation sequences [14] (although
not necessarily vice versa). Let CS : LΠ −→ ℘(LΠ) be the
function that computes computation sequences of plans, and
be defined like the function OS except for

CS(Bφ?) = {Bφ?} CS(Gφ?) = {Gφ?}
For technical simplicity, and without loss of generality, it is
assumed that individual actions in computation sequences
are separated by sequential composition (i.e. the symbol ‘;’)
and are therefore in the language LΠ. The translation from
APL program to logic uses the following predicates:

• r(n, c): The agent has applied rule with number n and
performs the computation sequence identified by c.

• b(ψ): The agent’s belief base entails ψ.

• g(ψ): The agent’s goal base entails ψ.

It is assumed that the background theory Θ is a subset of
ground predicate logic, and that the predicates b/1 and g/1
take as argument the result of a function τ defined as follows,
where atoms of the set Atom are available as constants.

τ(p) = p, if and only if p ∈ Atom

τ(¬φ) = neg(τ(φ))

τ(φ ∨ φ′) = disj(τ(φ), τ(φ′))

τ(φ ∧ φ′) = conj(τ(φ), τ(φ′))

The function τ thus maps (ground) APL terms from a log-
ical form to a functional representation, which is left as-is
for now. At a later point (in Section 5.1) this functional
representation is utilized in order to regain the truth func-
tion of logical connectives, but up to then it can simply be
regarded as a string that points to a particular belief/goal
precondition (i.e. τ(γ) points to γ). It is more convenient,
though, to already define and employ the translation now,
in order to save space and effort in later sections.

The translation of a set of rulesR of the form n : γ <-β |π
to a logical theory ΘR is then given below in Formula 1,
where ι is a function that assigns a unique numerical iden-
tifier to its argument.

∀(n : γ <-β |π) ∈ R ∀π′ ∈ CS(π) :

r(n, ι(π′))→ (g(τ(γ)) ∧ b(τ(β))) ∈ ΘR
(1)

In order to abduce the applied rule on grounds of observed
actions, action observability must be formalized as part of
the theory. This is realized using the following predicate:

• o(α, n): Action α is observable as the n’th action.

The theory ΘR relates rule application to action observabil-
ity, and it should be noted in this respect that the ‘position’
at which an action is observable is reified in instances of
the predicate o/2 which are coupled to rule application by
means of the relation expressed below.

∀(n : γ <-β |π) ∈ R ∀π′ ∈ CS(π) :

OS(π′) = {α1 · · ·αm} =⇒
r(n, ι(π′))→ (o(α1, 1) ∧ . . . ∧ o(αm,m)) ∈ ΘR

(2)

The set of rules R is here assumed to be fixed, and for
any action αi which is part of some observable sequence, let
i ∈ N denote that action’s position in the sequence. The
translation of the set of rules R into the theory ΘR then
allows for abductively inferring instances of r/2 based on
observations, which are defined in the next section.

3.3 Observables and Abducibles
The definition of abductive explanation |≈ in Section 3.1

does not explicitly specify the domain of the hypothesis H,
which is common in treatises concerning logical abduction.
However, in computational approaches to abduction the hy-
potheses are typically restricted to a set of abducibles [15].
This approach is adopted here, and ABD = {r(n, c) | c, n ∈
N & c, n ≥ 1} is introduced as the set of abducibles. Further-
more, the set OBS = {s(α, n) |α ∈ Act &n ∈ N &n ≥ 1} of
observables (i.e. possible observations) is introduced, based
on the following predicate.
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• s(α, n): The action α is seen as the n’th action.

Because the theory ΘR generated from the set R of APL
rules, as defined in the previous section, specifies only the ac-
tions which are observable (as opposed to actually observed,
or seen), a relation is made between observation and observ-
ability using the operator ω, defined as follows.

ω({s(α, n), . . . , s(α′, n′)}) = o(α, n) ∧ . . . ∧ o(α′, n′)

The rationale behind the ω-operator is that if some actions
have been observed then those actions naturally must be
observable, and this latter fact can be utilized to abduce,
with respect to some ΘR, the pair of rule and computation
sequence (i.e. some instance of r/2) which accounts for the
observability of those particular actions.1

In order to treat mental state abduction (Section 2.2) as
a case of classical abduction, some further refinements to
the background theory must be made. This is illustrated
with the following example, in which the set of APL rules
R = {1 : p <- p′ | a; b, 2 : q <- q′ | c; d} and theory ΘR is as
follows, based on Formulae 1 and 2.

ΘR = {r(1, 1)→ (g(p) ∧ b(p′)), r(2, 2)→ (g(q) ∧ b(q′)),

r(1, 1)→ (o(a, 1) ∧ o(b, 2)), r(2, 2)→ (o(c, 1) ∧ o(d, 2))}
Observe that for observation O = {s(b, 2) ∧ s(d, 2)} holds
ΘR, ω(O) |≈{r(1, 1), r(2, 2)}, such that application of both
rules 1 and 2 and execution of two computation sequences
of the corresponding plans is the minimal explanation for
this observation. This O states different actions to be ob-
served as the second action, whereas our assumption is that
observation is sequential such that only a single observation
can occur at any moment. For this reason some restrictions
are imposed on any actual observation O ⊆ OBS, as follows.

∀α ∈ Act ∀n ∈ N :

[(s(α, n) ∈ O) & (n > 1) =⇒
(∃α′ ∈ Act : s(α′, n− 1) ∈ O)] &

[∀α′ ∈ Act : (s(α, n), s(α′, n) ∈ O) =⇒
(α = α′)]

(3)

The constraint of Formula 3 ensure that instances of s/2 in
O are numbered consecutively, starting with 1, and that for
each n at most a single action is observed.

However, consider O′ = s(a, 1) ∧ s(d, 2) and verify it to
respect the constraint of Formula 3, yet observe that again
ΘR, ω(O′) |≈{r(1, 1), r(2, 2)}. In order to rule out such ex-
planations, it must be explicitly assumed that the agent’s
observed behavior stems from a single computation sequence
of some plan belonging to a single rule, as follows.

1An interesting insight, provided by the effort to reformu-
late mental state abduction as a case of classical abduction,
is that mental states can be treated as observables, on par
with actions. In the case where actions are the observable
input to abductive explanation, rules are abduced which ac-
count for those actions. Given an input of a mental state
as observable — on grounds of the agent communicating its
goals and/or beliefs to the observer, for example — rules are
abduced which could be applied by the agent given that par-
ticular mental state. And, taking this train of thought yet
a station further, nothing withstands having both actions
and beliefs/goals as observable input, such that abduction
of rules which account for the observed actions, given that
particular (fragment of the) agent’s mental state, occurs.

∀(m : γ <-β |π), (n : γ′ <-β′ |π′) ∈ R
∀i ∈ {ι(π′′) |π′′ ∈ CS(π)}, j ∈ {ι(π′′′) |π′′′ ∈ CS(π′)} :

(m 6= n) =⇒ ¬(r(m, i) ∧ r(n, j)) ∈ ΘR &

(i 6= j) =⇒ ¬(r(m, i) ∧ r(n, j)) ∈ ΘR

(4)

Given the above, the following holds.

Theorem 1. Let R be a set of APL rules, theory ΘR
the smallest set closed under Formulae 1, 2, and 4. Then
∀H ⊆ ABD : ΘR, ω(O) |≈H =⇒ H is a singleton (set).

Proof. Consider any two distinct h, h′ ∈ ABD, and let
H ⊆ ABD such that ΘR, ω(O) |≈H. If {h, h′} ⊆ H but
¬∃(h→ ψ) ∈ ΘR or ¬∃(h′ → ψ) ∈ ΘR, then ΘR, ω(O) 6|≈ H
because H is not minimal. If ∃(h → ψ) ∈ ΘR and ∃(h′ →
ψ) ∈ ΘR, then ¬(h ∧ h′) ∈ ΘR and ΘR, ω(O) 6|≈ H because
ΘR∪H |= ⊥. Thus, H cannot contain two distinct elements
and must be a singleton H = {h} for some h ∈ ABD.

3.4 Proof of Correspondence
In this section correspondence is shown between the func-

tional approach of mental state abduction by means of msaR,
as restated in the previous section, and the classical abduc-
tive approach based on the theory ΘR, as put forward in
the current section.

Theorem 2. Let R be a set of APL rules, and theory ΘR
the smallest set closed under Formulae 1, 2, and 4. Then,
given l(δ) = {s(α1, 1), . . . , s(αn, n)} iff δ = α1 · · ·αn,

∀δ ∈ L∆ ∀γ, β ∈ L0 : (γ, β) ∈ msaR(δ) ⇐⇒
∃H ⊆ ABD : ΘR, ω(l(δ)) |≈H & ΘR ∪H |= g(τ(γ)) ∧ b(τ(β))

Proof. (⇒) Choose any δ ∈ L∆ and (γ, β) ∈ msaR(δ),
and note that ∃(i : γ <-β |π) ∈ R∃δ′ ∈ OS(π) : δ 4 δ′ must
hold. Choose any such i : γ <-β |π and let δ′ = α1 · · ·αn, so
that ∃(r(i, j)→ o(α1, 1)∧. . .∧o(αn, n)) ∈ ΘR on grounds of
Formula 2. Let δ = α1 · · ·αm and note that o(α1, 1) ∧ . . . ∧
o(αn, n)→ ω(l(δ)), so ΘR ∪{r(i, j)} |= ω(l(δ)) holds. Thus
ΘR, ω(l(δ)) |≈{r(i, j)}, observing that the requirements of |≈
are met and {r(i, j)} ⊆ ABD. On grounds of Formula 1
holds ∃(r(i, j) → g(τ(γ)) ∧ b(τ(β))) ∈ ΘR, such that ΘR ∪
{r(i, j)} |= g(τ(γ)) ∧ b(τ(β)).

(⇐) Take some δ ∈ L∆ and assume ∃H ⊆ ABD∃γ, β ∈
L0 : ΘR, ω(l(δ)) |≈H& ΘR ∪ H |= g(τ(γ)) ∧ b(τ(β)). It
has been proven in Theorem 1 that H must be a single-
ton, say H = {r(i, j)} for some i, j ≥ 1. Then ∃(r(i, j) →
g(τ(γ)) ∧ b(τ(β))) ∈ ΘR such that ∃(i : γ <-β |π) ∈ R,
because ΘR is the smallest set closed under Formula 1, 2
and 4. Because it is given that ΘR, ω(l(δ)) |≈{r(i, j)} it
must be the case that ∃(r(i, j) → ψ) ∈ ΘR such that ψ →
ω(l(δ)). Let ψ = o(α1, 1) ∧ . . . ∧ o(αn, n), and observe that
∃π′ ∈ CS(π) : ι(π′) = j such that OS(π′) = {α1 · · ·αn}
must then be the case. Let δ = α1 · · ·αm with m ≤ n,
such that ω(l(δ)) = o(α1, 1) ∧ . . . ∧ o(αm,m) and, because
any output of the function l respects the constraint of For-
mula 3, it holds that δ 4 α1 · · ·αn. If that is the case, then
(γ, β) ∈ msaR(δ).

4. IMPLEMENTATION
This section presents the implementation of a logic pro-

gram, based on the logical theory presented in Section 3,
assuming use of the grounder Lparse [22] and the solver
clasp [11], winner of several recent competitions.
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4.1 Answer Set Programming
ASP (answer set programming, or Answer Set Prolog [12])

is a logic programming language with answer set semantics,
whose main programming construct are rules of the form

li : − li+1, . . . , lj , not lj+1, . . . , not lk.

m{l1, . . . , li}n : − li+1, . . . , lj , not lj+1, . . . , not lk.

where each l denotes a literal (i.e. an atom or its strong nega-
tion), li or m{l1, . . . , li}m is the head and li+1, . . . , not lk
the body of the rule. Negation in literals −p is referred to
as strong negation, and negation in extended literals not l as
default negation. Rules of the above form can be interpreted
(informally) as stating that the head should be satisfied if
the body is, where the head is either a single literal or a
choice literal of the form m{l1, . . . , li}n stating that a min-
imum of m and maximum of n literals of {l1, . . . , li} should
be in candidate answer sets if the body of the rule is satis-
fied [22]. If the head of a rule is omitted then it is a constraint
rule, which (informally) states that a candidate answer set
which satisfies the body should be discarded. A rule with
an empty body is called a fact and is always satisfied.

The crux of ASP semantics is the generation of minimal
sets that satisfy a program [12]; cf. the minimality criterion
in the definition of |≈. Essentially, those sets are models of
the logic program, and if every answer set of a program P
satisfies some φ it is written P |= φ. The above introduction
to ASP is, by necessity, incomplete and superficial. However,
literature abounds with practical and theoretical expositions
on ASP: a concise and recent overview with pointers to fur-
ther reading is given by Gelfond [12].

4.2 From Theory to Program
The logical theory ΘR presented in Section 3 can be trans-

lated to a logic program quite straightforwardly. First of all,
implications occurring in the theory are translated as choice
rules, stating that each of the conjoined literals in the con-
sequent of the implication should be in the answer set if the
antecedent is. Translation to the program PR is then as
follows, where ΘR is a theory based on some set of rules R,
i.e. the smallest set closed under Formulae 1, 2, and 4.

φ→ (ψ1 ∧ . . . ∧ ψn) ∈ ΘR =⇒
n{ψ1, . . . , ψn}n : − φ. ∈ PR (5)

The translation on grounds of Formula 5 is illustrated below,
given R = {1 : p <- p′ | a; b, 2 : q <- q′ | c; d} and ΘR as in
Section 3.3, such that program PR is as follows.

2{g(p), b(p′)}2 : − r(1, 1).

2{o(a, 1), o(b, 2)}2 : − r(1, 1).

2{g(q), b(q′)}2 : − r(2, 2).

2{o(c, 1), o(d, 2)}2 : − r(2, 2).

This program as such does not yet implement mental state
abduction under complete observation, though, because there
is neither mention of abducibles nor of observables.

4.2.1 Abducibles
In contrast to Section 3, which takes a constructive ap-

proach in the sense that a hypothesis H is abduced if it
meets the requirements of the relation |≈, the implementa-
tion takes a deconstructive approach in the sense that each
hypothesis is considered as possible explanation and ruled

out if it does not meet those requirements. Consideration of
abducibles as possible explanations is reflected in program
PR by the following relation with the theory ΘR.

ΘR = {r(m, i)→ ψ, . . . , r(n, j)→ ψ′,

¬(r(m, i) ∧ r(n, j)), . . .}
=⇒ 1{r(m, i), . . . , r(n, j)}1. ∈ PR

(6)

Informally, this means that single distinct instances of r/2
are considered as explanations. Theorem 1 shows that an
abduced explanation H must be a singleton subset of the ab-
ducibles ABD because of the constraint of Formula 4, which
is reflected in the numerical bounds on the choice literal
1{r(m, i), . . . , r(n, j)}1 stating that only a single instance of
r/2 is considered as explanation. The condition under which
some candidate answer sets are discarded is implemented in
the following section in relation to observables.

4.2.2 Observables
The translation from theory to program discussed in the

previous section shows that instances of o/2 are entailed on
grounds of instances of r/2. In Section 3.3 it was explained
how abduction takes place on grounds of a set O ⊆ OBS of
observations, respecting the constraints of Formula 3. The
predicate s/2 was defined to denote observed (seen) actions,
and instances of this predicate are assumed to be facts in
the answer set. This is achieved in relation to observations
as follows, where PR is the program derived from theory ΘR
(the smallest set closed under Formulae 1, 2 and 4 in relation
to a set of APL rules R), and O ⊆ OBS is an observation
respecting the constraint of Formula 3.

∀s(α, n) ∈ O : s(α, n). ∈ PR (7)

Note that the constraints of Formula 3 could be implemented
as constraints in the answer set program as well, but that
this is unnecessary if instances of s/2 are derived from O.

As said, the implementation presented in this paper takes
a deconstructive approach by ruling out invalid candidate
answer sets. Elimination of candidate answer sets takes
place on grounds of the single following constraint, which
expresses that a candidate answer set with one or more ac-
tions that have been seen but are not deemed observable at
that particular step, should be discarded.

: − s(A, T ), not o(A, T ). (8)

In Section 3.3 the function ω was defined to consider ob-
served actions in terms of their observability for the sake
of abduction; in effect, Formula 8 is the (deconstructive)
counterpart of that function.

Theorem 3. Let R be a set of APL rules, ΘR the small-
est set closed under Formulae 1, 2, and 4, O ⊆ OBS a non-
empty observation, and program PR as derived from ΘR and
O with Formulae 5, 6, 7, and 8. Then

∀H ⊆ ABD : (ΘR, ω(O) |≈H) ⇐⇒
PR has an answer set S, such that S |=

∧
H ∧

∧
O

Proof. (⇒) Assume the antecedent to be the case, and
observe that for each possibly abducible H a candidate an-
swer set exists on grounds of Formula 6. Let H = {h}, and
note that if ΘR, ω(O) |≈H then ∃(h → ψ) ∈ ΘR such that
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ψ → ω(O). Note that, on grounds of Formula 5, ψ is rep-
resented in the candidate answer set S for which

∧{h} ∈ S,
and, since ψ → ω(O), that Formula 8 does not rule out S,
which means that S is a valid answer set of PR.

(⇐) Assume the antecedent to be the case, and note that,
on grounds of Formula 6, a single h ∈ ABD is in the an-
swer set S. Because S is not ruled out on grounds of For-
mula 8, it holds that this constraint does not apply. Thus, if
O = {s(α1, 1), . . . , s(αm,m)}, then on grounds of Formula 5
holds ∃(n{o(α1, 1), . . . , o(αn, n)}n : − h.) ∈ PR for some
m ≤ n. If that is the case, then (h→ o(α1, 1), . . . , o(αn, n)) ∈
ΘR must hold, and ΘR, ω(O) |≈{h}.

Corollary 1. Given the conditions of Theorem 3,

∀H ⊆ ABD∀φ, φ′ ∈ L0 :

(ΘR, ω(O) |≈H & ΘR ∪H |= g(τ(φ)) ∧ b(τ(φ′)))⇐⇒
PR has an answer set S, s.t. S |= g(τ(φ)) ∧ b(τ(φ′))

Proof sketch. Observe that H entails a single instance
of b/1 and g/1 in both ΘR and S (also cf. Theorem 3).

Corollary 2.

∀δ ∈ L∆ ∀γ, β ∈ L0 : ∃(γ, β) ∈ msaR(δ) ⇐⇒
PR has an answer set S, s.t. S |= g(τ(γ)) ∧ b(τ(β))

Proof. From Theorems 2 and 3, and Corollary 1.

5. ASCRIPTION OF MENTAL STATES
This section builds upon previous sections, focusing on

ascription of particular goals and beliefs.

5.1 Ascription of Rule Preconditions
In Section 3.2 the function τ was defined to translate APL

terms — consisting of atoms composed by means of conjunc-
tion, disjunction, or negation — to a logical theory. Terms
were translated to a functional representation, and given as
arguments to predicates g/1 and b/1. The truth conditions
of those connectives are lost in this translation, but they
can be regained by decomposition of the functional argu-
ments to constants, as shown below. It should hereby be
noted that the Lparse grounder requires particular syntac-
tic conditions to hold with respect to the program, such that
recursion cannot be used the same way as in, say, Prolog;
for our implementation this means that decomposition must
be specified for each level of nesting. This is not problem-
atic, though, since the translation derives from some fixed
set of APL rules for which the maximum level of nesting
is known. Below are the ASP rules for decomposition of
conj/2 and disj/2 based on the semantics of ∧ and ∨, as
well as elimination of double negation and DeMorgan’s laws.
It is here assumed that the predicate form/1 denotes that
its argument is a valid formula, and it should be noted that
the definition below is given for b/1 but is likewise for g/1.

1{b(F1), b(F2)}2 : − form(F1;F2), b(disj(F1, F2)).

2{b(F1), b(F2)}2 : − form(F1;F2), b(conj(F1, F2)).

b(F ) : − form(F ), b(neg(neg(F ))).

b(disj(neg(F1), neg(F2))) : −
form(F1;F2), b(neg(conj(F1, F2))).

b(conj(neg(F1), neg(F2))) : −
form(F1;F2), b(neg(disj(F1, F2))).

(9)

As expected, in case of conjunction of two formulae, both
conjuncts should be satisfied. The logical connective ∨means
that either or both of two disjuncts should be satisfied; this
interpretation is adhered to here in decomposition of disj. If
a criterion of minimality is maintained then it could alterna-
tively be stated that either single disjunct must be satisfied
in order for the disjunction to be satisfied (i.e. 1{. . .}1).

It is recognized in the literature that a drawback of ASP
is that it is not well suited for reasoning with complex logi-
cal formulae [12]. The approach sketched above is therefore
not computationally efficient if APL terms are complex, but
because having single instances of b/1 and g/1 that point to
particular β and γ does allow for straightforward proofs in
preceding sections, this approach is preferred for technical
simplicity. An alternative approach, left unexplored here be-
cause of lack of space, is to perform translation of compound
formulae outside of ASP by bringing APL terms to a normal
form and translating this directly to ASP representation.

5.1.1 Negation
In translation of negated atoms it should be noted that an-

swer set programming offers two kinds of negation: default
negation and strong (or classical) negation [12]. In principle,
both can be used for interpretation of the function symbol
neg where it pertains to constants. The informal semantics
of default negation of p are that not p is the case in absence
of the atom p, whereas strong negation of p holds true only
if the literal −p is in the answer set. Because presence of
b(neg(F )) or g(neg(F )), for some constant F , in the answer
set occurs on grounds of evidence (observed actions), the
use of strong negation is warranted for expressing that F
is known not to be in the agent’s belief/goal base; even if
APL utilizes negation-as-failure (cf. [9]). Since ultimately
our interest is in facts which are, or are not, ascribed to the
agent as goals or beliefs, the predicates bel/1 and goal/1
are introduced which in contrast to b/1 and g/1 accept only
fluents as argument (the term ‘fluent’ is preferred over ‘con-
stant’ because valuation is fixed using these predicates).

bel(F ) : − fluent(F ), b(F ).

−bel(F ) : − fluent(F ), b(neg(F )).
(10)

Similarly, goal/1 is defined in relation to g/1. Thus, ob-
served actions warrant ascription of some fact not being the
agent’s goal or belief, opposed to warranting mere absence
of ascription that it is. The predicates bel/1 and goal/1
denote fluents being (or, if negated, being not) the observed
agent’s belief or goal, respectively.

5.2 Plan-Based Ascription
The function CS was mentioned in Section 3.2, and de-

fined to generate computation sequences and preserve test
actions (as opposed to OS). Knowledge of successful test ac-
tions gives information about the agent’s mental state, which
can be informally characterized as follows: if the agent is
presumed to have applied some rule and is observed to per-
form some action, then if this observed action is preceded
by a test action, this test must have been successful.

Incorporating presumption of successful test actions into
ascription requires a notion of dynamics, because tests are
performed in a state which may change as a result of ac-
tions. Consider, by means of example, a plan that states
that if a certain device is believed to be on, then it should
be switched off. The test which succeeds before the action of
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switching off the device might not succeed after performing
the action. For this reason a state argument is added to the
predicates b/1 and g/1. It should be noted in this regard
that all occurrences of b/1 and g/1 in Section 4 pertain to
the abduced preconditions of the observed agent’s rule, such
that those hold in the state preceding all observed actions.
This state is given the number 0, such that all b(F ) and
g(F ) in Section 4 are extended to b(F, 0) and g(F, 0).

The expressions in Formula 9 and 10 describe general re-
lations, such that occurrences of b/1 and g/1 (and, corre-
spondingly, of bel/1 and goal/1) in those expressions can
simply be extended with a state variable S, in regard to
which the predicate st/1 is defined to refer to valid states.
Instances of this predicate can be derived from o/2 by means
of rules, or specified as facts. For example, in Formula 10
bel(F ) : − fluent(F ), b(F ) then becomes

bel(F, S) : − fluent(F ), st(S), b(F, S).

The above formulation employing a state argument is strongly
reminiscent of the situation calculus [20], the main differ-
ence being that bel/2 and goal/2 refer to fluents ascribed
as belief or goal to an observed agent, whereas in approaches
based on the situation calculus the predicate holds/2 refers
to an agent’s own beliefs about its environment.

Ascription on grounds of computation sequences is then
implemented as in Formula 11, which captures the informal
notion mentioned in the first paragraph of this section and
extends it to observed sequences.

∀(n : γ <-β |π) ∈ R
∀α1, . . . , αn, φ1?, . . . , φk?, π′ ∈ LΠ :

[ (π′ ∈ CS(π) & OS(π′) = {α1 · · ·αi · · ·αn} &

π′ = · · · ;αi−1;φ1?; · · · ;φk?;αi; · · · ) =⇒
( k{τ ′(φ1, i− 1), . . . , τ ′(φk, i− 1)}k : −
r(n, ι(π′)), s(α1, 1), . . . , s(αi, i). ) ∈ PR ]

(11)

The function τ ′ is required because plans, as defined in Sec-
tion 2.1, contain test actions on expressions φ ∈ L0 prefixed
by either B or G. A test action Bφ? is evaluated with
respect to the agent’s beliefs and Gφ? with respect to its
goals, and such tests can be understood as belief/goal intro-
spection. Translation through τ ′ is therefore as follows.

τ ′(Bφ, n) = b(τ(φ), n) τ ′(Gφ, n) = g(τ(φ), n)

This approach has the following useful property.

Proposition 1 (proven for B, likewise for G.).
Computation sequences with mutually inconsistent tests on
conjoined literals give rise to inconsistent answer sets.

Proof. Given Lit = {p,¬p | p ∈ Atom}, let φ =
∧

Φ, ψ =∧
Ψ for some Φ,Ψ ⊆ Lit. Furthermore let (n : γ <-β |π) ∈
R be such that π′ = · · · ;αi−1; Bφ?; · · · ; Bψ?;αi; · · · ∈ CS(π),
where ι(π′) = c. Assume that {φ, ψ} |= ⊥, such that for
some q ∈ Lit holds φ→ q and ψ → ¬q, and observe that on
grounds of Formulae 9, 10, and 11 it holds that every answer
set satisfying r(n, c) and s(α1, 1), . . . , s(αi, i) must satisfy
bel(q, i− 1) and −bel(q, i− 1), and be inconsistent.

Proposition 1 states that the observer program which incor-
porates inference on grounds of presumed test actions, along
the lines of Formula 11, reflects the fact that observed ac-
tions could have not been generated by a sequence which
has unsatisfiable tests preceding those actions.

6. EXAMPLE
Throughout this paper short examples have been used

to illustrate certain sections. In this section a more elab-
orate example is given, which has been implemented based
on the approach presented in this paper using the grounder
Lparse [22] and the solver clasp [11]. The example imple-
ments a (fictional) virtual character from a life-simulation
game like The Sims that has the following two rules, in the
APL syntax of Section 2.1.

seen_movie <- playing_movie |

enter_mall; if B(not have_cash) then withdraw_cash

else skip; watch_movie

have_book <- good_book or not playing_movie |

enter_mall; if B(not have_cash) then withdraw_cash

else skip; buy_book

Based on the approach sketched in this paper, those rules
give rise to the following fragment of the answer set pro-
gram PR of the observer in relation to Formulae 5, 6, and 8;
abbreviations should be evident.

2{g(s m, 0), b(p m, 0)}2 : − r(1, 1).

2{g(s m, 0), b(p m, 0)}2 : − r(1, 2).

3{o(e m, 1), o(w c, 2), o(w m, 3)}3 : − r(1, 1).

2{o(e m, 1), o(w m, 2)}2 : − r(1, 2).

2{g(h b, 0), b(disj(g b, neg(p m)), 0)}2 : − r(2, 3).

2{g(h b, 0), b(disj(g b, neg(p m)), 0)}2 : − r(2, 4).

3{o(e m, 1), o(w c, 2), o(b b, 3)}3 : − r(2, 3).

2{o(e m, 1), o(b b, 2)}2 : − r(2, 4).

1{r(1, 1), r(1, 2), r(2, 3), r(2, 4)}1.
: − s(A, T ), not o(A, T ).

Based on Formula 11, the rest of the program is as follows.

1{b(neg(h c), 1)}1 : − r(1, 1), s(e m, 1), s(w c, 2).

1{b(h c, 1)}1 : − r(1, 2), s(e m, 1), s(w m, 2).

1{b(neg(h c), 1)}1 : − r(2, 3), s(e m, 1), s(w c, 2).

1{b(h c, 1)}1 : − r(2, 4), s(e m, 1), s(b b, 2).

Let P ′ = P ∪ {s(e m, 1)}. Focusing on the predicates bel/2
and goal/2, note that the program P ′ has answer sets with
S = {goal(s m, 0), bel(p m, 0)} on grounds of explanations
r(1, 1) and r(1, 2), and S′ = {goal(h b, 0), bel(g b, 0)}, S′′ =
{goal(h b, 0),−bel(p m, 0)}, as well as S′ ∪ S′′ on grounds
of r(2, 3) and r(2, 4). Now let P ′′ = P ′ ∪ {s(w m, 2)} and
observe that P ′′ |= goal(s m, 0) ∧ bel(p m, 0) ∧ bel(h c, 1)
because P ′′ |= r(1, 2). The example thus illustrates the the-
ory of preceding sections in relation to specific atoms being
ascribed as (not) the agent’s belief/goal, and shows conclu-
siveness of the observer after observation of two actions.

7. RELATED WORK
The approach presented in this paper can be categorized

in the area of plan/intention recognition. Although this tra-
ditionally has been an active area of A.I. research, there has
been little work specific to agent programming. An excep-
tion is that of Goultiaeva & Lespérance [13], who present a
formal model meant for inclusion in the ConGolog program-
ming language, which is based on the situation calculus. The
approach focuses on the procedural aspect of incrementally
matching observed behavior to an annotated library of plans.
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An important difference with the work in this paper is the
fact that our approach uses a general logical abstraction of
plans and it is therefore not restricted to a particular agent
programming language, except for the fact that it supposes
the availability of an ASP interpreter. Furthermore, our
work utilizes a mature automated (nonmonotonic) reason-
ing paradigm, and, last but not least, it is difficult to see how
the work of Goultiaeva & Lespérance could extend to incom-
plete observation (i.e. missing actions), whereas our work is
founded on an approach that handles this case. Of further
interest is the work of Baral et al. [4] because it uses ASP
to model agents knowledge about others’ knowledge, albeit
using a radically different approach. Apart from logic-based
approaches such as the above, there exists a multitude of
statistical approaches (see [7]), including some in the game
domain. Such approaches require significant amounts of run-
time data as input, though, and are not BDI-specific.

8. CONCLUSION AND FUTURE RESEARCH
This paper presents an answer set programming imple-

mentation of mental state ascription based on observed prim-
itive actions of a BDI-based agent. The approach is based
on earlier work ([21], cf. Section 2.2), which is reformulated
here in terms of abduction in classical logical in Section 3.
This logical theory gives rise to an implementation in Sec-
tion 4 which utilizes the suitability of ASP for nonmonotonic
reasoning, and is expanded in Section 5 to incorporate as-
cription based on test actions the observed agent can be
presumed to have performed, hereby employing concepts of
the situation calculus. Formal proof is given of useful and
interesting properties of our approach.

It should be noted that for space and simplicity the im-
plementation presented here assumes complete observation,
meaning that all of the agent’s actions are observed. In [21]
we also formalized incomplete observation by means of ad-
ditional structural relations which allow ‘gaps’ to occur in
matching observed to observable sequences. By implement-
ing those relations our implementation can be generalized
to cases of incomplete observation as well. Future research
can furthermore focus on exploring the relation with the
situation calculus, as indicated in Section 5.2, which would
furthermore open up possibilities for implementation of an
agent that reasons about its own environment and mental
state in relation to that ascribed to others. Existing work on
ASP for dynamic domains can then be of use [12]. Further-
more, prediction of agents’ actions can be considered, and,
last but not least, investigating the practice of integrating
logic programming interpreters into demanding applications
such as games is mandatory for (industrial) deployment.
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ABSTRACT
Given the preferences of several agents over a common set
of candidates, voting trees can be used to select a candidate
(the winner) by a sequence of pairwise competitions mod-
elled by a binary tree (the agenda). The majority graph
compactly represents the preferences of the agents and pro-
vides enough information to compute the winner. When
some preferences are missing, there are various notions of
winners, such as the possible winners (that is, winners in
at least one completion) or the necessary winners (that is,
winners in all completions). In this generalized scenario, we
show that using the majority graph to compute winners is
not correct, since it may declare as winners candidates that
are not so. Nonetheless, the majority graph can be used to
compute efficiently an upper or lower approximation of the
correct set of winners.

Categories and Subject Descriptors
I.2.11 [Computing methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, Theory

Keywords
Preferences, incompleteness, necessary winners, voting trees

1. INTRODUCTION
Voting is a simple and natural mechanism to aggregate

the preferences of multiple agents. Results like those of
Gibbard and Sattertwhaite demonstrate that, under weak
assumptions like an election of more than two candidates,
no voting rule is ideal. Many different voting rules, with
different properties, have therefore been proposed. Voting
trees are a general method that can implement many such
rules [2]. A voting tree is a binary tree (called the agenda)

Cite as: Possible and necessary winners in voting trees: majority graphs
vs. profiles, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and
Toby Walsh, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 311-318.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

where the leaves are labelled with the candidates in the elec-
tion, the internal nodes are labelled with the winner of the
pairwise comparison between the children, and the root wins
the overall election. Voting trees can implement, for exam-
ple, any voting rule over three candidates [3]. Voting trees
have therefore been studied as a general, abstract model for
decision-making among multiple agents (see, for example,
[10, 9, 11]).

In practice, we often want to make decisions despite the
presence of uncertainty. Uncertainty can come in different
forms. There may be uncertainty about the votes [4, 12, 1,
13]. We may, for example, have only partially elicited pref-
erences, or we may only have partial knowledge about the
votes of other agents. There may also be uncertainty about
the voting rule itself. For instance, with voting trees, there
may be uncertainty about the agenda [7]. This may be be-
cause the agenda is not yet fixed (for example, the agenda is
to be chosen at a later date by means of a random draw as
in the World Cup), or the agenda is not announced in ad-
vance (to impede manipulation), or the chair may still be in
a position to change the agenda (in order to manipulate the
result). We are therefore interested in computing the results
of an election with a voting tree where there is uncertainty
in the vote and/or in the voting tree.

When some preferences are missing, there are various no-
tions of winners, such as the possible winners (that is, win-
ners in at least one completion) or the necessary winners
(that is, winners in all completions) [4]. When computing
possible and necessary winners, we can work from the in-
complete votes or the majority graph. The majority graph
summarizes the votes in the form of a directed graph where
there is a directed arc between two candidates iff a majority
of the agents prefer the first candidate over the second. We
can also consider whether the agenda is fixed or unknown.
Previously, Lang et al. [5] studied the problem of comput-
ing possible and necessary winners from the majority graph.
In [8], Pini et al. compared these results to the problem of
computing possible and necessary winners from incomplete
profiles. However, this work left open several important re-
lationships between the different types of winners, which we
close here.

To be precise, we consider all notions of winners in the set-
ting of incomplete preferences or uncertain agenda (possible
Condorcet, necessary Condorcet, possible Schwartz, neces-
sary Schwartz, possible, and necessary winners) and study
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whether each of these sets of winners is computable by just
looking at the majority graph, without having to consider
the whole profile. In other words, we study if the set of win-
ners computed from the majority graph coincides with that
computed from the profile. The reason to do this is that
computing winners from the majority graph takes polyno-
mial time, even when there are exponential many comple-
tions.

For some notions of winners, the literature already tells
us if the two sets coincide or not [8]. In fact, we know
that, when considering simple voting trees (that is, agendas
where each candidate appears exactly once as a leaf), pos-
sible Condorcet winners and necessary Condorcet winners
can be safely computed from the majority graph, while this
is not so for possible Schwartz winners. We first close all
open questions about simple voting trees, showing that un-
fortunately equality does not hold in general for all remain-
ing notions of winners. We then examine the more general
setting of voting trees, where we show that the results for
simple voting trees are maintained. This means that, both
in simple voting trees and in general voting trees, reasoning
with the majority graph always produces correct results only
when we look for possible and necessary Condorcet winners.
When we aim to find other kinds of winners, working with
the majority graph gives an upper or lower approximation
of the correct set of winners. The situation is even worse
for voting trees, since some polynomial algorithms that cor-
rectly return winners from the majority graph in the simple
voting tree setting do not work well for voting trees, since
they may return incorrect responses also w.r.t. the majority
graph-based notion of winners. However, what they return
is still a lower or upper approximation of the correct set of
winners.

2. BASIC NOTIONS
We now give the basic notions for (simple) voting trees [5,

8, 6].

2.1 Preferences, profiles, and majority graphs
We assume that each agent’s preferences are specified by

a strict total order (TO), that is, by an asymmetric, tran-
sitive and complete order, on a set of m candidates. The
candidates are taken from a set Ω, and they represent the
possible options over which agents vote.

A profile P on Ω is a collection of n strict total orders
over Ω, i.e., P = (P1, . . . , Pn), where Pi is the preference
relation of agent i. An incomplete preference relation > on
Ω is a strict order on Ω, that is, a transitive and irreflexive
relation on Ω. An incomplete profile on Ω is a collection
P = (P1, . . . , Pn) of incomplete preference relations on Ω.
Let P = (P1, . . . , Pn) be an incomplete profile over a set of
candidates Ω, a completion R of P is a tuple (R1, . . . , Rn)
such that every Ri is a strict total order on Ω containing Pi.
For simplicity, we assume that the number of the agents is

odd.
Given an (incomplete) profile P , the majority graph M(P )

induced by P is the directed graph whose set of vertices is
Ω, and where an edge from A to B (denoted by A >m B)
denotes a strict majority of voters who prefer A to B. A ma-
jority graph is said to be complete if, for any two vertices,
there is a directed edge between them, and fully incomplete
if there are no edges. Also, if M(P ) is incomplete, the set of
all complete majority graphs extending M(P ) corresponds

to a (possibly proper) superset of the set of complete ma-
jority graphs induced by all possible completions of P .

2.2 Voting trees
Given a set of candidates, the simple voting tree rule (resp.,

voting tree rule) is defined by a binary tree with one candi-
date per leaf. Each candidate appears exactly once in the
leaves (resp., each candidate may appear more than once
in the leaves). Each internal node represents the candidate
that wins the pairwise election between the node’s children.
The winner of every pairwise election is computed by the
majority rule, where A beats B iff there is a majority of
votes stating A > B. The candidate at the root of the tree
is the overall winner. Given a complete profile, candidates
which win for every (simple) voting tree are called Condorcet
winners and candidates which win for at least one (simple)
voting tree are called Schwartz winners.

2.3 Notions of winners
Various kinds of winners have been defined from incom-

plete profiles and from incomplete majority graphs [5, 8, 6].

Definition 1. Let P be an incomplete profile and A a
candidate.

• A is a possible Schwartz winner for P (i.e., A ∈ PossS(P ))
iff there exists a completion of P and a simple voting
tree for which A wins;

• A is the necessary Schwartz winner for P (i.e., A ∈
NecS(P )) iff for every completion of P there is a sim-
ple voting tree for which A wins;

• A is a possible Condorcet winner for P (i.e., A ∈
PossC(P )) iff there is a completion of P such that A
is a winner for every simple voting tree;

• A is the necessary Condorcet winner for P (i.e., A ∈
NecC(P )) iff for every completion of P , and for every
simple voting tree, A is a winner.

When the voting tree is given, the following two notions
of winners can also be considered [6, 12].

Definition 2. Let P be an incomplete profile, A a can-
didate, and T a simple voting tree.

• A is a possible winner for P and T (i.e., A ∈ Poss(P, T ))
iff there exists a completion of P for which A wins in
T ;

• A is the necessary winner for P and T (i.e., A ∈
Nec(P, T ))) iff, for every completion of P , A wins in
T .

When the profile is complete, necessary and possible Con-
dorcet winners coincide. The same holds also for necessary
and possible Schwartz winners, and for necessary and possi-
ble winners.

The definitions of winners given above can be defined also
from incomplete majority graphs [5, 8]. The only difference
is such definitions consider the completions of the incomplete
majority graph and not those of the incomplete profile.
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2.4 Majority graph vs. profile
When the profile is complete, the possible and necessary

versions of the same notion of winner collapse, and reasoning
from the majority graph is enough for correctly computing
the winner. However, when the profile is incomplete, consid-
ering the majority graph rather than the profile may give dif-
ferent results. A majority graph may have completions that
do not correspond to any completion of the profile. Thus,
for certain notions of winners, the possible/necessary win-
ners for the incomplete profile do not coincide with the pos-
sible/necessary winner for the incomplete majority graph.

Of course, the correct notion is that defined from the pro-
file, but in some cases the two notions of winners coincide,
so we can safely consider only the majority graph. This is
more convenient since the majority graph is a compact rep-
resentation of the profile. Reasoning over this structure is
therefore more efficient.

In Table 1 we summarize what is known about the re-
lationship between the set of winners from an incomplete
profile P and the set of winners from the incomplete major-
ity graph M(P ), both in simple voting trees and in voting
trees.

SVT VT
Possible Schwartz winners 6= [8] ?

Necessary Schwartz winners ? ?
Possible Condorcet = [8] ?

Necessary Condorcet = [8] ?
Possible winners ? ?

Necessary winners ? ?

Table 1: State of the art about winners computed
from majority graph or profile, for simple voting
trees (SVT) and voting trees (VT).

In words, we know that possible Condorcet winners and
necessary Condorcet winners can be correctly computed from
the majority graph, while this is not so for possible Schwartz
winners. However, we don’t know anything about the other
notions of winners, except the obvious subset inclusion that
comes from the simple observation that the majority graph
may have more completions than the profile. More precisely,
every notion in its ”possible” version and related to the pro-
file denotes a subset of the same notion related to the ma-
jority graph. For example, Poss(P, T ) ⊆ Poss(M(P ), T ).
Vice versa, every notion in its ”necessary” version and re-
lated to the majority graph denotes a subset of the same
notion related to the profile. For example, Nec(M(P ), T ) ⊆
Nec(P, T ).

2.5 Computing majority graph winners
All the sets of winners for the majority graph can be com-

puted in polynomial time for simple voting trees [5, 6].
Given a simple voting tree T and an incomplete majority

graph G, algorithm Win, presented in [6], computes, the
set of possible winners for G and T . This algorithm (see the
pseudocode below) recursively takes in input a simple voting
tree T , an incomplete majority graph G, and it returns a set
of candidates W , which is the set of possible winners for G
and T . If root(T ) is not empty, and both left(T ) (i.e., the
left subtree of T ) and right(T ) (i.e., the right subtree of T )
are empty, then the algorithm returns label(root(T )) (i.e.,
the candidate which labels the root of T ). Otherwise, the
set of winners at the root of T is the set of all candidates

who are possible winners in the left (resp., right) branch of
T and who beat at least one candidate who is a possible
winner in the right (resp., left) branch of T .

Algorithm StrongWin [6] runs algorithm Win on T and
G, and just checks if the output is a single candidate. If so,
it declares it the necessary winner, otherwise it returns the
empty set as there is then no necessary winner.

Algorithm 1: Win

Input: T : a simple voting tree, G: an incomplete majority
graph;
Output: W : set of candidates;
if T contains only one node then

W ← label(root(T ))

else
W1 ← Win(left(T ), G);
W2 ← Win(right(T ), G);
W ← ∅;
foreach (s, t) ∈ W1 ×W2 do

if s >m t then
W ← W ∪ {s}

else
if t >m s then

W ← W ∪ {t}
else

W ← W ∪ {s, t}

return W

3. WINNERS IN SIMPLE VOTING TREES
We now show that the set of the necessary Schwartz win-

ners (resp., possible winners, necessary winners) for an in-
complete profile P may be different from the set of the nec-
essary Schwartz winners (resp., possible winners, necessary
winners) for the incomplete majority graph M(P ) in simple
voting trees. These results close all the open questions in
the simple voting tree column of Table 1.

3.1 Necessary Schwartz winners
As noted above, a necessary Schwartz winner from an in-

complete majority graphM(P ) is always a necessary Schwartz
winner from the incomplete profile P [8]. More precisely, let
P be an incomplete profile. Then NecS(M(P )) ⊆ NecS(P ).
However, in general, the opposite does not hold.

Theorem 1. There is an incomplete profile P such that
NecS(P ) 6= NecS(M(P )).

Proof. To show the result, we give an incomplete profile
P and a candidate A such that A ∈ NecS(P ) and A 6∈
NecS(M(P )).

Let Ω = {A,A1, B1, B2, B3}. Assume that we have 5
agents and that the incomplete profile P is defined as fol-
lows:

• agent 1: (A1 > B2 > B3, A > B1);

• agent 2: (B2 > B3 > A1 > B1 > A);

• agent 3: (A > A1 > B3 > B1 > B2);

• agent 4: (B1 > A > B2 > B3 > A1);

• agent 5: (B3 > B1 > B2 > A > A1).

Given this profile, the corresponding majority graph has the
following edges:
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• A >m A1, B1 >m A, B1 >m B2,

• B2 >m B3, B2 >m A1, B3 >m B1, B3 >m A1.

By Theorem 8 of [5], which states that A ∈ NecS(M(P )) iff
there is a path from A to every other candidate in M(P ),
since there is no path from A to B1 in M(P ), then A 6∈
NecS(M(P )). However, A ∈ NecS(P ). In fact, for every
completion of P , there is a tree where A wins. Notice that
in P only the first agent expresses incomplete preferences.
Therefore, the completions of P are as many as the comple-
tions of the first agent’s preferences. Such completions can
be partitioned in two types: those where the first agent puts
A1 above A and those where the first agent puts A above
A1:

• In every completion of P where A1 is above A in the
first agent’s preferences, we have, by transitivity, A1 >
B1 for this agent. This yields a majority of agents
stating A1 > B1. Therefore, for every completion of
this kind, the corresponding majority graph has the
edge A1 >m B1. It is possible to see that A wins in
the tree where first B2 plays against B3, the winner
(that is, B2) plays against B1, the winner (that is, B1)
plays against A1, and finally the winner (that is, A1)
plays against A.

• In every completion of P where A is above A1 in the
first agent’s preferences, we have, by transitivity, A >
B2 for this agent. This yields a majority of agents
stating A > B2. Therefore, for every completion of
this kind, the corresponding majority graph has the
edge A >m B2. It is possible to see that A wins in the
tree where first B3 plays against B1, the winner (that
is, B3) plays against B2, the winner (that is, B2) plays
against A, and finally the winner (that is, A) plays
against A1. 2

However, in some restricted cases the two notions of win-
ners coincide. For example, when we have 3 candidates, the
necessary Schwartz winners from the incomplete profile and
from the incomplete majority graph coincide.

Theorem 2. Let P be an incomplete profile over 3 can-
didates. Then NecS(P ) = NecS(M(P )).

Proof. For every candidate A, we can partition the set
of candidates in two sets S1 and S2, where S1 contains the
candidates that are reachable from A (i.e., every candidate
X such that there is a path A >m · · · >m X from A to
X in M(P )) and S2 contains the candidates that are not
reachable from A. If there are 3 candidates, (say A, B, and
C), then there are four possible kinds of majority graphs,
depending on who reaches who else:

• S1 = {A} and S2 = {B,C};
• S1 = {A,B} and S2 = {C};
• S1 = {A,C} and S2 = {B};
• S1 = {A,B,C} and S2 = ∅;

In the first case, there is no path from A to B. Therefore,
by Theorem 8 of [5], A 6∈ NecS(M(P )). Moreover, B or
C has no ingoing edges in M(P ). Assume that B has no
ingoing edges. Let us consider the completion of P , say P ′,

where we put B > A if the relation between A and B is
unspecified, and B > C if the relation between B and C is
unspecified. Then, B has only outgoing edges in M(P ′) and
so B is a Condorcet winner, i.e., he wins in every tree. Since
there is a completion of P where A is a loser for every tree,
A 6∈ NecS(P ).

In the second case, there is no path from A to C. There-
fore, by Theorem 8 of [5], A 6∈ NecS(M(P )). Moreover, C
has no ingoing edges in M(P ). Let us consider the com-
pletion of P , say P ′, where we put C > A if the relation
between A and C is unspecified, and C > B if the relation
between B and C is unspecified. Then, C has only outgoing
edges in M(P ′) and so B is a Condorcet winner, i.e., he wins
in every tree. Since there is a completion of P where A is a
loser for every tree, A 6∈ NecS(P ).

In the third case, there is no path from A to B. Therefore,
by Theorem 8 of [5], A 6∈ NecS(M(P )). Moreover, B has no
ingoing edges in M(P ). We can conclude that A 6∈ NecS(P )
via a reasoning that is similar to the one used in the case
above.

In the fourth case, there is a path from A to every other
candidate. Therefore, A ∈ NecS(M(P )) and soA ∈ NecS(P )
since NecS(M(P )) ⊆ NecS(P ). 2

The equality between NecS(P ) and NecS(M(P )) holds
also when we have more than 3 candidates, if we impose
some other restrictions.

Theorem 3. Let P be an incomplete profile. Then NecS(P )
= NecS(M(P )) if

• M(P ) is complete, or

• M(P ) is fully incomplete, or

• there are two candidates with no ingoing edges in M(P )
(in which case NecS(P ) = NecS(M(P )) = ∅).

Proof.
• If M(P ) is complete, then M(P ) is also the major-

ity graph of every completion of P . Therefore, if A 6∈
NecS(M(P )), there is no path from A to some candi-
date B in M(P ) and in M(P ′), for every completion
P ′ of P . Therefore, A 6∈ NecS(P ) and so NecS(P ) ⊆
NecS(M(P )). We can thus conclude that NecS(P ) =
NecS(M(P )), since [8] shows thatNecS(P )⊇NecS(M(P )).

• If M(P ) is fully incomplete, then NecS(M(P )) = ∅.
Moreover, if M(P ) is fully incomplete, there are two
candidates, say B1 and B2, with no ingoing edges. If
we consider the completion P1 of P where we put B1 >
C for every C such that the relation between B1 and C
is unspecified, B1 is a Condorcet winner, i.e., B1 wins
in every tree. Similarly, if consider the completion P2

of P where we put B2 > C for every C such that
the relation between B2 and C is unspecified, B2 is a
Condorcet winner, i.e., B2 wins in every tree. Since in
P1 B1 wins for every tree, and since in P2 B2 wins for
every tree, it is not possible to find a unique candidate
that in both completions P1 and P2 wins for some tree.
Therefore, NecS(P ) = ∅.
• If there are two candidates with no ingoing edges in
M(P ), then we can conclude as in the case above that
NecS(P ) = NecS(M(P )) . 2
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We now consider cases where a candidate is neither a nec-
essary Schwartz winner from the majority graph nor a nec-
essary Schwartz winner from the profile.

Theorem 4. Let P be an incomplete profile.

• If there is a unique candidate B with no ingoing edges,
then, for every other candidate A, A 6∈ NecS(M(P ))
and A 6∈ NecS(P ).

• For every candidate A, such that there is at least a
candidate that A does not reach and all the candidates
that are reachable from A in M(P ) are beaten by all
the other candidates that are not reachable from A, A 6∈
NecS(M(P )) and A 6∈ NecS(P ).

• If there is a partition of the candidates in two sets, say
S1 and S2, such that every element in S1 is worse than
every element in S2 in M(P ), then for every A ∈ S1,
A 6∈ NecS(M(P )) and A 6∈ NecS(P ).

Proof.

• If there is a unique candidate B with no ingoing edges,
then, for every other candidate A 6= B, A does not
reachB. Thus, by Theorem 8 of [5], A 6∈ NecS(M(P )).
Let us consider the completion P ′ where we put B > C
for every C such that the relation between B and C
is unspecified. Then B is a Condorcet winner, i.e., B
wins in every tree, and so every other candidate A is
a loser for every tree. Therefore A 6∈ NecS(P ).

• Let us consider a candidate A such that all the candi-
dates that are reachable from A in M(P ) are beaten
by all the other candidates that are not reachable from
A. Let us denote with B the candidate that A does not
reach. Since A does not reach B, then, by Theorem 8
of [5], A 6∈ NecS(M(P )). Let us consider the comple-
tion P1 of P where we put C above A for every C where
the relation between C and A is unspecified in M(P )
(and thus also B > A if the relation between A and
B is unspecified in M(P )) and where we put all the
remaining unspecified preferences in an arbitrary way
that satisfies transitivity. A cannot reach B in M(P1).
In fact, A cannot reach B directly by construction.
Moreover, A cannot reach B via the candidates that
A reaches since, by hypothesis, such candidates are all
beaten by every candidate that A does not reach in
M(P ). Therefore, they are all beaten by B in M(P )
and thus also in M(P1). Since A cannot reach B in
the complete majority graph M(P1), by Theorem 8 of
[5], A is not a Schwartz winner for P1, i.e., for P1, A
is a loser for every tree. Therefore, A 6∈ NecS(P ).

• If there is a partition of the candidates in two sets, say
S1 and S2, such that every element in S1 is worse than
every element in S2 in M(P ), then we can conclude by
using a reasoning similar to the one considered in the
previous item. 2

3.2 Possible winners
Given an incomplete profile P and a simple voting tree

T , the possible winners of T for P and for M(P ) may be
different.

Theorem 5. There is an incomplete profile P and a sim-
ple voting tree T such that Poss(P, T ) 6= Poss(M(P ), T ).

Proof. We can consider the incomplete profile P with
just one agent and Ω = {A,B,C}, where only the relation
between A and B is specified and it is A > B. The induced
majority graph M(P ) has only one edge from A to B. Let
us consider the simple voting tree T where A plays against
C and the winner plays against B. It is easy to see that
B ∈ Poss(M(P ), T ), since there is a completion of M(P )
where B wins in T , i.e., B >m C >m A. However, for
every completion of P , B does not win in T and so B 6∈
Poss(P, T ). 2

3.3 Necessary winners
In general, if there is a necessary winner from an incom-

plete majority graph M(P ), then it is also a necessary win-
ner from the incomplete profile P . More precisely, let P
be an incomplete profile and T a simple voting tree, then
Nec(M(P ), T ) ⊆ Nec(P, T ).

We will now show that the opposite does not hold in gen-
eral.

Theorem 6. There is an incomplete profile P and a sim-
ple voting tree T such that Nec(P, T ) 6= Nec(M(P ), T ).

Proof. To show the result, we give an incomplete profile
P , a simple voting tree T , and a candidate A such that A ∈
Nec(P, T ) and A 6∈ Nec(M(P ), T ).

Let Ω = {A,B,C,D,E, F}. Assume to have 5 agents and
that the incomplete profile P is defined as follows:

• agent 1: (E > B > C, F > D > A);

• agent 2: (A > E > F > D > B > C);

• agent 3: (A > C > D > F > E > B);

• agent 4: (C > D > F > E > B > A);

• agent 5: (B > A > F > E > C > D).

The majority graph of P has the following edges:

• A >m C, A >m D, A >m E, A >m F ,

• B >m C, B <m D, B <m E, B <m F ,

• C >m D, C <m E, D <m F , E <m F .

Assume that the voting tree T is defined as follows: the
winner between C and F plays against the winner between
E and D, the winner then plays against B and finally the
winner plays against A.

If we apply Algorithm Win (which is described in Section
2.5) to T and M(P ), then the returned set is {A,B}. Since
T is a simple voting tree, the set {A,B} coincides with the
set of the possible winners for M(P ) and T . Since there are
two possible winners, then Nec(M(P ), T ) = ∅.

However, A ∈ Nec(P, T ). In fact, for every completion of
P , A wins in T . Note that in P only the first agent expresses
incomplete preferences. Therefore, the completions of P cor-
respond to the completions of the first agent’s preferences.
Such completions can be partitioned into two types: those
where the first agent puts E above F and those where the
first agent puts F above E.
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• In every completion of P where E is above F in the first
agent’s preferences, we have, by transitivity, E > D for
this agent, and so there is a majority of agents stating
E > D. Therefore, for every completion of this kind,
its majority graph has the edge E >m D, and thus A
wins in T , since C is beaten by F or by E, then B is
beaten by F and E, and finally A beats both E and
F . Therefore, A is the overall winner.

• In every completion of P where F is above E in the first
agent’s preferences, we have, by transitivity, F > C
for this agent, and so there is a majority of agents
stating F > C. Therefore, for every completion of this
kind, its corresponding majority graph has the edge
F >m C, and thus A wins in T , since C is beaten by
F , then F beats both D and E, then F beats B, and
finally A beats F . Therefore, A is the overall winner.
2

However, in some restricted cases the two notions of win-
ners coincide. For example, when we have 3 candidates, the
necessary winners from the incomplete profile and from the
incomplete majority graph coincide.

Theorem 7. Let P be an incomplete profile over 3 can-
didates and T a simple voting tree. Then, Nec(P, T ) =
Nec(M(P ), T ).

Proof. When there are three candidates, say A, B, and
C, there is only one kind of tree, where one candidate plays
against another candidate, and the winner plays against the
remaining one. Let us consider the simple voting tree T
where A plays against B and the winner plays against C.
Every other simple voting tree can be obtained by T by
renaming the candidates. We now show that for every pos-
sible kind of incomplete majority graph M(P ), Nec(P, T )
= Nec(M(P ), T ). We will say A?mB when the relation be-
tween A and B is missing in M(P ).

Assume A >m B. If A >m C or A <m C, M(P ) gives all
the information for T and thus Nec(M(P ), T ) = Nec(P, T ).
If A?mC, Poss(M(P ), T ) = {A,C} and thus Nec(M(P ), T )
= ∅. In the completion of P where we put A > C if the
relation between A and C is unspecified, A wins in T , while
in the completion of P where we put C > A, if the relation
between A and C is unspecified, C wins in T . Therefore,
since there is no a single candidate that in every completion
of P wins in T , Nec(P, T ) = ∅.

Assume A <m B. We can conclude similarly to the pre-
vious item.

Assume A?mB.

• If C >m A and C >m B, then Nec(M(P ), T ) =
Nec(P, T )= {C}.
• If C <m A and C <m B, then Poss(M(P ), T ) =
{A,B} and thus Nec(M(P ), T ) = ∅. In the comple-
tion of P where we put A > B (resp., B > A) if the
relation between A and B is unspecified, A (resp., B)
wins in T and thus Nec(P, T ) = ∅.
• If C <m A and C >m B, then Poss(M(P ), T ) =
{A,C} and thus Nec(M(P ), T ) = ∅. In the comple-
tion of P where we put A > B (resp., B > A) if the
relation between A and B is unspecified, A (resp., C)
wins in T and thus Nec(P, T ) = ∅.

• If C >m A and C <m B, we can conclude similarly to
the previous item.

• If C >m B and C?mA, then Poss(M(P ), T ) = {C,A}
and thus Nec(M(P ), T ) = ∅. Moreover, in the comple-
tion of P where we put C > A if the relation between
A and C is unspecified, C wins in T , while in the com-
pletion of P where we put A > B and A > C, A wins in
T . Therefore, since there is no a single candidate that
in every completion of P wins in T , Nec(P, T ) = ∅.
• If C >m A and C?mB, then we can conclude similarly

to the previous item.

• If C <m B and C?mA, then Poss(M(P ), T ) = {A,B,C}
and thus Nec(M(P ), T ) = ∅. Moreover, in the com-
pletion of P where we put B > A, if the relation be-
tween A and B is unspecified, B wins in T , while in
the completion of P where we put A > C if the re-
lation between A and C is unspecified, and A > B if
the relation between A and B is unspecified, A wins in
T . Therefore, since there is no single candidate that
in every completion of P wins in T , Nec(P, T ) = ∅.
• If C <m A and C?mB, then we can conclude similarly

to the previous item. 2

The equality between Nec(P, T ) and Nec(M(P ), T ) holds
also when we have more than 3 candidates, if we impose
some other restrictions.

Theorem 8. Let P be an incomplete profile and T a sim-
ple voting tree. Then Nec(P, T ) = Nec(M(P ), T ) if

• M(P ) is complete, or

• M(P ) is fully incomplete (in which case Nec(P, T ) =
Nec(M(P ), T ) = ∅).

Proof.
• If M(P ) is complete, then M(P ) is also the major-

ity graph of every completion of P . Therefore, if A 6∈
Nec(M(P ), T ), thenA 6∈ Nec(P, T ). Therefore, Nec(P,
T )⊆Nec(M(P ), T ). We can thus conclude thatNec(P,
T ) =Nec(M(P ), T ), sinceNec(P, T )⊇Nec(M(P ), T ).

• If M(P ) is fully incomplete, then all the candidates are
possible winners for M(P ) and so Nec(M(P ), T ) = ∅.
Moreover, if M(P ) is fully incomplete, there are two
candidates, say B1 and B2 with no ingoing edges. We
can conclude that Nec(P, T ) = ∅ by using a reasoning
similar to the one considered in the proof of the second
item of Theorem 3. More precisely, in the completion
P1 of P where we put B1 > C for every C such that
the relation between B1 and C is unspecified, B1 is
a Condorcet winner, and so B1 wins also in T , while
in the completion P2 of P where we put B2 > C for
every C such that the relation between B2 and C is
unspecified, B2 is a Condorcet winner, and so B2 wins
also in T . Therefore, it is not possible to find a unique
candidate that in the completions P1 and P2 wins in
T . Therefore, Nec(P, T ) = ∅. 2

We can also identify cases in which a candidate is neither
a necessary winner from the majority graph nor a necessary
winner from the profile.
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Theorem 9. Let P be an incomplete profile and T a sim-
ple voting tree. For every candidate A such that, for every
candidate C that may play against A in T , A <m C or
the relation between A and C is unspecified in M(P ), A 6∈
Nec(M(P ), T ) and A 6∈ Nec(P, T ).

Proof. If, for every candidate C that may play against A
in T , we have A <m C, then A 6∈ Poss(M(P ), T ). Thus A 6∈
Nec(M(P ), T ) and A 6∈ Poss(P, T ). Since A 6∈ Poss(P, T ),
we have that A 6∈ Nec(P, T ). If there is a candidate C
that may play against A in T , such that the relation be-
tween A and C is unspecified in M(P ), then either A 6∈
Poss(M(P ), T ) (and so we can conclude as above) or A ∈
Poss(M(P ), T ) but |Poss(M(P ), T )| > 1. Then, by Algo-
rithm StrongWin [6], A 6∈ Nec(M(P ), T ). Moreover, let us
consider the completion of P where we put A < C for every
C such that the relation between A and C is unspecified in
M(P ). Then, for every tree (and thus also in T ) A is a loser.
Therefore, A 6∈ Nec(P, T ). 2

4. WINNERS IN VOTING TREES
We now close the open questions of Table 1 in the voting

tree column. We will show that algorithms Win and Strong-
Win [6], that correctly compute possible and necessary win-
ners from an incomplete majority graph and a simple voting
tree, are not correct any longer when we consider voting
trees.

4.1 Winners
We first notice that, since a simple voting tree is a voting

tree, all the inequality results shown in the previous section
(or already known and shown in Table 1) for simple voting
trees hold also for voting trees. Thus, we have inequali-
ties for the notions of possible Schwartz winners, necessary
Schwartz winners, possible winners, and necessary winners.

For the remaining notions of possible and necessary Con-
dorcet winners, we will now show that the equalities that
hold for simple voting trees hold also for voting trees.

Theorem 10. Let P be an incomplete profile. Assume
we consider voting trees. Then

• PossCond(P ) = PossCond(M(P ));

• NecCond(P ) = NecCond(M(P )).

Proof. It follows from the proofs of items 3 and 4 of
Theorem 1 of [8], which show that these equalities hold for
simple voting trees, since this proof depends only on the
completions of M(P ) and of P and not on the kind of voting
trees considered. 2

4.2 Majority graph winners
It is easy to see that all the polynomial time algorithms

presented for incomplete majority graphs and simple voting
trees in [5] are sound and complete also for voting trees,
since they don’t exploit the fact that each candidate appears
exactly once in the leaves.

However, we can show that, when we consider voting trees
instead of simple voting trees, algorithms Win and Strong-
Win [6], that compute possible and necessary winners from
an incomplete majority graph and a simple voting tree, are
not correct. In fact, given a voting tree T and a majority

graph M , Algorithm Win may return also candidates that
are not possible winners for M and T , and algorithm Strong-
Win may return the empty set even if there is a necessary
winner for M and T .

Theorem 11. There is an incomplete majority graph M
and a voting tree T such that, if W is the set of candidates
returned by Algorithm Win [6] applied to M and T , then
W 6= Poss(M,T ).

Proof. We give an incomplete majority graph M and
a voting tree T , such that the set of candidates returned
by Algorithm Win [6] applied to T and M contains also a
candidate which is not a possible winner for T and M .

Assume we have 5 candidates, say A, B, C, D, and E,
and that the incomplete majority graph M has the following
edges: A >m D, A >m E, B >m A, B >m E, C >m A,
C >m D, D >m B, E >m C. Assume that the voting tree
T is defined as follows:

• left(root(T )) is the voting tree where first B plays
against C, the winner plays against D, and finally the
winner plays against A, and

• right(root(T )) is the voting tree where first B plays
against C, the winner plays against E, and finally the
winner plays against A.

The set of the candidates returned by Algorithm Win [6] is
the set {A,B,C}, while the set of possible winners for M
and T is the set {B,C}. A is not a possible winner for M
and T , since there are only two completions of M , i.e., the
one, say c1, where we put B > C and the one, say c2, where
we put C > B. In the first one, the winner is B, while in
the second one the winner is C:

• In completion c1, A is the winner of left(root(T ))
(since B beats C, then B is beaten by D, and finally
D is beaten by A), B is the winner of right(root(T ))
(since B beats C, then B beats E, and finally B beats
by A), and thus, since B >m A in M , B is the winner
of T .

• In completion c2, C is the winner of left(root(T ))
(since C beats B, then C beats D, and finally C beats
A), A is the winner of right(root(T )) (since C beats
B, then C is beaten by E, and finally E is beaten by
A), and thus, since C >m A in M , C is the winner of
T . 2

Theorem 12. There is an incomplete majority graph M
and a voting tree T such that, if W the set of candidates
returned by Algorithm StrongWin [6] applied to M and T ,
W 6= Nec(M,T ).

Proof. We give an incomplete majority graph, say M ′,
and a voting tree, say T ′, such that the set of the candidates
returned by Algorithm StrongWin [6] applied to T ′ andM ′ is
empty, while there is a candidate that is a necessary winner
for T ′ and M ′.

Assume we have 6 candidates, say A, B, C, D, E, and F ,
and that the incomplete majority graph M ′ has the same
edges as the incomplete majority graph M considered in the
proof of Theorem 11 plus the following edges: A >m F ,
F >m B, and F >m C. Assume that the voting tree T ′ is
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the voting tree where the winner of the voting tree T consid-
ered in the proof of Theorem 11 plays against F . Algorithm
StrongWin applied to M ′ and T ′ returns the empty set, since
Algorithm Win returns a set (i.e., {A,F}) which has more
than one element. However, we have shown in the proof of
Theorem 11 that, for every completion of M , A does not
win in T . Thus, by construction of M ′, for every comple-
tion of M ′, A does not win in T , and so, since F >m B and
F >m C in M ′, for every completion of M ′, F wins in T .
Therefore, F is the necessary winner for M ′ and T ′. Hence,
there is a necessary winner for M ′ and T ′ but Algorithm
StrongWin says there is none. 2

However, even if algorithm Win may be incorrect, the
set of winners returned by this algorithm may be useful in
the search for the possible/necessary winners. In fact, this
is a superset of the set of the possible winners for M and
T . Moreover, if Algorithm StrongWin applied to M and T
returns a candidate, this is indeed a necessary winner for M
and T .

Theorem 13. Let M be an incomplete majority graph, T
a voting tree, and W the set of the candidates returned by
Algorithm Win [6]. Then W ⊇ Poss(M,T ).

Proof. Let A be a candidate. We want to show that,
if A ∈ Poss(M,T ), then A ∈ W . Assume that A 6∈ W .
Then, by definition of Algorithm Win, for every subtree T ′

of T where A ∈ root(left(T ′)) (resp., A ∈ root(right(T ′)),
we have A <m C, for every C ∈ root(right(T ′)) (resp., for
every C ∈ root(left(T ′))). This holds for every completion
of M . Therefore, for every completion of M , A is a loser in
T and thus A 6∈ Poss(M,T ). 2

Corollary 13.1. Let M be an incomplete majority graph,
T a voting tree, and W the set of the candidates returned by
Algorithm Win [6]. If |W | = 1, then W = Nec(M,T ).

Proof. IfW = {A}, then, by Theorem 13 and by the fact
that Poss(M,T ) cannot be empty, we have that Poss(M,T ) =
{A} and thus Nec(M,T ) = {A}. 2

5. CONCLUSIONS
In the setting of voting trees with missing preferences

and/or uncertain agenda, we have closed all open questions
about the relation between the notions of winners for the
profile (which are the winners we ultimately want to com-
pute) and the corresponding notions for the majority graph
(which are polynomial to find). More precisely, the overall
results are summarized in Table 2, where we have inserted
our new results in those of Table 1, which described the
previous state of the art.

SVT VT
Possible Schwartz winners 6= [8] 6=

Necessary Schwartz winners 6= 6=
Possible Condorcet = [8] =

Necessary Condorcet = [8] =
Possible winners 6= 6=

Necessary winners 6= 6=

Table 2: New state of the art about winners com-
puted from the majority graph or profile.

Where we see an equality in the table, it means that we
can safely and correctly work from the majority graph. This

is both more compact and efficient. This happens for pos-
sible/necessary Condorcet winners. Instead, where we see
an inequality, it means that using the majority graph may
give us an upper or lower approximation of the desired set
of winners. However, this approximation can be found in
polynomial time. The approximation is closer to the correct
notion in the case of simple voting trees, since algorithms
Win and StrongWin are more correct for simple voting trees
than for voting trees.
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ABSTRACT
Strategyproof (SP) classification considers situations in which a
decision-maker must classify a set of input points with binary la-
bels, minimizing expected error. Labels of input points are reported
by self-interested agents, who may lie so as to obtain a classifier
more closely matching their own labels. These lies would create
a bias in the data, and thus motivate the design of truthful mecha-
nisms that discourage false reporting.

We here answer questions left open by previous research on strat-
egyproof classification [12, 13, 14], in particular regarding the best
approximation ratio (in terms of social welfare) that an SP mech-
anism can guarantee for n agents. Our primary result is a lower
bound of 3− 2

n
on the approximation ratio of SP mechanisms under

the shared inputs assumption; this shows that the previously known
upper bound (for uniform weights) is tight. The proof relies on a
result from Social Choice theory, showing that any SP mechanism
must select a dictator at random, according to some fixed distri-
bution. We then show how different randomizations can improve
the best known mechanism when agents are weighted, matching
the lower bound with a tight upper bound. These results contribute
both to a better understanding of the limits of SP classification, as
well as to the development of similar tools in other, related domains
such as SP facility location.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Theory, Algorithms, Economics

Keywords
Mechanism design, Classification, Game theory

1. INTRODUCTION
Approximate mechanism design without money (AMDw/oM) is

a rapidly growing area of research in game theory and multiagent
systems, whose goal is the design of mechanisms for multiagent
optimization problems (without the mechanisms’ use of payments).
Cite as: Tight Bounds for Strategyproof Classification, Reshef Meir,
Shaull Almagor, Assaf Michaely and Jeffrey S. Rosenschein, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 319-326.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

While the underlying problems (e.g., finding the median, or finding
the optimal classifier) typically have efficient algorithms, these al-
gorithms may fail in the presence of strategic behavior. Therefore
we seek mechanisms that have additional game-theoretic proper-
ties (usually strategyproofness) at the expense of a suboptimal, i.e.,
approximate, behavior.

One particularly interesting AMDw/oM problem is the design
of truthful learning algorithms, which incentivize experts to reveal
their true opinions, even in cases where they disagree with one an-
other. Within this framework, we focus on binary classification—
that is, there is a set of (known) data points that our mechanism
needs to classify as positive/negative. Data points can represent,
for example, medical records of tumors that an expert-system has
to classify as either malignant or benign. Following the standard
classification literature, the classifier is selected from a predefined
set of classifiers (e.g., linear separators in some space) known as
the concept class.

Our mechanism outputs a classifier based on labels collected
from n distinct experts. The goal of the mechanism is to maximize
social welfare, by selecting a classifier that is close on average to
the opinions of all experts. However, experts may disagree as to
the correct label of a specific point. Furthermore, they may behave
strategically, i.e., report false labels if this will bias the resulting
classifier to be closer to their opinion. We are therefore interested
in strategyproof (SP) classification mechanisms, where no agent
(expert) can “gain” by lying. As a result, the outcome is just an
approximation of the optimal classifier, i.e., the selected classifier
makes more errors than the optimal one. We seek the best possible
approximation ratio that can be guaranteed using SP mechanisms.

1.1 Motivation
Note that the restriction to a predefined concept class is an impor-

tant part of the problem. Without it, we could simply classify each
data point separately. However, as rigorously demonstrated in the
machine learning literature, it is precisely this restriction that en-
ables us to generalize, i.e., to apply the outcome classifier on new,
unseen, cases. Previous papers on SP classification and learning
(see the next section) cover real-world examples where the need to
generalize justifies this restriction.

Nevertheless, SP classification might be required also for one-
time decision making. The following is an example showing how
concept class restrictions can be derived from external constraints.

An example.
Consider a situation in which two or more parties (the agents of

our scenario) are in a conflict regarding the ownership of a certain
piece of land. The property is abundant with resources in various
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locations (the data points), and the parties may attribute different
(possibly negative) importance to each resource. A neutral arbi-
trator agrees to hear them out and divide the field between them
in a way that will maximize the average utility of all the involved
parties. It is reasonable to assume that this division has some con-
straints, for example, that the border has to be a straight line, or
that it has to pass through a specific location. This leaves us with
a (large, possibly infinite) set of borders, or classifiers, from which
the arbitrator may choose. Knowing how their reported preferences
affect the decision, each party may misreport its true evaluation of
each resource, in an attempt to achieve a favorable outcome.

1.2 Related Work

Strategyproof classification.
The first paper on SP classification was by Meir, Procaccia, and

Rosenschein [12], who studied a highly restricted case in which
only two classifiers are available. The authors proposed a sim-
ple deterministic 3-approximation mechanism, and proved that no
better (deterministic) SP mechanisms exist. They further demon-
strated a randomized SP mechanism that guarantees an approxima-
tion ratio of 2, and that this bound is also tight.

We follow an extension of this model outlined by the same au-
thors in [13], where arbitrary concept classes can be used, but the
same set of data points is still shared by all agents. Notably, no
bounded approximation ratio can be guaranteed by deterministic
SP mechanisms, but the authors show how selecting a random agent
as a dictator guarantees an approximation ratio of 3, and one that is
even better (3 − 2

n
) when agents are non-weighted. However, it is

unknown whether better randomized mechanisms exist.
A similar model without the shared inputs assumption has also

been studied, showing mainly negative results [14]. Using results
from social choice theory, the authors showed that deterministic
SP mechanisms cannot guarantee any useful approximation ratio.
They further conjectured that a similar reduction can be used to
supply a lower bound for randomized mechanisms, but failed to
supply one that does not require further technical assumptions.

Approximate mechanism design without money.
Mechanisms that deal with strategic behavior of agents have been

proposed recently for a large range of applications. While certain
restrictions may allow the design of optimal SP mechanisms [19],
often this is not the case, and approximation is a must. Outside the
classification domain, SP learning algorithms were studied for both
clustering [17] and regression [16, 4]. Other mechanisms have been
proposed for facility location (see e.g., [1, 11], and [18], which also
provides a clear overview of the field), matching [2, 6], resource al-
location [8, 9] and more. As our motivating example shows, prob-
lems in one domain can sometimes be formalized in other domains
as well. There are also interesting similarities between some of the
results and techniques in those various domains.

Other related work.
A closely related, yet different, challenge is adversarial classi-

fication [10, 3, 5]. Here the underlying assumption is that labels
are chosen intentionally to hamper the mechanism (for example to
avoid spam detection), whereas in our setting the agents are ratio-
nal, rather than adversarial. Another difference is that the goal of
SP classification is to preclude untruthful behavior in the first place,
and not to cope with it.

1.3 Our Contribution
We close the gap left open by [13], matching their 3 − 2

n
upper

bound for the non-weighted case with an equal lower bound, thus
proving its tightness. The proof relies on the fact that every SP
mechanism must be (randomly) dictatorial on a subdomain, thereby
showing that the technical assumptions in [14] can be eliminated.

We then consider the weighted case, giving three different SP
mechanisms for two agents that beat the known upper bound of
3. While the approximation ratio of the first mechanism is still
suboptimal (

√
5), it is based on simple heuristics, and shows an

interesting relation to the golden ratio. The other two mechanisms
guarantee 2-approximation, thereby matching both the upper and
lower bounds for two non-weighted agents. Finally, we present a
new mechanism for any set of weighted agents, with a guaranteed
approximation ratio of 3 − 2

n
, thereby improving the previously

known upper bound and matching it with the lower bound.
Omitted proofs are available in the full version of this paper.1

2. MODEL AND NOTATIONS

2.1 Classification
We adopt the shared input model presented in [13], being con-

sistent where possible with their notations. We refer the reader to
previous work on SP classification [12, 13, 14] for more details.

We typically denote sets and their elements byA= {a1, a2, . . .},
and vectors by a = (a(1), a(2), . . .). ∆(A) contains all probabil-
ity distribution vectors over the set A. JEK denotes the indicator
variable of the expression E. To facilitate reading, subscripts are
sometimes omitted when clear from the context.

Classifiers.
A classification setting is a pair 〈X , C〉, where X (the input

space) is some finite set, and C (the concept class) contains func-
tions of the form c : X → {−,+}. In the land-ownership problem
for example, C contains all the allowed partitions of the territory.

An instance of the setting 〈X , C〉 is a tuple defined as S =
〈X, I, {Yi}i∈I ,w〉, where X ∈ X k is the (public) set of data
points to be classified, I is the set of n ≥ 2 agents, Yi : X →
{−,+} is the “correct” labeling according to agent i, and wi ∈ R
is her weight (

∑
i∈I wi = 1). Yi is referred to as agent i’s type,

and it is private information. We denote the partial dataset of agent
i by Si = 〈X,Yi〉. S contains all possible datasets over the input
space X . Let Sn,k be the set of all possible datasets S such that
|I| = n, |X| = k. We also allow the limit case k = ∞, in which
case Yi : X → [0, 1]Q states the (rational) positive fraction on each
input point. S contains all datasets (finite and infinite).

The private risk of a classifier c ∈ C is defined as the fraction of
agent i’s dataset that is misclassified by c, i.e.,

Ri(c, S) =
1

k

∑
〈x,y〉∈Si

Jc(x) 6=yK =
1

k

∑
x∈X

Jc(x) 6=Yi(x)K .
As Ri(c, S) can be seen as a measure of dissatisfaction that i suf-
fers due to outcome c, the global risk RI(c, S) measures the social
welfare, i.e. the (dis)satisfaction of the entire society. It is defined
as a weighted average over all agents,

RI(c, S) =
∑
i∈I

wi · Ri(c, S) =
1

k

∑
i∈I

∑
x∈X

wiJc(x) 6= Yi(x)K .
Let p ∈ ∆(C) be a lottery over the concept class C, that assigns

the probability p(w) to the concept cw. For simplicity we treat p
as if it is a classifier, and extend the risk to lotteries linearly, i.e.,
R(p, S) =

∑
w∈X p(w) · R(cw, S).

1
ftp://ftp.cs.huji.ac.il/users/jeff/aamas11meir.pdf
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We denote by ERM(S) ∈ C (for Empirical Risk Minimizer)
the concept that makes the smallest number of errors on S. ci is a
shorthand for ERM(Si) when S is clear from the context.

Mechanisms.
A randomized mechanism is a function M : S → ∆(C), i.e.,

that for every input dataset of any size, outputs a lottery over clas-
sifiers. We denote byM(S) or pM(S) (or just p whenM, S are
clear from the context) the outcome of the randomized mechanism
M on the input dataset S.

Note that we can define a mechanism using a lottery d over
several other mechanisms M1,M2, . . ., where pM(S)(c) equals∑
d(j)pMj(S)(c). We define the following properties:

A dictator mechanism is identified with a single agent i. For any
S,M returns ci(S) with probability 1.

A duple is a mechanism that assigns probability 0 to all concepts,
except (at most) two.

A random-dictator (RD) mechanism is identified with a lottery
d ∈ ∆(I) over dictator mechanisms. This distribution may depend
on agent weights, if relevant. The two following RD mechanisms
are notable special cases:

• The weighted random dictator (WRD) mechanism returns
ci(S) w.p. wi.

• The heaviest dictator (HD) mechanism always returns ch(S),
where h = argmaxi∈Iwi. Ties are broken in favor of the
agent with the higher index, thus h is uniquely defined.

A random-dictator-duple (RDD) mechanism is a lottery over
dictators and duples.

A mechanism is said to be an L-approximation mechanism if its
expected risk is at most L times the optimal risk. Formally, for
every dataset S

RI(M(S), S) ≤ L · RI(c∗(S), S).

A mechanism is said to be strategyproof (SP), if no agent can
gain (in expectation) by lying. Formally, for every dataset S, agent
i, and alternative labels Si = 〈X,Y i〉,

Ri(M(S), S) ≤ Ri(M(S−i, Si), S).

Note that duples and dictator mechanisms are always SP. Moreover,
RDs and RDDs are also SP.2

Intuitively, good mechanisms are both SP and have a low approx-
imation ratio; thus, we are interested in the best possible approxi-
mation ratio that can be achieved by randomized SP mechanisms.
The following bounds are known:

THEOREM 1 (MEIR, PROCACCIA AND ROSENSCHEIN [12]).
If |C| = 2, then there is a randomized SP mechanism that guaran-
tees a 2-approximation ratio. Furthermore, no SP mechanism can
do better.

Thus for classes of two functions, SP mechanisms are thoroughly
understood. For general concept classes, there are upper bounds:

THEOREM 2 (MEIR, PROCACCIA AND ROSENSCHEIN [13]).
For any concept class C, the WRD mechanism guarantees a 3-
approximation ratio. If all agents have equal weight, then the ap-
proximation ratio is 3− 2

n
.

2This is since duples and dictators are SP in dominant strategies,
not just in expectation, and therefore any combination of them (as
long as it does not depend on labels) is still SP.

There are examples showing that these are the best approxima-
tion ratios that WRD can guarantee. However, it has been unknown
whether there are other SP mechanisms that are better. Our work
comes to answer this question. We make use of two additional
properties of classification mechanisms.

Let a ·S be a duplication of S, i.e., every data point in S appears
exactly a times in a · S, with the same labels. A mechanism is
consistent if for all a ∈ N, S ∈ S,M(S) =M(a · S).

A probability distribution p is µ-granular if all probabilities p(c)
are multiples of µ, i.e., if there is some integer vector q such that
q · µ = p. A mechanism is said to be µ-granular if for all S,
M(S) is µ-granular. Note that when we deal with mechanisms
that are implemented on digital computers, it is useful to assume
that they will be µ-granular for some µ.

2.2 Voting
Our proofs make extensive use of voting functions and their rela-

tions with classification mechanisms. We bring here the definitions
relevant to our needs. For a more detailed background on voting,
see e.g., [15].

In a voting scenario there is a set of voters (agents) I , and a finite
set of candidates C. Each voter has a strict preference orderRi over
all candidates. We denote by c �i c′ the fact that voter i prefers
c over c′. A preference profile R = (R1, . . . , Rn) contains the
preference order of each voter (agent). Let Rn be the set of all
possible preference profiles for n voters,R =

⋃
n≥2Rn.

A randomized voting rule is a function f : R → ∆(C). Note
that preferences are private, thus the voting rule must use the orders
reported by the agents. The definitions of a duple, RD and RDD
also apply to voting rules. While the definition of manipulation in
deterministic voting rules is straightforward (i.e., there is an agent
that can gain by reporting false preferences), it does not apply as-is
to randomized rules. This is since the preferences of agent i over
lotteries of candidates are not uniquely defined by Ri. To that end,
we must introduce cardinal (dis)utilities.3

A utility scale ui ∈ R|C| fits order Ri if for all c, c′ ∈ C,

ui(c) < ui(c
′) ⇐⇒ c �i c′.

We adopt the same notation to classification settings, meaning that
the risk of c is higher than the risk of c′.

A manipulation in f (by Gibbard) consists of a profileR, a utility
scale ui that fits Ri, and an alternative order R′i, such that i gains
according to ui (formally, that ui(f(R)) > ui(f(R−i, R′i))). A
voting rule is strategyproof (SP) if there are no manipulations in f .

THEOREM 3 (GIBBARD [7]). Let f be a randomized voting
rule. If f is SP, then it is a lottery over duples and dictatorial rules.

3. RESULTS

3.1 Multiple Agents with Uniform Weights
In this section we match the upper bound of 3− 2

n
with a lower

bound, thus proving it is tight.
We use a simple input space with three input pointsX ={x, y, z}.

There are 3 classifiers, C = {cx, cy, cz}, where cw(w′) =“+” for
w = w′ and “-” otherwise. When both the agent and the dataset are
clear from the context, we use the shorthand r(w) = Ri(cw, S).

THEOREM 4. LetM be an SP mechanism for the scenario
〈X , C〉. Then for any ε̃ > 0 and any |I| = n ≥ 2, there is an

3For consistency with the risk, we treat lower utility as better.
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instance S with uniform weights such that

RI(M(S), S) >

(
3− 2

n
− ε̃
)

RI(c∗(S), S).

Also, ifM is either consistent or µ-granular, then we can find such
a dataset which is finite, and has k = O

(
1
ε̃
, 1
µ

)
data points.

We will restrict the allowed datasets as follows. First,X contains
exactly k data points on each input point, i.e., 3k data points in to-
tal. We denote by ki(w), ki(w) the number of positive and negative
labels for each point. We further restrict the labels of each agent,
such that: one input point of X is all negative (i.e., ki(·) = 0); one
is all positive (i.e., ki(·) = k); and the third has at least one label
of each (i.e., 1 ≤ ki(·) ≤ k − 1).

We refer to this third point as the contingent point.4 Clearly,M
is still SP w.r.t. the restricted case.

The risk of each classifier can be simply written (e.g., for cx) as

r(x) = Ri(cx, S) =
1

3k

(
ki(x) + ki(y) + ki(z)

)
.

Note that every partial dataset Si is now identified with a strict
preference order Ri over C (for ease of exposition, assume Ri =
(cx �i cy �i cz)), and a rational number αi ∈ (0, 1) which is the
fraction of negative labels on the contingent point y.

To see this, observe that

r(x) =
1− αi

3
; r(y) =

1 + αi
3

; r(z) =
3− αi

3
. (1)

Consequently, cx, cz classify the contingent point (which is y in this
case) as negative, and cy classifies it as positive.

We can therefore write each Si as 〈Ri, αi〉.
Our proof sketch can be summarized as follows:

1. Give a simpler, normalized presentation of the risk scale.

2. Show thatM is monotonic.

3. Show that any (monotonic) SP mechanism must ignore the
value of α.

4. ThusM is actually a randomized voting rule over C.

5. SinceM is SP, it is an RDD.

6. Duples are bad, soM is almost entirely an RD.

7. We show a dataset S on which RD mechanisms have a close
to 3− 2

n
approximation ratio.

Crucially, all steps except the last one (Lemma 11) are indepen-
dent of agent weights.

Proof of Theorem 4. The preference order of agent i over lotteries
in a given setting S, is completely defined by her risk scale, i.e., by
the vector r = (r(x), r(y), r(z)). Note that the risk of lottery p
according to risk scale r is the inner product Ri(p, S) = r · p.

DEFINITION 1. Two risk scales r, t are equivalent, if for any
two outcomes p,p′ ∈ ∆(C),

r · p < r · p′ ⇐⇒ t · p < t · p′,
i.e., if they induce the same order over outcomes.

4For infinite datasets with k = ∞ this means that the contingent
point must have a non-zero fraction of each sign.

LEMMA 5 (NORMALIZATION). Let Si = 〈Ri, αi〉, then the
risk scales r = (r(x), r(y), r(z)) and t = (0, αi, 1) are equiva-
lent.

Proof. We denote by δ(w) = p(w)− p′(w). Note that

δ(x) + δ(y) + δ(z) = 0. (2)

In addition, it holds from (1) that

r(y)− r(x)

r(z)− r(x)
=

1 + αi − (1− αi)
3− αi − (1− αi) =

2αi
2

= αi. (3)

p · r < p′ · r ⇐⇒
0 >p(x)r(x) + p(y)r(y) + p(z)r(z)

− (p′(x)r(x) + p′(y)r(y) + p′(z)r(z))

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

− (δ(x) + δ(y) + δ(z))r(x) (from (2))
=δ(y) (r(y)− r(x)) + δ(z) (r(z)− r(x)) ⇐⇒

0 >δ(y)
r(y)− r(x)

r(z)− r(x)
+ δ(z) (division by a positive number)

=δ(y)αi + δ(z) (from (3))

=δ(x)t(x) + δ(y)t(y) + δ(z)t(z) = p · t− p′ · t,
thus p · t < p′ · t, as required. �

Due to Lemma 5, we can work with the normalized risk scale t
instead of r. This also holds for utility scales of voting functions.

REMARK 1. Normalization only works for a fixed scale r. If t
is the normalized scale of r, it is not true for example that p · t >
p · t′ derives p · r > p · r′.

The following notations are used in our next two lemmas. Let
Si = 〈Ri, α〉, S′i = 〈Ri, α′〉. Assume w.l.o.g. that Ri = (x �i
y �i z) (i.e., x has the lowest risk for i). Let p =M(S) and p′ =
M(S′) denote the outcome of the mechanism on both datasets. Let
t and δ(w) as in Lemma 5.

SinceM is SP, we have the following constraints:

1. Ri(p, S) ≤ Ri(p′, S) (otherwise, i can easily gain by re-
porting S′i instead of Si).

2. Ri(p, S′) ≥ Ri(p′, S′) (otherwise, i can gain by reporting
Si instead of S′i).

We use r(w) and r′(w) as shorthand for Ri(w, S) and Ri(w, S′),
respectively.

The next lemma shows that SP mechanisms must be “mono-
tone”, i.e., adding more positive labels to a point can only increase
the probability that it will be classified as positive.

LEMMA 6 (MONOTONICITY). If α < α′, then p(y) ≥ p′(y).

Proof. From the first constraint we have that p · r ≤ p′ · r. From
Lemma 5 we can replace r with the normalized risk t, and thus

p · t ≤ p′ · t ⇒
p(y)α+ p(z) ≤ p′(y)α+ p′(z) ⇒
δ(y)α ≤ −δ(z) (4)

Similarly, from the second constraint we have that

δ(y)α′ ≥ −δ(z) (5)
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Taking the two inequalities together,

δ(y)α ≤ −δ(z) ≤ δ(y)α′ ⇒
αδ(y) ≤ α′δ(y) ⇒

δ(y) ≤ α′

α
δ(y) ⇒ (since α′

α
> 1)

δ(y) ≥ 0 ⇒ p(y) ≥ p′(y) �

OBSERVATION 7. If there is a manipulation under utility scale
(0, α, 1), the same manipulation must work either for any 1 > t >
α, or for any 0 < t < α. This follows directly from (4), since the
inequality must hold as we change α in one of the directions.

Our next lemma shows that the size of the positive fraction on
the contingent point is irrelevant, as long as the preference order
Ri is kept.

LEMMA 8 (INVARIANCE OF LABELS).

M(S−i, Si) =M(S−i, S
′
i).

Proof. We need to show that the constraints induced by strate-
gyproofness become inconsistent unless the outcomes p and p′ co-
incide. Unfortunately, the constraints that follow from α and α′

will not suffice, and it is in fact possible to find a pair of outcomes
that hold them. The crux lies in adding a third point β between the
first two, showing that new constraints reach a contradiction.

We rename α′ to γ, so that we have α < β < γ. We denote the
outcome of M on each dataset as pα, pβ , and pγ , where pα =
M(S−i, 〈Ri, α〉), etc. Rewriting (4) and reversing pα, pγ ,

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (6)

Using β, we similarly derive the constraints:

(pβ(y)− pα(y))β ≤ pα(z)− pβ(z) (7)

(otherwise reporting (Ri, α) is a manipulation in β), and

(pγ(y)− pβ(y))γ ≤ pβ(z)− pγ(z) (8)

(otherwise reporting 〈Ri, β〉 is a manipulation in γ).
Now, assume (towards a contradiction) that pα(y) 6= pγ(y).

From monotonicity we have that pα(y) > pγ(y), and strict in-
equality also holds for at least one of the subintervals, i.e., either
pα(y) > pβ(y) or pβ(y) > pγ(y).

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (from (6))
= (pα(z)− pβ(z)) + (pβ(z)− pγ(z))

≥ (pβ(y)− pα(y))β + (pγ(y)− pβ(y))γ (from (7),(8))
> (pβ(y)− pα(y))α+ (pγ(y)− pβ(y))α

(from monotonicity and α < β, γ)

= (pβ(y)− pα(y) + pγ(y)− pβ(y))α

= (pγ(y)− pα(y))α, which is a contradiction.

Thus pα(y) = pγ(y), i.e., δ(y) = 0. From (4) and (5) it follows
that δ(z) = 0. Finally, from (2) we have that δ(x) = 0 as well, and
thereforeM(S−i, Si) = p = p′ =M(S−i, S′i).

A subtle issue lies in the finite k case, since the proof works only
for pairs α, γ that differ by at least 2 points (so there is β between
them). However, for k ≥ 5, take any α < α′ < γ < γ′. We then
have that pγ = pα = p′γ = p′α, i.e., the same distribution must be
used at every point. �

LEMMA 9 (REDUCTION). M is an RDD.

Proof. This lemma completes the argument thatM is effectively
a voting rule, and therefore subject to the known limitations of SP
voting rules. It must use our assumptions onM in order to bound
the sample size; however, we first prove the lemma without these
assumptions, for the limit case of k =∞.

We define a voting rule f as follows. For any profileR, construct
the corresponding dataset S by setting Si = 〈Ri, αi〉 for some
arbitrary αi ∈ (0, 1). The (randomized) outcome of f is defined
to beM(S). From Lemma 8, the choice of αi does not affect the
outcome of f .

Assume (towards a contradiction) that there is a collection of
datasets Ŝ on whichM is not an RDD. Let R̂ be the corresponding
preference profiles to Ŝ; thus f is not an RDD on these profiles.
From Theorem 3, f is not SP, and thus has a manipulation.

W.l.o.g., there is a manipulation (in f ) for voter i, such that
x �i y �i z. By scaling ui, we can further assume that ui(x) =
0, ui(y) = β, ui(z) = 1.5

From Observation 7 we can assume that the same manipulation
works with β = 1

k′ for some k′ ∈ N (or β = 1− 1
k′ , which is the

symmetric case).
It is easy to see that if Si = 〈Ri, β〉, then reporting the false

labeling S′i = 〈R′i, αi〉 is a manipulation for agent i inM:

ui(f(R)) > ui(f(R−i, R
′
i))⇒

Ri(M(S), S) > Ri(M(S−i, S
′
i), S),

since ui is also the normalized risk scale for Si. This is in contra-
diction toM being SP; therefore,M is an RDD.

Since 1
β

is not bounded, we allow ki(y)/k to take arbitrarily
small values, which is the limit case Sk=∞.

Bounding k under the consistency assumption.
We next show how the lemma still holds for any k, provided

that M is consistent. It holds from the previous paragraph that
M behaves as an RDD for all datasets of size k′ or more. Let
k′′ ≥ k such that k′′ = a · k for some integer a. Now consider all
a duplications of datasets of size k, i.e., all duplicated datasets a ·S
s.t. S ∈ Sk. SinceM is an RDD for Sk′′ , it is in particular an RDD
for the duplicated datasets a ·Sk ⊆ Sk′′ , and from consistency also
for Sk.

Bounding k under the µ-granularity assumption.
We show that under this assumption,M is RDD for all datasets

of size k′ ≥ 2
µ

. Denote by p,p′ the output ofM on the sets Si and
S′i, respectively, and let δ = p − p′. Recall that the normalized
utility scale of i is (0, β, 1). Since R′ is a manipulation, we have
that

ui(f(R))− ui(f(R−i, R
′
i)) = βδ(y) + δ(z) > 0. (9)

We wish to show that there exists β′ ∈ [µ
2
, 1− µ

2

]
such that

if we take β = β′, then R′ remains a manipulation (and then k′

samples suffice).

Case 1 If δ(z) = 0, then from (9) we have δ(y) > 0. Thus, taking
β = µ still ensures that R′ is a manipulation, since µδ(y) +
δ(z) = µδ(y) > 0.

5More formally, if there is a manipulation according to ui, then
from Lemma 5 the same manipulation works with the utility scale
u′ = (0, β, 1), where β = ui(z)−ui(y)

ui(z)−ui(x) .
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S1 Sj , j 6= 1
x y z R1(c) x y z Rj(c)

ki(·)/k 1− ε 1 0 1 ε 0
err of cx ε 1 0 1 + ε 0 ε 0 ε
err of cy 1− ε 0 0 1− ε 1 1− ε 0 2− ε

Table 1: The first row shows the positive fraction on each point
in S. The next rows describe the errors that each classifier
makes on each point. Ri(c, S) is the sum of error fractions of c
over the three points in Si.

Case 2 If δ(z) > 0, then by the assumption of µ-granularity we have
that δ(z) ≥ µ. Also, we have the naïve bound of δ(y) ≥ −1.
By setting β = µ

2
we get µ

2
δ(y)+δ(z) ≥ −µ

2
+µ = µ

2
> 0.

Case 3 If δ(z) < 0 then by (9) we get δ(y) ≥ βδ(y) > −δ(z).
Thus, we can write −δ(z) = aµ and δ(y) = bµ for integers
1
µ
≥ b > a ≥ 0. From this we get

−δ(z)

δ(y)
=
aµ

bµ
≤ aµ

(a+ 1)µ
=

a

a+ 1
= 1− 1

a+ 1

≤ 1− 1
1
µ

+ 1
= 1− µ

1 + µ
< 1− µ

2
.

Thus, we have
(
1− µ

2

)
δ(y) + δ(z) > 0. �

We introduce a small constant ε > 0, whose value will be deter-
mined later. For now it is sufficient to require that the number of
samples k would be at least 1

ε
, so that the contingent point can have

a positive fraction of ε or less.

LEMMA 10. IfM returns a duple with some probability greater
than 3ε, then its approximation ratio is at least 3.

Proof. Suppose that with probability of at least 3ε, M returns a
duple over {cx, cy}. We define a dataset S, in which all agents label
z as positive ,x as negative, and y with a positive fraction of ε (i.e.,
ki(z) = k, ki(x) = 0, and ki(y) = 1).6 The optimal classifier
c∗(S) is of course cz, with a global risk of r∗ = 1

3k
.

However, M must return cy (or cx) w.p. of at least 3ε; thus its
risk is at least 3ε · RI(cy, S) = 3ε

(
1
3
(1 + 1

k
)
)
> ε ≥ 3 · r∗. �

We can therefore assume thatM returns a random dictator w.p.
of at least 1− 18ε (there are 6 different duples, and each one has a
probability of at most 3ε).

LEMMA 11. Assume all n agents have the same weight. IfM
returns a random dictator (i.e., some lottery d over agents), then
the approximation ratio ofM is at least 3 − 2

n
− ε′′, where ε′′ =

2nε+ 96ε > 0.

Proof. Let i (w.l.o.g. i = 1) be the agent selected with the highest
probability (i.e., d(1) ≥ 1

n
). We define the dataset S as follows:

S1 = 〈(y � x � z), 1 − ε〉, and for all j 6= 1, Sj = 〈(x � y �
z), ε〉. Thus the selected concept of agent 1 is c1 = cy, and the
selected concept of any other agent is cj = cx (which is also the
optimal concept). The construction of S is given in Table 1. To
simplify computations, we do not divide the risk by the number of
points and agents, and thus the global risk is in the range [0, 3n].
Thus,

6In the limit case replace 1
k

with ε, as any fraction is allowed.

r∗(S) = RI(cx, S) = R1(cx, S1)+(n− 1)Rj(cx, Sj) (10)
= 1 + ε+ (n− 1)ε = 1 + nε, whereas

RI(cy, S) = R1(cy, S1) + (n− 1)Rj(cy, Sj) (11)
= 1− ε+ (n− 1)(2− ε) = 2n− 1− nε.

Our RD mechanism returns c1 = cy w.p. of d(1) ≥ 1
n

, and the
best thing it can do is return c∗ = cx w.p. of 1− 1

n
. The risk of the

mechanism can be lower-bounded as follows:

RI(M) ≥ 1

n
RI(cy, S) +

n− 1

n
r∗

≥ 1

n
(2n− 1− nε) +

n− 1

n
(1 + nε) (from (10),(11))

= 2− 1

n
− ε+ 1 + nε− 1

n
− ε

= 3− 2

n
+ (n− 2)ε = 3− 2

n
+ (ε′′ − ε′′) + (n− 2)ε

= 3− 2

n
− ε′′ + (2nε+ 96ε) + nε− 2ε

> 3− 2

n
− ε′′ +

(
3− 2

n
− ε′′

)
nε

= (3− 2

n
− ε′′)(1 + nε) = (3− 2

n
− ε′′)r∗.

�
Finally, we bound the total risk of M. Due to Lemma 9, the

outcome of M is an RDD, i.e., a lottery over all 6 possible du-
ples, and n possible dictators. We denote by RD the event thatM
selected any of the dictators. Note that due to Lemma 10, either
Pr(RD) ≥ 1− 18ε, or the approximation ratio ofM is at least 3
(and thus we are done).

Assume therefore that Pr(RD) ≥ 1 − 18ε. From Lemma 11
we have that RI(M(S), S|RD) ≥ (3 − 2

n
− ε′′)r∗(S) (for S

as defined in the lemma). Denote ε′ = 18ε, ε̃ = ε′′ + 6ε′ =
(2n+ 200)ε.

RI(M(S), S) = Pr(RD)RI(M(S), S|RD)

+ Pr(¬RD)RI(M(S), S|¬RD)

≥Pr(RD)RI(M(S), S|RD)

≥(1− ε′)
(

3− 2

n
− ε′′

)
r∗(S) (from Lemmas 10,11)

>(1− ε′)
(

3− 2

n
− ε̃+ 6ε′ − 4

n
ε′ − 2ε̃ε′

)
r∗(S)

=(1− ε′)
(

3− 2

n
− ε̃
)

(1 + 2ε′)r∗(S)

=
(
1 + ε′ − 2(ε′)2

)(
3− 2

n
− ε̃
)
r∗(S)

>

(
3− 2

n
− ε̃
)
r∗(S).

This concludes our proof, as for any ε̃, we only need to set ε
small enough (i.e., k large enough). Specifically, k ≥ 1

ε
= 2n+200

ε̃
will suffice. �

3.2 Two Weighted Agents
In this section, we restrict our analysis to datasets that are com-

posed of just two partial datasets. Due to [13] we know that the
WRD mechanism guarantees a 3-approximation ratio in the worst-
case. Moreover, we know that for this mechanism the analysis is
tight when the smaller weight approaches 0. As for a lower bound,
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we know from [12] that it is at least 2. Theorem 4 does not con-
tribute anything in this case, both because weights are non-uniform,
and because 3− 2

n
for n = 2 is still 2.

Due to Lemmas 9 and 10, we know that in this case too, any
SP mechanism must be an RD (with high probability), but we still
have the freedom to define the probability of selecting each of the
two dictators, according to their weights.

Unless explicitly stated otherwise, we assume w.l.o.g. that w1 ≤
1
2
≤ w2, and denote w = w1. We consider the HD and WRD

mechanisms, as described in Section 2.1. Clearly both mechanisms
are SP.

Consider Theorem 2. A slight variation of its proof reveals a
more accurate bound. Let wmin = mini∈I wi be the weight of the
lightest agents (in the two agent case, wmin = w).

THEOREM 12. WRD has an approximation ratio of 3−2wmin,
and this bound is tight.

The following lemma will be useful in the analysis of our pro-
posed mechanisms. The proof is omitted due to space constraints.

LEMMA 13. Let S = 〈X, I, {Yi}i∈I ,w〉 be some instance with
n agents. Suppose we remove an agent (w.l.o.g. agent 1), thereby
creating an instance S′ = 〈X, I ′, {Yi}i∈I′ ,w′ = (w2, . . . , wn)〉.
Let c′ = c∗(S′) be the optimal classifier for S′; then

RI(c′, S) ≤ 1 + w1

1− w1
RI(c∗(S), S).

THEOREM 14. HD has an approximation ratio of 1+w
1−w , and

this bound is tight.

Proof. The upper bound follows immediately from Lemma 13, as c′

is selected by the remaining, heavier, agent. For tightness, consider
the following scenario. Let w ≤ 1

2
. There are 2 samples: X =

{x, y}. Agent 1 classifies both as “-”, and agent 2 classifies x as “+”
and y as “-”. There are two classifiers, C = {c+, c−}, that classify
both samples as “+” and “-”, respectively. The optimal classifier is
obviously c−, whose risk is 1− w. However, the heaviest dictator
is agent 2, who chooses c+ (we assume a bias for tie-breaking).
The risk of c+ is 2w + 1 − w = 1 + w. Thus, the approximation
ratio in this case is 1+w

1−w . �
Next, we combine HD and WRD into a better SP mechanism.

Let T = 3−√5
2

. We define the threshold dictator (TD) as follows.

• The TD mechanism behaves like WRD when w > T and
like HD otherwise.

COROLLARY 15. TD has a worst-case approximation ratio of√
5, and this bound is tight.

Proof. Suppose w ≤ T . Then from Theorem 14 the approximation
ratio of TD is 1+w

1−w ≤ 1+T
1−T =

√
5. Now supposew > T ; then from

Theorem 12 the approximation ratio of TD is 3− 2w ≤ 3− 2T =√
5. The lower bound is achieved for w = T . �
Curiously, the optimal threshold T is such that the ratio between

agents’ weights is exactly Φ, the golden ratio.
A natural question is whether even better SP mechanisms exist,

and in particular mechanisms that match the lower bound of 3 −
2
2

= 2. Interestingly, the answer is yes, and we now give two
examples of such mechanisms.

• The square-weight random dictator (SRD) mechanism re-
turns ci w.p. w2

i∑
j∈I w

2
j

.

THEOREM 16. For two agents, the SRD mechanism has a worst-
case approximation ratio of 2.

Proof. We will use the following lemma, showing a reduction to a
simpler problem (proof omitted).

LEMMA 17. Consider a setting with only two concepts that dis-
agree on all points {c−, c+}, and letM be an RD mechanism for
two agents. If M guarantees L-approximation in this restricted
setting (for L ≥ 2), thenM is an L-approximation mechanism.

Due to Lemma 17, we can assume that c1, c2 completely disagree,
and that one of them is the optimal classifier c∗. Assume w.l.o.g.
that c∗ = c1, and denote the optimal risk by r∗.

Suppose first that w > 1−w. This is the easy case, as it implies
that the better classifier is selected with greater probability. Assume
therefore thatw ≤ 1−w, and consider mechanism HD. In the latter
case, we have that RI(HD(S), S) = 1 − r∗. From Theorem 14
we have that 1− r∗ ≤ 1+w

1−w r
∗, therefore

RI(SRD(S), S) =
w2RI(c1, S) + (1− w)2RI(c2, S)

w2 + (1− w)2

=
w2r∗ + (1− w)2(1− r∗)

w2 + (1− w)2
≤ w2r∗ + (1− w)2 1+w

1−w r
∗

w2 + (1− w)2

=
w2r∗ + (1− w)(1 + w)r∗

w2 + (1− w)2
=

1

2w2 − 2w + 1
r∗.

≤ 1

1/2
r∗ = 2r∗,

where the last inequality exists since 2w2−2w+1 has a minimum
in w = 1

2
. �

By considering Lemma 17 together with Theorem 1, it follows
directly that there is another 2-approximation mechanism, using the
same randomization suggested by Meir, Procaccia and Rosenschein
for the two-function setting [12]. We refer to this mechanism as
MPR8.7

3.3 More than Two Weighted Agents
In this final section we extend our results beyond the two-agent

setting, describing a worst-case optimal SP mechanism for any set
of weighted agents.

We first try the threshold approach. Theorem 12 supplies us with
an approximation ratio of 3−2wmin for the WRD mechanism. Sup-
pose we have some SP dn−1-approximation mechanismMn−1 for
n − 1 agents, where dn−1 < 3. We can derive an SP mecha-
nismMn for n agents as follows: set a threshold Tn ∈ (0, 1). If
all agents weigh more than Tn, use WRD. Otherwise, remove the
lightest agent and runMn on the remaining data.

THEOREM 18. MechanismMn is SP, and has an approxima-
tion ratio of max

{
3− 2Tn,

1+Tn
1−Tn

dn−1

}
.

The proof follows directly from Lemma 13 and Theorem 12.
We can bound the worst-case approximation then, by setting Tn

such that 3 − 2Tn = 1+Tn
1−Tn

dn−1. As a special case for n = 2,
we get the TD mechanism with

√
5 approximation (Theorem 15).

Also, we know that d2 = 2 (from Theorem 16), and thus by setting
the threshold for three agents to T3

∼= 3
20

, we get a (roughly) 3 −
6
20

= 2 7
10

approximation mechanism for three weighted agents.
Similar threshold mechanisms can be iteratively derived for any
7The mechanism, applied to our scenario, would select the lighter
and heavier agents w.p. of w

2−2w
and 2−3w

2−2w
, respectively.
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number of agents. While this mechanism already beats the upper
bound of 3, it does not match the lower bound of 3− 2

n
.

We finally turn to describing our last mechanism, which either
generalizes or beats all previous mechanisms for SP classification
with shared inputs. Let p′i = wi

2(1−wi)
, and αw = 1∑

i∈I p
′
i
.

• The convex-weight random dictator (CRD) mechanism, re-
turns ci w.p. pi = αwp

′
i.

THEOREM 19. The CRD mechanism has an approximation ra-
tio of αw + 1, which is at most 3− 2

n
.

We omit the proof due to space constraints. However, we note that
it is based on the convexity of the weight function, giving rise to
the name of the mechanism. When applied to two agents, the CRD
mechanism is similar (but not identical) to the MPR8 mechanism,
and can therefore be seen as a generalization of it. Moreover, all the
upper bounds in [12, 13], as well as the ones in this paper, follow
as special cases from Theorem 19.

4. DISCUSSION
Our results have two primary implications on strategyproof clas-

sification. On the negative side, we have shown that the use of dic-
tators is necessary if one wants to maintain truthfulness in learning
algorithms, even when randomization is allowed. This means in
particular that the previously known bounds for SP classification
with uniform weights are tight.

On the positive side, we show that while dictators play a key role
in SP classification, non-trivial selection of the dictator can lead to
improvements in the approximation ratio of the mechanism. We
demonstrated how simple threshold heuristics can be used to safely
discard low-weight agents, thus improving the worst-case approx-
imation ratio (although it is still suboptimal). Our main positive
result is the CRD mechanism, which matches the lower bound for
SP classification and therefore cannot be further improved. In ad-
dition to generalizing all previously known upper bounds for the
shared input setting (from [12, 13]), our result shows that the uni-
form weight case is also the most difficult, and a better approxima-
tion ratio can be achieved as weights become more biased in favor
of some agents.

The learning-theoretic setting.
An important issue is the possibility to generalize from sampled

data, and apply the result classifier on unseen data from the same
distribution (a task known as supervised learning). It is shown in
Section 3 in [13] how the WRD mechanism can be extended in
such a way to a learning-theoretic setting. We note that all of our
mechanisms can be applied directly to the learning-theoretic set-
ting, making the same strategic assumptions described in [13].

Future research.
Perhaps more important than the specific bounds we proved, our

results and techniques may aid in improving the understanding of
randomized approximation mechanisms in other domains. Some
mechanisms for facility location [1] are based on ideas similar to
the WRD mechanism; our insights can be used to improve their
weighted versions. Also, our impossibility proof tackles rather gen-
eral issues, such as continuity and private information. This may
also help in the study of lower bounds in other domains.

Other future directions may include the study of new types of
strategic behaviors in learning problems, and providing a more for-
mal picture of the relations between seemingly unrelated Approxi-
mated Mechanism Design (without money) problems.
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ABSTRACT
In response to the Mumbai attacks of 2008, the Mumbai police
have started to schedule a limited number of inspection checkpoints
on the road network throughout the city. Algorithms for similar
security-related scheduling problems have been proposed in recent
literature, but security scheduling in networked domains when tar-
gets have varying importance remains an open problem at large.
In this paper, we cast the network security problem as an attacker-
defender zero-sum game. The strategy spaces for both players are
exponentially large, so this requires the development of novel, scal-
able techniques.

We first show that existing algorithms for approximate solutions
can be arbitrarily bad in general settings. We present RUGGED
(Randomization in Urban Graphs by Generating strategies for En-
emy and Defender), the first scalable optimal solution technique for
such network security games. Our technique is based on a double
oracle approach and thus does not require the enumeration of the
entire strategy space for either of the players. It scales up to realistic
problem sizes, as is shown by our evaluation of maps of southern
Mumbai obtained from GIS data.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Double oracle, Zero-sum games, Minimax equilib-
rium

1. INTRODUCTION
Securing urban city networks, transportation networks, computer

networks and other critical infrastructure is a large and growing
Cite as: A Double Oracle Algorithm for Zero-Sum Security Games on
Graphs, Manish Jain, Dmytro Korzhyk, Ondřej Vaněk, Vincent Conitzer,
Michal Pěchouček, Milind Tambe, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
327-334.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

area of concern. The key challenge faced in these domains is to ef-
fectively schedule a limited number of resources to protect against
an intelligent and adaptive attacker. For example, a police force
has limited personnel to patrol, operate checkpoints, or conduct
searches. The adversarial aspect poses significant challenges for
the resource allocation problem. An intelligent attacker may ob-
serve the strategy of the defender, and then plan more effective
attacks. Predictable scheduling of defender resources can be ex-
ploited by the attacker. Randomization has thus been used to keep
attackers at bay by increasing the uncertainty they face.

Game theory offers a principled way of achieving effective ran-
domization. It models the varying preferences of both the defender
and the attacker, and allows us to solve for optimal strategies. Re-
cent work has also used and deployed game-theoretic techniques in
real-world attacker-defender scenarios, for example, ARMOR [13]
and IRIS [10].

In this paper, we model an urban network security problem as
a game with two players: the defender and the attacker. The pure
strategies of the defender correspond to allocations of resources to
edges in the network—for example, an allocation of police check-
points to roads in the city. The pure strategies of the attacker cor-
respond to paths from any source node to any target node—for
example, a path from a landing spot on the coast to the airport.

The strategy space of the defender grows exponentially with the
number of available resources, whereas the strategy space of the
attacker grows exponentially with the size of the network. For ex-
ample, in a fully connected graph with 20 nodes and 190 edges,
the number of defender actions for only 5 resources is

(
190
5

) ≈ 2
billion, while the number of possible attacker paths without any cy-
cles is ≈ 6.6× 1018. Real-world networks are significantly larger,
e.g., a simplified graph representing the road network in southern
Mumbai has more than 250 nodes (intersections) and 600 edges
(streets), and the security forces can deploy tens of resources.

We model the scenario as a zero-sum game, where the attacker
gets a positive payoff in case of a successful attack and 0 other-
wise, and the payoff to the defender is the negative of the attacker’s
payoff. Our goal is to find a minimax strategy for the defender,
that is, a strategy that minimizes the maximum expected utility that
the attacker can obtain.1 The extremely large size of the games

1Because in this work, we assume the game to be zero-sum, a min-
imax strategy is equivalent to a Stackelberg strategy (where the de-
fender finds the optimal mixed strategy to commit to); moreover,
via von Neumann’s minimax theorem [12] (or linear programming
duality), minimax strategies also correspond exactly to Nash equi-
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inhibits the direct application of standard methods for finding min-
imax strategies. Thus, we propose a double-oracle based approach
that does not require the ex-ante enumeration of all pure strate-
gies for either of the players. We propose algorithms for both the
defender’s and the attacker’s oracle problems, which are used it-
eratively to provide pure-strategy best responses for both players.
While we present NP-hardness proofs for the oracle problems for
both players, the entire approach remains scalable in practice, as is
shown in our experiments.

We also provide experimental results on real-city networks, specif-
ically on graphs obtained from the GIS data of southern Mumbai.
The graph representation of southern Mumbai has 250 nodes and
600 edges. The placement of sources and targets in the experi-
ment was inspired by the Mumbai 2008 attacks where the targets
were important economic and political centers and the sources were
placed along the coast line. Our experimental results show that this
problem remains extremely difficult to solve. While we show the
previous approximation method to not be ready for deployment,
our own techniques will need to be enhanced further for real de-
ployments in the city of Mumbai. We believe the problem remains
within reach, and is clearly an exciting and important area for con-
tinued research.

2. RELATED WORK
Game theory has been applied to a wide range of problems where

one player — the evader — tries to minimize the probability of
detection by and/or encounter with the other player — the patroller;
the patroller wants to thwart the evader’s plans by detecting and/or
capturing him. The formalization of this problem led to a family of
games, often called pursuit-evasion games [1]. As there are many
potential applications of this general idea, more specialized game
types have been introduced, e.g., hider-seeker games [7, 9] and
infiltration games [2] with mobile patrollers and mobile evaders;
search games [8] with mobile patrollers and immobile evaders; and
ambush games [14] with the mobility capabilities reversed. In the
game model proposed in this paper, the evader is mobile whereas
the patroller is not, just like in ambush games. However, in contrast
with ambush games, we consider targets (termed destinations in
ambush games) of varying importance.

Our game model is most similar to that of interdiction games [17],
where the evading player — the attacker — moves on an arbitrary
graph from one of the origins to one of the destinations (aka. tar-
gets); and the interdicting player — the defender — inspects one or
more edges in the graph in order to detect the attacker and prevent
him from reaching the target. As opposed to interdiction games,
we do not consider the detection probability on edges, but we al-
low different values to be assigned to the targets, which is crucial
for real-world applications.

Recent work has also considered scheduling multiple-defender
resources using cooperative game-theory, as in path disruption gam-
es [3], where the attacker tries to reach a single known target. In
contrast with the static asset protection problem [6], we attribute
different importance to individual targets and unlike its dynamic
variant [6], we consider only static target positions. Recent work in
security games and robotic patrolling [4, 10] has focused on con-
crete applications. However, they have not considered the scale-up
for both defender and attacker strategies. For example, in ASPEN,
the attacker’s pure strategy space is polynomially large, since the
attacker is not following any path and just chooses exactly one tar-
get to attack. Our game model was introduced by Tsai et al. [15];

librium strategies. For a discussion of the relationships among
these concepts in security games, which include zero-sum games,
see Yin et al. [18].

however, their approximate solution technique can be suboptimal.
We discuss the shortcomings of their approach in Section 4, and
provide an optimal solution algorithm for the general case.

Techniques used by RUGGED are based on a double oracle ap-
proach, as proposed by McMahan et al. [11] (corresponding exactly
to the notion of constraint and column generation in linear pro-
gramming). This technique is intended to solve large-scale games,
and is especially useful in settings where efficient algorithms for
the best-response oracle problems are available. Double oracle al-
gorithms have subsequently been applied to various pursuit-evasion
games [9, 16]. While the best-response oracle problems are NP-
hard in our setting (as we show in Sections 5.3 and 5.4), we give
algorithms for these problems that allow the approach to still scale
to realistic instances.

3. PROBLEM DESCRIPTION
A network security domain, as introduced by Tsai et al. [15], is

modeled using a graph G = (N,E). The attacker starts at one
of the source nodes s ∈ S ⊂ N and travels along a path of his
choosing to any one of the targets t ∈ T ⊂ N . The attacker’s pure
strategies are thus all the possible s−t paths from any source s ∈ S
to any target t ∈ T . The defender tries to catch the attacker before
he reaches any of the targets by placing k available (homogeneous)
resources on edges in the graph. The defender’s pure strategies are
thus all the possible allocations of k resources to edges, so there
are
(|E|
k

)
in total. Assuming the defender plays allocationXi ⊆ E,

and the attacker chooses path Aj ⊆ E, the attacker succeeds if and
only if Xi ∩ Aj = ∅. Additionally, a payoff T (t) is associated
with each target t, such that the attacker gets T (t) for a success-
ful attack on t and 0 otherwise. The defender receives −T (t) in
case of a successful attack on t and 0 otherwise. The network secu-
rity domain is modeled as a complete-information zero-sum game,
where the set S of sources, T of targets, the payoffs T for all the
targets and the number of defender resources k are known to both
the players a-priori. The objective is to find the mixed strategy x
of the defender, corresponding to a Nash equilibrium (equivalently,
a minimax strategy) of this network security game. The notation
used in the paper is described in Table 1.

G(N,E) Urban network graph
T Target payoff
k Defender resources
X Set of defender allocations, X = {X1, X2, . . . , Xn}
Xi ith defender allocation. Xi = {Xie}∀e,Xie ∈ {0, 1}
A Set of attacker paths, A = {A1, A2, . . . , Am}
Aj jth attacker path. Aj = {Aje}∀e,Aje ∈ {0, 1}
x Defender’s mixed strategy over X
a Adversary’s mixed strategy over A

Ud(x, Aj) Defender’s expected utility playing x against Aj
Λ Defender’s pure strategy best response
Γ Attacker’s pure strategy best response

Table 1: Notation

4. RANGER COUNTEREXAMPLE
RANGER was introduced by Tsai et al. [15] and was designed

to obtain approximate solutions for the defender for the network
security game. Its main component is a polynomial-sized linear
program that, rather than solving for a distribution over allocations,
solves for the marginal probability with which the defender covers
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each edge. It does this by approximating the capture probability
as the sum of the marginals along the attacker’s path. It further
presents some sampling techniques to obtain a distribution over de-
fender allocations from these marginals. What was known before
was that the RANGER solution (regardless of the sampling method
used) is suboptimal in general, because it is not always possible to
find a distribution over allocations such that the capture probability
is indeed the sum of marginals on the path. In this paper, we show
that RANGER’s error can be arbitrarily large.

Let us consider the example graph shown in Figure 1. This multi-
graph2 has a single source node, s, and two targets, t1 and t2; the
defender has 2 resources. Furthermore, the payoffs T of the targets
are defined to be 1 and 2 for targets t1 and t2 respectively.

s t1 t2

a

a

a

b

Figure 1: This example is solved incorrectly by RANGER. The
variables a, b are the coverage probabilities on the correspond-
ing edges.

RANGER solution:
Suppose RANGER puts marginal coverage probability a on each of
the three edges between s and t1,3 and probability b on the edge
between t1 and t2, as shown in Figure 1. RANGER estimates that
the attacker gets caught with probability a when attacking target
t1 and probability a + b when attacking target t2. RANGER will
attempt to make the attacker indifferent between the two targets to
obtain the minimax equilibrium. Thus, RANGER’s output is a =
3/5, b = 1/5, obtained from the following system of equations:

1(1− a) = 2(1− (a+ b)) (1)
3a+ b = 2 (2)

However, there can be no allocation of 2 resources to the edges
such that the probability of the attacker being caught on his way to
t1 is 3/5 and the probability of the attacker being caught on his way
to t2 is 4/5. (The reason is that in this example, the event of there
being a defensive resource on the second edge in the path cannot
be disjoint from the event of there being one on the first edge.) In
fact, for this RANGER solution, the attacker cannot be caught with
a probability of more than 3/5 when attacking target t2, and so the
defender utility cannot be greater than −2(1− 3/5) = −4/5.

Optimal solution:
Figure 2 shows the six possible allocations of the defender’s two
resources to the four edges. Three of them block some pair of edges
between s and t1. Suppose that each of these three allocations is
played by the defender with probability x.4 Each of the other three
allocations blocks one edge between s and t1 as well as the edge
between t1 and t2. Suppose the defender chooses these allocations
with probability y each (refer Figure 2). The probability of the
attacker being caught on his way to t1 is 2

3
3x + 1

3
3y, or 2x +

2We use a multi-graph for simplicity. This counterexample can
easily be converted into a similar counterexample that has no more
than one edge between any pair of nodes in the graph.
3We can assume without loss of solution quality that symmetric
edges will have equal coverage.
4Again, this can be assumed without loss of generality for symmet-
ric edges.

x

x

x

y

y

y

t2t1s

t2t1s

t2t1s

t2t1s

t2t1s

t2t1s

Figure 2: The possible allocations of two resources to the four
edges. The blocked edges are shown in bold. The probabilities
(x or y) are shown next to each allocation.

y. Similarly, the probability of the attacker being caught on his
way to t2 is 2x + 3y. Thus, a minimax strategy for this problem
is the solution of Equations (3) and (4), which make the attacker
indifferent between targets t1 and t2.

1(1− 2x− y) = 2(1− 2x− 3y) (3)
3x+ 3y = 1 (4)

The solution to the above system is x = 2/9, y = 1/9, so that the
expected attacker utility is 4/9. Thus, the expected defender utility
is −4/9, which is higher than the expected defender utility of at
most −4/5 resulting from using RANGER.

RANGER sub-optimality:
Suppose the payoff T (t2) of target t2 in the example above was
H,H > 1. The RANGER solution in this case, again obtained
using Equations 1 and 2, would be a = (H+1)

(2H+1)
, b = (H−1)

(2H+1)
.

Then, consider an attacker who attacks the target t2 by first going
through one of the three edges from s to t1 uniformly at random
(and then on to t2). The attacker will fail to be caught on the way
from t1 to t2 with probability (1 − b), given that the defender’s
strategy is consistent with the output of RANGER. Even conditional
on this failure, the attacker will fail to be caught on the way from
s to t1 with probability at least 1/3, because the defender has only
2 resources. Thus, the probability of a successful attack on t2 is
at least (1 − b)(1/3), and the attacker’s best-response utility is at
least:

H(1− b)
3

=
H(H + 2)

3(2H + 1)
>
H(H + 0.5)

3(2H + 1)
=
H

6
(5)

Thus, the true defender utility for any strategy consistent with RAN-
GER is at most −H

6
.

Now, consider another defender strategy in which the defender
always blocks the edge from t1 to t2, and also blocks one of the
three edges between s and t1 uniformly at random. For such a
defender strategy, the attacker can reach t1 with probability 2/3,
but cannot reach target t2 at all. Thus, the attacker’s best-response
utility in this case is 2/3. Therefore, the optimal defender utility
is at least −2/3. Therefore, any solution consistent with RANGER
is at least H

6
/ 2

3
= H

4
suboptimal. Since H is arbitrary, RANGER

solutions can be arbitrarily suboptimal. This motivates our exact,
double-oracle algorithm, RUGGED.

5. DOUBLE-ORACLE APPROACH
In this section, we present RUGGED, a double-oracle based al-

gorithm for network security games. We also analyze the compu-
tational complexity of determining best responses for both the de-
fender and the attacker, and, to complete the RUGGED algorithm,
we give algorithms for computing the best responses.
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5.1 Algorithm
The algorithm RUGGED is presented as Algorithm 1. X is the set

of defender allocations generated so far, while A is the set of at-
tacker paths generated so far. CoreLP(X,A) finds an equilibrium
(and hence, minimax and maximin strategies) of the two-player
zero-sum game consisting of the sets of pure strategies, X and A,
generated so far. CoreLP returns x and a, which are the current
equilibrium mixed strategies for the defender and the attacker over
X and A respectively. The defender oracle (DO) generates a de-
fender allocation Λ that is a best response for the defender against
a. (This is a best response among all allocations, not just those in
X.) Similarly, the attacker oracle (AO) generates an attacker path
Γ that is a best response for the attacker against x.

Algorithm 1 Double Oracle for Urban Network Security
1. Initialize X by generating arbitrary candidate defender allo-
cations.
2. Initialize A by generating arbitrary candidate attacker paths.
repeat

3. (x,a)←CoreLP(X,A).
4a. Λ← DO(a).
4b. X← X ∪ {Λ}.
5a. Γ← AO(x).
5b. A← A ∪ {Γ}.

until convergence
7. Return (x,a)

The double oracle algorithm thus starts with a small set of pure
strategies for each player, and then grows these sets in every itera-
tion by applying the best-response oracles to the current solution.
Execution continues until convergence is detected. Convergence is
achieved when the best-response oracles of both the defender and
the attacker do not generate a pure strategy that is better for that
player than the player’s strategy in the current solution (holding the
other player’s strategy fixed). In other words, convergence is ob-
tained if, for both players, the reward given by the best-response
oracle is no better than the reward for the same player given by the
CoreLP.

The correctness of best-response-based double oracle algorithms
for two-player zero-sum games has been established by McMahan
et al [11]; the intuition for this correctness is as follows. Once the
algorithm converges, the current solution must be an equilibrium
of the game, because each player’s current strategy is a best re-
sponse to the other player’s current strategy—this follows from the
fact that the best-response oracle, which searches over all possible
strategies, cannot find anything better. Furthermore, the algorithm
must converge, because at worst, it will generate all pure strategies.

5.2 CoreLP
The purpose of CoreLP is to find an equilibrium of the restricted

game consisting of defender pure strategies X and attacker pure
strategies A. Below is the standard formulation for computing a
maximin strategy for the defender in a two-player zero-sum game.

max
U∗

d
,x

U∗d (6)

s.t. U∗d ≤ Ud(x, Aj) ∀j = 1, . . . , |A| (7)
1Tx = 1 (8)
x ∈ [0, 1]|X| (9)

The defender’s mixed strategy x, defined over X, and utility U∗d
are the variables for this problem. Inequality (7) is family of con-
straints; there is one constraint for every attacker pathAj in A. The

function Ud(x, Aj) is the expected utility of the attacker path Aj .
Given Aj , the probability that the attacker is caught is the sum of
the probabilities of the defender allocations that would catch the at-
tacker. (We can sum these probabilities because they correspond to
disjoint events.) More precisely, let zij be an indicator for whether
allocation Xi intersects with path Aj , that is,

zij =

{
1 if Xi ∩Aj 6= ∅
0 otherwise (10)

These zij are not variables of the linear program; they are parame-
ters that are determined at the time the best responses are generated.
Then, the probability that an attacker playing path Aj is caught is∑
i zijxi, and the probability that he is not caught is

∑
i(1−zij)xi.

Thus, the payoff function Ud(x, Aj) for the defender for choosing
a mixed strategy x when the attacker chooses path Aj is given by
Equation (11), where T (tj) is the attacker’s payoff for reaching tj .

Ud(x, Aj) = −T (tj) · (
∑
i

(1− zij)xi) (11)

The dual variables corresponding to Inequality (7) give the at-
tacker’s mixed strategy a, defined over A. The expected utility for
the attacker is given by −U∗d .

5.3 Defender Oracle
This section concerns the best-response oracle problem for the

defender. The Defender Oracle problem is stated as follows: gen-
erate the defender pure strategy (resource allocation) Λ allocating k
resources over the edges E that maximizes the defender’s expected
utility against a given attacker mixed strategy a over paths A.

Defender Oracle problem is NP-hard: We show this by reduc-
ing the set cover problem to it. The Set-Cover problem: Given
are a set U , a collection S of subsets of U (that is, S ⊆ 2U ), and an
integer k. The question is whether there is a cover C ⊆ S of size k
or less, that is,

⋃
c∈C c = U and |C| ≤ k. We will use a modifica-

tion of this well-known NP-hard problem so that S always contains
all singleton subsets of U , that is, x ∈ U implies {x} ∈ S. This
modified problem remains NP-hard.

THEOREM 1. The Defender Oracle problem is NP-hard, even
if there is only a single source and a single target.

PROOF. Reduction from Set-Cover to Defender Oracle: We
convert an arbitrary instance of the set cover problem to an instance
of the defender oracle problem by constructing a graph G with just
3 nodes, as shown in Figure 3. The graph G is a multi-graph5 with
just three nodes, so that N = {s, v, t}, where s is the only source
and t is the only target (with arbitrary positive value). There are up
to |S| loop edges adjacent to node v; each loop edge corresponds to
a unique non-singleton subset in S. There are |U | edges between s
and v, each corresponding to a unique element in U . There are also
|U | edges between v and t, each corresponding to a unique element
in U . The attacker’s paths correspond to the elements in U . A path
that corresponds to u ∈ U starts with the edge between s and v that
corresponds to u, then loops through all the edges that correspond
to non-singleton subsets in S that contain u, and finally ends with
the edge between v and t that corresponds to u. Hence, any two
paths used by the attacker can only intersect at the loop edges. The
probabilities that the defender places on these paths are arbitrary
positive numbers. We now show that set U can be covered with
k subsets in S ⊆ 2U if and only if the defender can block all of
the attacker’s paths with k resources in the corresponding defender
oracle problem instance.
5Having a multi-graph is not essential to the NP-hardness reduc-
tion.
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Figure 3: A defender oracle problem instance correspond-
ing to the SET-COVER instance with U = {1, 2, 3}, S =
{{1}, {2}, {3}, {1, 2}, {1, 3}}. Here, the attacker’s mixed
strategy uses three paths: (e1, e1,2, e1,3, e

′
1), (e2, e1,2, e

′
2),

(e3, e1,3, e
′
3). Thus, the SET-COVER instance has a solution of

size 2 (for example, using {1, 2} and {1, 3}); correspondingly,
with 2 resources, the defender can always capture the attacker
(for example, by covering e1,2, e1,3).

The “if” direction: If the defender can block all the paths used
by the attacker with k resources, then the set U can be covered
with C ⊆ S, where |C| = k and is constructed as follows. If
the defender places a resource on a loop edge, then C includes the
non-singleton subset in S that corresponds to that loop edge. If the
defender blocks any other edge then C includes the corresponding
singleton subset.

The “only if” direction: If there exists a cover C of size k, then
the defender can block all the paths by placing a defensive resource
on every loop edge that corresponds to a non-singleton subset in C,
and placing a defensive resource on the corresponding edge out of
s for every singleton subset in C.

Formulation: The defender oracle problem, described below,
can be formulated as a mixed integer linear program (MILP). The
objective of the MILP is to identify the allocation that covers as
many attacker paths as possible, where paths are weighted by the
product of the payoff of the target attacked by the path and proba-
bility of attacker choosing it. (In this formulation, probabilities aj
are not variables; they are provided by CoreLP.) In the formulation,
λe = 1 indicates that we assign a resource to edge e, and zj = 1
indicates that path Aj (refer Table 1) is blocked by the allocation.

max
z,λ

−∑j(1− zj)ajTtj (12)

s.t. zj ≤
∑
e

Ajeλe (13)∑
e λe ≤ k (14)
λe ∈ {0, 1} (15)
zj ∈ [0, 1] (16)

THEOREM 2. The MILP described above correctly computes a
best-response allocation for the defender.

PROOF. The defender receives a payoff of −T (tj)aj if the at-
tacker successfully attacks target tj using pathAj , and 0 in the case
of an unsuccessful attack. Hence, if we make sure that 1− zj = 1
if path Aj is not blocked, and 0 otherwise, then the objective func-
tion (12) correctly models the defender’s expected utility. Inequal-
ity (13) ensures this: its right-hand side will be at least 1 if there
exists an edge on the pathAj that defender is covering, and 0 other-
wise. zj need not be restricted to take an integer value because the
objective is increasing with zj and if the solver can push it above 0,
it will choose to push it all the way up to 1. Therefore, if we let Λ
correspond to the set of edges covered by the defender, zj will be
set by the solver so that:

zj =

{
1 if Λ ∩Aj 6= ∅⇔ ∃e |λe = Aje = 1
0 otherwise (17)

Inequality (14) enforces that the defender covers at most as many
edges as the number of available resources k, and thus ensures
feasibility. Hence, the above MILP correctly captures the best-
response oracle problem for the defender.

PROPOSITION 1. For any attacker mixed strategy, the defender’s
expected utility from the best response provided by the defender or-
acle is no worse than the defender’s equilibrium utility in the full
zero-sum game.

PROOF. In any equilibrium, the attacker plays a mixed strat-
egy that minimizes the defender’s best-response utility; therefore,
if the attacker plays any other mixed strategy, the defender’s best-
response utility can be no worse.

5.4 Attacker Oracle
This section concerns the best-response oracle problem for the

attacker. The Attacker Oracle problem is to generate the attacker
pure strategy (path) Γ from some source s ∈ S to some target t ∈
T that maximizes the attacker expected utility given the defender
mixed strategy x over defender allocations X.

Attacker Oracle is NP-hard: We show that the attacker oracle
problem is also NP-hard by reducing 3-SAT to it.

THEOREM 3. The Attacker Oracle problem is NP-hard, even if
there is only a single source and a single target.

PROOF. Reduction from 3-SAT to Attacker Oracle: We con-
vert an arbitrary instance of 3-SAT to an instance of the attacker
oracle problem as follows. Suppose the 3-SAT instance contains n
variables xi, i = 1, . . . , n, and k clauses. Each clause is a disjunc-
tion of three literals, where each literal is either a variable or the
negation of the variable. Consider the following example:

E = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) (18)

The formula E contains n = 4 variables and k = 2 clauses.
We construct a multi-graphG6 with n+k+1 nodes, v0, . . . , vn+k

so that the source node is s = v0, and the target node is t = vn+k.
Every edge connects some pair of nodes with consecutive indices,
so that every simple path from s to t contains exactly n+ k edges.
Each edge corresponds to a literal in the 3-SAT expression (that
is, either xi or ¬xi). There are exactly three edges that connect
nodes vi−1 and vi for i = 1, . . . , k. Those three edges correspond
to the three literals in the i-th clause. There are exactly two edges
that connect nodes vk+j−1 and vk+j for j = 1, . . . , n. Those two
edges correspond to literals xj and ¬xj . An example graph that
corresponds to the expression (18) is shown in Figure 4.

x
1

x
1

x
4

x
1

¬x
1

x
2

¬x
2

x
3

¬x
3

x
4

¬x
4

¬x
2

¬x
3

x
2

s=v
0

v
1

v
2

v
3

v
4

v
5 v

6
=t

Figure 4: An example graph corresponding to the CNF formula
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4)

There are 2n defender pure strategies (allocations of resources),
each played with equal probability of 1/(2n). Each defender pure
strategy corresponds to a literal, and the edges that correspond to
that literal are blocked in that pure strategy. In the example shown
in Figure 4, the defender plays 8 pure strategies, each with proba-
bility 1/8. Three edges are blocked in the pure strategy that corre-
sponds to the literal x1 (namely, the top edge between v0 and v1,
6We use a multi-graph for simplicity; having a multi-graph is not
essential for the NP-hardness reduction.
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the top edge between v1 and v2, and the top edge between v2 and
v3); only one edge is blocked in the pure strategy that corresponds
to the literal ¬x4 (the bottom edge between v5 and v6). (If it is
desired that the defender always use the same number of resources,
this is easily achieved by adding dummy edges.) We now show
that there is an assignment of values to the variables in the 3-SAT
instance so that the formula evaluates to true if and only if there
is a path from s to t in the corresponding attacker oracle problem
instance which is blocked with probability at most 1/2.

The “if” direction: Suppose there is a path Γ from s to t that
is blocked with probability at most 1/2. Note that any path from
s to t is blocked by at least one of the strategies {xi,¬xi}, for all
i = 1, . . . , n, so the probability that the path is blocked is at least
n/(2n) = 1/2. Moreover, if for some i, the path passes through
both an edge labeled xi and one labeled ¬xi, then the probability
that the path is blocked is at least (n + 1)/(2n) > 1/2—so this
cannot be the case for Γ. Hence, we can assign the true value to
the literals that correspond to the edges on the path Γ, and false
to all the other literals. This must correspond to a solution to the
3-SAT instance, because each clause must contain a literal that cor-
responds to an edge on the path, and is thus assigned a true value.

The “only if” direction: Suppose there is an assignment of val-
ues to the variables such that the 3-SAT formula evaluates to true.
Consider a simple path Γ that goes from s to t through edges that
correspond to literals with true values in the assignment. Such a
path must exist because by assumption the assignment satisfies ev-
ery clause. Moreover, this path is blocked only by the defender
strategies that correspond to true literals, of which there are exactly
n. So the probability that the path is blocked is n/(2n) = 1/2.

Formulation: The attacker oracle problem can be formulated as
a set of mixed integer linear programs, as described below. For ev-
ery target in T , we solve for the best path to that target; then we
take the best solution overall. Below is the formulation when the
attacker is attacking target tm. (In this formulation, probabilities xi
are not variables; they are values produced earlier by CoreLP.) In
the formulation, γe = 1 indicates that the attacker passes through
edge e, and zi = 1 indicates that the allocation Xi blocks the at-
tacker path. Equations (20) to (22) represent the flow constraints
for the attacker for every node n ∈ N.

max
z,γ

Ttm
∑
i xi(1− zi) (19)

s.t.
∑
e∈out(n) γe =

∑
e∈in(n)

γe n 6= s, tm (20)

∑
e∈out(s) γe = 1 (21)∑
e∈in(tm) γe = 1 (22)

zi ≥ γe +Xie − 1 ∀e∀i (23)
zi ≥ 0 (24)
γe ∈ {0, 1} (25)

THEOREM 4. The MILP described above correctly computes a
best-response path for the attacker.

PROOF. The flow constrains are represented in Equations (20)
to (22). The sink for the flow is the target tm that we are currently
considering for attack. To deal with the case where there is more
than one possible source node, we can add a virtual source (s) to
G that feeds into all the real sources. in(n) represents the edges
coming into n, out(n) represents those going out of n. The flow
constraints ensure that the chosen edges indeed constitute a path
from the (virtual) source to the sink.

The attacker receives a payoff of T (tm) if he attacks target tm
successfully, that is, if the path does not intersect with any defender

allocation. Hence, if we make sure that 1− zi = 1 if allocation Xi
does not block the path, and 0 otherwise, then the objective function
(19) correctly models the attacker’s expected utility. Inequality (23)
ensures this: if the allocation Xi covers some e for which γe = 1,
then it will force zi to be set at least to 1; otherwise, zi only needs
to be set to at least 0 (and in each case, the solver will push it all the
way down to this value, which also explains why the zi variables
do not need to be restricted to take integer values). Therefore, if we
let Γ correspond to the path chosen by the attacker, zi will be set
by the solver so that

zi =

{
1 if Xi ∩ Γ 6= ∅⇔ ∃e |γe = Xie = 1
0 otherwise (26)

It follows that the MILP objective is correct. Hence, the above
MILP captures the best-response oracle problem for the attacker.

PROPOSITION 2. For any defender mixed strategy, the attacker’s
expected utility from the best response provided by the attacker or-
acle is no worse than the attacker’s equilibrium utility in the full
zero-sum game.

PROOF. In any equilibrium, the defender plays a mixed strat-
egy that minimizes the attacker’s best-response utility; therefore,
if the defender plays any other mixed strategy, the attacker’s best-
response utility can be no worse.

Figure 5: Example graph of Southern Mumbai with 455 nodes.
Sources are depicted as green arrows and targets are red bulls-
eyes. Best viewed in color.

6. EVALUATION
In this section, we describe the results we achieved with RUGGED.

We conducted experiments on graphs obtained from road network
GIS data for the city of Mumbai (inspired by the 2008 Mumbai in-
cidents [5]), as well as on artificially generated graphs. We provide
two types of results: (1) Firstly, we compare the solution quality
obtained from RUGGED with the solution quality obtained from
RANGER. These results are shown in Section 6.1. (2) Secondly,
we provide runtime results showing the performance of RUGGED
when the input graphs are scaled up.7 The following three types of
graphs were used for the experimental results:

(1) Weakly fully connected (WFC) graphs, denotedGWFC(N,E),
are graphs where N is an ordered set of nodes {n1, . . . , nm;S =
{n1}, T = {nm}}. For each node ni, there exists a set of directed
7All experiments were run on standard desktop 2.8GHz machine
with 2GB main memory.
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edges, {(ni, nj)|ni < nj}, in E. These graphs were chosen be-
cause of the extreme size of the strategy spaces for both players.
Additionally, there are no bottleneck edges, so these graphs are de-
signed to be computationally challenging for RUGGED.

(2) Braid-type graphs, denoted GB(N,E), are graphs where N
is a sequence of nodes n1 to nm such that each pair ni−1 and ni
is connected by 2 to 3 edges. Node n1 is the source node. Any
following node is a target node with probability 0.2, with payoff
T randomly chosen between 1 and 100. These graphs have a sim-
ilar structure as the graph in Figure 1, and were motivated by the
counterexample in Section 4.

(3) City graphs of different sizes were extracted from the south-
ern part of Mumbai using the GIS data provided by OpenStreet-
Maps. The placement of 2-4 targets was inspired by the Mumbai
incidents from 2008 [5]; 2-4 sources were placed on the border of
the graph,8 simulating an attacker approaching from the sea. We
ran the test for graphs with the following numbers of nodes: 45,
129 and 252. Figure 5 shows a sample Mumbai graph with 252
nodes, 4 sources and 3 targets.

6.1 Comparison with RANGER
This section compares the solution quality of RUGGED and RAN-

GER. Although we have already established that RANGER solutions
can be arbitrarily bad in general, the objective of these tests is to
compare the actual performance of RANGER with RUGGED. The
results are given in Table 2, which shows the average and maxi-
mum error from RANGER. We evaluated RANGER on the three
types of graphs — city graphs, braid graphs and weakly fully con-
nected graphs of different sizes, fixing the number of defender re-
sources to 2 and placing 3 targets, with varied values from the inter-
val [0, 1000]. The actual defender utility from the solution provided
by RANGER9 is computed by using the best-response oracle for the
attacker with the RANGER defender strategy as input. The error of
RANGER is then expressed as the difference between the defender
utilities in the solutions provided by RANGER and by RUGGED.

Table 2 shows the comparison results between RANGER and
RUGGED, summarized over 30 trials. It shows the percentage of
trials in which RANGER gave an incorrect solution (denoted “pct”).
It also shows the average and maximum error of RANGER (denoted
as avg and max respectively) over these trials. It shows that while
RANGER was wrong only about 1/3 of the time for Braid graphs,
it gave the wrong answer in all the runs on the fully connected
graphs. Furthermore, it was wrong 90% of the time on city graphs,
with an average error of 215 units and a maximum error of 721
units. Given an average target value of 500, these are high errors
indeed — indicating that RANGER is unsuitable for deployment in
real-world domains.

6.2 Scale-up and analysis
This section concerns the performance of RUGGED when the in-

put problem instances are scaled up. The experiments were con-
ducted on graphs derived directly from portions of Mumbai’s road
network. The runtime results are shown in Table 3, where the rows
represent the size of the graph and the columns represent the num-
ber of defender resources that need to be scheduled. As an example
of the complexity of the graph, the number of attacker paths in the
Mumbai graph with 252 nodes is at least a 1012, while the num-
ber of defender allocations is approximately 1010 for 4 resources.

8We placed more sources and targets into larger graphs.
9Because RANGER provides a solution in the form of marginal
probabilities of defender allocations along edges, we used Comb
sampling [15] to convert this into a (joint) probability distribution
over defender allocations.

City Braid WFC
nodes 45 129 10 20 10 20

avg error 215 250 210 259 191 80
max error 721 489 472 599 273 117

pct 90% 100% 30% 37% 100% 100%
avg T 500 500 500 500 500 500

Table 2: RANGER average and maximum error and percent of
samples where RANGER provided a suboptimal solution. Tar-
get values T were randomly drawn from the interval [1, 1000].

1 2 3 4
45 0.91 6.43 22.58 33.42

129 6.63 32.55 486.48 3140.23
252 17.19 626.25 2014.14 34344.70

Table 3: Runtime (in seconds) of RUGGED when the input
problem instances are scaled up. These tests were done on
graphs extracted from the road network of Mumbai. The rows
correspond to the number of nodes in the graph whereas the
columns correspond to the number of defender resources.

The game matrix for this problem cannot even be represented, let
alone solved. The ability of RUGGED to compute optimal solu-
tions in such situations, while overcoming NP-hardness of both or-
acles, marks a significant advance in the state of the art in deploying
game-theoretic techniques.

Figure 6(a) examines the performance of RUGGED when the size
of the strategy spaces for both players is increased. These tests were
conducted on WFC graphs, since they are designed to have large
strategy spaces. These problems have 20 to 100 nodes and up to 5
resources. The x-axis in the figure shows the number of nodes in
the graph, while the y-axis shows the runtime in seconds. Different
number of defender resources are represented by different curves
in the graph. For example for 40 nodes, and 5 defender resources,
RUGGED took 108 seconds on average.

To speed up the convergence of RUGGED, we tried to warm-start
the algorithm with an initial defender allocation such as min-cut-
based allocations, target- and source-centric allocations, RANGER
allocations and combinations of these. No significant improvement
of runtime was measured; in some cases, the runtime increased
because of the larger strategy set for the defender.

6.3 Algorithm Dynamics Analysis
This section analyzes the anytime solution quality and the per-

formance of each of the three components of RUGGED: the de-
fender oracle, the attacker oracle, and the CoreLP. When we solve
the best-response oracle problems, they provide lower and upper
bounds on the optimal defender utility, as shown in Propositions 1
and 2. Figure 6(b) shows the progress of the bounds and the CoreLP
solution for a sample problem instance scheduling 2 defender re-
sources on a fully connected network with 50 nodes. The x-axis
shows the number of iterations and the y-axis shows the expected
defender utility. The graph shows that a good solution (i.e., one
where the difference in the two bounds is less than ε) can be com-
puted reasonably quickly, even though the algorithm takes longer
to converge to the optimal solution. For example, a solution with an
allowed approximation of 10 units10 can be computed in about 210
iterations, whereas 310 iterations are required to find the optimal
solution. The difference between these two bounds gives an upper

1010 units is 1% of the maximum target payoff (1000).
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Figure 6: Results. Figure (a) shows the scale-up analysis on WFC graph of different sizes. Figure (b) shows the convergence of oracle
values to the final game value and the anytime bounds. Figure (c) compares the runtimes of oracles and the core LP.

bound on the error in the current solution of the CoreLP; this also
provides us with an approximation variant of RUGGED.

Figure 6(c) compares the runtime needed by the three modules
in every iteration. The x-axis shows the iteration number and the
y-axis shows the runtime in seconds in logarithmic scale. As ex-
pected, CoreLP — solving a standard linear program — needs con-
siderably less time in each iteration than both the oracles, which
solve mixed-integer programs. The figure also shows that the mod-
ules scale well as the number of iterations increases.

7. CONCLUSION AND FUTURE WORK
Optimally scheduling defender resources in a network-based en-

vironment is an important and challenging problem. Security in
urban road networks, computer networks, and other transportation
networks is of growing concern, requiring the development of novel
scalable approaches. These domains have extremely large strategy
spaces; a graph with just 20 nodes and 5 resources can have more
than 2 billion strategies for both players. In this paper, we presented
RUGGED, a novel double-oracle based approach for finding an opti-
mal strategy for scheduling a limited number of defender resources
in a network security environment. We showed that previous ap-
proaches can lead to arbitrarily bad solutions in such situations, and
the error can be very high even in practice. We applied RUGGED to
real-city maps generated from GIS data; we presented the results of
applying RUGGED to the road network of Mumbai. While enhance-
ments to RUGGED are required for deployment in some real-world
domains, optimal solutions even to these problems are now within
reach. The scalability of RUGGED opens up new avenues for de-
ploying game-theoretic techniques in real-world applications.
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ABSTRACT
Game-tree search algorithms have contributed greatly to the
success of computerized players in two-player extensive-form
games. In multi-player games there has been less success,
partly because of the difficulty of recognizing and reasoning
about the inter-player relationships that often develop and
change during human game-play. Simplifying assumptions
(e.g., assuming each player selfishly aims to maximize its
own payoff) have not worked very well in practice.

We describe a new algorithm for multi-player games, So-
cially-oriented Search (SOS), that incorporates ideas from
Social Value Orientation theory from social psychology. We
provide a theoretical study of the algorithm, and a method
for recognizing and reasoning about relationships as they
develop and change during a game. Our empirical evalu-
ations of SOS in the strategic board game Quoridor show
it to be significantly more effective against players with dy-
namic interrelationships than the current state-of-the-art al-
gorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies

General Terms
Economics, Algorithms

Keywords
game-tree search, multi-player games

1. INTRODUCTION
Search algorithms such as the classical Minimax search

algorithm [13] are perhaps the most important component
of computer programs for games of strategy. In two-person
games, these algorithms have been highly successful, and
there are many games in which the best computerized play-
ers perform as well or better than the best human players
(e.g., [14, 15]). However, such algorithms have generally
been much less successful in multi-player games—partly be-
cause they lack ways of recognizing and reasoning about

Cite as: Modeling Social Preferences in Multi-player Games, Brandon
Wilson, Inon Zuckerman, and Dana Nau, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 337-344.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

inter-player relationships, which are a very influential com-
ponent of the strategic behavior of human players [18]. For
example, consider situations where a player has lost any
“practical”chance of winning the game, but its actions might
determine which of the other players will eventually win—or
where a local grievance in the early stages of the game gives
birth to vindictive actions in later stages. In both cases, in-
terpersonal relationships will have considerable weight when
the players reason about future courses of action.

The standard approach to dealing with this problem has
been to make simplifying assumptions. For example, the
Max-n algorithm [8], a generalization of Minimax to n-player
games, assumes that the players will each try selfishly to
maximize their own utility values, while being indifferent
to the other players; and the Paranoid algorithm [16] as-
sumes that a player’s opponents will always select the ac-
tions that are worst for that player, without considering their
own chances of winning.

Such simplifying assumptions rarely hold in real-world
games. For example, in games such as Risk or Diplomacy,
it is very common for players to decide that one player (or
a small group of players) is too strong, and join forces tem-
porarily to fight that player (a fact that was successfully
exploited by the MP-Mix algorithm presented in [20]). Such
interpersonal relationships can also develop when games are
played repeatedly [2].

The fundamental question is how to describe and rea-
son about these relationships during game play. Our
approach is to model the players’ interpersonal relationships
by incorporating ideas from Social Value Orientation (SVO)
theory into game-tree search.

Social Value Orientation (SVO) theory was first described
by Messick and McClintock in [4], and [3] gives a recent
overview. In this theory, the space of interpersonal behav-
iors is viewed as a two-dimensional spectrum in which one
axis represents altruism versus aggression, and the other rep-
resents varying degrees of individualism. SVO theory states
that these differences in interpersonal orientations might
arise due to reasons including subjective preferences and be-
liefs, and ascriptive characteristics such as nationality and
ethnicity (for example see Grid-Group theory [9]). These
orientations often change dynamically during interactions,
based on the players’ actions in the previous rounds [1].

Our new algorithm, Socially Oriented Search (SOS), uses
a social-range matrix structure, based on SVO theory, to
keep track of inter-player relationships and use them to guide
the search. Since the interpersonal values are often unknown
and change dynamically during play, we also present an on-
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Figure 1: Propagating with the Max-n assumption

line learning technique that adapts the stored relationship
values as the game progresses. In our evaluations of the
algorithm in the Quoridor game, it played significantly bet-
ter than the Max-n and Paranoid algorithms when playing
against adversaries with varying interpersonal orientations.

Our main contributions can be summarized as follows:

• SOS, a novel multi-player search algorithm that con-
siders interpersonal orientations.

• A theoretical analysis of the solution computed by SOS
and conditions under which SOS converges to well-
known multi-player algorithms.

• A learning version of the algorithm that learns and
adapts social orientations when they are unknown.

• An empirical evaluation comparing the performance of
SOS with both Max-n and Paranoid algorithms.

2. BACKGROUND AND RELATED WORK
In search algorithms for extensive-form games, when a

player needs to select an action, it spans a search tree where
nodes correspond to states of the game, edges correspond to
moves and the root of the tree corresponds to the current
state. We refer to this player as the root player. The leaves
of the tree are evaluated according to a heuristic evaluation
function and the values are propagated up to the root.

In sequential two-player games (where players alternate
turns) values from the leaves are propagated according to
the Minimax principle [13]. That is, in levels where it is the
root player’s turn, we take the maximum among the children
while in levels where it is the opponent’s turn, we take the
minimum of the children.

The sequential multi-player game with n players (n > 2),
where the players take turns in a round robin-fashion, is
more complicated. The assumption is that for each node the
evaluation function returns a vector H of n values where hi

estimates the merit of player i. The straightforward gener-
alization of the two-player Minimax algorithm to the multi-
player case is the Max-n algorithm [8]. It assumes that each
player will try to maximize its own component of the heuris-
tic vector, while disregarding the values of other players.
Minimax can be seen as a specific instance of Max-n, where
n = 2. An example of the Max-n propagation procedure is
depicted in figure 1, where we see that each player i (player
numbers are inside the nodes) selects the action which max-
imizes element i of the vector without considering the values
of the other elements.

A different approach, called the Paranoid approach, was
first introduced in [11] as part of a proof for search pathol-
ogy in multi-player games trees, and later was presented in
[16]. In this algorithm the root player takes a paranoid as-
sumption that the opponent players will work in a coalition
against him and try to minimize its heuristic value. This
paranoid assumption allows the root player to reduce the
game to a two-player game: the root player against a meta
player that includes all the other players. Figure 2 depicts
the same game tree as the previous Max-n example, but now
values were propagated according to the Paranoid assump-
tion. Here, the root player assumes that players 2 and 3 will
select the action that minimizes his value.
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Figure 2: Propagating with Paranoid assumption

Since there is no definitive answer to which approach is
better, and the answer is probably both domain and evalu-
ation function dependent [17], a recent algorithm, MP-Mix,
proposed switching between search strategies dynamically
according to the game situation [20]. This algorithm exam-
ines the current situation and decides, according to the play-
ers’ relative strength values, whether the root player should
propagate values according to the Max-n principle, the Para-
noid principle, or the newly presented Directed Offensive
principle. In this strategy, the root player first chooses a
target opponent it wishes to attack. It then explicitly se-
lects the path which results in the lowest evaluation score
for the target opponent.

The above algorithms share two common assumptions:
the first is that when propagating values, the adversaries
use the same heuristic evaluation function as the searching
player, while the second states that the adversaries are using
a fixed, pre-determined preference ordering on the heuristic
values. The first assumption has been dealt with through
specific opponent modeling techniques. For example, the
Prob-MaxN algorithm [19] is a extension of the Max-n al-
gorithm where, given a set of possible evaluation functions
as an input, the algorithm dynamically adapts the proba-
bilities of each individual adversary’s membership to these
prior models. In [10], when playing repeatedly against the
same opponent, the authors’ algorithm learned its oppo-
nent’s weaknesses and exploited them in future games. Re-
garding the second assumption, these models are limited
and unable to describe and reason about the more complex
relationships that players might encounter in multi-player
games.
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3. SOCIALLY ORIENTED SEARCH

Figure 3: Social Behavior Spectrum

In this paper, we use “Social Value Orientation theory”
to refer to a class of theories from the behavioral science
literature [4, 3, 6] stating that people differ in their inter-
personal orientations, and that they are consistent over time.
Figure 3 describes a two-person preference model of the ma-
jor personal and interpersonal orientations that can occur
between players. In this model [6], the player’s utility is de-
fined on the horizontal axis, and the outcome of the “other”
player is on the vertical axis, and the values reflect a linear
combination of payoffs to both players.

Our Socially Oriented Search algorithm utilizes a recently
suggested social-range matrix model [7] that supports the
description of interpersonal orientations as captured in the
two-dimensional social behavior spectrum. The social ma-
trix construct makes it possible to model “socially hetero-
geneous” systems where players may have different social
orientations to each of the other players. The fundamen-
tal building block of our search procedure, the social-range-
matrix, is defined as follows: for a game consisting of n
players, the social-range matrix is an n×n matrix where el-
ement cij ∈ [−1, 1] represents how much player i cares about
player j. A value of 1 indicates a completely cooperative re-
lationship whereas −1 indicates an aggressive one. Values
in between represent varying degrees of social orientation,
with 0 indicating complete apathy.1 Given a utility vector,
U , with a utility for for each player, the weighted sum of the
utility vector and the ith row of the social range matrix is
referred to as the perceived utility for player i.

3.1 The SOS Algorithm
Our Socially Oriented Search (SOS) algorithm (presented

as algorithm 1) models inter-player relationships with a social-
range matrix and incorporates them into the search by weight-
ing the evaluation values in the leaf nodes to obtain the per-
ceived utility. Since most games are too complex to search
completely, the typical approach is to pre-select a level to
cutoff the search and estimate the strength of the states at
this level by a heuristic evaluation function. This evaluation
is a vector where element i represents the relative strength
of the game state for player i. Our algorithm transforms

1Note that the social behaviors on the left side of the graph
are deliberately excluded from our work, since these be-
haviors (e.g. Masochism, Sado-Masochism), are considered
mental disorders.

Algorithm 1 SOS(s, eval, d, c, p): Given an evaluation
function, eval, and a social range matrix, c, compute and
return the perceived utility of state s by searching to depth
d. p is the player whose turn it is to move at s and N is the
number of players in the game.

// Transform evaluation to incorporate social preferences.
// Notice the matrix-vector multiplication.
If d is 0, return c * eval(s)

// Determine maximum of values for children nodes.
Let mv1, . . . ,mvn be the children of s and
bestEvaluation = −∞
for i = 1, . . . , n do
v = SOS(mvi, eval, d− 1, c, p mod N)
if v > bestEvaluation then
bestEvaluation = v
bestMove = v

end if
end for

// Return the move with the best perceived utility
return bestMove

  

1

(8,7,0)

2 2 2

3 3 3 3 3 3

(8,7,0)(8,7,0)(7.5,6,1)

(1,3,5) (6,3,1) (6,4,0) (6,4,0) (1,4,5)(3,5,2)

(2.5,3.5,5) (7.5,6,1) (8,7,0) (5.5,6.5,2) (8,7,0) (3,4.5,5)

Figure 4: SOS propagation using the social-range
matrix c.

this vector into the perceived evaluation, where element i
is the dot product of the heuristic evaluation and row i of
the social range matrix. The values are then propagated so
that each player maximizes their element of the perceived
evaluation.

Figure 4 illustrates an example of a depth-2 search that
is guided by the social-range matrix c. In this particular
matrix, players 1 and 2 are not completely cooperative, as
they do not value each other’s utility as much as their own
but they do have a positive orientation towards one another
and they are ignorant of the utility for player 3. Player 3 is
selfish, valuing its own utility and ignoring all others. Based
on this matrix, the SOS algorithm selects the middle branch
as the best decision, leading to a perceived utility of 8 for
player 1.

The social range matrix guides an SOS search, selecting
the move leading to the maximum perceived utility instead
of selecting the move that maximizes or minimizes a single
element in the evaluation vector (i.e., the Max-n and Para-
noid algorithms). The ability to modify the social range
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matrix makes our algorithm more flexible than either Para-
noid or Max-n. In fact, one can achieve a Max-n or Para-
noid search with the appropriate social range matrix. Max-
n assumes that all players are selfish and ignorant of other
players utility. Property 1 characterizes the features of a
social-range matrix that lead to Max-n behavior.

Property 1. Using the identity matrix with the SOS al-
gorithm is equivalent to Max-n.

Paranoid assumes that all players are aggressive toward the
principle player with the exception of the principle player
itself which is selfish. Property 2 formally characterizes the
features of a social-range matrix that lead to Max-n or Para-
noid behavior.

Property 2. A matrix in which element cii = 1, cji =
−1, ∀j 6= i, and all other entries are 0 represents the Para-
noid assumption from the point of view of player i. Using
it with the SOS algorithm is equivalent to player i using the
Paranoid algorithm.

Coalitions, where a group of players try to maximize or min-
imize the combined utility of another set of players, can also
be represented by social range matrices, as well as an infinite
number of other social preferences.

3.2 Online learning SOS
Since the social preferences of each player are not usually

known ahead of time, learning algorithms can be used to
estimate the social-range matrix based on previous moves.
Our learning rule estimates a player’s social preferences as
the average effect of the player’s last k moves. We can es-
timate the effect of a move from state s1 to state s2 as the
difference in the normalized heuristic evaluations:

∆(s1, s2) =
eval(s2)

max eval
− eval(s1)

max eval
,

where max eval is the maximum evaluation for any player’s
component of the evaluation. So, given a history of k moves
for player i, we estimate the ith row of the social-range ma-
trix as the average effect of the k last moves. Higher values of
k provide a richer information set to infer the social-range
matrix while lower values allow the matrix to be adapted
more quickly to a player whose social preferences change
often over the course of the game.

4. THEORETICAL ANALYSIS
In this section we document some of the theoretical prop-

erties of the SOS algorithm. We demonstrate that SOS
computes an equilibrium point, that SOS always permits
immediate and shallow pruning but may also leverage deep-
pruning under special circumstances, and that the behavior
of SOS may converge to that of Max-n or Paranoid based
on the social orientations and evaluation function.

4.1 Perceived Equilibria
For an n-player game, a player’s strategy is a plan that

completely determines the player’s behavior for any poten-
tial situation that may arise during the course of the game.
A strategy profile, S = {s1, s2, . . . , sn}, is a set of strategies,
one for each player, that completely defines all actions for
the game. A strategy profile is a Nash Equilibrium if there
is no player that can unilaterally change their strategy and

obtain a higher utility. The utility vector corresponding to
this strategy profile is an equilibrium point. This concept
assumes each player is completely selfish. For a game where
players’ social orientations may vary, we have a similar con-
cept: the Perceived Nash Equilibrium [7]. A strategy profile
is a perceived Nash equilibrium if there is no player that
can unilaterally change their strategy to obtain a higher per-
ceived utility. Similarly, the perceived utility associated with
this strategy profile is a perceived Nash equilibrium point.

Assuming that the social range matrix correctly repre-
sents all players’ social preferences then we can prove that
our generalized search procedure identifies a perceived equi-
librium point in a similar fashion as the proof Luckhart et
al. use in showing that Max-n identifies an equilibrium [8].

Theorem 1. Given a perfect-information, n-player, non-
cooperative game and the players’ social orientations in the
form of a social-range matrix, SOS computes a perceived
Nash equilibrium point.

Proof. Let S = {s1, s2, ..., sn} denote the strategy pro-
file computed by SOS that leads to the payoff vector pro-
duced by our algorithm. The payoff vector, where element i
of the vector is the perceived utility for player i, propagated
to the root of the search tree based on this set of strategies
is U(S). U(S) is a perceived equilibrium point if there is no
alternate strategy set S′ = s1, s2, ..., s

′
j , ..., sn where player

j utilizes a different strategy and U(S′)[j] > U(S)[j]. Now,
assume a strategy set exists such that U(S′)[j] > U(S)[j],
where S is the strategy set identified by our SOS. This means
that there is a different set of moves that would lead to
a greater perceived utility for player j. More specifically,
there must be at least one node in the game tree where the
move selected by j would be better if a different move were
selected. This contradicts the definition of our algorithm
where the move selected at each node maximizes the mov-
ing player’s perceived utility.

4.2 Pruning
In general, SOS is only capable of immediate and shallow

pruning, however, deep-pruning is also possible under cer-
tain circumstances. Our algorithm follows the same propa-
gation rule as Max-n with the exception of the linear trans-
formation that is applied to the node evaluations on the
search frontier. Therefore, as long as the heuristic evalua-
tion meets the assumptions that make such pruning possible
for Max-n (i.e., the minimum evaluation for each player and
the maximum sum of player evaluations is known) then we
can perform immediate and shallow pruning. We will not
reproduce the proofs here because, with the exception of
the evaluation transformation, they are identical to those
for Max-n [16].

As discussed by Sturtevant and Korf [16], the Paranoid
algorithm allows for deep pruning by reducing the game to
two players, the principle player and a coalition of attackers
cooperating against the principle player. Therefore, in addi-
tion to immediate and shallow pruning, we are also able to
take advantage of alpha-beta style pruning when the social-
range matrix meets the criteria of the Paranoid matrix as
presented in Property 2.

Examining the Paranoid matrix, we see that reducing the
game to a two-player game really means that only a single
column of the matrix is non-zero. In other words, if col-
umn i is the non-zero column then every player’s perceived
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utility is oriented around either maximizing or minimizing
player i’s utility (referred to as cooperating and attacking
players, respectively). These players would be max and min
respectively on their turns in the corresponding two-player
game tree, which in turn makes alpha-beta pruning possible
[16]. This means that any situation where the social-range
matrix has only one non-zero column can be deep-pruned us-
ing alpha-beta, not just when there is one cooperating player
and n− 1 attacking players as is the case of Paranoid.

4.3 Convergence to Max-n and Paranoid
SOS does not always produce different results than Max-

n or Paranoid. For example, properties 1 and 2 mention
that when the social orientations match the underlying as-
sumptions of either algorithm then the behavior will coincide
with the corresponding algorithm. This section expands this
concept, using features of the evaluation function as well as
information about players’ social orientations to determine
when the social orientations can have an effect on the algo-
rithm performance and when they can be ignored since the
performance converges to that of Max-n or Paranoid.

The identity matrix is not the only matrix that will result
in identical behavior to Max-n. Theorem 2 shows that scal-
ing the diagonal of the identity matrix by any positive, real
number will also produce the same behavior as Max-n.

Theorem 2. Given a perfect-information, n-player game
and the players’ social orientations in the form of a social-
range matrix, c, the equilibrium strategies computed by SOS
and Max-n are identical given that c is the zero matrix except
for a positive, non-zero diagonal.

Proof. Assume that SOS does select a different strategy
than Max-n. The strategies discovered by SOS and Max-n
will differ if there is at least one decision in the game tree
where Max-n selects a state s1 and SOS selects state s2 on
player i’s turn. For Max-n to select s1 over s2 means that
the i’th component of the evaluation for s1 must be greater
than that of the evaluation for s2. In other words, eval(s1) =
{e1, ..., ei, ..., eN} and eval(s2) = {e′1, ..., ei−ε, ..., e′N}, where
ε is a non-zero, positive real-number such that ei − ε is still
a valid evaluation. Letting cii be player i’s entry in the
i’th row of the social-range matrix, SOS will choose s2 and
produce a different strategy set if:

(ei − ε)cii ≥ (ei)cii

which reduces to

cii ≤ 0.

This contradicts the non-zero and positive diagonal.

In addition to the inter-player relationships, having knowl-
edge of the evaluation function can also provide insights into
the performance of a search algorithm. In general, an eval-
uation function with finer granularity (number of possible
values) is better as more values means that the strength of
states can be estimated more accurately. Also, Nau et al.
[12] recently showed that evaluation functions with a finer
granularity are less likely to exhibit pathological behavior
during Minimax search. We use a granularity-based model
of the evaluation function as well to analyze how the rela-
tionship between social orientations and evaluation function
granularity can impact the behavior of SOS. The function
we consider is of the form:

eval : s→ 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},

where max eval is the maximum possible value for any sin-
gle element of the evaluation vector, s is a state of the game,
and δ represents the distance between consecutive values of
the evaluations. With max eval fixed, finer grained eval-
uations can be achieved by reducing δ and coarser-grained
evaluations can be achieved by increasing δ.

Theorem 3. Given a perfect-information, n-player game,
the players’ social orientations in the form of a social-range
matrix, c, and an evaluation function,
eval : s → 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},
the equilibrium strategies computed by SOS are guaranteed
to be identical to those of Max-n if, for each player i:

δ >

maxe′
j

N∑
j 6=i

cij ∗ e′j −minej

N∑
j 6=i

cij ∗ ej

cii
.

Proof. Consider the turns in the game tree for an in-
dividual player. By definition, on player i’s turn, Max-n
always selects the state that maximizes the i’th component
of the utility vector. This means that given that Max-n
chooses s1 over s2 then we know their evaluations must be
of the form
eval(s1) = {e1, . . . , ei, . . . , eN} and eval(s2) = {e′1, . . . , ei −
xδ, . . . , e′N} where x is a positive integer such that ei−xδ is
still a valid evaluation. SOS will incorporate the true social
orientation of player i and make the same decision if:

(ei − xδ)cii +

N∑
j 6=i

cij ∗ e′j < ciiei +

N∑
j 6=i

cij ∗ ej .

We can guarantee that this condition is true for all possible
evaluation vector pairs e and e′ if e′ is chosen so as to maxi-
mize the summation on the left-hand side and e is chosen so
as to minimize the summation on the right-hand side. This
gives us:

(ei − xδ)cii + max
e′

j

N∑
j 6=i

cij ∗ e′j < ciiei + min
ej

N∑
j 6=i

cij ∗ ej .

Simplifying this equation we get the result displayed in The-
orem 3 which must hold for all players for SOS to select the
same move at every level of the search tree as Max-n.

Intuitively, the relationship presented in Theorem 3 states
that with coarser evaluation functions, the social orienta-
tions can deviate further from the assumed relationship model
of Max-n and yet the behavior of Max-n and SOS will con-
verge. This is significant because the result that finer-grained
evaluation functions make social orientations have greater ef-
fect further increases the appeal of modeling and using them
with SOS.

Recognizing situations where the behavior of SOS will
converge to that of Paranoid is also important. Given the
social-range matrix, if we know that SOS will behave exactly
as a Paranoid then the social-range matrix can be approxi-
mated by the Paranoid matrix and SOS gains the advantage
of deep-pruning without sacrificing anything by ignoring the
social relationships. Theorem 4 formally describes the rela-
tionship between the granularity of the evaluation function
and paranoid matrix.
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Theorem 4. Given a perfect-information, n-player game,
the players’ social orientations in the form of a social-range
matrix, c, and an evaluation function,
eval : s → 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},
the equilibrium strategies computed by SOS are guaranteed to
be the same as those of Paranoid if, for the principle player
player i:

δ >

maxe′
j

N∑
j 6=i

cij ∗ e′j −minej

N∑
j 6=i

cij ∗ ej

cii
,

and for every other player k:

δ >

maxej

N∑
j 6=i

ckj ∗ ej −mine′
j

N∑
j 6=i

ckj ∗ e′j
cki

.

Proof. Similar to Theorem 3, we must show the con-
ditions under which SOS is guaranteed to make the same
choices as Paranoid during propagation. The justification
for the principle player is identical to the one already shown
in the proof of Theorem 3. The difference is that all other
players are attacking and trying to minimize the principle
player’s score whereas in Max-n they are assumed to be max-
imizing their own utility. Therefore, given that player i is
the principle player and that Paranoid chooses s1 over s2 on
player k’s turn then we know their evaluations must be of
the form
eval(s1) = {e1, . . . , ei, . . . , eN} and eval(s2) = {e′1, . . . , ei +
xδ, . . . , e′N} where x is a positive integer such that ei +xδ is
still a valid evaluation. SOS will incorporate the true social
orientation of player i and make the same decision if:

(ei + xδ)cki +

N∑
j 6=i

ckj ∗ e′j > ckiei +

N∑
j 6=i

ckj ∗ ej .

Now, we can guarantee that this condition is true for all
possible evaluation vector pairs e and e′ if e′ is chosen so as
to minimize the summation on the left-hand side and e is
chosen so as to maximize the summation on the right-hand
side. This leaves us with:

(ei + xδ)cki + min
e′

j

N∑
j 6=i

ckj ∗ e′j > ckiei + max
ej

N∑
j 6=i

ckj ∗ ej .

This reduces to the equation in Theorem 4.

5. EXPERIMENTAL EVALUATION
In this section we provide a discussion of the experimen-

tal analysis we performed on our algorithm. All experiments
are performed on a four-player version of the game Quoridor.
We show that by explicitly modeling social preferences, SOS
gains a siginificant advantage over algorithms that make sim-
plifying assumptions. We also show that our approach to
learning the social-range matrix, although simple, is quite
effective.

5.1 Game description
Quoridor2 is a full-information board game for 2 or 4 play-

ers, that is played on a 9x9 grid (see figure 5). In the 4 player

2More information on that game can be found of the cre-
ator’s website: http://www.gigamic.com/

Figure 5: Quoridor board game

version, each player starts with five walls and a single pawn
that is located at the middle grid location on one of the
four sides of the square board. The objective is to be the
first player to reach any of the grid locations on the opposite
side of the board. The players move in clock-wise, sequential
order, and at each turn, the player chooses to either:

1. move his pawn horizontally or vertically to one of the
neighboring squares.

2. place a wall piece on the board to facilitate his progress
or to impede that of his opponent.

The walls occupy the width of two grid spaces and can
be used to block pathways around the board as players can-
not jump over them and must navigate around them. When
placing a wall, an additional rule dictates that each player
has to have at least one free path to a destination on the op-
posing side of the board. That prevents situations in which
players team-up to enclose a pawn inside 4 walls. Walls are
limited and useful resource and they cannot be moved or
picked up after they are placed on the board.

Quoridor is an abstract strategic game which bears some
resemblance of chess and checkers. The state-space com-
plexity of Quoridor is composed by the number of ways to
place the pawns multiplied by the number of ways to place
the walls, minus the number of illegal positions. Such esti-
mation was computed in [5] for the two-player version of the
game and as such places the game in the middle between
Backgammon and Chess in terms of the size of the search
space. Obviously that search space increases dramatically
when playing the 4-player version of the game.

5.2 Experimental Design and Results
We implemented a game environment in C++. The game

board was represented as a graph and Dijkstra’s algorithm
was used to check the legality of wall positions (i.e., to check
that there exist a path to the goal). We used a simple and
straightforward heuristic evaluation function that sum the
total distance of each of the players to the goal. Each player
seeks to minimize his own distance while maximizing the op-
ponents’ distances. Moreover, to cope with the large branch-
ing factor of the game, we limited the possible locations that
a wall can be placed to a fixed radius around the pawns.

In the first set of experiments, we played the Max-n, Para-
noid, and SOS algorithms against a set of random SOS play-
ers that looked only one move ahead. In the initialized stage
of each game we first randomized the social orientation of the
three random players, as well as the position of the search-
based player (as playing order might effect the result). After
the initialization stage, in order to provide a robust compari-
son, each player was played against the same random setting
from the same position.
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Figure 6: Results of playing Max-n, Paranoid, and
SOS players in 500 Quoridor games against 3 ran-
dom social-preference playing opponents. Two dif-
ferent SOS players were examined, one with abso-
lute knowledge of the social-range matrix and an-
other using naive learning method to approximate
it.
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Figure 7: Results of playing Max-n and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player had absolute
knowledge of the social-range matrix when playing.

We played both versions of the SOS algorithm, in the first
we assume our Socially-oriented player had absolute knowl-
edge of the social-range matrix in this setting. The second
version was the SOS with learning (k = 5), where the initial
social matrix values were initialized to the Max-n matrix,
presented in property 1, and the algorithm adapted these
values during play. Figure 6 shows that both the versions
of the SOS player significantly outperforms both Max-n and
Paranoid after depth 2 (P < 0.01 in a 2-tail Z-test). In-
terestingly, our simple learning rule performed in a manner
that is completely comparable to the SOS algorithm with
the full and accurate social information.

In the second set of experiments, we replaced one of the
random-preference players with a Max-n or paranoid player
in order to evaluate their head-to-head performance. Thus
prior to each game we randomized two random players and
then plugged in an SOS player as third player. The fourth
player was Max-n in the first set of experiments and Para-
noid in the secondset. We ran 500 games for each depth.
Figures 7 and 8 show that the non-learning algorithm, still
significantly outperforms Max-n and Paranoid when com-
peting directly against them (P < 0.01). Although both
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Figure 8: Results of playing Paranoid and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player had absolute
knowledge of the social-range matrix when playing.
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Figure 9: Results of playing Max-n and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player learned the
social-range matrix with our naive learning algo-
rithm and a history of size 5.

Max-n and Paranoid performance decreases, the paranoid
assumption seems to have a greater effect on performance
than the rationality assumption of Max-n.

In the last set of experiments we reproduced the same
setting as in the second set, but this time used the SOS al-
gorithm with learning, where k was set to 5. That is, the
algorithm started each game with a random social matrix
and used the suggested learning rule to adapt the values
during game play. In figures 9 and 10 we can see that the
online learning version of the SOS algorithm also do sig-
nificantly better than Max-n and Paranoid in most cases
(P < 0.01), excluding depth 4 against Max-n, and depth 3
against Paranoid that are not statistically significant.

6. CONCLUSION
In this paper we addressed a fundamental question for

search algorithms for extensive-form, multi-player games:
how to describe and reason about inter-player relationships
during game play? Our approach was to model the play-
ers’ interpersonal relationships by incorporating ideas from
Social Value Orientation theory into game-tree search.

Our Socially Oriented Search (SOS) algorithm models re-
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Figure 10: Results of playing Paranoid and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player learned the
social-range matrix with our naive learning algo-
rithm and a history of size 5.

lationships with a social-range matrix and uses it to compute
the perceived utilities for each player and guide the search
procedure. Our analytical results show that the algorithm
can mimic the paranoid and Max-n behaviors by setting the
social-matrix elements to specific values, and that the strat-
egy computed by the SOS algorithm is a perceived equilib-
rium. Moreover, our analytical results relate the granular-
ity of the evaluation function to the expected difference in
strategies that will be selected by the SOS algorithm and
Max-n and Paranoid. This relationship shows that using
coarser evaluation functions reduces the ability to recognize
social orientations.

We incorporated a simple learning algorithm into SOS
to learn the social orientations of the players as the game
progresses. The dynamic learning rule uses that the last
k actions of each player to adapt its social-matrix during
game play. In our evaluations of both the learning and non-
learning versions of the algorithm using the Quoridor game,
we found that in most cases they produced significantly bet-
ter play than the Max-n and Paranoid algorithms.

For future work, we plan to evaluate the SOS algorithm
in multi-player games that have both probabilistic elements
(e.g., Risk) and incomplete information (e.g., Hearts). We
also plan to evaluate the learning rule against players that
change their orientations during game, as well as experi-
menting with techniques for learning the value of k.
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ABSTRACT
Revelation games are bilateral bargaining games in which
agents may choose to truthfully reveal their private infor-
mation before engaging in multiple rounds of negotiation.
They are analogous to real-world situations in which people
need to decide whether to disclose information such as med-
ical records or university transcripts when negotiating over
health plans and business transactions. This paper presents
an agent-design that is able to negotiate proficiently with
people in a revelation game with different dependencies that
hold between players. The agent modeled the social fac-
tors that affect the players’ revelation decisions on people’s
negotiation behavior. It was empirically shown to outper-
form people in empirical evaluations as well as agents play-
ing equilibrium strategies. It was also more likely to reach
agreement than people or equilibrium agents.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]

General Terms
Experimentation

Keywords
Human-robot/agent interaction, Negotiation

1. INTRODUCTION
In many negotiation settings, participants lack informa-

tion about each other’s preferences, often hindering their
ability to reach beneficial agreements. This paper presents
a study of a particular class of such settings we call “revela-
tion games”. In these settings, players are given the choice to
truthfully reveal private information before commencing in a
finite sequence of alternating negotiation rounds. Revealing
this information narrows the search space of possible agree-
ments and may lead to agreement more quickly, but may
also lead players to be exploited by others.
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Revelation games combine two types of interactions that
have been studied in the past: Signaling games [13], in
which players choose whether to convey private information
to each other, and bargaining [10], in which players engage
in multiple negotiation rounds. Revelation games are analo-
gous to real-world scenarios in which parties may choose to
truthfully reveal information before negotiation ensues. For
example, consider a scenario in which company employees
negotiate over the conditions of their employer-sponsored
health insurance policy. The employees can wave the right
to keep their medical records private. The disclosure of this
information to the employer is necessarily truthful and is
not associated with a cost to the employees. It may provide
employees with favorable conditions when negotiating over
future health policies. However, many people choose not
to disclose medical records to their employees, fearing they
may be compromised by this information.

This paper describes a new agent design that uses a decision-
theoretic approach to negotiate proficiently with people in
revelation games. The agent explicitly reasons about the so-
cial factors that affect people’s decisions whether to reveal
private information, as well as the effects of people’s reve-
lation decisions on their negotiation behavior. It combines
a prediction model of people’s behavior in the game with a
decision-theoretic approach to make optimal decisions. The
parameters of this model were estimated from data consist-
ing of human play. The agent was evaluated playing new
people and an agent playing equilibrium strategies in a rev-
elation game that varied the dependency relationships be-
tween players. The results showed that the agent was able to
outperform human players as well as the equilibrium agent.
It learned to make offers that were significantly more bene-
ficial to people than the offers made by other people while
not compromising its own benefit, and was able to reach
agreement significantly more often than did people as well
as the equilibrium agent. In particular, it was able to ex-
ploit people’s tendency to agree to offers that are beneficial
to the agent if people revealed information at the onset of
the negotiation.

The contributions of this paper are fourfold. First, it for-
mally presents revelation games as a new type of interaction
which supports controlled revelation of private information.
Second, it presents a model of human behavior that explic-
itly reasons about the social factors that affect people’s ne-
gotiation behavior as well as the effects of players’ revelation
decisions on people’s negotiation behavior. Third, it incor-
porates this model into a decision-making paradigm for an
agent that uses the model to make optimal decisions in reve-
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lation games. Lastly, it provides an empirical analysis of this
agent, showing that the agent is able to outperform people
as well as more likely to reach agreement than people.

2. RELATED WORK
Our work is related to studies in AI that use opponent

modeling to build agents for repeated negotiation in het-
erogeneous human-computer settings. These include the
KBAgent that made offers with multiple attributes in set-
tings which supported opting out options, and partial agree-
ments [11]. This agent used a social utility function to con-
sider the trade-offs between its own benefit from an offer and
the probability that it is accepted by people. It used density
estimation to model people’s behavior and approximated
people’s reasoning by assuming that people would accept of-
fers from computers that are similar to offers they make to
each other. Other works employed Bayesian techniques [6]
or approximation heuristics [7] to estimate people’s prefer-
ences in negotiation and integrated this model with a pre-
defined concession strategy to make offers. Bench-Capon [2]
provide an argumentation based mechanism for explaining
human behavior in the ultimatum game. We extend these
works in two ways, first in developing a partially strategic
model of people’s negotiation behavior and second in formal-
izing an optimal decision-making paradigm for agents using
this model. Gal and Pfeffer [4] proposed a model of human
reciprocity in a setting consisting of multiple one-shot take-
it-or-leave-it games, but did not evaluate a computer agent
or show how the model can be used to make decisions in the
game. Our work augments these studies in allowing players
to reveal private information and in explicitly modeling the
effect of revelation on people’s negotiation behavior.

Our work is also related to computational models of ar-
gumentation, in that people’s revelation decisions provide
an explanation of the type of offers they make during ne-
gotiation. Most of these works assume that agents follow
pre-defined strategies for revealing information [12, 14] and
do not consider or model human participants.

Lastly, revelation games, which incorporate both signaling
and bargaining, were inspired by canonical studies showing
that people learn to play equilibrium strategies when they
need to signal their private information to others [1]. On
the other hand, people’s bargaining behavior does not ad-
here to equilibrium [3, 9], and computers cannot use such
strategies to negotiate well with people [8]. Our work shows
that integrating opponent modeling and density estimation
techniques is an effective approach for creating agents that
can outperform people as well equilibrium strategies in rev-
elation games.

3. IMPLEMENTATION: COLORED TRAILS
We based our empirical work on a test-bed called Col-

ored Trails [5], which we adapted to model revelation games
with 2 rounds, the minimal number that allows an offer to
be made by both players. Our revelation game is played
on a board of colored squares. Each player has a square
on the board that is designated as its goal. The goal of
the game is to reach the goal square. To move to an ad-
jacent square required surrendering a chip in the color of
that square. Players had full view of the board and each
others’ chips. Both players were shown two possible loca-
tions for their goals with associated belief probabilities, but

(a) (b)

Figure 1: (a) A Colored Trails revelation game
shown from Bob’s point of view. (b) Bob’s offer

each player could only see its own goal. An example of a
CT revelation game is shown in Figure 1. Here, the “me”
and “O” icons represent two players, Bob and Alice, respec-
tively. Each player has two possible goals. Bob’s true goal
is located three steps below the “me” icon (appearing as a
white G square). Bob’s other goal is located two steps be-
low his true goal (appearing as a grey “?” square). Alice’s
possible goals are presented as two grey “?” circles, located
three and five steps above Alice’s “O” icon. The board is
presented from Bob’s point of view. Bob can see its true
goal location but Alice does not observe it. Similarly, Bob
cannot observe Alice’s true goal location. The number “50”
on each goal square represent a 50% probability that the
true goal lies in that square.

Our CT game progresses in three phases with associated
time limits. In the revelation phase, both players can choose
to truthfully reveal their goal to the other player.1 In the
proposal phase, one of the players is randomly assigned the
role of proposer and can offer to exchange a (possibly empty)
subset of its chips with a (possibly empty) subset of the chips
of the other player. If the responder accepts the offer, the
chips are transferred automatically according to the agree-
ment, both participants will automatically be moved as close
as possible to the goal square given their chips and the game
will end. If the responder rejects (or no offer was received),
it will be able to make a counter-proposal. If the proposal
is accepted, the game will end with the agreement result as
above. Otherwise, the game will end with no agreement.

At the end of the game, the score for each player is com-
puted as follows: 100 points bonus for reaching the goal;
5 points for each chip left in a player’s possession, and 10
points deducted for any square in the path between the play-
ers’ final position and the goal-square.2 Suppose for example
that Alice’s true goal is five steps above the position of her
icon (Bob does not see this goal if Alice does not reveal it).
Bob is missing one chip to get to the goal while Alice is
missing two chips; the score for Alice is 70 points and for

1This decision is performed simultaneously by all players,
and goals are only revealed at the end of the phase.
2This path is computed by the Manhattan distance.
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Bob is 90 points.
The game is interesting because players need to reason

about the tradeoff between revealing their goals and provid-
ing information to the other player, or not to reveal their
goals to possibly receive or ask for more chips than they
need. In addition, if there is a second round, the proposer
in this round has an advantage, in that it makes the final
offer in the game. But the identity of the second proposer is
not known at the time that players decide whether to reveal
their goals.

4. THE SIGAL AGENT
The Sigmoid Acceptance Learning Agent (SIGAL) devel-

oped for this study uses a decision-theoretic approach to
negotiate in revelation games, that is based on a model of
how humans make decisions in the game. Before describing
the strategy used by SIGAL we make the following defini-
tions. Each player has a type ti that represents the true
position of its goal on the board.3 Let ωn represent an offer
ω made by a proposer player at round n ∈ {1, 2} in a game.
Let rn ∈ {accept, reject} represent the response to ωn by a
responder player. Let si represent the score in the game as
described in the previous section. The no-negotiation alter-
native (NNA) score to player i of type ti is the score for i in
the game given that no agreement was reached. We denote
the score for this event as si(∅). 4 We denote the benefit to
player i from ωn given that rn = accept as πi(ω

n | ti). This
is defined as the difference in score to i between an offer ωn

and the NNA score:

πi(ω
n | ti) = si(ω

n | ti)− si(∅) (1)

Let Ti denote a set of types for player i. Let φi denote
player i’s decision whether to reveal its type at the onset of
the game, which we will refer to as round 0. Let Φi = tki
denote the event in which i reveals its type tki ∈ Ti, and let
Φi = null denote the event in which i does not reveal its
type. Let hn denote a history of moves, including for both
players i and j their revelation decision at the onset of the
game, and the proposals and responses for rounds 1 through
n. We define h0 and h1 as follows:

h0 = {φi, φj} ;h1 =
{
h0, ω1, r1} (2)

For the remainder of this section, we assume that the SI-
GAL agent (denoted a) is paying a person (denoted p). Let
ωna,p represent an offer made by the agent to the person in
round n and let rnp represent the response of the person to
ωna,p. The expected benefit to SIGAL from ωna,p given history
hn−1 and SIGAL’s type tp is denoted Ea

(
ωna,p | hn−1, ta

)
.

Let p(rnp = accept | ωna,p, hn−1) denote the probability that
ωna,p is accepted by the person given history hn−1.

We now specify the strategy of SIGAL for the revelation
game defined in Section 3. The strategy assumes there ex-
ists a model of how humans make and accept offers in both
rounds. We describe how to estimate the parameters of this
model in Section 5. We begin by describing the negotiation
strategies of SIGAL for rounds 2 and 1.

3Revealing goals in the game thus corresponds to making
types common knowledge.
4Note that if no agreement was reached in round 2 (the last
round) of the game, players’ NNA score is also their final
score in the game. If no agreement was reached in round
1 of the game, players’ final score depends on whether the
counter-proposal in round 2 is accepted.

Round 2: If SIGAL is the second proposer, its expected
benefit from an offer (ω2

a,p) depends on its model of how
people accept offers in round 2, encapsulated in the proba-
bility p(r2

p = accept | ω2
a,p, h

1). The benefit to SIGAL is

Ea
(
ω2
a,p | h1, ta

)
=

πa(ω2
a,p | ta) · p(r2

p = accept | ω2
a,p, h

1)+

πa(∅ | ta) · p(r2
p = reject | ω2

a,p, h
1) (3)

Here, the term πa(∅ | ta) represents the benefit to SIGAL
from the NNA score, which is zero. SIGAL will propose an
offer that maximizes its expected benefit in round 2 out of
all possible proposals for this round.

ω2∗
a,p = argmaxω2

a,p
Ea
(
ω2
a,p | h1, ta

)
(4)

If SIGAL is the second responder, its optimal action is to
accept any proposal from the person that gives it positive
benefit. Let r2∗

a (ω2
p,a | h1) denote the response of SIGAL to

offer ω2
p,a, defined as

r2∗
a (ω2

p,a | h1) =

{
accept πa(ω2

p,a | ta) > 0

reject otherwise
(5)

where πa(ω2
p,a | ta) is defined in Equation 1. The benefit to

SIGAL from this response is defined as

πa
(
r2∗
a | ω2

p,a, h
1, ta

)
={

πa(ω2
p,a | ta) r2∗

a (ω2
p,a | h1) = accept

πa(∅ | ta) otherwise
(6)

Round 1: If SIGAL is the first proposer, its expected ben-
efit from making a proposal ω1

a,p depends on its model of
the person: If the person accepts ω1

a,p, then the benefit to
SIGAL is just πa(ω1

a,p | ta). If (ω1
a,p) is rejected by the

person, then the benefit to SIGAL depends on the counter-
proposal ω2

p,a made by the person in round 2, which itself
depends on SIGAL’s model p(ω2

p,a | h1) of how people make
counter-proposals. The expected benefit to SIGAL from be-
having optimally as a second responder for a given offer ω2

p,a

is denoted Ea(resp2 | h1, ta), and defined as

Ea(resp2 | h1, ta) =∑
ω2

p,a

p(ω2
p,a | h1) · πa(r2∗

a | ω2
p,a, h

1, ta) (7)

where πa(r2∗
a | ω2

p,a, h
1, ta) is defined in Equation 6.

Its expected benefit from ω1
a,p is:

Ea
(
ω1
a,p | h0, ta

)
=

πa(ω1
a,p | ta) · p(r1

p = accept | ω1
a,p, h

0)+

Ea(resp2 | h1, ta) · p(r1
p = reject | ω1

a,p, h
0) (8)

Where h1 =
{
h0, ω1

a,p, r
1
p = reject

}
. SIGAL will propose

an offer in round 1 that maximizes its expected benefit in
this round:

ω1∗
a,p = argmaxω1

a,p
Ea
(
ω1
a,p | h0, ta

)
(9)

If SIGAL is the first responder, it accepts any offer that
provides it with a larger benefit than it would get from mak-
ing the counter-proposal ω2∗

a,p in round 2, given its model of
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how people respond to offers in round 2:

r1∗
a (ω1

p,a | h0) =


accept πa(ω1

p,a | ta) >

Ea
(
ω2∗
a,p | h1, ta

)
reject otherwise

(10)

Here, h1 =
{
h0, ω1

p,a, r
1
a = reject

}
, πa(ω1

p,a | ta) is defined

in Equation 1 and Ea
(
ω2∗
a,p | h1, ta

)
is the benefit to SIGAL

from making an optimal proposal ω2∗
a,p at round 2, as defined

in Equation 3.
Let πa

(
r1∗
a | ω1

p,a, h
0, ta

)
denote the benefit to SIGAL from

its response to offer ω1
p,a in round 1. If SIGAL accepts this

offer, it receives the benefit associated with ω1
p,a. If it rejects

this offer, it will receive the expected benefit Ea
(
ω2∗
a,p | h1, ta

)
from making an optimal counter-proposal at round 2:

πa
(
r1∗
a | ω1

p,a, h
0, ta

)
={

πa(ω1
p,a | ta) r1∗

a (ω1
p,a | h0) = accept

Ea
(
ω2∗
a,p | h1, ta

)
otherwise

(11)

The expected benefit to SIGAL as a responder in round 1 is
denoted as Ea

(
resp1 | h0, ta

)
. This benefit depends on its

model of all possible offers made by people for each type,
given that SIGAL responds optimally to the offer.

Ea
(
resp1 | h0, ta

)
=
∑
tp∈Tp

p(tp | h0)·
∑
ω1

p,a

p(ω1
p,a | tp, h0) · πa

(
r1∗
a | ω1

p,a, h
0, ta

) (12)

Note that when the person reveals his/her type at round 0,
this is encapsulated in the history h0, and p(tp | h0) equals
1 for the person’s true type. Otherwise p(tp | h0) equals the
probability p(tp).

Round 0: In the revelation round SIGAL needs to decide
whether to reveal its type. Let Ea(h0, ta) denote the ex-
pected benefit to SIGAL given that h0 includes a revelation
decision for both players and that ta is the type of agent.
This benefit depends on the probability that SIGAL is cho-
sen to be a proposer (p(prop)) or responder (p(resp)) in
round 1:

Ea(h0, ta) =p(resp) · Ea
(
resp1 | h0, ta

)
+

p(prop) · Ea
(
ω1∗
a,p | h0, ta

)
(13)

Here, ω1∗
a,p is the optimal proposal for SIGAL in round 1, and

Ea
(
ω1∗
a,p | h0, ta

)
is the expected benefit associated with this

proposal, defined in Equation 8.
Because players do not observe each other’s revelation de-

cisions, the expected benefit for a revelation decision φa of
the SIGAL agent sums over the case where people revealed
their type (i.e., φa = tp) or did not reveal their type (i.e.,
φa = null). We denote p(φp = tp) as the probability that
the person revealed its type tp, and p(φp = null) as the
probability that the person did not reveal its type tp.

Ea (φa) =
∑
tp∈Tp

[p(φp = tp)·

Ea
(
h0 = {φa, φp = tp} , ta

)
+

p(φp = null)·
Ea
(
h0 = {φa, φp = null} , ta

)
] (14)

Given that SIGAL is of type ta ∈ Ta, it reveals its type only
if its expected benefit from revelation is strictly greater from
not revealing:

φ∗a =


ta Ea (φa = ta) ≥

Ea (φa = null)

null otherwise

(15)

The value of the game for SIGAL for making the optimal
decision whether to reveal its type is defined as Ea (φ∗a).

Lastly, we wished SIGAL to take a risk averse approach
to making decisions in the game. Therefore SIGAL used a
convex function to represent its utility in the game from an
offer ωn, which modified Equation 1.

π′a(ωn | ta) =
πa(ωn | ta)(1−ρ)

1− ρ (16)

The strategy used by SIGAL is obtained by “plugging in”
the risk averse utility π′a(ωn | ta) instead of πi(ω

n | ti).

5. MODELING HUMAN PLAYERS
In this section we describe a model of people’s behavior

used by SIGAL to make optimal decisions in the game. We
assume that there is a training set of games played by people,
as we show in the next Section.

5.1 Accepting Proposals
We modeled people’s acceptance of proposals in revelation

games using a stochastic model that depended on a set of
features. These comprised past actions in the game (e.g.,
a responder may be more likely to accept a given offer if it
revealed its type as compared to the case in which it did not
reveal its type) as well as social factors (e.g., a responder
player may be less likely to accept a proposal that offers
more benefit to the proposer than to itself).5

Let ωni,j represent a proposal from a player i to a player j
at a round n. We describe the following features that affect
the extent to which player j will accept proposal ωni,j . These
features are presented from the point of view of proposer
i, therefore we assume that the type of the proposer ti is
known, while the type of the responder tj is known only if j
revealed its type. We first detail the features that relate to
players’ decisions whether to reveal their types.

• REV 0
j . Revelation by j. This feature equals 1 if the

responder j has revealed its type and 0 otherwise. The
superscript 0 indicates this feature is relevant to the
revelation phase, which is round 0.

• REV 0
i . Revelation by i. This feature equals 1 if the

proposer has revealed its type ti.

We now describe the set of features relating to social factors
of the responder player j.

• BENn
j . Benefit to j. The benefit to j from proposal

ωni,j in round n. This measures the extent to which
the proposal ωni,j is generous to the responder. In
the case where j revealed its type, this feature equals
πj(ω

n
i,j | tj) and computed directly from Equation 1.

Otherwise, the value of this feature is the expected

5Both of these patterns were confirmed empirically, as shown
in the Results section.
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benefit to the responder from ωni,j for all possible re-
sponder types Tj :∑

tj∈Tj

p(tj | hn−1) · πj(ωni,j | tj)

• AIni . Advantageous inequality of i. The difference
between the benefit to proposer i and responder j that
is associated with proposal ωni,j . This measures the
extent to which proposer i is competitive, in that ωni,j
offers more for i than for j. This feature equals the
difference between πi(ω

n
i,j , accept | ti) and BENn

j .

To capture the way the behavior in round n = 1 affects the
decisions made by participants in round n = 2, we added
the following features that refer to past offers.

• P.BENn
j . Benefit to j in the previous round. This

feature equals BEN1
j if n = 2, and 0 otherwise.

• P.BENn
i . Benefit to proposer i in the previous round.

This feature equals πi(ω
1
i,j , accept | ti) if n = 2 and 0

otherwise.

To illustrate, consider the CT board game shown in Figure 1.
Alice is missing two green chips to get to the goal and Bob is
missing 1 purple chip to get to the goal. Suppose Bob is the
first proposer (player i) and that Alice is the first responder
(player j), and that Bob revealed its goal to Alice, so its
type is common knowledge, while Alice did not reveal her
goal. We thus have that REV 0

j = 0 and REV 0
i = 1. Alice’s

no-negotiation alternative (NNA) score, sj(∅), is 70 points
and Bob’s NNA score is 90 points.

According to the offer shown in the Figure, Bob offered
two green chips to Alice in return for two purple chips. If
accepted, this offer would allow Alice to get to the goal in 5
steps, so she will have 19 chips left at the end of the game,
worth 19 · 5 = 95 points. Similarly, Bob will have 21 chips
left at the end of the game, worth 105 points. Both will also
earn a bonus of 100 points for getting to the goal. Therefore
we have that BEN1

j = 95+100−70 = 125. Similarly, Bob’s
benefit from this proposal is 105 + 100 − 90 = 115 points.
The difference between the benefit to Bob and to Alice is
−10, so we have that AI1

i = −10. Lastly, because the offer
is made in round 1, we have that P.BEN1

j = P.BEN1
i = 0.

This offer is more generous to Alice than it is to Bob.
Suppose now that Alice rejects this offer and makes a

counter proposal in round 2, that proposes one purple chip
to Bob in return for four greens. In this example, Alice is
using her knowledge of Bob’s type to make the minimal of-
fer that would allow Bob to reach the goal while providing
additional benefit to Alice. Alice is the proposer (player i)
and Bob is the responder (player j). Recall that Bob has
revealed its goal while Alice did not, so we have REV 0

j = 1

and REV 0
i = 0. Using a similar computation from before,

we get that Bob’s score from the counter proposal is 190
points. Therefor we have that BEN2

j = 190 − 90 = 100.
Alice’s benefit from the counter-proposal is 210− 70 = 140,
therefore we have that AI2

i = 140 − 100 = 40. The last
features in the example capture the benefit to both players
from the proposal made in the first round to Alice and Bob,
so we have P.BEN2

j = 125, and P.BEN2
i = 115.

5.1.1 Social Utility Function
We model the person as using a social utility function to

decide whether to accept proposals in the game. This social

utility depends on a weighted average of the features defined
above. We define a transition function, Tn, that maps an
offer ωn and history hn−1 to an (ordered) set of feature
values xn as follows.6

xn =
(
REV 0

j , REV
0
i , BEN

n
j , AI

n
i , P.BEN

n
j , P.BEN

n
i

)
To illustrate, in the example above, we have that x1 =
(0, 1, 125,−10, 0, 0) and x2 = (1, 0, 100, 40, 125, 115).

Let u(xn) denote the social utility function which is de-
fined as the weighted sum of these features. To capture the
fact that a decision might be implemented noisily, we use
a sigmoid function to describe the probability that people
accept offers, in a similar way to past studies for modeling
human behavior [4]. We define the probability of acceptance
for a particular features values xn by a responder to be

p(rni = accept | ωn, hn−1) =
1

1 + e−u(xn)
(17)

where xn = Tn(ωn, hn−1). In particular, the probability of
acceptance converges to 1 as u(xn) becomes large and posi-
tive, and to 0 as the utility becomes large and negative. We
interpret the utility to be the degree to which one decision
is preferred. Thus, the probability of accepting a proposal
is higher when the utility is larger.

5.1.2 Estimating Weights
To predict how people respond to offers in the game, it is

needed to estimate the weights in their social utility function
in a way that best explains the observed data. In general,
we need to model the probability that an offer is accepted
for any possible instantiation of the history. The number of
possible proposals in round 1 is exponential in the combined
chip set of players.7 It is not possible to use standard den-
sity estimation techniques because many such offers were
not seen in the training set or were very rare. Therefore,
we employed a supervised learning approach that assumed
people used a noisy utility function to accept offers that de-
pended on the features defined above. Let Ωi,p denote a
data set of offers proposed by some participant i to a per-
son p.8 For each offer ωni,p ∈ Ωi,p let y(rnp | ωni,p) denote
an indicator function that equals 1 if the person accepted
proposal ωni,p, and zero otherwise. The error of the predic-
tor depends on the difference between y(rnp | ωni,p) and the

predicted response p(rnp = accept | ωna,p, hn−1), as follows:∑
ωn

i,p∈Ωi,p

(p(rnj = accept | ωni,p, hn−1)− y(rnj | ωni,p))2 (18)

where p(rnj = accept | ωni,j , hn−1) is defined in Equation 17.
We used a standard Genetic algorithm to estimate weight

values for the features of people’s social utility that mini-
mize the aggregate error in the training set. To avoid over-
fitting the training set, we used a held-out cross-validation
set consisting of 30% of the data. We chose the instance with
minimal error (on the training set) in the generation that
corresponded to the smallest error on the cross-validation

6These weights are estimated from data using statistical
techniques as described in the following section.
7In one of the boards we studied the number of possible
offers that provided the same benefit to both players was
about 27,000, out of a total of 224 possible offers.
8We explain how we collected this data set in the Empirical
Methodology Section.
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set. We used ten-fold cross-validation, repeating this process
ten times, each time choosing different training and testing
sets, producing ten candidate instances. To pick the best
instance, we computed the value of the game Ea (φ∗a) for SI-
GAL for each of the learned models, where φ∗a is defined in
Equation 15. This is the expected benefit for SIGAL given
that it chooses optimal actions using a model of people that
corresponds to the feature values in each instance.

5.2 Proposing and Revealing
This section describes our model of how people make pro-

posals in revelation games and reason about whether to re-
veal information.

5.2.1 First proposal model
We used standard density estimation techniques (histograms)

to predict people’s offers for different types.Based on the as-
sumption that proposals for the first round depend on the
proposer’s type and its decision whether to reveal, we di-
vided the possible proposals to equivalence classes accord-
ing to the potential benefit for the proposer player, and
counted how many times each class appears in the set. Let
p(ω1

p,j | tp, φi) denote the probability that a human proposer

of type tp offers ω1
p,j in round 1. Let Ntp,φp(πp(ω

1
p,j | tp))

denote the number of first proposals which gives the human
a benefit of πp(ω

1
p,j | tp), given the human is of type tp and

its revelation decision was φp. Let Ntp,φp(Ω1
p,j) denote the

number of the first proposal in this subset. p(ω1
p,j | tp, φp)

is defined as:

p(ω1
p,j | tp, φp) =

Ntp,φp(πp(ω
1
p,j | tp))

Ntp,φp(Ω1
p,j)

(19)

5.2.2 Counter-proposal model
According to our model, a player’s proposal in the sec-

ond round also depends on the history, this two dimensional
probability density function tends to be too much sparse to
calculate it directly as described in Subsection 5.2.1. In-
spired by studies showing that people engage in tit-for-tat
reasoning [15] we used this principal to model the counter-
proposals made by people. We assumed that a responder
player i will be proposed offer ω2

p,i by a human player in the

second round with benefit πi(ω
2
p,i | ti) that is equal to the

benefit πp(ω
1
i,p | tp) from offer ω1

i,p made to the people in the
first round, when the human was a responder. For example,
suppose that Bob is the proposer in round 1 and propose
to Alice a benefit of 125. According to the model, if Al-
ice rejects the offer she will propose Bob a counter-proposal
that provides Bob with the same benefit, 125. Note that this
does not assume that the proposal will provide Alice with the
same benefit she got from Bob in the proposal from round
1. Formally, let NΩ2

p,i
(πp(ω

1
i,p | tp)) denote the number of

counter-proposals ω2
p,i which give benefit πp(ω

1
i,p | tp). We

assume that there always exists at least one proposal that
meets this criterion, i.e., NΩ2

p,i
(πp(ω

1
i,p | tp)) 6= 0. The “tit

for tat” heuristic is as follows:

p(ω2
p,i | h1) =

{
0 πi(ω

2
p,i) 6= πp(ω

1
i,p)

1/NΩ2
p,i

(πp(ω1
i,p|tP )) otherwise

(20)
This heuristic is used in Equation 7 to facilitate the compu-
tation of the expected benefit from SIGAL as a responder
in round 1.

Lastly, we detail the model used by SIGAL to predict
whether the person reveals its goal. Let Ntp denote the
number of instances in which people were of type tp, and
let Ntp(φp) denote the number of times that people of type
tp chose to reveal their type. The probability that a human
player p revealed its type tp is defined as:

p(φp | tp) =
Ntp(φp)

Ntp
(21)

6. EMPIRICAL METHODOLOGY
In this section we describe the methodology we used in or-

der to learn the parameters of the model of how people play
revelation games, and to evaluate it. For these purposes
we recruited 228 students enrolled in a computer science or
software engineering program at several universities and col-
leges. Subjects received an identical tutorial on revelation
games that was exemplified on a board (not the boards used
in the study). Actual participation was contingent on suc-
cessfully answering a set of basic comprehension questions
about the game. Participants were seated in front of a ter-
minal for the duration of the study, and could not speak
to any of the other participants. Each participant played
two revelation games on different boards. The boards in the
study fulfilled the following conditions at the onset of the
game: (1) There were two goals for each player; (2) Every
player lacked one or two chips to reach each of its possible
goals; (3) Every player possessed the chips that the other
needed to get to each of its possible goals; (4) There existed
at least one exchange of chips which allowed both players
to reach each of their possible goals; (5) the goals were dis-
tributed with a probability of 50% for both players. We
used two boards in the study. In the “asymmetric board”,
one of the players needed a single chip of a particular color
to reach its goal, while the other player needed two chips of
a particular color to reach its respective goal. This is the
board that is shown in Figure 1. We also used a “symmetric
board” in which both players needed a single chip of one of
two possible colors to get to their goal.

Participants played both symmetric and asymmetric boards
in random order. They engaged in a neutral activity (an-
swering demographic questions) between games to minimize
the effects of their behavior in the first game on their behav-
ior in the second game. The participant chosen to be the
proposer in the first game was randomly determined, and
participants switched roles in the second game, such that the
proposer in the first game was designated as the responder in
the second game. A central server (randomly) matched each
participant with a human or an agent counterpart for each
game. The identity of each participant was not disclosed.
We collected the board layout, and players’ proposals, re-
sponses and revelation decisions for all of the games played.
To avoid deception all participants were told they would be
interacting with a computer or a person. Participants re-
ceived fixed compensation (course credit) for participating
in the experiment.9

We divided subjects into four pools. The first pool con-
sisted of people playing other people (66 games). The second
pool consisted of people playing a computer agent that used
a randomized strategy to make offers and responses (170

9Our goal was to build an agent that negotiates well with
people, not to explain people’s incentives, therefore fixed
compensation was sufficient.
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Figure 2: Performance comparison

games). The purpose for this pool was to collect people’s
actions for diverse situations, for example, their response to
offers that were never made by other people. Two thirds
(44 games) of the data from the first pool and the data from
the second pool were used for training a model of people’s
behavior. The third pool consisted of people playing the
SIGAL agent (110 games). The fourth pool (118 games)
consisted of people playing an agent using an equilibrium
strategy to play revelation games.

7. RESULTS AND DISCUSSION
The performance of SIGAL was measured by comparing

its performance against people in the third pool with peo-
ple’s play in the remaining third of the first pool.10 We list
the number of observations and means for each result. All
results reported in this section are statistically significant in
the p < 0.05 range.

7.1 Analysis: General Performance
We first present a comparison of the performance of SI-

GAL and people. Figure 2 shows the average benefit (the
difference in score between agreement and the no-negation
alternative score) for different roles (proposers and respon-
der). As shown by the figure, the SIGAL agent outper-
formed people in all roles (111 points as proposer in round 1
versus 87 points for human proposers in round 1; 121 points
as proposer in round 2 versus 77 points for human proposers
in round 2).

The SIGAL agent was also more successful at reaching
agreements than were people. Only 2% of games in which
SIGAL played people did not reach agreement (in first or
second round), while 27% of games in which people played
other people did not reach agreement. In particular, offers
made by SIGAL in round 2 were accepted 87% of the time,
while offers made by people in round 2 were only accepted
14% of the time. If an offer is rejected at this last round,
the game ends without agreement. This striking difference
shows that SIGAL learned to make good offers at critical
points in the game.

As shown in Figure 2 SIGAL also outperformed the equi-
librium agent in both rounds. The equilibrium agent was
fully strategic and assumed the other player was unbound-
edly rational. Although not shown in the Figure, it made
very selfish offers in the last round, offering only 25 average
points to people and 215 to itself. Most of these offers were

10Although this portion corresponds to only 22 games played
by people, it was sufficient to achieve statistical significance.

Figure 3: Average Proposed Benefit in First and
Second rounds

not accepted. In the first round, it made offers that were
highly beneficial to people, offering 219 average points to
people and 20 to itself. Most of these offers were accepted,
but this did not aid its performance.

To explain the success behind SIGAL’s strategy, we present
a comparison of the benefit from proposals made by the SI-
GAL agent and people in both game rounds in Figure 3.
As shown by the Figure both people and SIGAL made of-
fers that were beneficial to both players in rounds 1 and 2.
However, SIGAL made offers that were significantly more
generous to human responders than did human proposers
(120 points benefit provided by SIGAL as proposer in round
1 versus 96 points provided by human proposers; 114 points
benefit provided by SIGAL as proposer in round 2 versus
66 points provided by human proposers). As shown by the
figure, there was no significant differences between the ben-
efit to SIGAL from offers made by SIGAL itself and people
(121 points to SIGAL versus 123 points to people for round
1 and 126 points versus 124 points in round 2). In particu-
lar, all of SIGAL’s proposals enabled the responder to reach
its goal. Thus, SIGAL was able to learn to make offers that
were better for human responders without compromising its
own utility.

SIGAL’s strategy is highlighted by examining the weights
learned for the different features of how people accept of-
fers. As shown in Table 1, the largest weight was assigned
to BENn

j , the benefit to the responder from an offer. In ad-
dition, the weight for AIni measuring the difference between
the benefit for the proposer and responder was large and
negative. This means that responders prefer proposals that
provide them with large benefits, and are also competitive,
in that they dislike offers that provide more to proposers
than to responders. The offers made by SIGAL reflect these
criteria. In particular, proposers asked more for themselves
than for responders in both rounds. In contrast, SIGAL
equalized the difference in benefit between proposers and
responders in round 1, and decreased the difference between
its own benefit and responder’s benefit in round 2 as com-
pared to human proposer.

7.2 Analysis: Revelation of Goals
We now turn to analyzing the affect of goal revelation

on the behavior of SIGAL. Recall that Ea (φ∗a = ta) denotes
the value of the game for SIGAL when deciding to reveal
its goal in round 0, and behaving optimally according to its
model of how people make offers. Similarly, Ea (φ∗a = null)
denotes the value of the game for SIGAL when deciding not
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Feature Value

REV 0
j 0.258

REV 0
i 0.035

BENn
j 0.956

AIni -0.792
P.BENn

j 0.496

P.BENn
i 0.334

Free Parameter 0.608

Table 1: Features coefficients weights

to reveal its goal in round 0. Our model predicted no sig-
nificant difference in value to SIGAL between revealing and
not revealing its goal, i.e. Ea (φ∗a = null) ≈ Ea (φ∗a = ta) for
each type ta ∈ Ta. Therefore we used two types of SIGAL
agents, one that consistently revealed its goal at the onset of
the game and one that did not reveal. In all other respects
these agents followed the model described in Section 4. The
empirical results confirmed the model’s prediction, in that
there was no significant difference in the performance of the
two SIGAL agents for all boards and types used in the em-
pirical study. The results described in this section average
over the revealing and non-revealing types of SIGAL agents.

This was confirmed by the empirical results, in which the
average performance of the SIGAL agent when revealing its
goal was 114 points (n = 52), while the average performance
of SIGAL when not revealing its goal was 118 points (n =
58). This difference was not significantly significant in the
p < 0.05 range.

However, the decision of the person to reveal or not reveal
its goal had a significant affect on the negotiation strategy of
SIGAL. When people revealed their goals, SIGAL learned
to ask for more benefit for itself as compared to the case
in which people did not reveal their goals. For example,
when playing the asymmetric board, the non-revealing SI-
GAL agents learns to ask 125 points for itself if the person
reveals its goal, and only 115 points for itself if the person
did not reveal. In this case SIGAL took advantage of the
fact that the type of the human responder is known, but its
own type is not known.

Lastly, the probabilities that people revealed their goals,
as learned from the training set, were as follows: 37.14%
and 46.27% in the asymmetric board were missing one, and
two chips to get to the goal, respectively, and 41.13% for the
symmetric board, in which both players were only missing
one chip. Interestingly, people missing two chips to get to
the goal were most likely to reveal their type. We hypothe-
size this was to justify their request for their missing chips
from the other player.

8. CONCLUSION AND FUTURE WORK
This paper presented an agent-design for interacting with

people in “revelation games”, in which participants are given
the choice to truthfully reveal private information prior to
negotiation. The decision-making model used by the agent
reasoned about the social factors that affect people’s deci-
sions whether to reveal their goals, as well as the effects of
people’s revelation decisions on their negotiation behavior.
The parameters of the model were estimated from data con-
sisting of people’s interaction with other people. In empiri-
cal investigations, the agent was able to outperform people
playing other people as well as agents playing equilibrium
strategies and was able to reach agreement significantly more
often than did people.

We are currently extending this work in two directions.
First, we are considering more elaborate settings in which
players are able to control the extent to which they reveal
their goals. Second, we are using this work as the basis for a
more broad argumentation in which agents integrate expla-
nations and justifications within their negotiation process.
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ABSTRACT
CP-net (Conditional Preference Network) is one of the extensively
studied languages for representing and reasoning with preferences.
The fundamental operation of dominance testing in CP-nets, i.e.
determining whether an outcome is preferred to another, is very
important in many real-world applications. Current techniques for
solving general dominance queries is to search for improving flip-
ping sequence from one outcome to another as a proof of the domi-
nance relation in all rankings satisfying the given CP-net. However,
it is generally a hard problem even for binary-valued, acyclic CP-
nets and tractable search algorithms exist only for specific problem
classes. Hence, there is a need for efficient algorithms and tech-
niques for dominance testing in more general problem settings. In
this paper, we propose a heuristic approach, called DT*, to dom-
inance testing in arbitrary acyclic multi-valued CP-nets. Our pro-
posed approach guides the search process efficiently and allows sig-
nificant reduction of search effort without impacting soundness or
completeness of the search process. We present results of experi-
ments that demonstrate the computational efficiency and feasibility
of our approach to dominance testing.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design

Keywords
CP-nets; Dominance Testing; Heuristic

1. INTRODUCTION
The problems of eliciting, representing and reasoning with qual-

itative preferences over multi-attribute domain arise in many fields
such as planning, design, and collective decision making [5, 6, 7,
8]. As the number of alternative outcomes of such domains is ex-
ponentially large in the number of attributes, it is unpractical to
express preferences explicitly by giving out the ordering over the
alternative outcome space. Therefore, the AI research community
has developed languages for representing preferences in such do-
mains in a succinct way, exploiting structural properties such as
conditional preferential independence. The formalism of CP-nets

Cite as: Efficient Heuristic Approach to Dominance Testing in CP-nets,
Minyi Li, Quoc Bao Vo and Ryszard Kowalczyk, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 353-360.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(Conditional Preference Networks) [3] is among the most popu-
lar ones, since it preserves a good readability that is similar to the
way users express their preferences in natural languages. CP-nets
provide a compact representation of preference ordering in terms
of natural preference statements under a ceteris paribus (all else
being equal) interpretation. Ceteris paribus semantics induces a
graph, known as induced preference graph [2, 3]; and an outcome
α is said to dominate another outcome β if there exists a directed
path, also called a sequence of improving flips, consisting of suc-
cessively improving outcomes in the graph from β to α [1, 3]. Un-
fortunately, reasoning about the preference ordering (dominance
relation) expressed by a CP-net is far from easy [3, 5]. With the ex-
ception of special cases such as CP-nets with tree or polytree struc-
tured conditional dependencies, dominance testing has been shown
to be PSPACE-complete even with binary domain and acyclic de-
pendences [5]. Some general pruning rules have been studied in
[3] to reduce the search effort. But they might not be able to guide
the search efficiently when the number of variables is large or the
structure of the CP-net is complex. Another work proposed by
Santhanam et al. [9] explores an approach to dominance testing
with acyclic CP-nets via Model Checking. However, their approach
mainly applies to binary-valued conditional preference statements.
The complexity and feasibility of their approach to dominance test-
ing in multi-valued CP-nets is still an open question. Hence, there
is a need for efficient algorithms and techniques for dominance test-
ing in more general problem settings.

To this end, we address the problem of dominance testing by
proposing an efficient heuristic algorithm, called DT*, to guide the
search process for improving flipping sequence from the worse out-
come to the better outcome of the given query1. The proposed ap-
proach can be applied to arbitrary acyclic multi-valued CP-nets. It
uses a numerical approximation of the given CP-net and considers
the hamming distance between the currently considered outcome
and the target outcome of the given query, i.e., the number of vari-
ables that the two outcomes differ from each other. We show that
our proposed approach efficiently guides the search process for im-
proving flipping sequence. It allows significant reduction of search
effort without impacting soundness or completeness of the search
process. Moreover, when there are no flipping sequences possi-
ble, it returns the quick failure for the dominance query without
having to search all possible branches. We experimentally eval-
uate the proposed algorithm in different structure settings, includ-
ing tree-structured CP-nets, directed-path singly connected CP-nets
and arbitrary acyclic CP-nets, and with different domain sizes from
binary to multi-valued. The experimental results presented in this

1The proposed heuristic will be described in the context of improv-
ing flipping sequences, but it can be applied to worsening search
according to the same principle
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paper demonstrate that the proposed approach is computationally
efficient. It allows dominance queries for CP-nets that are quite
large and complex to be answered in reasonable time.

The remainder of this paper is organized as follows. Section 2
restates the necessary background on CP-nets and discusses some
existing pruning techniques for the search process in dominance
testing. Second 3 introduces the proposed approach in technical
details and Section 4 presents the experimental results. Finally,
Section 5 discusses the concluding remarks and outlines some di-
rections for future research.

2. PRELIMINARIES

2.1 CP-nets
Let V = {X1, . . . , Xn} be a set of n variables, for each X ∈

V, D (X) is the value domain of X . A variable X is binary if
D (X) = {x, x̄}. If X =

{
Xi1 , . . . , Xip

}
⊆ V, with i1 < · · · <

ip then D (X) denotes D (Xi1 ) × · · · × D
(
Xip
)

and x denotes
an assignment of variable values to X (x ∈ D (X)). If X = V,
x is a complete assignment; otherwise x is called a partial assign-
ment. For any assignment x ∈ D (X), we denote by x [X] the value
x ∈ D (X) (X ∈ X) assigned to variable X by that assignment;
and x [W] denotes the assignment of variable values w ∈ D (W)
assigned to the set of variables W ⊆ X by that assignment. If x and
y are assignments to disjoint sets X and Y, respectively (X∩Y = ∅),
we denote the combination of x and y by xy. Let X, Y, and Z be
nonempty sets that partition V and � a preference relation over
D (V), X is (conditionally) preferentially independent of Y given
Z iff for all x, x′ ∈ D (X), y, y′ ∈ D (Y), z ∈ D (Z):

xyz � x′yz iff xy′z � x′y′z

A CP-net N [3] over V is an annotated directed graph G over
X1, . . . , Xn, in which nodes stand for the problem variables. Each
node X is annotated with a conditional preference table (CPT), de-
noted by CPT (X), which associates a total order�X|u with each
instantiation u of X’s parents Pa (X), i.e. u ∈ D (Pa (X)). For
instance, let V = {X1, X2, X3}, all three being binary, and assume
that the preferences of an agent can be defined by a CP-net whose
structural part is the directed acyclic graph G = {(X1, X2), (X1, X3),
(X2, X3)}; this means that the agent’s preference over the values
of X1 is unconditional, preference over the values of X2 (resp.
X3) is fully determined given the value of X1 (resp. the values
of X1 and X2). The preference statements contained in the condi-
tional preference tables are written with the usual notation, that is,
x1x̄2 : x3 � x̄3 means that when X1 = x1 and X2 = x̄2 then
X3 = x3 is preferred to X3 = x̄3. Figure 1 illustrates an example
of CP-net.

2.2 Dominance Testing
One of the most fundamental queries in any preference repre-

sentation formalism is whether some outcome α dominates (i.e.,
is strictly preferred to) some other outcome β, called Dominance
Testing. As discussed in [3, 9], such dominance queries in CP-nets
are required whenever we wish to generate more than one non-
dominated solutions to a set of hard constrains.

In this paper, we assume the structure of the CP-net is acyclic,
i.e. does not contain any dependency cycles. In such case, two
outcomes α and β can stand in one of three possible relations with
respect to N : either N |= α � β (α is strictly preferred to β); or
N |= β � α (β is strictly preferred to α); or N |= α Z β (α
and β are incomparable: N 6|= α � β and N 6|= β � α). The
third case means that the given CP-net N does not contain enough

Figure 1: An example CP-netN

information to prove that either outcome is preferred to the other.
Given an acyclic CP-net, comparisons between two outcomes that
differ in the value of a single variable are easy: we only need to
check the CPT of that variable and determine which outcome as-
signs it to a more preferred value. The better (improved) outcome
can be considered as a product of a single improving flip in the
value of a variable X from the worse outcome. For any pair of
outcomes that differ on more than one variables, an outcome α is
said to dominate another outcome β with respect to an acyclic CP-
net N (N |= α � β) if there exists a sequence of improving flips
from β to α. Otherwise, N 6|= α � β. The following definition of
improving flipping sequence is introduced in [3].

DEFINITION 1 (IMPROVING FLIPPING SEQUENCE).
A sequence of outcomes β = γ1, γ2, . . . , γm−1, γm = α such that

β = γ1 ≺ γ2 ≺ · · · ≺ γm−1 ≺ γm = α

is an improving flipping sequence with respect to an acyclic CP-net
N if and only if, ∀1 ≤ i ≤ m, outcome γi is different from the out-
come γi+1 in the value of exactly one variable X , and γi+1[X] �
γi[X] given the parent context u of X assigned by γi and γi+1.

For instance, consider the preference statements over two bi-
nary variables X1 and X2, x1 � x̄1, x2 � x̄2, the sequence
x̄1x̄2, x̄1x2, x1x2 is an improving flipping sequence from the out-
come x̄1x̄2 to the best outcome x1x2.

2.3 Some General Search Techniques
Given an acyclic CP-netN , a queryN |= α � β can be treated

as a search for an improving flipping sequence from the less pre-
ferred outcome β to the more preferred outcome α. The search
process can be implemented as an improving search tree rooted
at β, T (β). The children of every node2 γ in T (β) are those
outcomes that can be reached by a single improving flip from γ.
Consequently, every rooted path in T (β) corresponds to some im-
proving flipping sequence from the outcome β with respect to N .
Taking different directions in T (β) leads to different improving
sequences; however, taking a different direction during the tree
traversal may also lead to a dead end, i.e., reach the optimal out-
come ofN without visiting the target outcome α of the query. Re-
cent works have studied the computational complexity of testing
dominance relations in CP-nets, e.g. [3, 5]. The results show that
dominance testing in general CP-nets is PSPACE-complete and it
remains PSPACE-complete even though the CP-net is acyclic [5].
Since the hardness of dominance testing, several search techniques
for dominance queries have been studied in [3] in order to reduce
the search effort.

Suffix Fixing. Let Xi1 > · · · > Xin be an arbitrary topologi-
cal ordering consistent with the CP-net N , an rth (r ≥ 1)

2A node in the improving search tree is also an outcome.
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suffix of an outcome α is the subset of the outcome values
α [Xir]α

[
Xir+1

]
. . . α [Xin ]. The rth suffix of outcomes

α and β match iff ∀r ≤ j ≤ n, α
[
Xij
]

= β
[
Xij
]
.

For a query N |= α � β, suffix fixing rules out the ex-
ploration of any possible flipping sequences that destroy of
the suffix of the currently considered outcome that matches
the target outcome α. It prunes the subtree that improves
the value of a variable within the matching suffix. For in-
stance, consider the CP-net N in Figure 1 and the query
N |= x1x̄2x3x4x5 � x̄1x2x3x4x̄5. Let α = x1x̄2x3x4x5
and β = x̄1x2x3x4x̄5, if pruned using suffix fixing and con-
sider the variable ordering X1 > X5 > X2 > X3 > X4,
the 2nd suffix x3x4 of α and β matches. Thus, the values
of X3 and X4 will never be improved in the search tree
T (β), although given the assignment β[X1] = x̄1 (resp.
β[X2] = x2, β[X3] = x3), x̄3 � x3 (resp. x̄4 � x4).
As shown in [3], any complete search algorithm for the im-
proving search tree remains complete if pruning using suffix
fixing is used.

Least-variable flipping. For every node γ in the improving search
tree, least-variable flipping rule restricts flips to the variables
that are least-improvable. Formally, a variable X is least-
improvable in an outcome γ with respect to N if there is
some value x ∈ D (X) such that x �u γ [X] (where u =
γ[Pa(X)] is the parent context assigned by γ), and no de-
scendent of X in γ has this property. For a queryN |= α �
β, least-variable flipping rule restricts attention to those vari-
ables that are not part of any matching suffix with the target
outcome α and requires that the only neighbours of a node γ
can be expanded in the search tree T (β) are those in which
some least improvable variable with respect to γ is improved.

However, least-variable flipping rule is only complete for a
restricted class of CP-nets [3], i.e. tree-structured CP-nets
and binary-valued, directed-path singly connected CP-nets.
For multiply-connected networks, and networks with multi-
valued variables, it does not guarantee completeness. That
means, least-variable flipping may fail to find any improv-
ing sequence from β to α although there does exist at least
one. In such case, it does not provide a correct answer to
the given query. For instance, consider the CP-netN in Fig-
ure 1 and the query N |= x1x2x3x4x5 � x̄1x̄2x̄3x̄4x̄5. 3

Starting with the root node β = x̄1x̄2x̄3x̄4x̄5, the only least
improvable variable that can be flipped isX2. Unfortunately,
flipping X2 to value x2 leads to outcome x̄1x2x̄3x̄4x̄5, from
which the target outcome α = x1x2x3x4x5 is unreachable.
All branches in the improving search tree grow towards the
optimal outcome x1x̄2x3x4x5 without going through the tar-
get outcome α of the query. Figure 2 shows the complete im-
proving search tree T (β) using least-variable flipping. How-
ever, there in fact exists a sequence of improving flips from β
toα: x̄1x̄2x̄3x̄4x̄5, x1x̄2x̄3x̄4x̄5, x1x̄2x3x̄4x̄5, x1x̄2x3x4x̄5,
x1x2x3x4x̄5, x1x2x3x4x5.

When the number of variables is large or the structure of the CP-
net is complex, suffix fixing may not be able to guide the search ef-
ficiently while least-variable flipping rule does not guarantee com-
pleteness for general acyclic CP-nets. To this end, we will present
another efficient heuristic approach to dominance testing. The pro-
posed approach significantly prunes the search tree without impact-
ing soundness or completeness of the search process.

3This example has also been discussed in Example 7 in [3]

Figure 2: Improving search tree for queryN |= x1x2x3x4x5 �
x̄1x̄2x̄3x̄4x̄5 using Least-variable flipping rule

3. HEURISTIC FOR DOMINANCE TESTING
In this section, we present our proposed heuristic approach, called

DT*, to dominance testing in arbitrary acyclic CP-nets. In broad
terms, we first define a penalty function based on a numerical ap-
proximation proposed by Domshlak et al. [4] that approximates
acyclic CP-nets using weighted soft constraints. Then, an evalu-
ation function is defined based on the hamming distance between
the currently considered outcome and the target outcome and their
penalties as a heuristic to guide the search process.

3.1 Penalty function
For a variable X , let |D (X)| be the domain size of X and thus

there are |D (X)| degrees of penalties ofX , denoted by d1, . . . , d|D(X)|.
Without loss of generality, we assume the degree of penalties of
a variable X range between 0 and |D (X)| − 1; that is, d1 =
0, . . . , d|D(X)| = |D (X)| − 1. For instance, consider the agent’s
CP-net in Figure 1, since all variables are binary, there are only two
degrees of penalties, i.e., d1 = 0 and d2 = 1 for each variable.
For a variable X , consider a preference ordering over the value of
X given an instantiation of X’s parents, let the rank of the most
preferred value of X be 0 and the rank of the least preferred valued
of X be |D (X)| − 1, given an outcome γ, the degree of penalty
of a variable X in γ is then the rank of the value γ[X] in the pref-
erence ordering over X given the parent context u = γ[Pa(X)].
We denote by dγX (dγX ∈

{
d1, . . . , d|D(X)|

}
) the degree of penalty

of X with respect to γ. For instance, consider a variable X such
that D(X) = {x, x′, x′′}. Assume that, under a parent context
u = γ[Pa(X)] assigned by an outcome γ, x � x′ � x′′. If
γ[X] = x, then dγX = d1 = 0; if γ[X] = x′, then dγX = d2 = 1;
if γ[X] = x′′, then dγX = d3 = 2.

CP-net imposes a rich structure to allow variables to have differ-
ent degrees of importance: variables “higher-up” in the structure
of the network are considered to be more important than the lower
level variables [1, 2, 3]. Thus, it is more important to obtain a pre-
ferred value for a variable than any of its descendents. We now
analyse the importance weight of a variable in a CP-net. Given an
acyclic CP-netN and consider an improving flip from an outcome
γ to another outcome γ′ that flips the value of a single variable X ,
changing the value of X may also affect the preference status of
X’s children. Thus, the resulting changes from γ to γ′ includes: (i)
the degree of penalty of X decreases from dγX to dγ

′

X (dγX > dγ
′

X );
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Algorithm 1: assgWeightCP(N)
Input: N , an acyclic CP-net
Order variables ofN in a reverse topological ordering;1
foreach X ∈ N do2

if Ch (X) = ∅ then3
wX ← 1;4

else5
wX ← 1 +

∑
Y ∈Ch(X) wY · (|D (Y )| − 1);6

end7

end8

and (ii) the degrees of penalty of X’s children changes, which in
the worst case, results in the degree of penalty of each chilren Y
increasing from dγY = d1 to dγ

′

Y = d|D(Y )−1|. Consequently,
in order to preserve the preference ordering induced by the given
CP-net, the importance weight of a variable in that CP-net must
be larger than the sum of the maximum penalties of its children.
We now provide the formal definition of the variable importance
weight in an acyclic CP-net.

DEFINITION 2 (IMPORTANCE WEIGHT). Given an acyclic CP-
net N over a set of variables V. For each variable X ∈ V,
let Ch (X) denote the set of children of X in N , the importance
weight of variable X , denoted by wX , is recursively defined by:

wX = 1 +
∑

Y ∈Ch(X)

wY · (|D (Y )| − 1) (1)

Algorithm 1 provides a simple implementation to compute im-
portance weights of variables. It takes linear time in the size of
the network. Following a reverse topological ordering, it first as-
signs the importance weights to the variables that have no descen-
dents (line 3–4) and then iteratively assigns the importance weights
to the upper level variables according to Equation (1). Note that
there are several ways to assign importance weights to the vari-
ables and the way we use here is different from [4]. In this paper,
we consider the tight lower bound of the importance weight assign-
ment, i.e. the sum of maximum penalties of the variable children∑

Y ∈Ch(X) wY · (|D (Y )| − 1).

EXAMPLE. Consider an agent’s CP-net over a set of 5 variables
V = {X1, . . . , X5} in Figure 1. In this example, since all vari-
ables are binary, i.e. ∀X ∈ V, |D (X)| = 2.We can assign the
importance weight to each variable in a reverse topological order-
ing of variables: wX4 = 1; wX2 = 1 + wX4 · (2− 1) = 2;
wX3 = 1 + wX4 · (2− 1) = 2; wX1 = 1 + (wX2 · (2− 1) +
wX3 · (2− 1)) = 5; wX5 = 1 + wX2 · (2− 1) = 3. The impor-
tance weight of each variable in this CP-net is attached on top of
the variables respectively in Figure 3.

Given an acyclic CP-net N and an outcome γ, the penalty of
a variable X in γ is the degree of penalty of X in γ multiplied
by the importance weight of X . The penalty of γ is then defined
by the sum of penalties of the domain variables. We define the
following penalty function for an acyclic CP-net based on the work
by Domshlak et al. [4].

DEFINITION 3 (PENALTY FUNCTION). Given an acyclic CP-
net N over a set of variables V and an outcome γ. The penalty
function pen, mapping from an outcome γ ∈ O to [0,+∞], is
defined as follows:

∀γ ∈ O, pen (γ) =
∑
X∈V

wX · dγX (2)

Figure 3: Variable importance weight inN

EXAMPLE (CONT.) Consider our running example in Figure 1
and the outcome γ = x̄1x̄2x̄3x̄4x̄5. As the agent uncondition-
ally prefers X1 = x1 to X1 = x̄1 (resp. X5 = x5 to X5 = x̄5),
dγX1

= 1 (resp. dγX5
= 1). On the other hand, x2 � x̄2 (resp.

x̄3 � x3, x̄4 � x4) given the parent context X1 = x̄1 and
X5 = x̄5 (resp. X1 = x̄1, X2 = x̄2 and X3 = x̄3) and thus
dγX2

= 1 (resp. dγX3
= 0, dγX4

= 0). Consequently, the penalty of
outcome x̄1x̄2x̄3x̄4x̄5 is: pen (γ) = wX1 · 1 + wX2 · 1 + wX3 ·
0 +wX4 ·0 +wX5 ·1 = 5∗1 + 2∗1 + 2∗0 + 1∗0 + 3∗1 = 10.

In order to compute the penalty of an outcome, we simply need
to sweep through the network from top to bottom (i.e., from ances-
tors to descendants), and to check the degree of penalty of the cur-
rently considered variable given its parent context. And finally we
compute the penalty of the outcome based on Equation (2). Con-
sequently, the penalty computation for a particular outcome takes
polynomial time in the size of the network. We now prove that
our algorithm for assigning penalties over alternative outcomes pre-
serves the strict preference ordering induced by the original CP-net.

THEOREM 1. Given an acyclic CP-netN , we have:

∀α, β ∈ O, ifN |= α � β then pen (β) > pen (α)

PROOF. N |= α � β if and only if there exists a sequence of
improving flips from β toα, denoted by Seq (β, α) = γ1 (= β) , γ2,
. . . , γm−1, γm (= α), with respect to the conditional preference ta-
bles in N . Each improving flip from γi to γi+1 in Seq (β, α) that
improves the value of a single variableX , pen (γi)−pen (γi+1) =
wX ·

(
dγi
X − d

γi+1
X

)
+σ, where σ≥−

∑
Y ∈Ch(X) w (Y )·(|D (Y )|−1)

and
(
dγi
X − d

γi+1
X

)
≥ 1. Thus, pen (γi) − pen (γi+1) ≥ wX −∑

Y ∈Ch(X) w (Y ) · (|D (Y )| − 1) = wX − (wX − 1) = 1 > 0.
Consequently, with each improving flip from γi to γi+1, pen (γi) >
pen (γi+1). Following from the transitivity: pen (γ1 (= β)) >
pen (γ2) > · · · > pen (γm−1) > pen (γm) (= α) and thus pen (β) >
pen (α).

COROLLARY 1. Given an acyclic CP-netN , ∀α, β ∈ O,

• if pen (β) > pen (α) thenN |= α � β orN |= α Z β

• if pen (β) = pen (α) thenN |= α Z β

LEMMA 1. Given an acyclic CP-net N over a set of variables
V,let α, β be any pair of outcomes thatN |= α � β; IS the set of
all possible improving flipping sequence from β to α with respect
to the CPTs in N ; HD(β, α) the hamming distance between β
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and α (Note that both in binary-valued and multi-valued CP-nets,
the hamming distance is defined by the number of variables that
the two outcomes differ from each other.); Seq(β, α) ∈ IS an im-
proving flipping sequence from β to α; |Seq(β, α)| is the length
of Seq(β, α) and thus the number of improving flips from β in this
sequence is |Seq(β, α)| − 1, then,

HD(β, α) ≤ |Seq(β, α)| − 1 ≤ pen(β)− pen(α)

PROOF. As each improving flip flips the value of a single vari-
able, if N |= α � β, there must be at least HD(β, α) flips that
flips the value of each variable X that β and α differ, from β[X]
to α[X]. Thus, ∀Seq(β, α) ∈ IS, |Seq(β, α)| − 1 ≥ HD(β, α).
On the other hand, any improving flip from γi to γi+1 in Seq(β, α)
that flips the value of a single variableX , pen(γi)−pen(γi+1) ≥ 1
(see the proof of Theorem 1). Thus, pen(γi) − pen(γi+1) ≥ 1.
Assume γ is an outcome in Seq(β, α) that improved from β by t
flips, pen(β) − pen(γ) ≥ t and pen(β) − t ≥ pen(γ). Thus,
pen(β) − pen(α) − t ≥ pen(γ) − pen(α). If t > pen(β) −
pen(α), then pen(β)− pen(α)− t < 0 and pen(γ)− pen(α) <
0. According to Corollary 1, N |= γ � α or N |= γ Z α
(N 6|= α � γ), contradicting the fact that γ is in the improv-
ing sequence Seq(β, α). Hence, the number of improving flips
from β in Seq(β, α) can not be greater than pen(β) − pen(α),
|Seq(α, β)| − 1 ≤ pen(β)− pen(α).

3.2 The proposed DT* algorithm
The penalty function mentioned above provides an order-preserving

numerical approximation for a given CP-net. We also show the up-
per bound and lower bound of the number of improving flips from a
worse outcome to a preferred outcome in Lemma 1. In this section,
these results are used as a heuristic in the search process for im-
proving flipping sequence. The proposed algorithm has a number
of desirable properties:

• it often returns the quick failure for the dominance query if
no flipping sequence is possible;

• it often quickly shows that back-tracking is needed when
there is no possible flipping sequence to the target outcome
following the currently considered path; and,

• it efficiently guides the search direction without compromis-
ing soundness or completeness of the search process.

Given an acyclic CP-net N and a pair of outcomes α and β,
for the query N |= α � β, we build the search tree T (β) and
search for an improving flipping sequence to the target outcome α
as discussed in [3]. We introduce the evaluation function f for the
heuristic search strategy as follows:

DEFINITION 4 (EVALUATION FUNCTION). Given an acyclic
CP-net N and the query N |= α � β (α, β ∈ O). The evalu-
ation function f , mapping from a node (i.e., an outcome) γ in the
improving search tree T (β) to [0,+∞], is defined by:

f(γ) = pen (γ)−HD(γ, α)− pen (α) (3)

Our proposed heuristic algorithm DT* (see Algorithm 2) is adapted
from the A* heuristic search algorithm with f (γ) being the evalua-
tion function. It maintains a priority queue of nodes to be expanded,
known as the fringe. On the one hand, the lower f value for a
node γ, the higher its priority is. On the other hand, we only con-
sider the outcomes that the f value is non-negative. That means,

Algorithm 2: DT*(N |= α � β)
Input: a dominance query (an acyclic CP-netN ; a pair of

outcomes α and β; and determining whether
N |= α � β)

Output: True: N |= α � β; False: N 6|= α � β
if f(β) < 0 then1

return False;2
else3

fringe← INSERT(MAKE-NODE(β), fringe);4
while fringe , ∅ do5

γ∗ ← REMOVE-FIRST(fringe);6
if GOAL-TEST(γ∗ = α) then7

return True;8
else9

foreach X ∈ N do10
if IMPROVABLE(γ∗, X)11
&&X < ANY-MATCHING-SUFFIX(γ∗, α)
then

γ′ ← SINGLE-FLIP(γ∗, X);12
if NOT-REPEATED(γ′) && f(γ′) ≥ 013
then

INSERT-ASC(MAKE-NODE(γ′), fringe)14
end15

end16

end17

end18

end19
return False20

end21

an outcome γ will be added into the fringe only if f(γ) > 0.
In essence, an outcome with a negative f value means that there
is no possible improving flipping sequence from that outcome to
the target outcome α (see Lemma 2). Before adding the original
node β into the fringe, the f value of β will be computed and the
algorithm will return False if f(β) < 0 (line 1–2). In this case,
the query fails (N 6|= α � β) even before building the root node
of the improving search tree. Otherwise, β will be added into the
fringe as the root node of the improving search tree T (β) (line
4). At each iteration of DT*, the first node γ∗, i.e. the node with the
lowest f value, is removed from the fringe and being expanded
(line 4). The children of a node in T (β) are those outcomes that
can be reached by a single improving flip from that node. Our pro-
posed algorithm applies suffix fixing rules, restricting attention to
those variables in γ∗ that are not part of any matching suffix with
the target outcome α (line 11). Moreover, it requires that a child
γ′ of a node be added into the fringe if and only if: (i) γ′ has not
been traversed before; and (ii) f(γ′) ≥ 0 (line 13). For the current
node γ∗ under consideration, we add each child γ′ of γ∗ that meets
the above requirements into the fringe in ascendant order of the
f values of the nodes in the fringe (line 14). DT* continues un-
til: the currently considered node for expansion equals to the target
outcome α, then it ends and returns True (N |= α � β) (line
7–8); or the fringe is empty, it returns False (N 6|= α � β) (line
20).

In order to prove the completeness of our proposed heuristic al-
gorithm, we first proof the follow lemma.

LEMMA 2. Given an acyclic CP-netN and a queryN |= α �
β (α, β ∈ O), ∀γ∗ ∈ O, if f(γ∗) < 0, then γ∗ would not be part
of any possible improving flipping sequence from β to α.
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Figure 4: Improving search tree

PROOF. During the execution of DT* algorithm, for any out-
come γ∗ (including β), f(γ∗) = pen(γ∗)−HD(γ∗, α)−pen(α).
Assume that there exist an improving flipping sequence Seq(γ∗, α)
= γ1(= γ∗), γ2, . . . , γm−1, γm(= α) from γ∗ to the target out-
come α. Based on Lemma 1, we know that there must be at least
HD(γ∗, α) flips improved from γ∗. For any improving flip from
γi to γi+1, pen(γi)− pen(γi+1) ≥ 1. Consequently, for any out-
come γ′ that improved from γ∗ by HD(γ∗, α) flips, pen(γ∗) −
pen(γ′) ≥ HD(γ∗, α) and thus pen(γ∗)−HD(γ∗, α) ≥ pen(γ′).
Hence, pen(γ∗)−HD(γ∗, α)−pen(α) ≥ pen(γ′)−pen(α). Be-
cause f(γ∗) < 0, pen(γ′)− pen(α) ≤ pen(γ∗)−HD(γ∗, α)−
pen(α) < 0. Consequently, pen(γ′)−pen(α) < 0 andN 6|= α �
γ′. γ′ will not be part of any possible improving flipping sequence
to α, contradicting the fact that there exist an improving flipping
sequence Seq(γ∗, α) from γ∗ to the target outcome α.

We now prove the completeness of our proposed heuristic algo-
rithm.

THEOREM 2. DT* is complete for any arbitrary acyclic CP-
nets.

PROOF. DT* traverses the tree searching all neighbours; it fol-
lows lowest evaluated value path and keeps a sorted priority queue
of alternate path segments along the way. If at any point the path
being followed has a higher evaluated value than other encoun-
tered path segments, the higher evaluated value path is kept in the
fringe and the process is continued at the lower value sub-path.
This continues until the currently considered node for expansion is
the target outcome or the fringe is empty. During the execution of
DT* algorithm, there are three kinds of nodes will be pruned: (i)
the outcomes that have been explored previously; (ii) the outcomes
that improve the value of the variable that is part of some matching
suffix with the target outcome; and (iii) the outcomes with negative
f values. Obviously, checking repeated nodes does not affect the
completeness of the algorithm. Also, as shown in [3], any complete
search algorithm for the improving search tree remains complete if
pruning using suffix fixing rule is used. Furthermore, we have al-
ready proved in Lemma 2 that an outcome γ∗ with f(γ∗) < 0 will
not be part of any possible improving sequence from β to α, so
pruning the third kind of outcomes also does not affect the com-
pleteness of the algorithm. Consequently, DT* is complete for any
acyclic CP-nets.

EXAMPLE (CONT.) We now demonstrate the execution of DT*
algorithm with the CP-net in our running example (Figure 1) and
consider the query N |= x1x2x3x4x5 � x̄1x̄2x̄3x̄4x̄5. Let α =
x1x2x3x4x5 and β = x̄1x̄2x̄3x̄4x̄5, we first consider the f value
of the less preferred outcome β of the query. As f(β) = pen(β)−
HD(β, α)− pen(α) = 10− 5− 3 = 2 > 0, we build the search
tree T (β) with β being the root node and add β into the fringe.
In the 1th iteration of DT*, γ∗ = x̄1x̄2x̄3x̄4x̄5 is removed from
the fringe to be expanded. There are three improvable variable
from γ∗: X1, X2 and X5. Hence, there are three children nodes:
x1x̄2x̄3x̄4x̄5, x̄1x2x̄3x̄4x̄5 and x̄1x̄2x̄3x̄4x5. The f value of these
three children nodes are computed accordingly. f(x1x̄2x̄3x̄4x̄5) =
0, f(x̄1x2x̄3x̄4x̄5) = 1 and f(x̄1x̄2x̄3x̄4x5) = 0. As none of the
f value of these three children nodes is negative, all of them are
added into the fringe according to the ascendant order of the f
value.
In the 2nd iteration, the first outcome γ∗ = x1x̄2x̄3x̄4x̄5 with the
lowest f value is removed from the fringe (Assume that the nodes
with the same f value will be traversed in the order from left to
right). There are three possible children nodes of γ∗: x1x2x̄3x̄4x̄5,
x1x̄2x3x̄4x̄5 and x1x̄2x̄3x̄4x5. As f(x1x2x̄3x̄4x̄5) = 5−3−3 =
−1 < 0; f(x1x̄2x3x̄4x̄5) = 6−3−3 = 0; and f(x1x̄2x̄3x̄4x5) =
2−3−3 = −4 < 0. There is only one outcome x1x̄2x3x̄4x̄5 will
be added into the fringe.
In the 3rd iteration, we continue with the outcome γ∗ = x1x̄2x3x̄4x̄5.
There are three possible outcomes can be reached by a single flip
from γ∗: x1x2x3x̄4x̄5, x1x̄2x3x4x̄5 and x1x̄2x3x̄4x5. We com-
pute the f value of these three outcomes: f(x1x2x3x̄4x̄5) = 3 −
2 − 3 = −2 < 0; f(x1x̄2x3x4x̄5) = 5 − 2 − 3 = 0; and
f(x1x̄2x3x̄4x5) = 1 − 2 − 3 = −4 < 0. Only one outcome
x1x̄2x3x4x̄5 can be added into the fringe.
Similarly, in the 4th iteration, we explore the outcome γ∗=x1x̄2x3x4x̄5
and add only one outcome x1x2x3x4x̄5 into the fringe.
In the 5th iteration, we explore the outcome γ∗ = x1x2x3x4x̄5.
In essence, there are two variables can be improved from γ∗: X4
and X5. However, as X4 is in the 3rd matching suffix with the
target outcome α (using the topological order X1 > X5 > X2 >
X3 > X4), we only consider flipping the value of X5. And this
step produces the target outcome α, which will be explored in the
last iteration and the algorithm returns True to this query.
Note that as we have discussed in Section 2.3, an algorithm based
on Least-variable flipping rule is incomplete in this case.

4. EXPERIMENT
We now describe the results of experiments that show the feasi-

bility of our approach to dominance testing with respect to (i) the
average number of visited nodes during the search process; (ii) the
number of variables svar and the domain size sdz that can be effi-
ciently handled in practice; and (iii) the structure of CP-nets. We
compare the performance of the proposed DT* algorithm with (i) a
standard depth-first search algorithm that applies suffix fixing dur-
ing the search, called DF; and (ii) an algorithm using Least-variable
flipping rule, called LVF. We generate random preference networks
by varying the number of variables, the structure of the network and
the preference of the variables. For directed-path singly connected
CP-nets and arbitrary acyclic CP-nets, we restrict the maximum
in-degree of each node in the generated CP-nets to 10. For multi-
valued CP-nets, we restrict the maximum domain size sdz to 5.
We conduct the following six sets of experiments. At each set of
experiments, we generate 1000 CP-nets randomly and using each
resulting preference network, we evaluate 5 dominance queries by
picking distinct pairs of outcomes at random.
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Figure 5: Avg. number of visited nodes with binary-value tree-
structured CP-nets
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Figure 6: Multi-valued tree-structured CP-nets

Set 1: binary-valued tree-structured CP-nets. We vary the num-
ber of variables svar from 2 to 30 and only generate tree-
structured dependences. From Figure 5 we can observe that
on average, the numbers of visited nodes by both DT* and
LVF algorithms are much less than DF algorithm. Note that
for binary-valued tree-structured CP-nets, LVF (Least-variable
flipping rule) is guaranteed to be complete and backtrack-
free. 4 However, on average, DT* is more efficient than the
LVF algorithm for dominance testing in tree-structured CP-
nets. The average execution time of DT* approach with 30
variables is less than 0.03 seconds. It offers more than three
orders of magnitude improvement in performance over the
DF algorithm.

Set 2: multi-valued tree-structured CP-nets. We vary svar from
2 to 15. The results of multi-valued tree-structured CP-nets
(see Figure 6(a)) is similar to the set of experiments with
binary-valued tree-structured CP-nets. However, LVF algo-
rithm does not guarantee completeness in multi-valued CP-
nets. Figure 6(b) shows the percentage of cases in which
the LVF algorithm is incomplete, i.e., it gives an incorrect

4The authors can also refer to [3] Page 161, TreeDT algorithm for
binary-valued, tree-structured CP-nets
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Figure 7: Avg. number of visited nodes with binary-valued,
directed-path singly connected CP-nets
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Figure 8: Multi-valued polytree CP-nets

answer to the query. In general, the percentage of incom-
pleteness of LVF algorithm is increasing as the number of
variables increases. When there are 15 variables, in more
than 28% cases that LFV algorithm fails to find the improv-
ing flipping sequence for the given query although there does
exist at least one. On the other hand, according to the exper-
iment data, DT* completes the search process in about 12
seconds on average in the cases of 15 variables.

Set 3: binary-valued, directed-path singly connected CP-nets. In
this set of experiments, the number of variables svar is from
2 to 25. Note that LVF algorithm guarantees completeness in
binary-valued, directed-path singly connected CP-nets while
it may require back-tracking during the search. The average
number of visited nodes in this set of experiments is shown in
Figure 7. Both LVF and DT* algorithms are much more effi-
cient than the DF algorithm. When there are 25 variables, the
average execution time of DT* is about 5.7 seconds, which
is more than two orders of magnitude less than the DF algo-
rithm.

Set 4: multi-valued, directed-path singly connected CP-nets. We
vary svar from 2 to 12. Figure 8(a) shows that the average
number of visited nodes of both LVF and DT* algorithms are
much less than DF algorithm. Although the result shows that

359



æ
æ

æ
æ

æ
æ

æ

æ
æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ

à
à

à
à

à
à

à
à

à
à

à à
à

à
à

à
à à

à

ì ì ì ì ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì

ì
ì

ì

ì

5 10 15 20
Variables

1

10

100

1000

104

Nodes

(a) Avg. number of visited nodes

à à à à à
à

à
à

à
à à

à
à à

à
à

à
à à

5 10 15 20
Variables0

5
10
15
20
25
30

Percentage

(b) LVF Incompleteness

ææ àà ììDF LVF DT*

Figure 9: Binary-value arbitrary acyclic CP-nets

when the number of variables is large, the LVF algorithm
may visit less nodes than DT* algorithm, the percentage of
incompleteness of LVF is on the other hand, increasing as
the number of variables increases (see Figure 8(b)). When
there are 12 variables, this percentage is more than 25%. Ac-
cording to the experimental data, with 12 variables and each
variable with the maximum domain size of 5, the average ex-
ecution time of DT* approach is still less than 50 seconds.

Set 5: binary-valued arbitrary acyclic CP-nets. We vary svar
from 2 to 20. Similar to the results presented in Set 4, when
the number of variables is large (more than 15) the average
number of visited nodes of DT* algorithm is more than that
of LVF algorithm (see Figure 9(a)). However, for binary-
valued CP-nets in general, LVF does not guarantee complete-
ness and the percentage of cases that the LVF algorithm re-
turns incorrect answers is increasing as the number of vari-
able increases (Figure 9(b)). When there are 20 variables,
this percentage is more than 20%. While on average, DT* al-
gorithm returns a correct answer to the given query in about
20 seconds.

Set 6: multi-valued arbitrary acyclic CP-nets. In the last set of
experiments, we vary svar from 2 to 10. The results with
arbitrary acyclic CP-nets in multi-valued setting is similar
to that in binary-valued setting (see Figure 10(a) and Fig-
ure 10(b)). When there are 10 variables, the percentage of
incomplete cases the LVF algorithm is more than 20%; on
the other hand, DT* guarantees to return a correct answer in
about 9 seconds on average.

In summary, our experiments show that on average, our proposed
DT* algorithm is much more efficient than the DF algorithm. It is
as relatively efficient as LVF algorithm while guaranteeing sound-
ness and completeness of the search process. From the experiment,
we can also conclude that our proposed DT* algorithm allows dom-
inance queries for CP-nets that are quite large and complex to be
answered in reasonable time.
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Figure 10: Multi-valued arbitrary acyclic CP-nets

5. CONCLUSION AND FUTURE WORK
In this paper, we have studied the problem of dominance test-

ing in CP-nets. We have proposed a heuristic algorithm DT* for
dominance testing with arbitrary acyclic CP-nets. The proposed
approach significantly reduces the search effort without impacting
soundness and completeness. We have also experimentally shown
that the proposed algorithm is computationally efficient.

Nonetheless, the present work is only applicable for acyclic CP-
nets. The investigation of techniques to deal with cyclic preferences
need to be further explored.
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ABSTRACT
In this paper we address efficient decentralised coordination of co-
operative multi-agent systems by taking into account the actual
computation and communication capabilities of the agents.We
consider coordination problems that can be framed as Distributed
Constraint Optimisation Problems, and as such, are suitable to be
deployed on large scale multi-agent systems such as sensor net-
works or multiple unmanned aerial vehicles. Specifically, we focus
on techniques that exploit structural independence among agents’
actions to provide optimal solutions to the coordination problem,
and, in particular, we use the Generalized Distributive Law(GDL)
algorithm. In this settings, we propose a novel resource aware
heuristic to build junction trees and to schedule GDL computations
across the agents. Our goal is to minimise the total running time
of the coordination process, rather than the theoretical complex-
ity of the computation, by explicitly considering the computation
and communication capabilities of agents. We evaluate our pro-
posed approach against DPOP, RDPI and a centralized solver on
a number of benchmark coordination problems, and show that our
approach is able to provide optimal solutions for DCOPs faster than
previous approaches. Specifically, in the settings considered, when
resources are scarce our approach is up to three times fasterthan
DPOP (which proved to be the best among the competitors in our
settings).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: [Coherence and coor-
dination, Multiagent systems]

General Terms
Algorithms, Performance, Experimentation

Keywords
multiagent coordination, junction tree, treewidth, variable elimina-
tion, heuristic algorithm, GDL, DCOP

1. INTRODUCTION
Many practical applications require the development of effective
decentralised coordination techniques for cooperative multi-agent
systems. For example, agent-based techniques have been widely

Cite as: Resource-Aware Junction Trees for Efficient Multi-Agent Coor-
dination, N. Stefanovitch, A. Farinelli, A. Rogers and N. R.Jennings,Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 363-370.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

used to control physical devices which can acquire and process in-
formation from the environment, such as sensor networks deployed
to collect environmental data [12] or multiple unmanned aerial ve-
hicles deployed to collectively patrol and map a defined area[16].
The development of decentralised coordination techniquesis par-
ticularly challenging in these domains because such devices usually
have constrained computational resources (due to the requirement
of minimising power consumption) and because communication
is usually limited in bandwidth and is dependent on the physical
distance and mutual positions of the devices (due to the wireless
communication technology frequently used). Moreover, to develop
more cost effective systems, and to manage legacy, it is expected
that the devices within such networks will be heterogeneous; hav-
ing different computation and communication capabilities.

Recent work has shown that to develop effective and efficient
coordination techniques it is crucial to exploit the structural inde-
pendence between the agents’ utility functions (i.e. the fact that
the utility of each agent only depends on its own choice of action
and that of a small number of locally interacting neighbours) [16,
14]. Doing so allows the decentralised coordination problem to be
framed as a Distributed Constraint Optimisation Problem (DCOP),
enabling a number of optimal algorithms to be used as solution
techniques, e.g., ADOPT [9], OptAPO [8] and DPOP [15].

However, these algorithms take no account of the heterogeneous
computational and communication resources available to the dif-
ferent agents within the system. In many settings, and particularly
in the cooperative settings we focus on here, it may be beneficial
to delegate computations such that (i) we take advantage of agents
with greater than average computational capabilities, and(ii) we
minimise communication between agents with poor communica-
tion links. Current algorithms for solving DCOPs do not consider
such strategies. For example, DPOP arranges the constraintnet-
work into a pseudo-tree using a Depth First Search (DFS) method.
While the DFS can be conveniently performed using distributed
algorithms, it does not take into account agents’ individual compu-
tation and communication capabilities, and it can result inan inef-
ficient allocation of computations to the agents. In contrast Paskin
and Guestrin developed an approach to cope with networks that
have poor quality communication links (as it is frequently the case
with wireless networks)[14]. Their approach uses the routing tree
of the communication network to arrange agents into ajunction
tree, which is then further optimised in order to minimise commu-
nications. While this work takes computation and communication
into account, it forces the junction tree structure to be a spanning
tree of the communication network, which can, as we shall show
later, significantly reduce the efficiency of the coordination process.

Thus, against this background, in this paper we address these
shortcomings by proposing aresource awaresolution technique
for DCOPs. Our approach pre-processes the constraint network by
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building a junction tree, over which optimal inference is performed
using standard message passing techniques, such as those provided
by the Generalised Distributive Law (GDL) framework [1]. Junc-
tion trees are well known structures, frequently used in graphical
models and constraint processing [7] and while finding the optimal
junction tree (in the sense of a minimal size of the largest clique)
is NP-hard, a number of heuristics that build near optimal junction
trees are well known. Here, we propose a distributed approach to
build the junction tree that is based on the variable elimination algo-
rithm [5], but is extended to consider the heterogeneous nature of
both computational and communication resources within thenet-
work. In this context, the optimal tree is not the one that minimises
the theoretical complexity of the computation (as is the case within
the standard literature of junction trees), but is the one that min-
imises the total running time of the coordination algorithm(includ-
ing both the time required by the agents to individually compute
their partial solutions, and the time for these solutions topropagate
up and down the junction tree).

In doing the above, this paper makes the following contributions
to the state of the art:

• We present the first model of decentralised coordination that
explicitly considers the total running time required by a co-
ordination algorithm that operates in heterogeneous multi-
agent system.

• We propose a novel distributed algorithm, based on the vari-
able elimination algorithm, which uses a novel resource aware
heuristic to minimise the running time of the coordination
process (as defined above).

• We empirically evaluate the proposed technique on a simu-
lated environment, comparing it with three state of the art
approaches for multi-agent systems: the pseudo-tree builtby
DPOP, the junction tree formation algorithm of Paskin and
Guestrin, and a benchmarking centralised approach. Our re-
sults show that, when communication resources are scarce,
our resource aware heuristic improves upon previous tech-
niques being up to 3 times faster than DPOP, which proved
to be the best competitors in our settings.

The rest of the paper is organised as follows: Section 2 pro-
vides basic background knowledge on DCOPs and graphical mod-
els while Section 3 formalises the problem we are addressing. Sec-
tion 4 details our approach and the resource aware heuristicwe
propose. Section 5 presents the empirical analysis of our approach,
Section 6 discusses related work and Section 7 concludes.

2. BACKGROUND
We provide here a brief review of background knowledge concern-
ing DCOPs, junction trees and the GDL framework.

2.1 Distributed Constraint Optimisation Prob-
lems

Formally a DCOP can be defined as a tuple〈A,X ,D,Ψ〉, where
A = {A1, . . . , Ak} is a set of agents,X = {1, . . . , n} is a set of
variables. Each variable is owned by exactly one agent, but an agent
can potentially own more than one variable. An agent is responsible
for assigning values to the variables it owns.D = {D1, · · · ,Dn}
is a set of discrete and finite variable domains, each variable i can
take value in the domainDi. Finally, Ψ = {ψ1, . . . , ψm} is a
set of constraint functions that describe the constraints among vari-
ables. Each functionψi : Di1 × · · · ×Diri

→ R depends on a set
of variableXi ⊆ X , whereri = |Xi| is the arity of the function.
Each function assigns a real value to each possible assignment of
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Figure 1: Example of a MAS coordination problem : commu-
nication (wide grey edges) and constraint network (thin black
edges), nodes represent both agents and variables

the variables it depends on. Given this settings, we wish to find the
variable assignmentX∗ such that the sum of all constraint func-
tions is maximised:

X∗ = arg max
X

mX
i=1

Ψi(Xi) (1)

2.2 Junction Trees
DCOPs can be solved using message passing algorithms acrossthe
constraint network; a graph representation of a DCOP where nodes
are variables and edges are constraint functions. However,in or-
der to ensure completeness and termination, the constraintnetwork
must be a tree. If this is not the case, then it is necessary to trans-
form the original constraint network into a special graphical struc-
ture called a junction tree. This is done by forming a clique graph
whose nodes (cliques) and edges (separators) are clusters of vari-
ables. A junction tree is simply a clique graph which satisfies the
following four properties: single-connectedness, running intersec-
tion, covering and maximality. Single-connectedness ensures that
the graph is a tree, yielding termination. Running intersection en-
sures that any variable present in the intersection of the domain of
two cliques is also present in every clique of the path joining them,
yielding correctness. Covering ensures that the domain of every
constraint function of the DCOP is the subset of at least one clique.
Maximality states that a clique can not have a domain which is
a subset of the domain of another clique. One of the most well-
known algorithms to transform a constraint graph into a junction
tree is the variable elimination algorithm. This algorithmworks by
sequentially selecting variables of the constraint graph,eliminating
them and forming cliques accordingly (see [7] for more details).

2.3 GDL
Having formed a junction tree, the optimal solution of the DCOP
can be found using a suitable message passing algorithm, of which
GDL is the most general [1]. The GDL algorithm uses two oper-
ators,⊗ for function combination and⊕ for function marginalisa-
tion, and exploits the distribution property of⊗ over⊕. It works by
passing messages along the edges of the junction tree and perform-
ing computation at the level of the nodes. DCOPs can be solvedby
GDL using thesum andmax operators respectively.

A message from a cliquen to a cliquem is a utility function
defined recursively over the intersection of the domains ofn andm
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by the formula:∀y ∈ d(m)∩ d(n), where the functiond gives the
set of variables associated to a clique or separator (collect phase):

ψn→m(y) = ⊕x∈d(n)\d(m)(⊗i∈Γ(n)\mψi→n ⊗ ψn)(x ∪ y)

A special node, called the root, receives the information from all of
its neighbours. It computes the optimal instantiation of its variables
and then starts the recursive phase of local optimisation yielding the
global optima (propagation phase). Specifically hen a cliquem re-
ceives the instantiation from its parentn it conditionally optimise
the instantiation of its variable and then propagates the set of in-
stantiation it knows:

x∗n = (arg⊕x∈d(n)\d(m)(⊗i∈Γ(n)\mψi→n⊗ψn)(x∪x∗m∩n))∪x∗m∩n

Both the collect and propagation phases can be performed with a
linear number of messages. However, during the collect phase, the
computation of the messages and the size of the messages are ex-
ponential in the size of the clique sending them, and the cardinality
of the corresponding separator respectively.

The use of junction trees in combination with the GDL algo-
rithms is attractive as they inherently work in a distributed way by
message passing. Moreover such an approach is efficient as itis
exponential only in the treewidth rather than in the total number
of variables. The treewidth is a parameter of a tree decomposition
which is the size of the largest clique, and is usually far smaller than
the total number of variables. Finding a junction tree of minimal
treewidth is however an NP-hard problem [7].

3. PROBLEM DESCRIPTION
Having presented the necessary background, we now formallyde-
scribe the problem that we tackle; that of, minimising the total run-
ning time of a coordination algorithm when faced with heteroge-
neous computational resources, and a bandwidth constrained com-
munication structure. To this end, we introduce the conceptof a
computationaltask to model the GDL solution process for DCOP.
A computational taskτ (ψn→m(y)) describes the amount of com-
putation that an agent has to perform in order tocomputethe mes-
sageψn→m(y) defined in Section 2.3.

Since the computation of a messageψn→m(y) recursively de-
pends on the computation of messages from neighbouring cliques,
these computational tasks are tied by the set of execution con-
straintsEC(τi) = {τ i

1, · · · , τ i
k} whereτ i

j are tasks that must be
executed beforeτi. We denote the set of all the computational tasks
asT, and this consists of the set of cliques of the junction tree and
the set of constraint functions1. Execution of a computational task
involves the processing of constraint functions and received mes-
sages (i.e., the summation of those functions and the maximisation
over some subsets of the decision variables) in order to compute
the message. Each computational task is assigned to a singleagent,
which is responsible for all the aspects of the execution of this task.
We denoteα : T→ A the function representing this allocation.

Thecompletion timeof a taskτ depends on its size (given by the
size function), on the computational power of the agentα(τ ) ex-
pressed as the number of constraint checks per unit of time (given
by thespeed function), and on the characteristics of the communi-
cation links used to route the messages produced by the execution
of EC(τ ) to the agentα(τ ) (given by thetrans function). The
completion time of a single computational task, can then be defined

1Constraint functions can be seen as computational tasks requiring
no processing from the agent side, but requiring some non-zero
transmission time to the agent responsible of the clique to which
the constraint function is allocated.
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Figure 2: Instance of a solution obtained on the MAS coordi-
nation problem of Figure 1

as a functionCT : T→ N, whose expression is:

CT (τ ) = maxτi∈EC(τ)CT (τi) + transα(τi),α(τ)(τi)

+size(τ )/speed(α(τ ))

Note that, we assume that agents are not multitasking and tasks
are not preemptive, such that agents can either compute, send or
receive messages at any time, and can not interrupt one of those
activities if already started. We consider a restricted communi-
cation structure composed of pairwise communication links. For
each link we consider a symmetric limited bandwidth that defines
the time required to transmit messages over the link. If an agent
on the shortest path between two agents is performing one of the
above activities, messages between these two agents have either to
wait or to find a new route. Such a setting models some impor-
tant aspects of wireless sensor networks such as limited bandwidth,
limited connectivity, multi-hop communication and possible net-
work congestions. Small bandwidth values can represent both low
throughput reliable communication links or high throughput unre-
liable communication links.

Figure 1 shows an exemplar instance of a constraint network as-
sociated with a restricted communication network. The nodes rep-
resent decision variables, the thin black edges are constraint de-
pendencies between the variables. Constraints that hold between
variables are associated with constraint functionsψi as shown in
the figure. The thick grey edges represent the underlying commu-
nication network between the agents responsible for the variables.
Numbers next to those edges correspond to the bandwidth of the
communication links while numbers next to the agents represent
computational speed of the agents.

Now, given any specific constraint network, we can define the
set of computational tasks and the set of messages that need to be
computed and propagated according to the GDL algorithm. The
GDL algorithm can then be described as the execution of the associ-
ated computational tasks using agents as computational resources.
Specifically, given a DCOP instance〈A,X ,D,Ψ〉, to obtain the
set of associated computational tasks we have to choose a setC
of cliques, an allocationαΨ : Ψ → C of constraints functions to
cliques, and an allocationαC : C → A of the cliques onto the
agents. We can now defineMS(C, αΨ, αC) as the time to com-
plete all tasks subject to the execution constraints. Such acriterion
is known as the makespan in the scheduling literature2, and in our
setting it corresponds to the time at which the last task has been
computed (which is the maximisation of the root clique). There-
fore, representing the special task associated to the root clique of
the GDL algorithm asτr, the makespan can be defined as:MS =

2The makespan is a concept more general but akin to the number
of non concurrent constraint checks in DCOP literature since it ex-
plicitly takes into account communication delays
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CT (τr). Our aim is then to find the junction tree, the allocation of
constraints to cliques and cliques to agents that will minimise this
makespan, such that:

arg min
C,αΨ,αC

MS(C, αΨ, αC)

Unfortunately, optimally scheduling a set of tasks onto a set of
heterogeneous processors, even without considering communica-
tion, is known to be NP-hard [18]. Therefore, in this paper, we aim
to design an effective heuristic that works well in practise.

4. RESOURCE-AWARE JUNCTION TREES
Here we present our approach to build junction trees and allocate
computational tasks to agents in order to heuristically minimise
the makespan of the coordination process. We first note that the
minimisation problem stated in the previous section can be divided
into two sub-problems: (i) finding a suitable junction tree decom-
position of the problem, by defining cliques and allocating con-
straint functions to cliques; (ii) allocating the resulting computa-
tional tasks to agents to minimise the makespan. However, the two
subproblems are interconnected because grouping of variables in
cliques induced by the junction tree impacts on the computation
and communication that agents need to perform. The approachwe
propose treats both subproblems at the same time, and it is divided
into two key parts: a distributed protocol that implements variable
elimination and a novel resource aware heuristic (RAH) thatseeks
to select variables in order to heuristically minimise the makespan
of the coordination process.

Distributed Protocol for Variable Elimination
This protocol is a distributed negotiation protocol that extends the
variable elimination algorithm by making use of calls for proposals
(CFP) and bids in order to determine the next variable to elimi-
nate and the agent responsible for the associated clique maximisa-
tion. Our protocol proceeds by each agent broadcasting one CFP
for each variable it is responsible for. Each agent then replies to
a CFP by estimating the makespan associated with itself being re-
sponsible for the computation of the clique that would be created
if the variable specified in the CFP was eliminated. Given this de-
scription, we now formally define the key elements of our protocol.
•A constraintis a tuple〈f,Xf , ψf , af 〉, wheref is the identifier

of the constraint,Xf ⊆ X is the domain (or label) of the constraint
function,ψf : 2Xf → R is the constraint function andaf ∈ A is
the identity of the agent owning the constraint.
• A variable is a tuple〈X,ΓX ,Γ

past
X , aX , cX〉, whereX is the

identifier of the variable,ΓX ⊆ X is the set of neighbours of
this variable in the constraint graph,Γpast

X ⊆ X is the set of for-
mer neighbours that have already been eliminated,aX ∈ A is the
agent responsible for this variable andcX ∈ C is the clique related
to the elimination of this variable (initially void). For instance,
in the Figure 1 variableX2 is represented by the following tuple
〈X2, {1, 2, 3}, {}, 2, ∅〉.
• A cliqueis a tuple〈c,Xc,Ψc,Γ

C
c ,Xc, ac〉, wherec is the iden-

tifier of the clique,Xc ⊆ X is the domain (or label) of the clique,
Ψc ⊆ Ψ is the set of constraint functions allocated to the clique
(initially void), ΓCc ⊆ C is the set of neighbours in the junction tree
(initially void), Xc ∈ X is the variable whose elimination led to
the creation ofc andac ∈ A is the identity of the agent responsi-
ble of the clique. For instance in the Figure 2 the cliqueX1X2X3

is represented by the following tuple〈X1X2X3, {X1,X2, X3},
{ψ1, ψ2, ψ7}, {X1X3X6},X2, 1〉.
• An agentis a tuple〈a,Xa,Ψa, Ca,Γ

com
a 〉, wherea is the iden-

tifier of the agent,Xa ⊆ X is the subset of variables the agent
owns,Ψa ⊆ Ψ is the set of constraint functions allocated to the

agent,Ca ⊆ C is the set of cliques allocated to the agent (initially
void) andΓcom

a ⊆ A is the set of neighbours of the agent in the
communication graph. For instance in the Figure 2, agent 3 isrep-
resented by the following tuple〈3, {X3}, {ψ3, ψ6}, {X1X3X6,
X3X4X6}, {1, 2, 3}〉.
• A CFP is initiated by one agent which proposes to another to

take the responsibility of a clique (which is onlypartially created
and initialised). Formally a CFP is a tuple〈s, c, d〉, wheres ∈ A is
the sender agent,d is a date (the number of the bidding turn), and
c is a clique, whose function (of exponential size) is not created.
The initialised fields ofc are Ψc - with the list of subfunctions
that would be allocated toc, ΓCc - with the list of neighbouring
cliques in the junction tree (this set is needed to determinethe set of
separators, which in turns define the scope of messages that would
have to be transmitted or received byc andXc - which identifies
the variable for which the CFP has been sent.
• A bid is formally a tuple〈s, r, cfp, clique, v〉 wheres ∈ A is

the sender agent,r ∈ A is the addressee agent,cfp is the CFP for
which the bid is a reply,clique is the identity of the clique to which
the constraint functions of the clique of the CFP will be allocated
andv ∈ R+ is an evaluation of the time it would take the agents
to compute the clique proposed by agentr in his CFP.

Algorithm 1 Variable selection and elimination (selection)
1: parallel { treat_CFP() }
2: date← 0
3: while date < |X | do
4: // compute variables’ heuristic values
5: send_CFP()
6: treat_bids()
7: // select the next variable to eliminate
8: selected_bid← consensus_select(best_bid)
9: c← selected_bid.cfp.c

10: X ← Xc

11: // allocate the clique
12: if selected_bid.s = a then
13: Ca ← Ca ∪ {cX}
14: end if
15: // update the set of constraint

functions
16: if X ∈ Xa then
17: Ψa ← Ψa \Ψc

18: end if
19: // add new constraint dependencies

between each pair of neighbours
20: for Y ∈ Xa ∩ Xc do
21: for Z ∈ Xc : Y 6= Z do
22: if Y 6∈ ΓZ then
23: // extend variables’ neighbourhood
24: ΓZ ← ΓZ ∪ {Y }
25: ΓY ← ΓY ∪ {Z}
26: end if
27: end for
28: end for
29: // update variables neighbourhood with

respect to X
30: for all Xa ∈ Xa do
31: // remove variables’ constraint edges
32: ΓXa ← ΓXa \ {X}
33: // memorise variables’ past constraint

edges
34: Γpast

Xa
← Γpast

Xa
∪ {X}

35: end for
36: // reset the algorithm’s local variables
37: best_bid← ∅
38: date← date+ 1
39: end while
40: compute a maximum spanning tree and connect the cliques ac-

cordingly
41: start the GDL message passing inference algorithm
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Having defined our terms we now present our protocol in al-
gorithms 1-5. Variable elimination works first by computinga
heuristic evaluation for each variable. This is done by concur-
rently executing the functionstreat_CFP (line 1 of Algorithm
1), send_CFP andtreat_bids (lines 5-6 of Algorithm 1). CFP
are used in order to assess the impact on the makespan of the elimi-
nation of a variable. In order to do so a CFP contains the clique cor-
responding to the elimination of this variable. No clique isadded to
the junction tree until a consensus has been reached on the variable
to eliminate (lines 9-14 of Algorithm 1), at which time only one
clique is actually created.
• send_CFP computes and sends a CFP for each of the variable

an agent is responsible for. The fieldΨc is filled with the set of con-
straint functions3 that would be allocated to this clique if actually
created, and the setΓCc is filled accordingly with the neighbourhood
of this clique. Notice that this is a conservative estimation as the
actual neighbours will be computed in Algorithm 1 (line 40).A
CFP is compiled only with the information available in the direct
neighbourhood of the variable in the constraint graph (lines 4, 6
and 8). The CFP is then propagated to all the agents.4

• treat_CFP waits for incoming CFP and calls upon receiving
the procedureRAH_evaluate_clique. This function returns an
heuristic evaluation of the impact on the makespan for this agent to
compute the clique in the CFP. If the clique of the CFP has a domain
which is a subset of one of the cliques associated with a variable of
the agent, the evaluation is then set to 0, and the clique thatwould
be created is set to this already existing clique. Otherwise, the value
is left untouched and the clique that would be created is the one in
the CFP (lines 4-9). This is done in order to enforce the use of
maximal cliques only. The bid is then sent to the sender agent.
• treat_bids handles received bid messages. If an incoming

bid has an evaluation lower than the current best bid, it is selected
as the best bid (lines 5-8). The agent corresponding to the lowest
evaluation is stored inside the bid data structure. When allthe bids
have been received, the flow of control returns to Algorithm 1.
• selection is the function implementing the actual distributed

variable elimination algorithms. Once the previous algorithms com-
plete, it selects a variable to eliminate according to the heuristic
evaluation computed (line 7). This step is made through a consen-
sus, where each agent proposes the best bid it has received. Var-
ious algorithms such as a wave propagation algorithm [17] could
be used in order to perform a consensus, however the simplestway
is to propagate each message to all the agents. The variable and
the clique are then extracted (lines 8-9). The agent selected by the
winning bid adds the new clique to the set of cliques that it isre-
sponsible for (lines 11-13). The agent owning the selected variable
first updates the set of its constraint functions by removingthe ones
allocated to the new clique (line 17). All the neighbouring agents
of the selected variables update concurrently both their neighbour-
hood (lines 31-34) and the constraint neighbourhood of their vari-
ables (lines 24-25). It is necessary to do so in order to storeboth
the deleted edges (used to compute the heuristic) and the full set
of dependencies between variables (used to communicate with all
the relevant agents). When all the variables have been eliminated,
the cliques are connected together using a maximum spanningtree,
which enforces the tree structure and the running intersection prop-
erty of the junction tree [3]. This can be done efficiently in adis-
tributed way using the approach of [6]. Finally, Algorithm 1starts

3The actual function is not transmitted as it is of exponential size.
The heuristic can be computed by considering only its domain(see
line 13 of Algorithm 5)
4While each agent might not be able to reach all other agents
directly, messages will be propagated to all the agents possibly
though multi-hop communication.

the GDL messages-passing algorithm (line 41). The root nodeis
selected as the one in the middle of the diameter of the junction
tree.

Algorithm 2 Outgoing CFP management (send_CFP )
1: // compute and send CFPX

2: for all X ∈ Xa do
3: // compute the domain of the clique
4: Xc ← {X} ∪ ΓX

5: // compute the set of related constraint
functions

6: Ψc ← ∪Y ∈ΓX∪Γ
past
X
{〈f,Xf , ∅, aY 〉 : ψf ∈ ΨaY ,Xf ⊆

Xc}
7: // compute the set of related cliques
8: ΓCc ← ∪Y ∈Γ

past
X
{cY }

9: // partially create the clique
10: clique← 〈c,Xc,Ψc,Γ

C
c ,X, ∅〉

11: // create the CFP
12: CFPX ← 〈a, clique, date〉
13: broadcastCFPX

14: end for

Algorithm 3 Incoming CFP management (treat_CFP )

1: if receive(cfp = 〈s, c, d〉) ∧ d = date then
2: v ← RAH_evaluate_clique(c)
3: // enforce the use of maximal cliques

only
4: if ∃X ∈ Xa : Xc ⊆ XcX then
5: clique← cX
6: v ← 0
7: else
8: clique← c
9: end if

10: bid← 〈a, s, cfp, clique, v〉
11: sendbid
12: end if

Algorithm 4 Incoming bid management (treat_bids)

1: bids← ∅
2: while |bids| < |A| do
3: if receive(bid = 〈s, r, cfp, clique, v〉) ∧ r = a ∧ cfp.d =

date then
4: bids← bids ∪ {bid}
5: if best_bid.v > v then
6: best_bid← bid
7: v ← 0
8: end if
9: // select the next variable

10: end if
11: end while

As there are a finite number of variables and one variable is al-
ways eliminated at the end of each turn, this algorithm will always
terminate provided that there is no message loss. While we donot
deal with such an issue here, we note that such issue could be ad-
dressed by using other consensus approaches [4] or specific com-
munication protocol (such as for example TCP). Our protocolis
fully distributed as an agent only needs to know the constraints it
is involved with and the total number of agents in the system,at
no moment does an agent know the full set of constraints or vari-
ables. In contrast, each agent executes the part of the variable elim-
ination relative to their variables. The consensus protocol ensures
that at each step, all the agents are synchronised on the identity of
the eliminated variable. Therefore, our protocol is correct, and re-
sults in the same junction tree that would be created througha con-
ventional centralized variable elimination using our resource aware
heuristic.
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(a) (b) (c)

Figure 3: Constraint graphs of (a) ring, (b) tree and (c) cluster
instances

Resource Aware Heuristic

Algorithm 5 RAH heuristic (RAH_evaluate_clique(c : clique))
1: v ← Xc

2: eval← +∞
3: a← identity of the current agent
4: timeComp← s(d(c))/speed(a)
5: // estimatetrans for τ ∈ C (separators)
6: timeSep← 0
7: for all c′ ∈ Ψc do
8: timeSep←max(timeSep,sp(a,ac′ ,s(Xc ∩ Xc′ )))
9: end for

10: // estimatetrans for τ ∈ Ψ (constraint functions)
11: timeSub← 0
12: for all f ∈ ΓCc do
13: timeSub←max(timeSub,sp(a,af ,s(Xf )))
14: end for
15: eval←min(eval,timeComp+timeSep+timeSub)
16: return eval

TheRAH_evaluate_clique procedure takes as input a clique and
gives an heuristic estimate of the impact on the makespan of the
computation of the clique on the current agent. This is done by
greedily allocating constraint functions to this clique and allocat-
ing the clique to one agent. In more detail, this procedure computes
the sum of three values: the time to compute the task, the timeto
transfer the allocated constraint functions, and the time to transfer
the messages of the execution constraints (lines 5-14 of Algorithm
5). The evaluation of the time to transfer messages is computed
as the size of the message divided by the maximal bandwidth be-
tween the involved agents. This computation is done by thesp
function (lines 8, 13 of Algorithm 5), where the functions returns
the number of elements in the utility table representing a function
given its domains. Note that this is an approximation since conges-
tion in the communication network will impact this result, however
as discussed in Section 3 we focus here on an effective heuristic
approach rather than an optimal allocation which is known tobe
NP-hard [10].

Figure 2 depicts the results of our approach applied to the MAS
coordination problem of Figure 1. The constraint function allo-
cation are indicated beneath the cliques, and clique allocation to
agents are indicated on top of each clique with the number of the
responsible agent. The asterisk denotes the root. In this instance,
agent 3 is responsible for two cliques as the heuristic estimates
that the makespan could best be reduced by saving communication
rather than exploiting distribution of computations.

5. EMPIRICAL EVALUATION
We empirically evaluate our RAH algorithm against two closely
related state of the art distributed inference algorithms:(i) DPOP,
whose pseudo-tree is built with a distributed DFS approach5, and
5We use here the most connected node (MCN) heuristics, which as

(a) (b) (c)

Figure 4: Three communication graphs of thecluster instance,
where (a) r=100, (b) r=300 and (c) r=700

(ii) RDPI (Robust Distributed Probabilistic Inference), the initial
junction tree construction of Paskin and Guestrin which builds a
junction tree over the minimum spanning tree of the communica-
tion network [14]. We also compare against a centralised bench-
marking approach, which generates a near-optimal junctiontree
using the standard variable elimination algorithm and theminimum
size(MS) heuristic, and then allocates all tasks to the fastest agent
in the system. We refer to this algorithm as MS.

We benchmark these algorithms on a set of three scenarios with
different constraint network structures. Agents are located in a
square of fixed size of 1000 unit and we consider three different
topologies: rings, trees and clusters with 30, 40 and 30 agents re-
spectively. For simplicity we consider that there are as many vari-
ables as agent; constraints are n-ary. Figure 3 shows the structure
of the three constraint networks considered.

For each scenario we perform a set of experiments by varying the
communication range (i.e., the distance within which two agents
can communicate) in order to study the impact of the availability
of communication resources on the coordination procedure.The
communication range describes the availability of the communica-
tion resources. A communication range lower than 100 indicates
that only a few communication links between neighbouring agents
exist, while a communication range greater than 500 impliesthat
each agent is roughly connected to at least half of the agentsin the
system. The wider is the communication range, the more likely it
is to find direct high bandwidth communication links betweenany
two agents. In the limit, such a case is equivalent to having no
communication constraint at all.

Figure 4 represents the structure of the communication network
for three different ranges of communication in theclusterinstance.
For each experiment (i.e. a fixed constraint and communication net-
work structure) the agents’ computational speed and links’band-
width are randomly drawn from the set {2,4,8}.

Results
We measure the makespan and thetreewidth(the size of a maxi-
mal clique [7]) for each algorithm. The makespan is empirically
computed on a simulation environment matching the full charac-
teristics described in Section 3 (i.e., blocking communications, non
multitask agents and non preemptive tasks) using the same rout-
ing policy for all the algorithms (except RDPI which has its own).
Note that in these simulations we include the full effect of network
congestion. The unit of makespan measurement is the time step
of the simulator. For each experiment we performed 15 runs, and
we report the mean and the standard error of the mean in Figure5.
The treewidth measurements are reported in Table 1. In both case
r notes the communication range parameter.

In the ring and cluster scenario, the resource aware heuristic
performs up to three times faster than DPOP when resources are

discussed in [15] drives the DFS to obtain pseudo-trees withlow
treewidth
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scarce (communication range below 100). The performance then
stabilises (two times faster than DPOP) when the communication
range increases. In thetree scenario, because the communica-
tion and constraint networks are both tree structured and generated
according to a distance measure between agents, communication
along the DPOP pseudo-tree matches the communication network
more closely than in other instances, where the agent responsible
for neighbouring cliques are less likely to be neighbours inthe com-
munication graph. As a result the performances of RAH and DPOP
are similar until the point where communication is no longera
scarce resource (communication range of 400) where DPOP is able
to perform better. These results show the importance of taking into
account the differences between the communication and constraint
networks in DCOPs.

The comparison between RAH and MS shows that the differ-
ence in performance is not only highly contrasted but is reversed
when communication is no longer a scarce resource. Specifically
in such a case MS is able to perform better than the resource aware
heuristic we propose as all the agents are able to directly commu-
nicate with fast communication links with the centralisingagent,
indicating that in this case centralising the solution is more effi-
cient. Conversely when resources are highly constrained the RAH
is able to perform up to 3 times faster than MS.

The makespan obtained with the RDPI algorithm was extremely
high (around two orders of magnitude higher than MS) in our set-
tings, and are thus not reported in the Figure 5. This is related to
the high treewidth (see Table 1) of the junction trees which is up
to six times the treewidth of a near-optimal junction tree and two
to three times larger on average.This is due to the fact that RDPI
forces the junction tree to be built on top of a spanning tree of the
communication network and this can result in junction treeswith
very large treewidth. In order to tackle this problem, Paskin pro-
poses to use simulated annealing in order to optimise the junction
tree. However, such a procedure requires an expensive distributed
evaluation procedure in order to evaluate the cost of a localmove
and an unbounded number of messages [13]. As we focus here on
the efficiency of junction trees that can be obtained with simple pre-
processing techniques, we only report for RDPI the performance of
the initial junction tree. The reported experimental evidences sug-
gest that the cost of RDPI when the optimisation procedures con-
verge, is within a factor of two of hypothesized optimal junction
tree, which was built using an off-line centralised procedure, while
the initial tree is up to seven times worst than that. However, no-
tice that in our experiments RDPI results were orders of magnitude
worst than competitors.

Furthermore notice that the treewidth for MS and RAH are very
similar (see Table 1) but RAH clearly outperforms MS when com-
munication is scarce (see Figure 5). These results again show the
importance of taking into account agents’ communication and com-
putation capabilities when building the junction tree.

Summarising, our results show that while the treewidth of the
junction tree remains an important parameter as it has an exponen-
tial impact on the efficiency of the algorithm, junction trees with
higher treewidths can still result in better overall performances in
such heterogeneous distributed settings if computations are appro-
priately scheduled across agents.

Complexity
While the running time depicted in Figure 5 only shows the relative
performance of the different junction trees, it is important for real-
world applications to also take into account the distributed running
time of the preprocessing steps of all those algorithms. We discuss
here the complexity, in terms of number of messages exchanged for
the different approaches. For ease of notation, let us assume there
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Figure 5: Coordination process makespan for the a)ring b) tree
and c) cluster structured constraint graph instance

r MS RAH DPOP RDPI
50 5 5.8± 0.1 6 10.4± 0.3
100 5 5.4± 0.1 6 8.8± 0.2

cy
cl

e

300 5 5.2± 0.1 6 11.1± 0.5
500 5 5.1± 0.1 6 19.4± 0.5
50 4 4.4± 0.1 5 13.3± 0.7
100 4 4.4± 0.1 5 18.5± 0.7

tr
e
e

300 4 4.2± 0.1 5 20.6± 1.0
500 4 4.1± 0.1 5 20.6± 1.0
50 7 7.0± 0 7 8± 0
100 7 7.4± 0.1 7 8± 0

cl
u
st

e
r

300 7 7.1± 0.1 7 13± 0.7
700 7 7.0± 0 7 24.2± 0.5

Table 1: Benchmarked treewidths
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are as many agents as variable, wheren is this number,tw is the
treewidth, and that each agent possesses exactly one variable.

In terms of number of messages, DFS exploration uses2n mes-
sages, and the MCN heuristic usestw messages at each steps,
yielding a number of messages for our DPOP implementation in
O(ntw). RDPI usesO(n log n) messages in order to build a span-
ning tree and then2(n− 1) messages in order to build the junction
tree on top of it, yielding a number of messages inO(n log n). The
MS algorithm is centralised and therefore each agent sends to the
centralising agent its information regarding the variables and vari-
ables neighborhood, requiring the exchange ofnmessages. Finally
the number of messages of our approach is the following. During
the step0 < k < n of Algorithm 1n− k CFP andn(n− k) bids
are sent, yielding a total number of messages for RAH inO(n3).

While the number of messages of our algorithm is higher than
the others, as the results show, our approach can yield better run-
ning time for the DCOP solving algorithm for the solution phase.
For real applications the measure we are interested in is thecom-
bined running time of the preprocessing phase and the actualsolu-
tion phase. Such a running time depends on various parameters, the
number of variablesn, the tree-widthtw and the cardinalityd of
the variables and also depends on the computation and communi-
cation capabilities of the multi-agent system. Now, the number of
messages of the preprocessing phase for RAH is higher than com-
petitors, but notice that messages sent in this preprocessing phase
are of fixed size with respect totw andd, while the complexity of
the junction tree solution phase is exponential intw with a basis
of d. Therefore, depending on the values of the above parameters,
the time required to send the messages for the preprocessingphase
can be negligible with respect to the gain obtained in the running
time for the solution phase. For instance if we consider thecluster
experiment, we haven = 30, tw = 7, d = 2. The maximal time to
compute a clique in such a case is27 = 128 times steps, while the
RAH algorithm needs to exchanges27 · 103 messages. However,
if we considerd = 10, the complexity of the junction tree solution
phase become prevalent with10 ·106 times steps while the number
of messages sent by RAH does not change.

Thus, depending on the settings of a coordination problem our
algorithm can provide substantial gains in terms of total running
time despite having a preprocessing overhead greater than the ones
currently used in DPOP, MS and RDPI.

6. RELATED WORK
The use of junction trees (and other related graphical models) for
solving DCOPs and the development of distributed approaches for
junction tree compilation is a recent research topic that isgaining
increasing attention. For example, Xia and Prassana use a dis-
tributed junction tree creation algorithm based on a DFS tree and
propose to select the root so as to minimise the makespan [19], Ot-
ten and Dechter propose an heuristic for graphical models based
on problem size measure that aims at load balancing efficiently the
junction tree inference on as set of processors [11], Allouche and al.
explicitly consider the problem of using distributed variable elimi-
nation in order to solve hard constraint optimisation problems [2].
However, none of these approaches address the problem from a
MAS perspective, and as such they do not consider heterogeneity
of computation and communication and they do not focus on hav-
ing a distributed approach

7. CONCLUSION
In this work we take a first important step to explicitly consider
multi-agent system specific issues (such as heterogeneity of com-
putation and communication across the agents) when applying so-

lution techniques developed in the graphical model community to
decentralised constraint optimisation.

Specifically, we show the importance of taking into account the
actual resources of a multi-agent system when solving combinato-
rial optimisation problems across it, and validate our approach on
benchmark coordination problems

Future work are divided in two directions. The first is to empiri-
cally validate our approach on a deployed wireless sensor network.
The second aims to investigate bounded approximate algorithms.
Addressing the trade-off among communication, computation and
the bound that can be provided on solution quality.
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ABSTRACT
We propose the bounded multi-objective max-sum algorithm
(B-MOMS), the first decentralised coordination algorithm
for multi-objective optimisation problems. B-MOMS ex-
tends the max-sum message-passing algorithm for decen-
tralised coordination to compute bounded approximate so-
lutions to multi-objective decentralised constraint optimi-
sation problems (MO-DCOPs). Specifically, we prove the
optimality of B-MOMS in acyclic constraint graphs, and de-
rive problem dependent bounds on its approximation ratio
when these graphs contain cycles. Furthermore, we empiri-
cally evaluate its performance on a multi-objective extension
of the canonical graph colouring problem. In so doing, we
demonstrate that, for the settings we consider, the approx-
imation ratio never exceeds 2, and is typically less than 1.5
for less-constrained graphs. Moreover, the runtime required
by B-MOMS on the problem instances we considered never
exceeds 30 minutes, even for maximally constrained graphs
with 100 agents. Thus, B-MOMS brings the problem of
multi-objective optimisation well within the boundaries of
the limited capabilities of embedded agents.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Coordination, Distributed Problem Solving

1. INTRODUCTION
Many real world problems involve the optimisation of multi-
ple, possibly conflicting, objectives. Examples of bi-objective
problems include the use of unmanned aerial vehicles (UAVs)
for searching for survivors, while simultaneously establishing
a wireless communication network between them [17], and
controlling the motion of mobile robots to minimise travel
distance while preventing collisions [14]. In both cases, in-
dependently maximising one objective results in detrimental
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performance in terms of the other. Now, due to the poten-
tial life-critical nature of these problems, centralised control
of these UAVs or ground robots is not desirable, since it
creates a single point of failure. Consequently, the use of
multi-agent technology has been advocated to achieve reli-
able, robust and scalable control within these sensitive sce-
narios [7, 9]. Specifically, many decentralised constraint op-
timisation algorithms have been proposed to allow multiple
agents to coordinate their actions in an attempt to achieve
their collective goals [4, 5, 10, 13, 15].

However, whilst both multi-objective constraint optimisa-
tion and decentralised coordination has generated consider-
able interest, no decentralised multi-objective optimisation
algorithms have been proposed in previous work.

On the one hand, the field of decentralised optimisation
has focused exclusively on problems involving a single objec-
tive, which are often represented as decentralised constraint
optimisation problems (DCOPs). A number of algorithms
have been proposed for solving general DCOPs, which can
be divided in three broad classes. The first contains algo-
rithms that are designed to find optimal solutions, such as
ADOPT [13] and DPOP [15], but have a computational or
communication complexity that is exponential in the num-
ber of agents. The second is composed of algorithms, such as
the distributed stochastic algorithm (DSA) [5] or Maximum
Gain Message [10], designed for large multi-agent systems,
but which often converge to poor quality solutions. However,
there exists a third class of algorithms usually referred to as
Generalised Distributive Law (GDL) [1], which constitutes
a compromise between the extremes represented by the first
two classes, and can be used to compute good quality ap-
proximate solutions. In particular, one GDL algorithm, the
max-sum algorithm, has been shown to generate solutions
closer to the optimum than (for example) DSA, while being
robust against message loss and exhibiting a scalable com-
putational and communication cost [4]. An inherent short-
coming of the max-sum algorithm, however, is that it is not
guaranteed to converge on cyclic constraint graphs, in which
case it can perform arbitrarily poorly. This limits its appli-
cability in safety-critical domains. The bounded max-sum
algorithm, an extension to the standard max-sum algorithm,
addresses this shortcoming, by pruning the constraint graph
to a tree. In so doing, it is capable of providing performance
guarantees on the computed solutions [3].

On the other hand, research on multi-objective constraint
optimisation has yielded two extensions to well known single-
objective algorithms, such as bucket elimination and branch
and bound [16, 11], to solve general multi-objective optimi-
sation problems. However, such approaches are centralised,
and therefore lack the robustness required in the aforemen-
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tioned scenarios. Moreover, since these algorithms exhibit
a computation cost that is exponential in the number of
agents, they are capable of solving only the smallest of prob-
lem instances. Another line of research has investigated ex-
tensions to standard DCOP algorithms for solving single-
objective DCOPs with resource constraints [2], such as a ca-
pacity constraints in power distribution networks [8]. How-
ever, these resource constraints are not expressive enough to
represent general multi-objective problems.

Thus, against this background, we identify a need for a
decentralised coordination algorithm that has scalable com-
putational and communication costs, and can provide good
quality solutions for problems involving multiple objectives.
To address this requirement, we propose the first decen-
tralised coordination algorithm for multi-objective optimisa-
tion problems; the bounded multi-objective max-sum algo-
rithm (B-MOMS). B-MOMS extends the bounded max-sum
algorithm to solve multi-objective DCOPs (MO-DCOPs),
a novel extension to the DCOP framework. These MO-
DCOPS are encoded into a bipartite factor graph, in which
vertices represent variables (owned by agents) and multi-
objective functions, and edges represent the dependencies
between the two. The B-MOMS algorithm then operates by
exchanging messages between the variables and functions
to compute approximate solutions to an MO-DCOP, whilst
providing quality guarantees.

In more detail, this paper makes the following contribu-
tions to the state of the art:

• We propose the MO-DCOP problem, a general formal-
ism for multi-objective coordination problems, which
generalises the well known DCOP framework to the
multi-objective setting.

• We develop B-MOMS, the first bounded decentralised
algorithm for solving multi-objective optimisation prob-
lems. The operation of B-MOMS consists of three
phases:

– The first extends the bounded max-sum algorithm
[3] to compute a cycle-free sub-graph of the multi-
objective factor graph. To achieve this, we gener-
alise the maximum spanning tree problem solved
by the previous algorithm to handle the vector
weights that we face in MO-DCOPs.

– The second generalises the key mathematical op-
erators required by max-sum to optimally solve
the multi-objective problem encoded in this cycle-
free factor graph.

– Since there might be multiple Pareto optimal as-
signments to the cycle-free problem, the third and
final phase enables agents to reach consensus on
which global assignment to choose.

• We prove B-MOMS is optimal in acyclic factor graphs,
and derive problem dependent approximation bounds
in general graphs that do contain cycles.

• We present an extensive empirical evaluation of B-
MOMS by benchmarking against a centralised optimal
algorithm on a multi-objective extension of the graph
colouring problem. We demonstrate that the approxi-
mation ratio never exceeds 2, even for extremely con-
strained problems (i.e. fully connected graphs), and

is less than 1.5 for graphs where constraints exists be-
tween 20% of all pairs of agents for 14 variables. More-
over, the results indicate that the runtime required by
B-MOMS never exceeds 30 minutes, even for maxi-
mally constrained graphs with 100 agents, positioning
it well within the confines of many real-life applica-
tions.

The remainder of this paper is organised as follows. In
Section 2 we discuss the theoretical background of B-MOMS.
In Section 3, we formalise the MO-DCOP framework. In
Section 4, we develop the algorithm, describing each of its
three phases, and describe its theoretical properties in Sec-
tion 5. Finally, we empirically evaluate B-MOMS in Section
6. Section 7 concludes.

2. PRELIMINARIES
In this section we review the theoretical background of our
algorithm. In particular, in Section 2.1, we introduce funda-
mental concepts related to multi-objective optimisation and
in Sections 2.2 and 2.3 we discuss the max-sum algorithm
and the bounded max-sum algorithm respectively.

2.1 Multi-Objective Optimisation
A multi-objective optimisation problem (MOOP) is defined
as the problem of simultaneously maximising k incommensu-
rable objective functions, defined over a set x = {x1, . . . , xM}
of M discrete variables, where each xj takes values in a dis-

crete domain Dxj = {d1
j , . . . , d

|Dxj
|

j }. Thus, a solution to

a MOOP is an assignment a∗ = {(x1 = d
(1)
1 ), . . . , (xM =

d
(M)
M )} of values to variables, such that:

a∗ = arg max
a∈Dx

U(x) = [U1(x), . . . , Uk(x)]T (1)

where Dx = ×M
j=1Dxj is the domain of variables x. Here,

each objective function U i can be defined over a subset
xi ⊆ x of the variables of the problem. However, for ease
of exposition, we assume each function is defined over the
same set of variables.

Now, since the functions are incommensurable, it is pos-
sible that multiple assignments satisfy Equation 1. For ex-
ample, consider three assignments a1, a2 and a3, such that
U(a1) = [4, 5], U(a2) = [4, 3], and U(a3) = [6, 3]. Clearly
we have that [4, 5] and [6, 3] are larger than [4, 3]. How-
ever, [4, 5] and [6, 3] are not comparable. Thus, a2 does not
satisfy Equation 1. Indeed, Equation 1 involves the opti-
misation of sets of partially-ordered assignments. Thus, to
characterise the optimal solutions of a multi-objective opti-
misation problem, we use the well known concept of Pareto
optimality :

Definition 1 (Pareto Optimality [12]). An assign-
ment a∗ ∈ Dx is Pareto optimal iff there does not exist an-
other assignment a ∈ Dx, such that U(a) ≥ U(a∗), and
U i(a) > U i(a∗) for at least one objective function.

The utility vector U(a∗) corresponding to a Pareto optimal
assignment a∗ is referred to as a non-dominated vector. We
define the notion of non-dominance as follows:

Definition 2 (Non-dominance). A vector U(a∗) ∈
Dx is non-dominated iff there does not exist an assign-
ment a ∈ Dx, such that U(a) ≥ U(a∗), with at least one
U i(a) > U i(a∗). Otherwise, U(a∗) is said to be dominated.
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Thus, since a multi-objective problem involves the optimi-
sation over partially ordered assignments, its solution is a
set of Pareto optimal assignments. In the remainder of this
paper, we will refer to the set of Pareto optimal assignments
as PO.

2.2 The Max-Sum Algorithm
The max-sum algorithm is a decentralised message-passing
optimisation algorithm belonging to the generalised distribu-
tive law (GDL) framework [1]. GDL algorithms exploit the
factorisability of many optimisation problems, to solve them
in an effective and efficient manner. Particularly, such prob-
lems are characterised as optimisation problems where the
valuation algebra of the global constraint function is a com-
mutative semi-ring (i.e. where the distributive law holds).
All standard DCOP problems exhibit this characteristic [4].

Now, the most general characterisation of a DCOP in-
volves M agents, each controlling a single discrete variable
xj , j ∈ [1, M ]. Constraints between agents are encoded as
functions Ui(xi) (i ∈ [1, N ]) over these variables. The scope
xi ⊆ x of constraint function Ui contains the variables of the
agents over which the constraint is defined. The aim of the
coordination problem is then to choose variable assignments
that maximise the sum of the constraint functions:

U(x) =
N∑

i=1

Ui(xi) (2)

In order to use the max-sum algorithm the problem is en-
coded as a special bipartite graph called a factor graph, in
which vertices represent variables and functions, and edges
the dependencies between them.

Max-sum defines two types of messages that are exchanged
between variables and functions:

From variable xj to function Ui:

qj→i(xj) =
∑

k∈M(j)\i

rk→j(xj) (3)

where M(j) represents the set of indices of the func-
tions connected to variable xj (i.e. the functions in
which xj occurs as an argument).

From function Ui to variable xj:

ri→j(xj) = max
xi\xj

(
Ui(xi) +

∑

k∈N(i)\j

qk→i(xk)

)
(4)

where N(i) represents the set of indices of the variables
connected to function Ui.

Note that both qj→i(xj) and ri→j(xj) are scalar functions
of variable xj . When the factor graph is acyclic, these mes-
sages represent the maximum aggregate utility possible over
the respective components of the graph formed by removing
the dependency between Ui and xj , for each value d ∈ Dxj

in the domain of variable xj . Thus, in this case, the marginal
function of each variable is calculated by:

zj(xj) =
∑

i∈M(j)

ri→j(xj) = arg max
x\xj

N∑

i=1

Ui(xi) (5)

after which the optimal assignment of xj is found by:

aj = arg max
xj

zj(xj)

2.3 The Bounded Max-Sum Algorithm
When the factor graph is cyclic, the straightforward applica-
tion of max-sum is not guaranteed to converge. However, by
pruning edges such that an acyclic sub-graph of the factor
graph is obtained, a bounded approximation can be derived
[3]. More specifically, here, the goal is to compute a variable
assignment ã in the acyclic factor graph, such that:

V ∗ =

N∑

i=1

Ui(a
∗
i ) ≤ ρ

N∑

i=1

Ui(ãi) = ρṼ

where a∗ is the optimal solution of the cyclic factor graph,
and ρ is the approximation ratio. To ensure this approxima-
tion ratio is as small as possible, the algorithm prunes those
edges that have the least impact on solution quality. The
impact of an edge between xj and Ui is defined as its weight
wij , which is computed by:

wij = max
xi\xj

[
max

xj

Ui(xi)−min
xj

Ui(xi)

]
(6)

Once all the weights are computed, the GHS algorithm [6]
is used to compute a maximum spanning tree of the factor
graph in a decentralised fashion. The newly obtained acyclic
factor graph is then used in the second phase, in which the
max-sum algorithm is used to compute ã, which is the opti-
mal variable assignment to the modified problem:

Ṽm =
∑

i

min
xc

i

Ui(ãi)

where xc
i is the set of variables that were eliminated from

the scope of function Ui, corresponding to the edges that
were pruned from the factor graph.

The approximation ratio ρ is now given by:

ρ = 1 + (Ṽm + W − Ṽ )/Ṽ (7)

where W is the sum of the weights of the pruned edges.
Thus, an upper bound on the optimal solution can be com-
puted as follows:

Ṽm + W ≥ V ∗

3. MO-DCOP FORMALISATION
We formalise the general problem by extending the DCOP
framework to the setting of multiple objective functions.
More formally, we consider the multi-objective DCOP (MO-
DCOP) problem, which involves the simultaneous optimisa-
tion of k DCOPs, where each DCOP is defined as in Section
2.2. Specifically, we consider the problem of maximising the
following vector of objective functions:

U(x) =
[
U1(x), . . . , Uk(x)

]T

(8)

Since each component of U(x) is a DCOP, this global ob-
jective functions is decomposable into N factors, each of
which is a multi-objective constraint function Ui:

U(x) =
M∑

i=1

Ui(xi)

where, again, each xi ⊆ x is the subset of variables repre-
senting the scope of multi-objective constraint function Ui,
which are defined as:

Ui(xi) =
[
U1

i (xi), . . . , U
k
i (xi)

]T
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Figure 1: An example of a multi-objective factor
graph, involving three variables, three objectives
and three contraint functions.

Note that, for ease of exposition, we assume that all the
local constraint functions Uk

i are defined over the same set
of variables xi. However, this is not an essential requirement
for the application of our algorithm.

Within this setting, the different solutions of a MO-DCOP
are characterised using the solution concepts of Pareto op-
timality and non-dominance introduced in Section 2. Fol-
lowing these definitions, the solutions of a MO-DCOP are
characterised as a set of Pareto optimal assignments PO cor-
responding to a set of non-dominated utilities vectors ND.
Note that

∏M
i=1 |Di| is an upper bound of the number of

possible solutions, which is equal to the size of the Carte-
sian product of the domains of all variables.

Finally, we encode the MO-DCOP as a multi-objective
factor graph by representing each variable xi of the MO-
DCOP as a variable node, while each function node now
represents a vector function Ui. The following example il-
lustrates such a multi-objective factor graph.

Example 1. Consider the factor graph in Figure 1, with
three variables x1, x2, and x3, which are controlled by agents
A1, A2, and A3. There are three constraints between the
agents, represented by functions U1, U2, and U3, each de-
fined over three objectives U1, U2, and U3.

4. THE B-MOMS ALGORITHM
In this section we present the bounded multi-objective max-
sum (B-MOMS) algorithm. B-MOMS extends the max-sum
algorithm to compute solutions to MO-DCOPs. In detail,
our algorithm proceeds in three phases:

• The bounding (B) phase, which extends the bounded
max-sum algorithm discussed in Section 2.3, in order
to provide quality guarantees. To achieve this, we gen-
eralise the maximum spanning tree algorithm to vector
weights.

• The max-sum (MS) phase, during which the agents
coordinate to find the Pareto optimal set of solutions
to the cycle-free factor graph computed in the first
phase. This requires a redefinition of the two key op-
erations required by the max-sum algorithm (addition
and marginal maximisation) for multiple objectives.

• The value-propagation (V P ) phase, in which agents
select a consistent variable assignment. This extends
the standard V P phase [15] to the case where multiple
non-commensurable alternatives exist.

In what follows, we discuss each phase in more detail.

4.1 The Bounding Phase
This phase builds upon the bounded max-sum algorithm
described in Section 2.3 by extending the edge weights wij

to the multi-objective vector weights. To this end, we first
compute the impact of each variable xj in the scope of each
local multi-objective function Ui over all k objectives:

wij =
[
w1

ij , . . . , w
k
ij

]T

Moreover, we define each scalar weight wo
ij (1 ≤ o ≤ k) as

in the single-objective case:

wo
ij = max

xi\xj

[
max

xj

Uo
i (xi)−min

xj

Uo
i (xi)

]

Since the problem of finding a maximum spanning tree is
defined on instances with scalar edge weights, it is necessary
to rank the vector weights. This procedure must ensure that
the resulting ordering favours deletion of dominated vectors
over non-dominated ones. One way of doing this is to assign
a scalar weight wij to each vector wij , which is proportional
to the number of edge weights it dominates. More formally:

wij = −|{wmn | wmn > wij , (i, j) 6= (m, n)}|
Thus, using this scalarisation, non-dominated weight vec-

tors are assigned a value of 0, vectors dominated by a single
elements are assigned a value of −1, and so on. With these
scalar edge weights, the GHS algorithm can be used to com-
pute a maximum spanning tree as discussed in Section 2.3.

4.2 The Max-Sum Phase
The second phase executes max-sum on the acyclic factor
graph resulting from the previous phase. In order to apply
max-sum to the multi-objective setting, however, the mes-
sages exchanged between functions and variables (Equations
3 and 4) need to be generalised to vectors of constraint func-
tions.

Recall from Section 2.2 that, if the factor graph is acyclic,
the messages r and q exchanged between Ui and xj represent
the maximum aggregate utility over the two components of
the graph obtained by removing the dependency between Ui

and xj . The same holds in the multi-objective case. How-
ever, instead of qj→i(xj) and ri→j(xj) being scalar functions
of xj , these messages now map the domain of xj to a set of
utility vectors. To see why this is true, note that in the
multi-objective domain, maximum utility is now defined in
terms of the dominance relation from Definition 2. Since
this relation induces a partial ordering, more than one such
maximum might exist. To illustrate this, consider the fol-
lowing example:

Example 2. Suppose the following message ri→j(xj) is
sent by function Ui to variable xj with domain Dj = {Red,
Green, Blue}:

ri→j(xj) =

{ {[0, 0, 0]} if xj = Red
{[0, 1, 0]} if xj = Green
{[−1, 2,−1], [2, 1,−1]} if xj = Blue

This message conveys the fact that, if xj is assigned the
value Red, the maximum possible utility obtained within the
sub-graph connected to Ui after removing the dependency on
xj is equal to [0, 0, 0]. Similarly, if xj = Blue, there are two
incomparable maxima (since neither dominates the other),
namely [−1, 2,−1] and [2, 1,−1].
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To compute these messages, the two key mathematical
operators required by max-sum—the addition of two vector
functions (Equations 3 and 4) and the marginal maximisa-
tion with respect to a single variable (maxxi\xj

in Equation

4)— need to be defined for this domain. These operators
were previously defined in the context of the multi-objective
bucket elimination algorithm [16]. Here, however, we rede-
fine these to compute the messages exchanged in the max-
sum algorithm.

In more detail, to add two functions f and g defined over
scope x:

(f + g)(x) = ND({v + w|v ∈ f(x);w ∈ g(x)})
where function ND(A) filters out the dominated vectors
from input set A. Using the + operator we can compute
the sum of the messages r (which are univariate functions
of xj) in Equation 3, as well as the addition of multi-variate
function Uj to the sum of univariate functions of different
variables xk in Equation 4.

The second operator, marginal maximisation (maxxi\xj
),

takes as input a multi-variate vector function f(xi) and out-
puts a function f ′(xj):

f ′(xj = d) = ND




⋃

d∈Dxi\xj

f({xi \ xj} = d, xj = d)




where Dxi\xj
is the Cartesian product of the domains of

variables xi \ xj .
At the end of the max-sum phase, each variable xj com-

putes its marginal function zj (Equation 5) to obtain a set of
Pareto optimal assignments A∗

j . Since there might be multi-
ple optimal assignments, agents need to reach consensus on
which global assignment to choose. Thus, in what follows,
we define a value-propagation phase where the agents jointly
choose a Pareto optimal solution among the ones computed
by the max-sum phase.

4.3 The Value-Propagation Phase
The third and final phase, value-propagation, again operates
on the cycle-free factor graph computed by the bounding
approach. In this phase, variables and function nodes in
this factor graph coordinate to select a consistent variable
assignment.

Now, at the end of the MS phase, each variable computes
the set A∗

j of marginal Pareto optimal variable assignments
for xj , which is obtained by maximising over the marginal
function zj :

A∗
j = arg max

xj

zj(xj)

If, for any variable xj , |A∗
j | > 1, then there exists more

than a single global optimal assignment in the acyclic factor

graph: |P̃O| > 1. If this is the case, a variable can se-
lect an assignment a∗j ∈ A∗

j at random, or one that satisfies
some (logical) condition C. For example, a∗j might be chosen
such that objective 1 is maximised, subject to objective 2
being at least 4, or more formally, a∗j ∈ A∗

j and max zj(a
∗
j )1,

subject to zj(a
∗
j )2 ≥ 4. To select an assignment that satis-

fies this condition, the value-propagation phase proceeds by
passing messages between the variables and functions in the
acyclic factor graph, and is thus fully decentralised. First,
the variable xr with the lowest index is chosen as the root
of the tree, and is responsible for initiating the value prop-
agation phase by selecting a Pareto optimal assignment a∗r

that satisfies C. The variable then sends value-propagation
messages (xr = a∗r) to all the function nodes to which the
variable is connected.

The behaviour of all the other nodes in the graph will then
depend on their type. More specifically:

Function nodes: Upon receiving a message (xj = a∗j ) from
variable xj , multi-objective constraint function Ui com-
putes the set A∗ of local Pareto optimal assignments
for variables xi \ xj , conditioned on xj = a∗j :

A∗ =

{
a | a ∈ Dxi\xj

, g(a) ∈ ND
( ⋃

a∈Dxi\xj

g(a)
)}

where g(a) is defined as:

g(a) = Ui({xi \ xj} = a, xj = aj) +
∑

k∈N(i)\j

qk→i(ak)

After computing set A, value propagation selects a
Pareto optimal assignment a∗ ∈ A that satisfies con-
dition C and sends the message (xk = a∗k) to every
variable xk (k 6= j), where a∗k is the element of a∗

corresponding to xk.

Variable nodes: For each non-root variable xj , once it re-
ceives a message (xj = a∗j ) from a function Ui, it sets
its value to a∗j and propagates the message (xj = a∗j )
to all the function nodes Uk, k 6= i.

Note that, during value propagation, a single message is sent
across each link in the factor graph. Thus, the algorithm
terminates once each non-root variable has received a value-
propagation message.

5. THEORETICAL ANALYSIS
We now discuss the theoretical properties of the B-MOMS
algorithm.

5.1 Optimality of the MS Phase
The first property concerns the performance of the max-
sum phase of the B-MOMS. Specifically, we show that the
following theorem holds:

Theorem 1. The max-sum phase (MS) computes the en-

tire set of Pareto optimal solutions P̃O of the acyclic factor
graph that is obtained by pruning edges during the bounding
(B) phase of the algorithm.

Proof. The proof consists of two steps. Firstly, the val-
uation algebra defined by the + and max operators dis-
cussed in Section 4.2, together with the co-domain of the
global multi-objective constraint function U (Equation 8),
is a commutative semi-ring [16]. Secondly, any GDL al-
gorithm optimally solves problems whose valuation algebra
is a commutative semi-ring, whenever the underlying con-
straint graph is acyclic [1]. Thus, since the second phase of
B-MOMS is a GDL algorithm, the result holds.

Now, while solutions P̃O are Pareto optimal in the acyclic
sub-graph, they are not necessarily (or likely) Pareto optimal
in the original factor graph. However, using Theorem 1, we
can derive bounds on the quality of these solutions in the
original factor graph.
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5.2 Bounded Approximation
To derive these bounds, we follow a procedure similar to
that of the bounded max-sum algorithm (Section 2.3). First,
we define vector W = [W 1, . . . , W k] as the sum of vector
weights wij of the edges between Uj and xi that were pruned
in the bounding phase to obtain an acyclic graph (Section
4.1). Furthermore, to characterise the upper bound com-
puted by B-MOMS, we first define the concept of utopia
point :

Definition 3 (Utopia Point [12]). The utopia point
V∗ of a multi-objective optimisation problem characterised

by objective function U(x) =
[
U1(x), . . . , Uk(x)

]T

is given

by:

V∗ =
[
max

x
U1(x), . . . , max

x
Uk(x)

]

Put differently, the utopia point is the vector of values re-
sulting from optimising each k DCOPs independently. Clearly,
given any Pareto optimal assignment a∗ ∈ PO, U(a∗) ≤ V∗

holds for any MO-DCOP. Thus, the utopia point is an up-
per bound of the value of a Pareto optimal solution of a
MO-DCOP. Given these concepts we can state the following
theorem:

Theorem 2. Given an arbitrary MO-DCOP, for any as-

signment ã ∈ P̃O computed by B-MOMS, the following
bound holds:

U(ã) + W ≥ V∗ (9)

Proof. The theorem follows directly by the fact that we
extend the bounded max-sum algorithm for single objective
DCOPs to the case of multi-objective problems. In more
detail, for each objective o (1 ≤ o ≤ k) of an MO-DCOP, by
using the approach defined in [3], it is easy to see that the
following bound holds:

Uo(ã) + W o ≥ max
x

Uo(x)

thus concluding the proof.

Similarly, we define the problem dependent approxima-
tion ratio ρ = [ρ1, . . . , ρk] of the solutions computed by B-
MOMS, where each ρi is given by Equation 7.

5.3 Complexity
Finally, we derive the computation and communication com-
plexity of B-MOMS using properties inherited from the max-
sum algorithm. Now, since B-MOMS exploits the factoris-
ability of the problems it is solving, the scope of each con-
straint function Ui(xi) contains only the variables on which
the constraint is defined. Therefore, computing message
ri→j from function Ui to variable xj (Equation 4) requires

O(|Dmax||xi|) evaluations of function Ui, where Dmax is the
largest domain among variables x. Hence, the computation
is exponential only in the number of variables in the scope
of Ui, not the total number of variables.

Furthermore, since in the worst case every variable as-
signment of x is Pareto optimal, after a certain (but fi-
nite) number have been exchanged, these messages contain
O(k × |Dmax|M+1) values: |Dmax| sets of vectors (one for
each value in the variable’s domain), each containing at most
DM

max non-dominated vectors of size k.

6. EMPIRICAL EVALUATION
Since B-MOMS is not an optimal algorithm, empirical eval-
uation is required to ascertain the quality of the solutions
it computes. To this end, in this section we benchmark the
performance of B-MOMS against an optimal algorithm. In
the remainder of this section, we present a multi-objective
extension to the canonical graph colouring problem used in
our experiments, detail the experimental setup, and discuss
the results.

6.1 Multi-Objective Graph Colouring
In order to evaluate the performance of our algorithm we
consider a multi-objective extension of the graph-colouring
problem, which is a well known benchmark problem in the
DCOP literature [4]. In this multi-objective graph colouring
problem, each agent Aj owns a single variable xj , taking
values in the domain Dj = {Red, Green, Blue}. Within
this setting, the agents’ goals is to maximise the following
multi-objective function:

U(x) =
[
U1(x), U2(x), U3(x)

]T

(10)

where U1, U2, U3 are the sum of bi-variate constraint func-
tions U1

i (xj , xk), U2
i (xj , xk), U3

i (xj , xk) that exist among
the variables x. These three types of constraint functions
are defined as follows:

Chromatic Difference: This objective function represents
the common graph colouring conflict function:

U1
i (xj , xk) =

{
0 xj 6= xk

−1 xj = xk
(11)

Chromatic Ordering: This objective function imposes an
ordering among the colours: Red = 1, Green = 2, and
Blue = 3. Specifically, given two variables xj and xk

where j < k, the variable with the higher index should
have a higher ranked colour:

U2
i (xj , xk) =

{
0 if j < k and xj < xk

−1 otherwise
(12)

Chromatic Distance: This objective is similar to the chro-
matic ordering. However, it considers the distance be-
tween the colours of different variables. In more de-
tail, given two variables xj and xk, the distance of the
colours between the two variable should equal one:

U3
i (xj , xk) =

{
0 if |xj − xk| = 1
−1 otherwise

(13)

Thus, given an arbitrary graph G = (V, E), we construct a
factor graph as follows. Each vertex is represented as a vari-
able x. Furthermore, for each edge (v, v′) the factor graph
contains a three-objective constraint function Ui(xj , xk) =
[U1

i (xj , xk), U2
i (xj , xk), U3

i (xj , xk)]T where xj and xk are the
variables corresponding to vertices v and v′.

6.2 Experimental Setup
We analyse the performance of B-MOMS by executing it
on several instances of the multi-objective graph colouring
problem defined previously. Specifically, we randomly gen-
erate connected graphs G = (V, E) with a varying num-
ber M = |V | of vertices, and varying graph density δ ∈
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Figure 2: Empirical results for M ≤ 14. Errorbars indicate the standard error of the mean.

[0, 1]. This latter parameter defines the constrainedness of
the problem by controlling the number of edges; when δ = 0
the number of edges |E| = M − 1, and the resulting graph
G is a tree. Conversely, when δ = 1, G is a complete graph,
and |E| = 1

2
M(M − 1).

We generated problem instances with M = {8, 10, 12, 14,
20, 40, 60, 80, 100} and δ = {0.0, 0.1, . . . , 1.0}. Moreover, for
each combination of values for M and δ we ran B-MOMS
120 times to achieve statistical significance. We measure the
performance of B-MOMS using the following four metrics:

1. The runtime (in milliseconds) required by B-MOMS to
compute the set of solutions.

2. The average approximation ratio of the solutions P̃O
computed by B-MOMS. More specifically, we defined
this as the norm of the approximation ratio vector ||ρ||
defined in Section 5.2.

3. The minimum Euclidean distance between solutions
a ∈ P̃O computed by B-MOMS and an optimal solu-
tion a∗ ∈ PO. More formally, we calculate this dis-
tance as follows:

d(a) =
www min

a∗∈PO

[
U(a)−U(a∗)

]www

4. Finally, we measure the fraction Pareto optimal solu-
tions found by B-MOMS:

nPO =
|P̃O ∩PO|

|PO|

Note that metrics 2 and 3 aggregate the objectives by
using the notions of norm and Euclidean distance, which
implies commensurability of the objectives. However, these
metrics have been widely used in multi-objective literature
[18]. Moreover, metrics 3 and 4 require the availability of
the set of Pareto optimal solutions PO. To compute these,
we used a centralised brute-force optimal algorithm. This
optimal algorithm exhaustively enumerates the Cartesian
product of the domains of x, and thus, has a computational
complexity that is exponential in the number of variables.
As a result, we do not report metrics 3 and 4 for M > 14,
since we were unable to run a sufficient number of experi-
ments to obtain statistically significant results. However, we
do report metrics 1 and 2 for M up to 100.

6.3 Results and Discussion
For M ≤ 14, results are shown in Figure 2. First of all, all
three plots confirm that the algorithm is optimal for acyclic
graphs (δ = 0), as proved by Theorem 1. Moreover, by
increasing the number of constraints of the problem (i.e.
by increasing δ), we can observe that the performance of
B-MOMS degrades gracefully in terms of the approxima-
tion ratio, distance, as well as the fraction of optimal solu-
tions found. Moreover, the approximation ratio never ex-
ceeds 2 (i.e. the value of the computed solution is greater
than half of that of the optimal solution) even for extremely
constrained problems, and is close to the value of 1.27 re-
ported for the single-objective graph colouring problem by
the single-objective bounded max-sum algorithm [3] when
each variable is involved in three constraints (corresponding
to δ = 0.3 for M = 14). Most importantly, for relatively
sparse graphs (δ ≈ 0.2), which are often found in real-life
multi-agent applications, B-MOMS recovers roughly 50% of
the optimal solutions for M = 14.

Figures 3(a) and 3(b) report the approximation ratio and
the runtime for larger problem instances. Specifically, Fig-
ure 3(a) clearly shows that, even for large instances, the
approximation ratio again never exceeds 2, demonstrating
the effectiveness of the bounding approach. Furthermore,
3(b) gives strong empirical evidence of the practical appli-
cability of the algorithm. Despite the exponential relation
between the number of variables and the time required by
B-MOMS1, for M = 100 and a maximally constrained prob-
lem, this time does not exceed 30 minutes. Moreover, it is
important to note that these experiments were run on a
single processor, while the computational load in a multi-
agent system is shared among multiple computational en-
tities. This brings B-MOMS well within the realm of the
limited computational capacities of embedded agents found
in many real-life applications.

7. CONCLUSIONS
In this paper, we proposed the bounded multi-objective max-
sum algorithm (B-MOMS), the first decentralised coordi-
nation algorithm for multi-objective optimisation problems.
B-MOMS extends the bounded max-sum algorithm for de-
centralised coordination [3] to compute bounded approxi-

1This is partially due to our implementation of the value-
propagation phase, which for the purpose of these experi-
ments, recovers an exponential number of (approximately)
Pareto optimal solutions, instead of just a single one.
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mate solutions to multi-objective DCOPs (MO-DCOPs), a
novel extension to the DCOP framework. It consists of three
phases. The first phase extends the bounded max-sum al-
gorithm developed for max-sum [3] to compute a cycle-free
sub-graph of the multi-objective factor graph, which involves
a generalisation of the maximum spanning tree problem to
vector weights. The second phase generalises the key math-
ematical operators required by max-sum to optimally solve
the multi-objective problem encoded in this cycle-free factor
graph. Since there might be multiple Pareto optimal assign-
ments to the cycle-free problem, the third and final phase
enables agents to reach consensus on which global assign-
ment to choose. We proved the optimality of B-MOMS in
acyclic constraint graphs, and derived bounds on the approx-
imation ratio. Furthermore, benchmarked B-MOMS against
an optimal centralised algorithm on a multi-objective ex-
tension of the graph colouring problem. We demonstrate
that the approximation ratio never exceeds 2, and is typ-
ically less than 1.5 for graphs in which dependencies exist
between 20% of all pairs of agents. Moreover, the runtime
required by B-MOMS never exceeds 30 minutes, even for
maximally constrained graphs with 100 agents, positioning
it well within the confines of real-life applications.

For future work, we intend to apply our approach on chal-
lenging real-world problems, such as the coordination of mul-
tiple mobile sensors, and power distribution networks [8].
Moreover, we would like to extend B-MOMS to the setting
where there exist uncertainty about the constraint functions.
This is a non-trivial extension, since it requires the exchange
of vectors of probability distributions, instead of scalars, and
a further generalisation of the two key mathematical opera-
tors required by max-sum.
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ABSTRACT
In this paper we focus on solving DCOPs in communication
constrained scenarios. The GDL algorithm optimally solves
DCOP problems, but requires the exchange of exponentially
large messages which makes it impractical in such settings.
Function filtering is a technique that alleviates this high
communication requirement while maintaining optimality.
Function filtering involves calculating approximations of the
exact cost functions exchanged by GDL. In this work, we
explore different ways to compute such approximations, pro-
viding a novel method that empirically achieves significant
communication savings.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Algorithms, Design

Keywords
Distributed constraint reasoning, DCOP, GDL, Filtering

1. INTRODUCTION
Distributed constraint optimization (DCOP) is a model

for representing multi-agent systems in which agents co-
operate to optimize a global objective. There are several
complete DCOP algorithms that guarantee global optimal-
ity such as ADOPT [11], DPOP [13], and its generaliza-
tion GDL [1, 15]. Since DCOPs are NP-Hard [11], solv-
ing them requires either an exponential number of linear
size messages (ADOPT) or a linear number of exponentially
large messages (DPOP, GDL). Nonetheless, some applica-
tion domains are specially communication constrained. For
instance, data transmission is severely limited in wireless
sensor networks [17], and bandwidth is a scarce resource in
peer-to-peer networks [6]. An approach in these domains is
to drop optimality in favor of lower complexity, approximate
algorithms with weaker guarantees [7, 9, 16]. As an alter-

Cite as: Communication-constrained DCOPs: Message approximation
in GDL with function filtering, M. Pujol-Gonzalez et al., Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 379-386.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

native, we aim at reducing the communication costs while
keeping optimality.

Function filtering [2, 3] is a technique that reduces the size
of exchanged messages, and can be readily applied to GDL.
Essentially, GDL with function filtering exchanges approx-
imations of the messages that would be sent by GDL. As
a consequence, the resulting algorithm’s efficiency is highly
dependent on the strategy used to compute these approx-
imations. Intuitively, better strategies produce better ap-
proximations, leading to larger communication savings.

We first review state-of-the-art approximation methods [5,
14], fitting them in a common framework of bottom-up ap-
proximations. However, these methods are designed for the
centralized case. Hence, their purpose is to reduce the over-
all computation, disregarding any communication costs.

Our main contribution in this paper is a novel class of
message approximation techniques, the top-down approxi-
mations, that are specifically aimed at lowering such com-
munication costs. Thereafter, we present two realizations of
this new approach, namely brute-force decomposition and
zero-tracking decomposition. Finally, we empirically evalu-
ate the overall computation time and communication costs
of these methods on several experiments. The results show
that top-down approximations outperform bottom-up ones,
always achieving larger communication savings. Further,
zero-tracking decomposition remains competitive in compu-
tational effort with respect to state-of-the-art approximation
methods [5, 14] while transmitting much less information.

This paper is structured as follows. Firstly, Section 2 in-
troduces the DCOP model, and Section 3 presents the GDL
algorithm with function filtering. Next, Section 4 describes
the message approximation problem we aim to solve. Then,
Section 5 introduces the bottom-up approximation frame-
work, which represents current state-of-the-art approaches
to message approximation. Next, Section 6 introduces our
novel top-down approximation framework. Section 7 pro-
vides an empirical evaluation of both bottom-up and top-
down approximation methods. Finally, Section 8 draws the
most important conclusions of this work.

2. DCOP
Distributed Constraint Optimization Problems (DCOPs)

involve a finite set of variables, each taking a value in a finite
discrete domain. Variables are related by cost functions that
specify the cost of assigning certain values to a subset of
variables. Costs are positive real numbers plus 0 and ∞.
A DCOP is defined as a tuple (X,D,C,A, α), where X =
{x1, . . . , xn} is a set of n variables; D = {D(x1), . . . , D(xn)}
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is a set of finite discrete domains; D(xi) is the finite set
of xi’s possible values; C is a set of cost functions; each
cost function fS ∈ C is defined on the ordered set S ⊆
X (S is fS ’s scope, |S| is fS ’s arity), specifies the cost of
every combination of values of variables in S, namely fS :Q

xj∈S D(xj) 7→ R+; A is a set of p agents; and α : X → A

maps each variable to some agent.
The objective of DCOP algorithms is to find the assign-

ment of individual values to variables, such that the total
(aggregated) cost over all cost functions is minimized. We
make the common assumption that there are as many agents
as variables, each agent controlling one variable, so from now
on the terms variable and agent will be used interchangeably.

Next, we introduce some definitions of concepts and oper-
ations that will be used throughout the rest of this paper. A
tuple tS , with scope S, is an ordered set of values assigned
to each variable in the subset S ⊆ X. The cost of a com-
plete tuple tX that assigns a value to each variable xi ∈ X
is the addition of all individual cost functions evaluated on
that particular tuple. Whenever a complete tuple tX yields
a cost lower than a user-specified threshold, we say that it
is a solution. Further, a solution tX is an optimal solution
if its cost is the minimum of all possible solutions.

Definition 1 (Min-marginal). The projection tS [T ]
of a tuple tS to T ⊂ S is a new tuple tT , removing the val-
ues assigned to variables not found in T . The min-marginal
fS [T ] of a cost function fS onto T ⊂ S is a new cost func-
tion fT where each tuple tT is assigned the minimum cost
among all tuples tS whose projection to T is tT .

∀tT fT (tT ) = min
tS [T ]=tT

fS(tS [T ]).

Definition 2 (Combination). The combination of two
cost functions fS and fT , written fS ./ fT , is a new cost
function fU defined over their joint domain U = S ∪T , s.t.:

∀tU (fS ./ fT )(tU ) = fS(tU [S]) + fT (tU [T ])

Combination is an associative and commutative operation.

Definition 3 (Lower bound). A function fT is a lower
bound of fS, noted fT ≤ fS, iff T ⊆ S and for all tS tuples,
the value by fT of its projection tS [T ] is lower than or equal
to the value by fS of tS:

∀tS fT (tS [T ]) ≤ fS(tS).

Given two lower bounds fT , fU ≤ fS, we say that fT is at
least as good as fU iff fU ≤ fT .

3. GDL
Several algorithms can optimally solve DCOPs [11, 13].

In particular, we consider the GDL algorithm [1], following
the Action-GDL description [15]. GDL works over a spe-
cial structure named junction tree (JT) [8], also known as
joint tree or cluster tree. JTs represent a decomposition of
the DCOP objective function into an equivalent, partially
ordered sequence of combinations and marginalizations that
are computationally easier to perform. It is partially or-
dered because those operations at the same tree-level can
be carried out in parallel. Further, GDL is easily applica-
ble to distributed solving because, given a DCOP where each
agent holds a different variable, a JT can be computed in dis-
tributed form [12]. Additionally, in the distributed case, JTs

also represent the communication links that are going to be
exploited, and what information they are going to exchange.
As a result, each node of the JT (also known as clique) repre-
sents an agent operating over a subset of problem’s variables
and cost functions, whereas edges represent communication
links that nodes will use by exchanging marginalizations of
their problem parts onto their shared variables.

In short, the full serial version of GDL for the all-vertices
problem (also known as DCTE [2]) works as follows [1, 15]:
it sends messages up and down the JT, two messages per
edge of the JT. Each message contains a cost function that
summarizes the effect of the JT part from which this message
comes on the considered agent. After exchanging these mes-
sages, each agent contains enough information to optimally
solve its subproblem. However, it may happen that two op-
timal solutions t1 and t2 (with the same cost) exist, so some
agents would choose t1 while others choose t2. This may
lead to assigning two different values to the same variable.
To prevent this, the JT root decides the optimal assignment
and informs its children in the JT, which recursively inform
their own children and so on. In this way, a coherent opti-
mal solution is selected. For a detailed description of GDL’s
operation, consult [1, 15].
Limiting Message Size. A major drawback of GDL is
that the size of exchanged messages is exponential with re-
spect to the number of variables in the JT edges (s). A
strategy to alleviate this fact is to relax GDL to an approx-
imate form, such that the size of messages can not exceed
exp(r), where r < s. This approach was first introduced
in [2], where it is named DMCTE(r). Since messages’ sizes
are now limited, DMCTE(r) does not necessarily compute
the optimal solution anymore. Nevertheless, it provides an
approximate solution, as well as an interval [lower bound,
upper bound] limiting the optimum cost. In general, the
larger the r-arity parameter, the better the solution quality,
but the higher the communication cost. Hence, the algo-
rithm can also be iterated by slowly increasing r until an
acceptable (or optimal when the lower bound equals the up-
per bound) solution is found.
Function Filtering. Function filtering [2, 3] is a technique
to further reduce messages’ sizes. Remember that messages
are formed by cost functions (f of arity s in GDL, f ′ of
arity r in DMCTE(r)) represented as tuples t, and their
associated cost f(t). The idea is to avoid sending those
tuples t that, when combined with other functions, will have
a cost equal to or higher than the current upper bound.

To see how this can be done, imagine the following situ-
ation: let t be a tuple that should be sent from agent i to
agent j, and let UB be an upper bound of the global cost.
After t arrival, agent j may realize that all possible com-
binations of t with its own cost functions reach or exceed
the UB, so t can not be part of an optimal solution. In
this situation, actually sending t is useless. Hence, if i was
able to detect such irrelevant tuples, it could avoid sending
them altogether, further reducing its message size. In GDL,
function f containing t should be added with g, a function
formed by combining all cost functions of agent j plus all
cost functions received by agent j except the one from agent
i. In the DMCTE(r) approximation, function f ′ containing
t is a lower bound of the exact function f . If agent i knows
any lower bound g′ ≤ g before sending f ′, it can detect some
tuples that exceed the UB cost, and therefore avoid sending
them. Removing such useless t tuples is called filtering f ′
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GDL (DCTE) DMCTE(r = 1) DIMCTEf

Iteration 1: DMCTE(r = 1)
Iteration 2:

CF (C2 → C1): f2[S1] = g1 =
y

a 1
b 2

CF (C2 → C1): f2[S1] = g1 =
y

a 1
b 2

CF (C2 → C1): f2[S1]g3 = g1 =
y

a 1
b 2

CF (C3 → C1): f3 CF (C3 → C1):

8>><>>:
a unary lower bound of f3,

i.e. f3[y] = g2 =
y

a 3
b 1

CF (C3 → C1): f3
g4 =

y z

a a 3
b b 1

266664
y z

a a 3+1
a b 5+1 ≥ UB
b a 5+4 ≥ UB
b b 1+4

377775
CF (C1 → C2): (f1 ./ f3)[S1] =

y

a 5
b 3

CF (C1 → C2): (f1 ./ g2)[S1] = g3 =
y

a 3
b 3

CF (C1 → C2): (f1 ./ f3)[S1]g1 =
y

b 3

24 y

a 5+1 ≥ UB
b 3+2

35

CF (C1 → C3): f1 ./ g1 =

y z

a a 4
a b 1
b a 7
b b 4

CF (C1 → C3):

8>><>>:
a unary lower bound of f1 ./ g1,

i.e. (f1 ./ g1)[y] = g4 =
y

a 1
b 4

CF (C1 → C3): f1 ./ g1
g2 =

y z

a b 1
b b 4

266664
y z

a a 4+3 ≥ UB
a b 1+3
b a 7+1 ≥ UB
b b 4+1

377775
SS(C1 → C2): {y = b} SS(C1 → C2): {y = a} SS(C1 → C2): {y = b}
SS(C1 → C3): {y = b, z = b} SS(C1 → C3): {y = a, z = b} SS(C1 → C3): {y = b, z = b}

BB(C2 → C1): lb = 4, pub = 1 BB(C2 → C1): lb = 5, pub = 2
BB(C3 → C1): lb = 4, pub = 5 BB(C2 → C1): lb = 5, pub = 1
BB(C1 → C2): lb = 4, pub = 5 BB(C1 → C2): lb = 5, pub = 3
BB(C1 → C3): lb = 4, pub = 1 BB(C1 → C3): lb = 5, pub = 4

Figure 1: Sequence of messages exchanged by GDL, DMCTE(r = 1) and DIMCTEf solving the instance of Figure 2. Messages
in the same cell are exchanged in parallel.

with g′, noted f ′
g′

.
Finally, notice that if we iterate DMCTE(r) with increas-

ing r values, the function g′ sent from agent j to agent i in
the previous iteration is a lower bound of g. Hence, agent i
can readily use g′ to filter f ′ before sending it at the current
iteration, leading to a lower size message. The resulting al-
gorithm is known as DIMCTEf, consisting of three phases
for each iteration: (1) Cost propagation: agents exchange
approximate cost functions (CF messages), using cost func-
tions of the previous iteration to filter cost functions at
the current iteration. (2) Solution propagation: values for
the variables in the separators of the JT are decided in a
top-down manner (SS messages). (3) Bound propagation:
agents exchange global lower bounds and local upper bounds
(BB messages) among nodes of the JT, following the same
communication strategy as cost propagation. For a detailed
description of each phase and the structure of the different
message types, the reader should consult [2].
Example. The toy example of Figure 2 allows us to illus-
trate the behavior of the above mentioned algorithms. Fig-
ure 1 shows messages exchanged by GDL (left), DMCTE(r =
1) (middle) and DIMCTEf (right). GDL performs exact
solving. CF messages contain cost functions, while SS mes-
sages contain assignments of variables propagated top-down
in the JT. After receiving them, each agent is able to com-
pute the optimum cost (5) and the same global solution
(xyz ← bbb). DMCTE(r = 1) performs approximate solv-
ing, where only cost functions of arity 1 (r = 1) can be
exchanged (when sending/receiving cost functions to/from
C3, since initial cost functions are binary they are approx-
imated by unary lower bounds). BB messages contain a
lower bound lb and a partial upper bound pub of the cost
of the solution propagated by SS messages. After receiv-
ing them, each agent is able to compute a lower bound (4)
of the optimum cost, a global upper bound (6) and the

C3

{y, z}

f3(y, z)

C2

{x, y}

f2(x, y)

V2 = {y, z}V1 = {y}

C1
{y, z}

f1(y, z)

f1:

y z
a a 3
a b 0
b a 5
b b 2

f2:

x y
a a 1
a b 4
b a 2
b b 2

f3:

y z
a a 3
a b 5
b a 5
b b 1

Figure 2: Toy example and a simple junction tree.

same solution of that cost (xyz ← aab). DIMCTEf per-
forms exact solving with function filtering. The first itera-
tion is DMCTE(r=1), only unary cost functions can be sent.
The second iteration, when also binary cost functions can be
sent, uses cost functions of the first iteration (g1, g2, g3, g4)
to filter current cost functions (the filtering process is shown
between brackets). As result, some tuples are removed be-
cause they reach or exceed the UB computed at the previous
iteration (6). Since the allowed arity equals the largest sep-
arator size, at the end of this iteration each agent is able
to compute the minimum cost (5) and the same optimal
solution (xyz ← bbb).

4. MESSAGE APPROXIMATIONS
During the cost propagation phase, GDL’s task is to prop-

agate cost functions in the form of min-marginals. DMCTE(r)
relaxes this phase by sending lower-bound approximations
instead of exact min-marginals, so that less information needs
to be sent. Therefore, the more accurate these approxima-
tions are, the better results DMCTE(r) is going to achieve at
the same iteration. Further, because greater accuracy means
that function filtering will be able to prune more tuples, in-
creasing the accuracy should also lower the total amount of
communication needed to solve the problem.

Since we are interested in communication-constrained sce-
narios, from now on the bound r means that agents can not
send functions of more than r variables. However, agents
can compute functions of any arity. Consider an agent op-
erating in DMCTE(r). Eventually, it will receive messages
from all its children in the JT. Then, the agent combines
this information with its own and marginalizes it onto the
variables in the separator, to send the result to its parent.
Nevertheless, since the agent is now constrained by the ar-
ity limit r, it can not send the exact min-marginal and it
has to compute an approximation. Hence, the objective of
the approximation task is to find a good lower bound for
the min-marginal while communicating only functions of at
most r variables. Some algorithms for this task have already
been proposed in the literature [5, 14]. In the next section
we review them and we fit them into a common framework
which we call bottom-up approximation. In order to do that
precisely, we need to introduce some additional definitions.

In the following, let F = {fT1 , . . . , fTn} be a set of func-
tions, V a set of variables and r an arity limit.
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F = {fxt, fyt, fzt}
V = {x, y, z}
r = 2

fxt:

x t
a a 2
a b 1
b a 3
b b 2

fyt:

y t
a a 4
a b 1
b a 2
b b 2

fzt:

z t
a a 0
a b 2
b a 0
b b 1

Figure 3: Example of functions to approximate.

We define ./F , the combination of F , to be the function
resulting from the joint combination of every function in F ,

./F = fT1 ./ . . . ./ fTn .

The min-marginal of F onto V is the min-marginal of the
combination of all the functions in F , that is (./F )[V ]. In
contrast, the one-to-one min-marginal of F onto V is the
set containing the min-marginal of each of its functions fTi

onto Ti∩V , namely F ↓ V = {fT1 [T1∩V ], . . . , fTn [Tn∩V ]}.
Given a function fV , we say that F is a V -lower bound of

fV iff the combination of the one-to-one min-marginal of F
onto V is a lower bound of fV , that is if ./(F ↓ V ) ≤ fV .

Furthermore, F is an (r,V )-lower bound of fV iff F is a
V -lower bound of fV and every function in F ↓ V has arity
smaller than or equal to r.

Given F and G (r,V )-lower bounds, F is at least as good
as G (G ≤ F ) iff ./(F ↓ V ) is at least as good as ./(G ↓ V ).

Observation 1. F is a V -lower bound of the min-marginal
of F onto V . Formally,

./(F ↓ V ) ≤ (./F )[V ].

For any fS , fT ∈ F , the combination of fS and fT in F ,
is the set of functions that results from removing fS and fT

from F and adding fS ./ fT , namely

FfS ./ fT = (F \ {fS , fT }) ∪ {fS ./ fT }.
Two functions fS and fT are (r, V )-combinable iff the min-

marginal onto V of the combination of fS and fT can be ex-
pressed by a function of arity smaller than or equal to r. Any
fS and fT such that |(S∪T )∩V | ≤ r are (r,V )-combinable.

The approximation task receives as input a set of functions
F 0, a set of variables V , and an arity limit r. Its goal is to
find an (r,V )-lower bound for the min-marginal of F onto
V . Since for a given approximation task the set of variables
V is fixed, in the following we talk of r-combinable, r-lower
bound, and min-marginal without explicitly mentioning V .

5. BOTTOM-UP APPROXIMATIONS
Informally, the fundamental idea behind current algorithms

for min-marginal approximation is the following. If we com-
bine any pair of functions from a set that is an r-lower bound
of the exact min-marginal, the result is another lower bound
which is at least as good as the original (and, in fact, most of
the times better). Furthermore, if the two functions selected
are r-combinable, then the result is also an r-lower bound.

The pseudocode for bottom-up approximation appears in
Algorithm 1. Since by Observation 1 we know that F is a
lower bound of the min-marginal of F onto V , a bottom-
up algorithm starts from the original set of functions F 0.
At each iteration, the algorithm: (1) selects a pair of r-
combinable functions (fS ,fT ) from the current set of func-
tions; and (2) updates the set of functions to the combina-
tion of fS and fT in F , that is FfS ./ fT . Since FfS ./ fT is
also an r-arity lower bound and it is at least as good as F ,
the iterations are likely to improve the lower bound. When

Algorithm 1 Bottom-up approximation(F, V, r)

1: (found, (fS , fT ))← bestCombinablePair(F, V, r)
2: while found do
3: F ← FfS ./ fT

4: (found, (fS , fT ))← bestCombinablePair(F, V, r)
5: end while
6: return F ↓ V

no more pairs of r-combinable functions are found, the al-
gorithm returns approximation represented by the last F .

5.1 Scope-based partitioning
Scope-based partitioning (SCP) is the most common bottom-

up method [5]. Basically, it tries to combine as many func-
tions as possible by choosing the two highest arity functions
at each iteration, so long as they are r-combinable.

More in detail, the r-combinable pairs are selected as fol-
lows. First, the set of functions F is sorted decreasingly by
arity and each function in the list is marked as non-finished.
At each iteration, SCP takes the first non-finished element
fS1 of F and the element fSi of F closer to the head such
that fS1 and fSi are r-combinable. It removes them from
F and inserts its combination at the head of the list. When
there is no function fSi r-combinable with fS1 , it marks fS1

as finished. The algorithm proceeds until all functions are
marked as finished.

Figure 4a depicts how SCP would compute an approxi-
mation for the example in Figure 3. Since all functions in F
have the same arity (two), they are readily sorted. Hence,
SCP would merge the two leftmost ones, and send the third
one independently, resulting in the approximation:

F ′ = {(fxt ./ fyt)[xy], fzt[z]} =

8>>><>>>:
x y
a a 2
a b 3
b a 3
b b 4

,
z
a 0
b 0

9>>>=>>>;
The main advantage of SCP is the low computational com-

plexity that results from its simplicity. The algorithm per-
forms a nested scanning through the list of functions. During
this scanning process, the algorithm computes up to |F | − 1
function combinations. To determine the maximum arity of
these functions, consider that S is the joint domain of all
functions in F . Then, the number of variables that do not
appear in V is |S\V |. Since the arity limit is r, the maximum
arity of each single merged function is |S\V |+r. As a result,
the complexity of the algorithm is O(|F |exp(|S \ V |+ r)).

5.2 Content-based partitioning
A major advantage of scope-based partitioning is its small

computational overhead. Nonetheless, its main drawback is
that it does not consider the information within each func-
tion. For instance, consider again the previous example. We
showed that scope-based partitioning would produce parti-
tion F ′ above. However, notice that there are further ap-
proximations that satisfy the r-bound.

Content-based partitioning techniques guide the bottom-
up approximation by consulting the functions’ contents in
addition to their scopes. In general, content-based parti-
tioning tries to assess which pair of r-combinable functions
yield the highest improvement.

In [14] Rollon and Dechter present a framework for content-
based partitioning that implements the general approach
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fxt fyt fzt

��

fxyt

{xy}

fxy

{z}

fz

(a) Bottom-up

fxt fyt fzt

��

f0

{xyz}

f0
xy f1��

{xy}

{xz}

f1
xz ��- 0

-

(b) Top-down

Figure 4: Examples of approximation strategies. Functions
in a double-lined box are the ones finally sent.

outlined in Algorithm 1. Given an r-lower bound F , content-
based partitioning provides the mechanism for selecting the
best r-combinable pair of functions fS , fT ∈ F such that the
approximation represented by FfS ./ fT is better than the ap-
proximation represented by F . At each iteration, the tech-
nique: (1) generates every pair of r-combinable functions
fS , fT ∈ F ; (2) measures the gain obtained by combining fS

and fT ; and (3) selects the pair that maximizes the gain.
Notice that the advantage of combining two functions be-

fore sending them is that they will be marginalized together.
Hence, the gain can be calculated based on the difference
between marginalizing together or marginalizing separately,
which can be computed as:

fV = (fS ./ fT )[V ]− (fS [V ] ./ fT [V ]).

Therefore, the gain function is a metric that takes fV as
its input. Rollon and Dechter present two such functions.
Firstly, the local relative error (LRE) metric, which is equiv-
alent to the averaged 1-norm of fV , assigns as gain the result
of adding the costs of all tuples in fV and dividing by the to-
tal number of tuples. Secondly, the local maximum relative
error (LMRE) metric, which is equivalent to the ∞-norm of
fV , assigns as gain the maximum cost of any tuple in fV .

The downside of content-based decomposition is that, in
the worst case, the algorithm performs up to |F | − 1 selec-
tions, computing |F |−1 differences for each selection. Hence,
the complexity of the algorithm is O(|F |2exp(|S \ V |+ r)).

6. TOP-DOWN APPROXIMATIONS
Bottom-up approximation methods focus on lowering the

computational cost. Instead, our purpose is to primarily
reduce communication costs. With this aim, we propose
a new approach to generate approximations based on: (1)
initially computing the function to approximate, and; (2)
subsequently decomposing it into lower arity output func-
tions. Figure 4b represents the process of building a top-
down approximation of the example in Figure 3. As a first
step, fxt, fyt and fzt are combined and then marginalized
onto {x, y, z} to produce f0, the function to approximate.
After that, the decomposition process starts. Firstly, con-
sider that we select S′ = {x, y} out of all possible subsets of
{x, y, z} with arity two. Secondly, f0 is marginalized onto
S′ to produce f0

xy, and this marginal is subtracted from f0

to obtain f1 (namely f1 = f0 ./(−f0
xy)).1 Therefore, f0

is decomposed as f0
xy ./ f

1, where f0
xy can be regarded as

a function ready to communicate and f1 as the remainder

1Given f , we define −f as f but changing the sign of f costs.
It is easy to see that f ./ −f is the null function.

Algorithm 2 Top-Down Approximation(F, V, r).

1: f ← (./F )[V ]
2: F ′ ← ∅
3: (found, fS′)← selectBestMarginal(f ,r)
4: while found do
5: F ′ ← F ′ ∪ {fS′}
6: f ← f ./(−fS′)
7: (found, fS′)← selectBestMarginal(f ,r)
8: end while
9: return F ′

after communicating f0
xy. The process continues searching

for a decomposition for this remainder.
The main advantage of top-down over bottom-up methods

is that they can represent a much wider space of approxi-
mations, and hence they should yield more accurate results.
Unlike bottom-up methods, which start from an inital set of
input functions and proceed by deciding which functions to
join, top-down methods start from the function to approx-
imate and proceed by successively selecting the best lower
arity min-marginal. While such min-marginal is already part
of the decomposition, the process continues by decomposing
the result of subtracting the min-marginal from the func-
tion to approximate. In general a top-down approximation
method is an iterative procedure that at each step i focuses
on finding the most informative min-marginal for f i whose
arity is smaller than or equal to r. It incorporates the se-
lected min-marginal, f i−1[S′i], to the list of output functions
and updates the function to approximate as follows:

f i = f i−1 ./ (−f i−1[S′i]). (1)

When the iterative process terminates, the following set of
functions stands for the resulting decomposition of f :

F = {f0[S′1], f1[S′2], . . . , fn[S′n+1]}.
More in detail, a general top-down approximation method

works as outlined in Algorithm 2. First, it computes the
function to approximate (f) by combining the input func-
tions in F and marginalizing onto V . After that, it uses
some heuristic to select the best min-marginal fS′ . Finally,
fS′ is added to the set of output functions and subtracted
from f . This process is repeated until no min-marginal pro-
vides additional information. In the remaining of the section
we introduce two top-down approximation methods that im-
plement the general method outlined in Algorithm 2.

6.1 Brute force decomposition
In order to determine the most informative min-marginal,

a first approach is to consider every possible min-marginal
onto r variables from V.2 Then, we can readily use the gain
functions from content-based partitioning to rank the min-
marginals and select the most informative one.

This procedure has, however, a high computational cost.
At the first iteration, it must compute

`|V |
r

´
marginals and

evaluate them, each requiring exp(|V |) operations. At each
following iteration, the number of marginals to compute de-
creases by one (the selected marginal is never computed
again, but all others have to be reevaluated because f i is

2Note that discarding functions whose arity is lower than r
does not reduce the space of representable functions.
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i = 0 aa ab ba bb
xy
xz
yz

C
4
4
4

i = 1 aa ab ba bb
xy X
xz X
yz X

C
3
3
3

i = 2 aa ab ba bb
xy X X
xz X X
yz X X X X

C
2
2
0

i = 3 aa ab ba bb
xy X X X X
xz X X X X
yz X X X X

C
0
0
0

(a) Zeroes tracking ta-
ble and counter vector

x y z f0 f1 f2 f3

a a a 4 2 0 0
a a b 2 0 0 0
a b a 4 2 0 0
a b b 3 1 0 0
b a a 5 3 1 0
b a b 3 1 1 0
b b a 5 3 1 0
b b b 4 2 1 0

(b) Per iteration re-
mainders

f0[∅] = 2

f1[yz] =

y z
a a 2
a b 0
b a 2
b b 1

f2[xz] =

x z
a a 0
a b 0
b a 1
b b 1

(c) Selected min-
marginals

Figure 5: Zero-tracking decomposition example.

different from f i−1). Hence, its worst time complexity is

O
“`|V |

r

´2 · exp(|V |)”.

6.2 Zero-tracking decomposition
The main disadvantage of brute force decomposition is its

high computational cost. Here we introduce zero-tracking
decomposition, a top-down approximation method that aims
at dodging this burden to reduce the computational cost.

Zero-tracking decomposition uses the zero norm of a min-
marginal as the heuristic to assess its quality. The zero
norm of a function is simply the number of elements in the
domain whose image is not zero. Intuitively, if a function
is only composed of zeros, it communicates no information
whatsoever. The larger the number of non-zero entries in a
function, the more informational it will be considered.

The reduction in computational cost comes from realizing
that, at each iteration, there is a way to compute the zero
norms of each min-marginal from the results of the previous
iterations. This avoids the need for recomputing every min-
marginal at each iteration as we pursue.

In what follows we detail the operation of the zero-tracking
methods when applied to the example in Figure 3. Let
p=
`|V |

r

´
be the number of possible r-arity min-marginals and

q the number of tuples for each min-marginal.3 First, the
algorithm allocates a boolean table Zeroes of p rows and
q columns. Each entry [U, tU ] in Zeroes encodes whether
the value for tU of the min-marginal of f onto U is zero
or not. That is, Zeroes[U, tU ] is true whenever f [U ](tU ) is
zero. Hence, all entries are initialized to false. Additionally,
it allocates a vector C of p integers to count the number
of non-zero tuples for each min-marginal. Since C counts
non-zero elements, it is initialized to the number of tuples
in each min-marginal (q). At the top of Figure 5a we show
(for iteration i=0) table Zeroes and vector C after initializa-
tion. Next, the exact min-marginal (./F )[V ] is calculated
by combining all the initial functions and marginalizing the
result onto {x, y, z}. The result is shown in Figure 5b as f0.

Notice that, at this point, f0 does not contain any zero. In

3For simplicity of exposition we assume that all variables
are defined over the same domain.

Algorithm 3 ZeroDecomposition(F, V, r).

1: initialize(Zeroes, C)
2: f ← (./F )[V ]
3: F ′ ← ∅
4: (fS′ , gain)← (f [∅], 1)
5: while gain > 0 do
6: F ′ ← F ′ ∪ {fS′}
7: f ← f ./(−fS′)
8: (fS′ , gain)← selectBestMarginal(f ,Zeroes,C)
9: end while

10: return F ′

11:
12: function selectBestMarginal(f ,Zeroes,C)
13: for all new tS s.t. f(tS) = 0 do // new zeroes in f
14: for all U ∈ T do // subsets of r variables
15: if not Zeroes(U, tS [U ]) then
16: C(U)← C(U)− 1
17: Zeroes(U, tS [U ])← true
18: end if
19: end for
20: end for
21: S′ ← arg maxU∈C C(U)
22: return f [S′] , C(S′)
23: end function

order to introduce some zeroes, we subtract from f0 its min-
imum (which amounts to the min-marginal of f0 onto the
empty set). In the example, this subtraction yields func-
tion f0[∅], shown at the top of Figure 5c. Subsequently, it
calculates the next remainder f1 using Equation 1.

After calculating the new remainder f1, the new func-
tion to approximate, the algorithm proceeds to update the
Zeroes table along with the C counter. Back to our ex-
ample, notice that f1 contains a single tuple with zero cost
tS=(xyz ← aab). Then, the algorithm calculates the pro-
jection of tS to each row U and sets cell [U, tS [U ]] to true in
the Zeroes table. In the example, the cell for row xy and
column aa is set to true in the Zeroes table. Moreover, the
counter for row xy decreases to record that there is one less
non-zero cost tuple. Figure 5a (i=1) shows the state of both
the Zeroes table and the counter vector after iteration i=1.
In general, for each new zero cost tuple tS , the algorithm
checks the Zeroes table cell at row U and column tS [U ]. If
the cell is false, it is set to true to indicate that the cost of
the min-marginals for the tuple will be zero from iteration
i onwards. Moreover, the value of the counter of non-zero
cost tuples for the min-marginal, C(U), decreases by one.

Once the Zeroes table and counters are updated, there are
two cases: (1) If all counters’ values are zero, it means that
the cost for all tuples of all subsequent min-marginals will
be zero. Therefore, since it is not possible to extract more
information from subsequent min-marginals, the algorithm
terminates and returns the list of selected min-marginals
so far, {f0[S′1], f1[S′2], . . . , fm[S′m+1]}, as the resulting de-
composition. (2) Otherwise, the min-marginal with more
non-zero tuples is selected as the best min-marginal, and
the algorithm continues.

In the example in Figure 5, all candidate min-marginals
(see the rows in table Zeroes at iteration i=1) contain 3 non-
zero tuples. Thus, at the next iteration (i=2), the algorithm
can randomly choose the marginalization of f1 onto any pair
of variables. Say that the algorithm chooses {yz}. There-
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fore, the selected best min-marginal is f1[yz], and hence
the new remainder f2 can be computed. After updating the
Zeroes table, there are still two counters larger than zero, as
shown in Figure 5a (i=2). In our case, the algorithm selects
f2[xz] (discarding f2[xy]), calculates the new remainder f3,
and updates the Zeroes table to yield the table in Figure 5a
(i=3). At this point, since all counters are zero, the algo-
rithm terminates to return the following set of selected best
min-marginals as the resulting decomposition:

F ′ = {f0[∅], f1[yz], f2[xz]}.
On the one hand, notice that the whole procedure –shown

in Algorithm 3– never calculates a min-marginal unless it is
going to be returned as part of the resulting decomposition.
Further, since the maximum number of functions in a decom-
position is

`|V |
r

´
, the worst case complexity of calculating the

decomposition is O(
`|V |

r

´
exp(|V |)). On the other hand, the

algorithm has to maintain the zeroes table, which also has a
cost. Note that function selectBestMarginal only processes
the tuples that are zero in the current iteration and were not
zero in the previous iteration4. This means that to maintain
the table, each tuple will be processed at most once. Since
for each tuple we mark each possible min-marginal, the time
complexity of maintaining the table is O(

`|V |
r

´
exp(|V |)), not

increasing the overall time complexity.

7. EMPIRICAL EVALUATION
In this section we evaluate the performance of the different

function approximation approaches on DIMCTEf. For each
experiment, we present both the communication savings and
increase in overall computational cost with respect to GDL.
We choose to track these measures because they are the key
ones in constrained environments. For instance, consider a
wireless sensor networks setting. Since running out of bat-
tery disables a node, battery consumption is probably the
most important figure to consider. Therefore, both commu-
nication and computation costs are important because they
directly determine battery consumption. We estimate the
overall computational cost by adding the processing times
incurred by each node, while ignoring communication times.
Similarly, the overall communication cost can be easily de-
termined by adding the number of bytes of all sent messages.

Because GDL’s communication and computation is mainly
determined by the maximum clique size of the computed
Junction Tree, experiments are segmented by this parame-
ter. Consequently, both GDL and all DIMCTEf approaches
use the very same Distributed Junction Tree Generator [15]
algorithm to compute JTs. Additionally, notice that the
parallelism degree is roughly the same for all algorithms,
because it mainly depends on the computed JT. As a con-
sequence, since DIMCTEf always communicates less infor-
mation than GDL, the relative increase in real solving time
between GDL and DIMCTEf would be lower than the rela-
tive increase in overall computation shown in this paper.

Since DIMCTEf removes tuples, it generates sparse func-
tions. Sending sparse functions can lead to communication
savings, but only if the implementation uses a special codi-
fication to transmit these functions. However, exploring the
codification of sparse functions was not one of the objec-
tives of this paper. Hence, we simply set a special value as

4New zeros can be detected at no cost while computing the
combination in line 7.

cost for the filtered tuples, and compressed the messages.
Specifically, we chose an Arithmetic Encoder [4] with a Par-
tial Prediction Matching model of 8 bytes. This compression
method is known to achieve good compression ratios, so long
as its input contains repeated values. The downside is that
compressing has a high computational cost, which is consid-
ered as part of our overall cost. Regarding GDL, compres-
sion hurts because the overall computation increases by an
order of magnitude, while communication savings are prac-
tically negligible. Therefore, we report GDL results without
compressing (following the idea of presenting results for each
algorithm in its best possible condition). Likewise, although
we tried both the LRE and LMRE metrics for both content-
based partitioning and brute-force decomposition, we only
report the best results obtained.

We conducted tests with the sensor networks instances
from [10], but they were very easy for GDL (5 maximum
clique variables). Thus, all approaches lead to the same
results, requiring 3 times less communication while main-
taining the same computation cost as GDL.

Next, we designed an experiment to measure the methods’
trend as the variables’ arity increases. Thus, it is composed
of 35 problems of 20 variables for each domain size, with a
random structure of densities ranging from p=0.1 to p=0.3,
where p is the probability of appearance for all edges. Func-
tion costs are taken from a normal distribution N (0, 1), and
then made positive by adding its minimum value to each
relation. Results in Figure 6a show that top-down approx-
imation methods perform significantly better than bottom-
up approximations in the communication front, with nearly
constant savings between two and three times better. As
expected, the brute force approach is way more expensive
computationally than other methods (up to 100 times slower
than GDL in the worst case). Nevertheless, zero-tracking’s
overall computation cost is just slightly higher (13 times that
of GDL at most) than that of the content-based approach
(10.5 times), whereas their savings are much larger (110.5
times less sent bytes for zero-tracking against 38.3 times for
content-based). Moreover, its savings in communication in-
crease almost 10 times faster than the computational cost.

Then, we conducted a second experiment that measures
the trends when the problems’ maximum clique variables in-
creases. Consequently, it contains problems of 20 variables
of arity 5 for each maximum clique variables, also with ran-
dom structures between p=0.1 and p=0.3, and normal costs.
Figure 6b shows that the communication savings increase
exponentially for all methods, yet zero-tracking grows at a
much faster rate than the others while keeping the compu-
tational cost under control.

Finally, the third experiment measures the impact of struc-
ture in the problems’ constraint graph. Thus, it contains
lattice-structured problems of 25 and 36 variables, leading
to JTs of 8 and 10 maximum clique variables. Once again,
top-down approximation methods achieve the largest com-
munication savings. In particular, zero-tracking decomposi-
tion requires up to 612 times less bytes than GDL in 25% of
the clique size 8 problems, while being only 44 times slower.

In summary, top-down approximations result in large com-
munication savings. Additionally, zero-based decomposition
remains competitive in computational effort with respect to
state-of-the-art approximation methods. Hence, we see zero-
based decomposition as the method of choice to optimally
solve DCOPs in communication-constrained scenarios.
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(b) Maximum clique variables varia-
tion, constant domain size of 5
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Figure 6: Performance evaluation results.

8. CONCLUSIONS
We addressed the issue of optimal DCOP solving in

communication-constrained scenarios, using GDL with func-
tion filtering. We first reviewed current state-of-the-art ap-
proaches to message approximation, presenting them in a
common framework that we named bottom-up approxima-
tions. Next, we proposed top-down approximations, a new
class of methods designed to reduce communication costs.
We then presented two realizations of this novel approach:
(1) brute-force decomposition, a naive implementation with
high computational cost; and (2) zero-tracking decomposi-
tion, which greatly reduces the amount of computation. Fi-
nally, we empirically evaluated their performance, showing
that top-down approximations always achieve larger commu-
nication savings than bottom-up ones. In fact, zero-tracking
decomposition does so while keeping the computational cost
at bay, becoming the method of choice for optimally solving
DCOPs in communication-constrained scenarios.
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ABSTRACT
Multi-agent systems form the basis of many innovative large-scale
distributed applications. The development of such applications re-
quires a careful balance of a wide range of concerns: a detailed
understanding of the behaviour of the abstract algorithms being
employed, a knowledge of the effects and costs of operating in a
distributed environment, and an expertise in the performance re-
quirements of the application itself. Experimental work plays a key
role in the process of designing such systems. This paper exam-
ines the multi-agent systems development cycle from a distributed
systems perspective. A survey of recent experimental studies finds
that a large proportion of work on the design of multi-agent sys-
tems is focused on the analytical and simulation phases of devel-
opment. This paper advocates an alternative more comprehensive
development cycle, which extends from theoretical studies to sim-
ulations, emulations, demonstrators and finally staged deployment.
AgentScope, a tool that supports the experimental stages of multi-
agents systems development and facilitates long-term dispersed re-
search efforts, is introduced. AgentScope consists of a small set
of interfaces on which experimental work can be built indepen-
dently of a particular type of platform. The aim is to make not only
agent code but also experimental scenarios, and metrics reusable,
both between projects and over simulation, emulation and demon-
stration platforms. An example gossip-based sampling experiment
demonstrates reusability, showing the ease with which an experi-
ment can be defined, modified into a comparison study, and ported
between a simulator and an actual agent-operating system.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications

General Terms
Experimentation

Keywords
Multi-Agent Systems Development

1. INTRODUCTION
Agents, unlike passive nodes in traditional computer systems,

analyse and react to their surroundings, autonomously making de-
cisions and adapting to their environment. These properties pose a
unique challenge in the design of distributed systems. Such knowl-
edge intensive activities are predicated on the availability of infor-
Cite as: AgentScope: Multi-Agent Systems Development in Focus, E.
Ogston and F. Brazier, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 389-396.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

mation. As systems scale up and become more decentralised the
costs of gathering information becomes an important consideration
in an agent’s design. Increases in complexity which are beneficial
in theory may not prove cost effective in application. Or agent al-
gorithms may set requirements that are beyond the resources of an
underlying computing system.

For agent algorithms in which information obtained from the en-
vironment in a large-scale distributed system is crucial, design is
not limited to the theoretical or conceptual stage of development,
but is a continuous process that spans into an experimental imple-
mentation, testing and comparison process. Procedures that pro-
vide information services need to be carefully matched, and per-
haps customised. The performance of an algorithm must be exam-
ined in combination with the services it uses. Possible designs must
be compared in the intended application setting, and improvements
in effectiveness weighed against increased cost.

This process of designing practical multi-agent systems can be
viewed as an incremental development cycle, moving from theo-
retical studies to experimental simulations, emulations, and demon-
strators, and finally to staged deployment. Experimental work plays
an important role in the process. Simulation, emulation and demon-
stration experiments allow key aspects of system behaviour to be
examined in detail in a controlled environment. Correctness and
performance of algorithm implementations can be confirmed, and
alternative algorithms can be carefully compared.

In contrast to this comprehensive view of the development cycle,
a survey of recent papers finds that experimental work on multi-
agent systems is heavily weighted towards the simulation stage.
A large proportion of works appear to be strongly influenced by
methodologies that view system design as occurring primarily in
the theoretical or analytical stage of development.

AgentScope is a tool that supports the experimental stages of
multi-agents systems development and facilitates long-term dis-
persed research efforts. AgentScope defines a set of generic inter-
faces for (1) networked communication between agents, (2) mea-
surement and analysis of agent behaviour, and (3) the setup of
experimental scenarios. The AgentScope interfaces allow proto-
cols and experiments written for one type of platform, for instance
a simulation environment, to be easily ported to other types of
platforms, such as emulation environments, as research progresses
through the development cycle. Real agent environments, such as
the AgentScape middleware platform [15], can also be used, sim-
plifying the transition between the experimental and deployment
stages of the development cycle. AgentScope further enables the
publishing of experiments, making it easier to compare algorithms
with previous work, and reuse experimental scenarios and metrics.

The aim of the AgentScope project is to allow researchers to
view experimental work from a more ambitious perspective than
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the testing of hypotheses for a single publication or project. Agent-
Scope views experiments not as a one-off effort by a single re-
searcher but as long-term work by many researchers. AgentScope
gives support for measurement, analysis and scenario development
equal priority to support for algorithm development. AgentScope
promotes the creation of code whose use is not restricted to study-
ing only the aspects of behaviour currently of interest, but that can
be carried through a series of experiments, and be used throughout
the development cycle.

This paper discusses the experimental stages of multi-agent sys-
tems development (Section 2), extending the argument for a com-
prehensive agents development cycle put forward in [11]. It fur-
ther surveys existing experimental work (Section 3), and presents
the AgentScope interfaces (Section 4). An example in Sections 5
and 6 demonstrates the ease with which experiments can be de-
veloped, extended and ported between different types of platforms
using AgentScope. Sections 7 and 8 present conclusions and sum-
marise ongoing and future work.

2. MULTI-AGENT SYSTEMS DEVELOPMENT
AgentScope considers experiments not as one off efforts by a sin-

gle researcher but as part of long-term work by many researchers.
From this point of view an experiment is a small step in a larger
application development cycle. In multi-agent systems complex
communication processes underlie important high-level procedures
such as coordination, negotiation, collaboration, and coalition for-
mation, to name a few. The deployment of such procedures in ap-
plications is more complex still. Ideas developed in theory rarely
translate directly to deployment. Instead an intricate development
process must often be followed to bridge the gap between theory
and application.

In AgentScope, rather than placing agents and their overall be-
haviour foremost, the core abstraction is a protocol; a distributed
set of components that collectively provide a specific distributed
service. Agents are made up of a set of protocols that support their
core behaviour. This change in focus views a multi-agent system
not only from an agent’s perspective, but also as a distributed sys-
tem. Protocols map the abstract services employed by an agent to
concrete implementations of distributed algorithms.

The development path between abstract agent design and full
scale application deployment is divided into phases, a simulation
stage, an emulation stage and a demonstration stage. Experiments
in each stage single out the behaviour of specific protocols and test
how well protocols combine to provide full agent functionality.

2.1 Protocols
A protocol supports a distributed application by providing a ba-

sic abstract service. For instance sampling, aggregation, dissemi-
nation, resource allocation, clustering, directories, and search are
common distributed tasks that can be viewed as services used by
higher-level applications. While each of these tasks is a relatively
simple concept, the many factors that must be considered in a dis-
tributed environment often result in intricate communication and
coordination patterns. Implementations require careful attention to
detail and testing. Separating such tasks out simplifies testing, im-
proves code reusability, and allows implementation details to be
hidden to a great extent from the application that uses them.

Protocols consist of two parts: the abstract algorithm that is used
to achieve the desired function, and the implementation of that al-
gorithm. Algorithms can be, and often are, studied separately from
an implementation. However, in an application context the two
parts are best studied in combination. Implementation details can
have a major impact on applicability. Assumptions made about the

underlying system can lead to performance under different environ-
mental conditions varying widely from that expected. Theoretical
analysis often makes use of abstract concepts that may not have
straightforward manifestations: the uniformity of random samples,
the existence of clustering criteria, the presence of common pa-
rameters agreed among autonomous entities, for instance. Prac-
tical implementations often contain non-deterministic or heuristic
behaviour that does not lend itself well to theoretical analysis.

2.2 Experimental Stages of Development
Protocol development commonly goes through three experimen-

tal phases between theory and end application: 1. simulation, 2.
emulation, 3. use in application demonstrators. Each phase focuses
on testing and improving a different aspect of a protocol implemen-
tation. Simulations test the functionality of a protocol to show that
the basic algorithmic design is correct and complete. Emulations
test functionality and performance in a distributed setting. Demon-
strators test if the performance characteristics of a protocol, and
assumptions about the system it relies on, match the application
or class of applications in which it will eventually be used. The
main practical difference between the phases is the degree to which
aspects of the eventual application environment are replaced by ab-
stract or simplified models.

Simulations involve building up a detailed understanding of an
algorithm’s basic functionality. The aim is often to confirm or en-
hance a theoretical analysis. Abstract models of the eventual ap-
plication environment are used to focus in on key theoretical be-
haviours. Full protocol details are often not of interest. Since algo-
rithms are usually previously untested, detailed debugging can be
involved. Simulations are therefore best suited to environments that
run on a single machine, using a simplified model of the eventual
distributed setting. This allows for recording and analysing large
amounts of data, such as the internal state of all agents, and for
stopping the experiment clock to take a single synchronised snap-
shot of the system to test if global invariants are upheld.

Emulations are characterised by the use of a real distributed en-
vironment to confirm protocol functionality when actual communi-
cation characteristics are taken into account. Emulations are con-
cerned with the implications of parallelisation. Simulations often
take into account the location and replication of data and what mes-
sages need to be passed between agents. Emulations further con-
sider timing and synchronisation, bandwidth requirements, the ef-
fect of communication latency and errors, and so forth. While these
concerns can be partly tested in simulations, the use of an actual
network is often simpler than the effort required to model it. The
use of a network analogous to that used by the intended end appli-
cation avoids the need to identify and model every aspect that may
be of importance.

Demonstrators take a step towards testing an algorithm in a real
application setting. Simulations and emulations usually focus on
the full range of algorithm behaviour tested on abstract data sets.
Demonstrators add models of intended uses for large-scale dis-
tributed systems based on expert analysis and real data. They test
if an algorithm is suited for a specific purpose as opposed to testing
its generic behaviour.

3. RELATED WORK
Experimental work is an integral part of many Agents research

projects. In order to obtain a rough picture of the experimental
tools and methods used in recent work a survey was made of the
61 papers presenting original work published in the Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) in 2009
and 2010 [1]. JAAMAS covers a wide range of topics, 37 of the pa-
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pers surveyed presented experimental results, of these 18 ran exper-
iments on distributed, potentially large-scale multi-agent systems.
A further examination is made of these 18 papers as they represent
the type of experimental work directly targeted by AgentScope.

The vast majority of work falls in the simulation phase of the
development cycle. None of the 18 papers examined deployed ap-
plications, only two were based on deployed demonstrators. Of the
remaining 16 all ran simulations. None of these simulations could
be characterised as emulations, running on a real network. Though
six papers ran more advanced simulations that modelled messages,
only two of these measured communications costs and only one
of those two stated that it was run in real time rather than being
rounds based. Only three of the simulations used a scenario based
on measurements of actual systems.

It is surprising that so little experimental work falls within the
later stages of the development cycle, especially given that JAA-
MAS papers generally represent the more mature projects within
the field. Given the importance of considering application char-
acteristics it is disappointing that there is little work representing
deployed applications, or scenarios based on expert analysis and
measurements of existing systems. This imbalance may reflect the
influence of development methodologies that focus on the theoret-
ical side of Agents research, considering the bulk of important de-
sign decisions to occur in the early analytical stages of develop-
ment. Methodologies, such as Gaia [16], which place an abstrac-
tion barrier between design and implementation, make an implicit
assumption that implementation and application details will have
little effect on system design.

Reusability is a key factor in supporting the wider spread adop-
tion of a more comprehensive development methodology. The reuse
of agent components, as discussed in [2], lowers the cost of ex-
tending previous work and running comparisons studies. We found
little evidence of the reuse of agent components in the 18 works
surveyed. While all the papers discussed related algorithms, only
half did experimental comparisons. Four of these mentioned either
needing to re-implement previous work or not being able to do a
further comparison because of a lack of code.

Standard experimental platforms further improve reusability. Ex-
amining platform reuse found that of the 18 selected papers, four
used existing published simulators, and two used previously pub-
lished demonstrators. For five papers a custom simulator was de-
veloped, seven papers did not state what simulator was used. A
good variety of simulators are in fact available [4, 6, 10, 13]. The
JamesII project [5] shows a common interface can be used to allow
simulations to be ported between simulators. AgentScope follows
this approach, extending reusability by emphasising the desirabil-
ity of porting experiments between different types of platforms [14]
rather than focusing on simulations.

A third aspect of reusability concerns the development of com-
mon scenarios, metrics and experiments. In the papers surveyed,
scenario and metric reuse was more common than direct reuse of
code: nine papers were based on previously developed scenarios,
and three extended previous scenarios. Twelve papers used previ-
ously published metrics, and one used an extension of a previous
metric. Six papers developed custom scenarios, five of these cre-
ated custom metrics. JamesII [5] includes mechanisms to reuse
experiments. In AgentScope the interfaces for implementing met-
rics and building experimental scenarios are given equal impor-
tance to the interface on which agents are built. The intention is
to encourage the creation of standard testbeds, which make input
from domain experts, and data sets more accessible. The success
of agent competitions gives an indication of the value of this ap-
proach. Three of the four simulators that were explicitly reused

in the papers surveyed were from agents competitions: Robocup
[9], Robocup Rescue [7], and the Trading Agents Competition [8].
It is perhaps significant that these simulators are associated with
full test beds, including scenarios and metrics, and for which code
for previous solutions is available. AgentScope aims to improve
the extendability of this approach by enabling the creation of more
generalised scenario libraries.

4. THE AGENTSCOPE INTERFACES
AgentScope gives support for measurement, analysis and sce-

nario development equal priority to support for algorithm devel-
opment. It defines three interfaces that separate out the core be-
haviours needed to implement distributed protocols and run ex-
periments: (1) Networked Communication (2) Measurement and
Analysis and (3) Experimental Control. The Protocol Network In-
terface provides the methods and classes needed for agent protocol
instances to communicate with each other. Protocol code written on
the Protocol Network Interface can be designed to be used through-
out the whole development cycle. The Measurement and Analysis
Interface defines a generic method of recording protocol behaviour
during an experiment. The specific measurements of interest gener-
ally change between experiments. The Measurement and Analysis
Interface is designed to allow measurement code for a protocol to
be easily swapped out and replaced depending on the experiment
being run. The Experimental Control interface defines a generic
method of setting up experiments so that an experimental scenario
can be easily reused, or ported between platforms.

AgentScope promotes the creation of code whose use is not re-
stricted to studying only the aspects of behaviour currently of in-
terest, but that can be carried through a series of experiments, and
be used throughout the development cycle. AgentScope interfaces
are intentionally minimal. The restrictive interfaces encourage de-
velopers to use methods that are as generic as possible to the many
environments encountered during the development cycle.

AgentScope interfaces are two sided. On one side they provide a
generic set of classes and methods for use by protocol developers.
On the other side they provide a set of classes and methods that a
backend must implement in order to run AgentScope based proto-
cols and experiments. In a backend, a set of “adaptor” classes map
a platform’s functionality to that required by AgentScope. These
adaptor classes can provide additional methods that allow exper-
iments to access functionality that is specific to a particular plat-
form. In the following sections we give details of the protocol de-
veloper side of each interface. In Section 6 we discuss backend
adaptors. The AgentScope interfaces are implemented in Java.

4.1 Protocol Network Interface
The Protocol Network Interface is a stand alone package defin-

ing the basic classes and interfaces that are needed to write proto-
cols. The core abstraction is a “protocol”: an implementation of a
distributed algorithm that provides a particular service to “agents”
located on nodes in a distributed system. Each participating agent
runs an instance of the protocol, and collectively these protocol in-
stances provide the service to their agents. For instance a directory
protocol might maintain a list of active agents, an aggregation pro-
tocol might calculate the sum of a given dynamic variable or a load
balancing protocol might distribute a set of tasks between agents.

Protocol instances each have an individual “address”, which al-
lows them to communicate with each other by exchanging “mes-
sages”. They are triggered into action on receipt of a message, in
response to “events” that are set to occur at a particular time (ac-
cording to a local “clock”), or in response to a request made by
their agent. Protocols also have “names” to allow particular in-
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Table 1: The Protocol Network Interface
METHODS OF PROTOCOL CLASS

Protocol(Agent myAgent, String name)
sendMessage(Message m)
receiveMessage(Message m)
scheduleEventAt(String note, long time)
scheduleEventWithDelay(String name, long timeFromNow)
triggerEvent(Event p)
getAddress() returns Address
getName() returns String
getClock() returns Clock
start()

METHODS OF MESSAGE CLASS
Message(Address to, Address from)
to() returns Address
from() returns Address

METHODS OF EVENT CLASS
Event(Address addr, String name, long time)
getName() returns String
getAddress() returns Address
getTime() returns long

METHODS OF AGENT INTERFACE
addProtocol(Protocol p, String name) returns Address
getProtocol(String name) returns Protocol
sendMessage(Message m)
scheduleEvent(Event p)
getClock() returns Clock

METHODS OF ADDRESS INTERFACE
sameAs(Address a) returns boolean
sameAgent(Address a) returns boolean

METHODS OF CLOCK INTERFACE
currentTime() returns long
unitsPerSecond() returns double

stances of a given protocol to be located when the address of an
agent is known, but not the specific address of the named protocol
on that agent.

The Protocol Network Interface consists of three classes - Pro-
tocol, Message and Event - and three interfaces - Agent, Address
and Clock (Table 1). The classes represent the main objects that a
protocol manipulates, the interfaces represent supporting concepts
from the system the protocol exists within. A protocol implemen-
tation is written by subclassing the Protocol class. Subclasses of
Message and Event are used to represent protocol specific messages
and events. The Agent interface provides methods for sending and
receiving messages and setting and receiving events.

4.2 Measurement and Analysis Interface
The Measurement and Analysis Interface provides classes in which

to define: (1) the data that should be recorded about a protocol’s be-
haviour during an experimental run, and (2) how that data should
be manipulated to provide the final output of the experiment. The
core abstraction is a “logbook” - essentially a blank space in which
a protocol instance records information, along with methods that
define how to process that information. Logbooks are located on
Agents. Each protocol instance can have one or more logbook in-
stances associated with it.

The Measurement and Analysis Interface consists of two classes,
LogBook and its subclass ActiveLogBook, and one interface, Log-
ger (Table 2). A LogBook stores and manipulates the raw data
recorded during an experiment. A Logger interacts with the back-
end to aggregate the recorded data into a final single location. In
order to write an experiment a designer must subclass LogBook to
specify the data of interest, and methods for analysing it.

There are two modes in which a logbook can operate - passive
and active. When a logbook is passive, the protocol code speci-
fies the data to record. When a logbook is active the logbook code

Table 2: The Measurement and Analysis Interface
METHODS OF LOGBOOK CLASS

LogBook(String name)
aggregate(LogBook moreData)
clear() returns LogBook
writeData(File directory)
combineData(File[] inputDirs, File outputDir)
getName() returns String

METHODS OF ACTIVELOGBOOK CLASS
ActiveLogBook(Protocol p, String name)
recordProtocolState()

METHODS OF LOGGER INTERFACE
addLogBook(LogBook l)

specifies the data to record, a protocol need not contain specific log-
ging code or know of the log’s existence. Active logging is better
suited when fully experiment-generic protocol code is desired. Pas-
sive logging is better suited to detailed measurements that involve
recording events as they occur.

The more basic class, LogBook operates in passive mode. In
passive mode, a protocol instance must be informed of the a log-
book’s existence, for example by the logbook instance registering
as a listener to the protocol instance. The protocol code specifies
what information to store. ActiveLogBook subclasses LogBook
to add functionality for recording data independently of a protocol
implementation. In active mode a logbook instance holds a pointer
to a protocol instance. The data to recorded is specified within the
logbook code. When triggered, for instance by a periodic signal
from the logger, the logbook calls methods on the protocol to ex-
tract data.

Logbooks store data in a distributed manner within the agents
which they are monitoring. A backend adaptor implementation of
the Logger interface specifies details of how individual logbooks
are routed by the experimental system to produce the final out-
put of an experiment at a central location. The Logger combines
data from the individual agent logs into a single central logbook
instance. The LogBook.aggregate() method is used to specify how
data from individual logs should be combined. The LogBook.write-
Data() method specifies how the final results for an experiment
should be recorded to a specified a directory, for instance in the
form of graphs of tables. The LogBook.combineData() method fur-
ther specifies how the output produced by the writeData() method
for several different experimental runs can be combined into a sin-
gle set of results.

The AgentScope toolkit contains a supporting package of classes
for storing, manipulating, and analysing data and drawing graphs
and tables with which logbooks can be implemented. It also con-
tains a set of generic logbooks, for instance for recording, analysing
and graphing series or time sequences of values. Additionally, a
logger implementation that is built entirely on the Protocol Net-
work Interface is provided. In this case the logger is a protocol that
uses messaging to move data, and events to trigger active log func-
tions. For backends that contain specific logging support, such as
synchronised triggers for taking system snapshots, a logger imple-
mentation can be built that makes optimal use of that support.

4.3 Experimental Control Interface
The Experimental Control Interface provides a means of organis-

ing the setup of an experiment in a flexible manner. Both the need
to change experiment configuration and the need to port experi-
ments between backends are taken into consideration. The setup
and running of an experiment is divided into several parts. First,
“experiments” are distinguished from “trials”. An experiment is a
full experimental scenario while trials are single runs of that sce-
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Table 3: The Experimental Control Interface
METHODS OF ENVIRONMENT INTERFACE

runTrial(int numAgts, Initializer i, LogBook l) returns LogBook
METHODS OF EXPERIMENT INTERFACE

run(File outputDir)
runTrial(Trial t, File outputDir)
combineOutput(File[] inputDirs, File outputDir)

METHODS OF INITIALIZER CLASS
Initializer(Trial trial)
initializeAgent(Agent a, Logger l)
finalizeSetup() returns boolean
getTrial() returns Trial

METHODS OF TRIAL CLASS
Trial(String name, int numAgents, int trialLength)
getNumAgents() returns int
getName() returns String
getTrialLength() returns int

nario. Second, the “core” experimental scenario is separated from
the parts of the experiment that may be configured differently in
different trials.

The division of purpose is represented by the Experimental Con-
trol Interface classes and interfaces: (1) an Experiment provides the
interface through which to run a series of trials, (2) an Environment
captures information about the setup of the backend environment in
which the scenario is to be run, (3) an Intializer stores information
on the setup of agents for a core experimental scenario, and (4) a
Trial stores information on the configuration of a particular trial.
(Table 3)

An Experiment provides an interface for running a trial or series
of trials. Within an Experiment a designer specifies the Environ-
ment or Environments to use, Initializers, a core series of trials to
run, and how the output of a series of trials should be combined to
give the final experimental results. Experiment provides the basic
methods on which user interfaces can be built. The AgentScope
toolkit provides a simple command line UI, a web-based UI and
a generic file manager that provides methods for running complex
series of trials and storing them to a standard directory structure.

An Environment is the part of the adaptor for a given back-
end with which an Experiment interacts. An Experiment runs a
trial on a backend by calling that backend’s Environment.runTrial()
method. The runTrial() method takes an Initializer as input which
defines the generic agent setup. Running an experiment on a new
backend only requires a switching Environments.

An implementation of Initializer specifies how agents should be
set up to run a given scenario, in a backend independent manner. At
the start of an experiment a backend creates empty agents, which
are then passed to the initializer. The initializer adds the required
protocols and logbooks to the agents and sets up the initial connec-
tions between them.

A Trial keeps track of trial specific configuration details. An Ini-
tializer specifies the setup of a generic scenario, it can be given a
Trial instance to query for parameters that may vary between trials.
Trials can for example be used to vary the values of variables, the
number of agents, protocol implementations used, initial connec-
tions between agents, experiment event series, logbooks used, in-
put datasets, etc. An experiment designer can thus define the fixed
and variable parts of an experimental setup through defining a core
Initializer and a Trial or set of Trials specifying what may change
between experiment trials.

5. SAMPLING EXPERIMENT EXAMPLE
Writing an experiment in AgentScope requires developing a pro-

tocol to be tested, logbooks to measure its performance, and an ex-
perimental setup in which to run. This process is demonstrated for

the implementation and testing of a basic sampling protocol, Sim-
pleGossip. A sampling service is a degenerate form of directory
service that when queried returns a randomly chosen address of an
agent in the system. SimpleGossip is an unsophisticated gossip-
based sampling protocol. In gossip-based sampling each agent
maintains a cache of items. Each item stores the address of an
agent. Pairs of agents periodically “gossip” with each other, ex-
changing items from their caches. Repeated gossiping creates a
continuous mixing procedure in which items become spread ran-
domly throughout the agent caches. When an agent needs a ran-
dom address, the sampling protocol returns a random item from its
cache. Ideally the samples returned by a sampling protocol will
follow a uniform random distribution. The exact gossiping proce-
dure, as well as a protocol’s response to node churn, message loss
and other underlying system characteristics determine the degree to
which it meets this requirement. A detailed discussion of gossip-
based sampling is presented in [12].

The following sections provide the bulk of the code needed to
implement and test SimpleGossip using AgentScope and some con-
venience classes from the AgentScope toolkit. First a basic simu-
lation experiment is developed in Sections 5.1-5.3. In Section 5.4
this experiment is extended to a more complex setting involving
node churn, and a comparison to an existing protocol in performed.
In Section 6 a further version of the experiment is run on a full
distributed agent middleware platform, AgentScape [15].

5.1 Protocol Development
The core SimpleGossip protocol, given in the code lines 1-45, is

developed on the Protocol Network Interface. SimpleGossip sub-
classes protocol. Each SimpleGossip instance contains an address-
item cache of size C (line 4). Periodically, with some interval t
seconds (lines 34-37), each instance chooses a gossip partner and
sends it g of the items from its cache (lines 13-16). This agent
responds by returning g items from its own cache (lines 17-23).
Notice that some time can pass between when a request is sent and
the reply is received. No attempt is made to manage the ordering of
gossips. Subsequent incoming gossips can be handled in this inter-
val. Nor does SimpleGossip keep track of the requests it makes, or
notice when a gossip fails and no reply is received. An agent joins
a SimpleGossip protocol by filling its cache with items for its own
address, then initiating a gossip with a bootstrap agent already in
the protocol (lines 25-31).

1 public class SimpleGossip extends Protocol{
2 int t=1; int C=25; int g=3;
3 Address bootstrapAgent;
4 ItemCache theCache;
5 public SimpleGossip(Agent myNode, Address bootstrapAgent){
6 super(myNode, "SimpleGossip");
7 this. bootstrapAgent = bootstrapAgent;
8 theCache = new ItemCache();
9 }

10 public Address getRandomAddress(){
11 return theCache.getRandomItem().getAddress();
12 }
13 protected void initiateGossip(Address partner){
14 Item[] toSend = theCache.removeItems(g);
15 sendMessage(new GossipRequestMessage(partner, getAddress(), toSend));
16 }
17 protected void receiveGossipMessage(GossipMessage m){
18 theCache.addAll(m.getItems());
19 if(m.isRequest()){
20 Item[] toSend = theCache.removeItems(g);
21 sendMessage(new GossipReplyMessage(m.from(), getAddress(), toSend));
22 }
23 }
24 @Override
25 public void start(){
26 theCache.createAndAddOwnItems(C);
27 scheduleEventWithDelay(‘‘GOSSIP’’, t);
28 if (bootstrapAgent != null) {
29 initiateGossip(bootstrapAgent);
30 }
31 }
32 @Override
33 public synchronized void triggerEvent(Event p){
34 if (p.getName().compareTo(‘‘GOSSIP’’) == 0) {
35 scheduleEventWithDelay(‘‘GOSSIP’’, t);
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36 initiateGossip(getRandomAddress());
37 }
38 }
39 @Override
40 public synchronized void receiveMessage(Message m) {
41 if (m instanceof GossipMessage) {
42 receiveGossipMessage( (GossipMessage) m );
43 }
44 }
45 }

5.2 Basic Experimental Setup
In the AgentScope Control Interface an initialiser is used to de-

fine the basic setup of agents in an experimental scenario (lines 46-
61). For the sampling scenario this involves creating a SimpleGos-
sip protocol instance for each agent, and informing each protocol
of the bootstrap agent’s address (line 51).

46 public class SamplingInitializer implements Initializer {
47 private int agentCount = 0;
48 Address bootstrapAgent = null;
49 @Override
50 public void initializeAgent(Agent a, Logger l){
51 SimpleGossip p = new SimpleGossip(a, bootstrapAgent);
52 if(bootstrapAgent == null){
53 bootstrapAgent = p.getAddress();
54 }
55 agentCount++;
56 }
57 @Override
58 public boolean finalizeSetup(){
59 return agentCount == getTrial().getNumAgents();
60 }
61 }

The sampling experiments are run on the Platform 9 3/4 simu-
lator (line 65), the custom simulator used in [12]. A subclass of
the Experiment class is used to define backend setup (lines 62-72).
In the initial experiments specific SamplingProtocol parameters are
not varied, so the the basic Trial class can be used directly.

62 public class SamplingExperiment extends Experiment{
63 @Override
64 public void runTrial(Trail t, File outputDir){
65 Environment env = new P934Environment();
66 env.setTrialLength(t.getLength());
67 Initializer init = new SamplingInitializer(t);
68 LogBook log = new DoubleValueLog();
69 LogBook results = env.runTrial(t.getNumAgents(), init, log);
70 results.writeData(outputDir);
71 }
72 }

5.3 Measurement
Measurement involves creating a set of logs to record metrics of

interest to an experiment. The uniformity of the samples returned
by SimpleGossip can be tested by using sampling to estimate the
total number of agents, N , in the system [12]. Using the inverted
birthday-paradox, let x be the total number of items seen before two
items for the same agent are detected. The estimate of N is then
x2/2. Agents can make repeated estimates of the network size by
watching the stream of incoming items produced by SimpleGos-
sip. The statistical accuracy of this estimate gives a measure of the
uniformity of the distribution from with the samples are drawn.

A listener model is used to allow objects to register to be noti-
fied each time SimpleGossip receives a new item. A class, SizeEs-
timate, watches the item stream and generates size estimates us-
ing the inverted birthday-paradox method. In turn SizeEstimate
informs listeners registered with it each time a new estimate is gen-
erated. These estimates are recorded using the DoubleValueLog
class, from the AgentScope toolkit (lines 73-113). DoubleVal-
ueLog uses the DataSet class from the AgentScope toolkit to store
and analysis values (line 74). The Chart class from the AgentScope
toolkit is used to produce graphs of these values (lines 92-104).

73 public class DoubleValueLog extends LogBook implements ValueListener<Double>{
74 DataSet values;
75 public DoubleValueLog(String name){
76 super(name);
77 values = new DataSet();
78 }

79 @Override
80 public synchronized void newValue(Double v) {
81 values.addValue(v);
82 }
83 @Override
84 public synchronized void aggregate(LogBook moreData) {
85 if (moreData instanceof DoubleValueLog) {
86 DoubleValueLog l = (DoubleValueLog) moreData;
87 values.addValues( l.getValues() );
88 }
89 }
90 @Override
91 public void writeData(File directory){
92 Chart c = values.graphDistribution(1, getName());
93 c.saveImageAndSerializedChart(directory, getName());
94 }
95 @Override
96 public void combineData(File[] dirs, File outputDirectory) {
97 LineChart outputChart =
98 new LineChart(getName(), ‘‘Size Estimate’’, ‘‘Number of Occurrences’’);
99 for(File f: dirs){

100 File nextFile = new File(f, getName() + ‘‘.ser’’);
101 LineChart c = (LineChart) Chart.readSerializedChart(nextFile);
102 outputChart.addDataSeries(f.getName(), c.getDataSeries(‘‘dist’’));
103 }
104 outputChart.saveImageAndSerializedChart(outputDirectory, getName());
105 }
106 @Override
107 public synchronized LogBook clear(){
108 DoubleValueLog l = new DoubleValueLog(getName());
109 l.values = values;
110 values = new DataSet();
111 return l;
112 }
113 }

In order to specify the measurements to be made during the ex-
periment, the initializeAgent() method of SamplingInitializer (lines
50-56) is extended (lines 116-124) to create a SizeEstimate (line
118) and log (line 120) on each agent, and to register each log with
the platform logger (line 122) . The logger takes care of trans-
ferring the values recorded in each agent log to a central log. To
gather data the logger calls the clear() method (lines 107-112) on
each registered agent log. The logger gives this data to the cen-
tral log through the aggregate() method (lines 84-88). This central
log is specified in Experiment.runTrial() to be another instance of
DoubleValueLog (line 69).

115 @Override
116 public void initializeAgent(Agent a, Logger l){
117 SimpleGossip p = new SimpleGossip(a, bootstrapAgent);
118 SizeEstimate e = new SizeEstimate();
119 p.addListener(e);
120 DoubleValueLog log = new DoubleValueLog(‘‘SizeEstimate’’);
121 e.addListener(log);
122 l.addLogBook(log);
123 ...
124 }

Experiment.runTrial() also specifies what should be done with
the central log at the end of an experiment (line 70). The Dou-
bleValueLog write method produces a chart of the distribution of
values recorded (lines 91-94).

An experiment series is defined in the run method of the Sample-
Experiment class (lines 126-131). Two trials are specified, one with
100 agents and one with 1000 agents. Both are run, and the output
is combined using the DoubleValueLog.combine() method (lines
133-135). The FileManager class from the AgentScope toolkit is
used to specify the directory structure for storing results. The File-
Manager runTrial() and combineData() methods simply call the
corresponding Experiment methods with appropriate File arguments.

125 @Override
126 public void run(File outputDir) {
127 FileManager fm = new FileManager(this, outputDir);
128 fm.runTrial(new Trial( ‘‘SimpleGossip100’’, 100, trialLength) );
129 fm.runTrial(new Trial( ‘‘SimpleGossip1k’’, 1000, trialLength) );
130 fm.combineOutput();
131 }
132 @Override
133 public void combineOutput(File[] inputDirs, File outputDir) {
134 (new DoubleValueLog(‘‘SizeEstimate’’)).combineData(inputDirs, outputDir);
135 }

The final output of the experiment is shown in Figure 1. The
figure shows the distribution of size estimates made by all agents
during a run. Vertical lines mark the average. With 100 agents
SimpleGossip performs reasonably well, on average estimating the
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Figure 1: Size estimates: basic simulations.

system size to be 82.6. With 1000 agents however it gives an av-
erage size estimate of 238.7 showing that SimpleGossip is not a
precise sampling protocol.

5.4 Extending the Experiment
The experiment described above can be easily extended. Alter-

native sampling protocols can be tested against SimpleGossip to di-
rectly compare performance. Additional metrics can be recorded.
Or the environment in which the scenario is run can be modified.

In order to compare SimpleGossip to alternative sampling pro-
tocols a SamplingTrial class is created which specifies which pro-
tocol to use through a getSamplingProtocol() method. The Sam-
plingInitializer calls this method when setting up an agent (line 51).
A library version of the Eddy protocol, described in [12], can then
be run in the scenario developed for SimpleGossip simply by cre-
ating and using a corresponding SampleTrial.

Analysing different aspects of SimpleGossip’s performance only
requires adding or modifying logbooks. For instance, to record
how the size estimates produced by the protocol change over time,
the DoubleValueLog used by the agents (line 120) can be replaced
by a TimeStampedValueLog and the DoubleValueLog used by the
SamplingExperiment can be replaced with a TimeStepsValueLog
(line 69). Both of these are generic logs from the AgentScope
toolkit. TimeStampedValueLog extends DoubleValueLog, record-
ing the time at which each value is logged, and TimeStampedVal-
ueLog uses these times to divide values into time steps.

Finally, the environmental conditions in which SimpleGossip op-
erates can be modified by configuring the Platform 9 3/4 backend.
The simulator can be set to implement churn, causing agents to fail
over time and adding new agents by calling the P934Environment.-
setChurn() method after creating the environment in SamplingEx-
periment.runTrial() (line 65).

Figure 2 shows the end result of these changes. The figure com-
pares the ability of SimpleGossip and Eddy to estimate system
size over time in a system with churn and an average size of 1000
agents. It highlights an important failing of SimpleGossip, as the
agent set changes the item set is not adapted, resulting in the quality
of samples degrading over time. Eddy shows that a more complex
protocol can manage the item set in a way that allows it to estimate
system size fairly accurately.

6. BACKENDS
The network, measurement, and control interfaces abstract the

experimental environment in which protocols are tested. In or-
der to use an alternative platform with a experiment written on
the AgentScope interfaces an experimenter need only write a small
set of adaptor classes. A backend adaptor maps the abstract con-
cepts from the AgentScope interfaces onto concrete implementa-

Figure 2: Size estimates: 1000 agents with churn.

tions within a platform. While backends all provide the same basic
functionality, they may vary significantly in the performance guar-
antees they provide for those functions. For instance a simulator
may guarantee that messages will always be delivered with mini-
mal delay, while in an emulation environment message and agent
failures may be common occurrences. Different environments also
include different support functions. Single machine environments
can easily provide support for precise measurements of agent be-
haviour. In distributed environments measurement can require ex-
pensive coordination and communication, and thus may necessarily
be less detailed. It is therefore natural that as a protocol proceeds
through the development cycle the most appropriate environment
for testing it will change.

In the example experiment the Platform 9 3/4 simulator can be
replaced by the AgentScape agent middleware [15] simply by chang-
ing which Environment is created in line 65. Figure 3 compares the
size estimate distributions for the Eddy protocol on 50 agents run-
ning in AgentScape and on Platform 9 3/4. Each backend has its
advantages and disadvantages. Since AgentScape is a full agent op-
erating system, testing is not limited to aspects that were designed
into the environmental model. Run with the 1 second gossip inter-
val, t, used in the original experiments, the Eddy protocol swamps
AgentScape communications. Gossiping protocols are often de-
signed assuming low-cost communication methods, such as UDP
[3], while AgentScape communication is designed to be reliable
and to maximise security. The “AgentScape Congested” trial shows
that messages timing out in Eddy results in an under-estimate of the
system size. Slowing the gossip rate to 10 seconds shows that Eddy
performs roughly equally both in simulation and in the real environ-
ment, indicating that it does not have any inadvertent dependancies
on shared data or the synchronised timing of the simulation envi-
ronment. AgentScape, however, is limited to testing smaller num-
bers of agents than the simulator since each AgentScape agent runs
as one or more threads, nor can it easily be setup to mimic churn.
Run on AgentScape, the deficiencies of the SimpleGossip protocol
seen in Figures 1 and 2 would not be as apparent.

7. DISCUSSION
The design of AgentScope centres on increasing the potential im-

pact of experimental work. The example in Section 5 demonstrates
the following improvements over an ad-hoc platform-specific ap-
proach to experimental design:

• Explicit services: Rather than viewing services as being pro-
vided by the backend platform, services (protocols) are moved
above the experimental interface. This ensures that the full
cost and complexity of an agent algorithm is clearly visible.
It also widens the range of platforms and the range of agent
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Figure 3: Size estimates: 50 agents on AgentScape.

models that can be supported. Finally, it allows AgentScope
to be limited to a small simple interface that is easier to adopt
and integrate with existing work.

• Parity of protocol, scenario, and measurement: By giving
the interfaces for protocol development, experiment develop-
ment and measurement equal weight, the need for reusability
of all three is emphasised. An agent or protocol designer
need not start from scratch, but can use existing services,
scenarios and metrics. This allows researchers to focus on
developing and testing the novel aspect of their ideas.

• Abstraction of platform type: Experiments are not specific
to one type platform. The reusability of code over differ-
ent stages in the development cycle is improved, and direct
comparisons of performance on different platforms can be
made. This has implications for the backends used, each
platform need no longer provide a full solution. Timing is
an important example, rather than requiring that distributed
platforms include the ability to do tests with synchronised
time or to create system snapshots, an approach can be used
where these tests are done on a simpler centralised platform,
and other metrics used to confirm that performance does not
change when an experiment is run in a distributed setting.

8. CONCLUSIONS AND FUTURE WORK
This paper examines a comprehensive, long-term approach to

multi-agent systems development, and in particular the experimen-
tal phases of development. A survey of recent experimental work
observes a scarcity of experimental work in the later stages of de-
velopment, along with a limited level of code reuse. AgentScope,
a small set of interfaces on which platform generic experiments
can be built is presented. The AgentScope interfaces abstract agent
communication, the full setup of experimental scenarios and per-
formance measurement. A demonstration experiment shows how
AgentScope can support rapid development of flexible and reusable
experiments.

AgentScope promotes a view of the multi-agent systems devel-
opment process as a long-term research effort by a community of
researchers, developing ideas from theory to practice. AgentScope’s
design centres around improving researchers’ ability to transfer ideas
between projects, groups, or institutions. The aim is to enable a
comprehensive development process by improving the reusability
of all parts of a experiment. Improvements in reusability support
the creation of libraries of protocols, scenarios and metrics that can
allow researchers to quickly incorporate previous work into their
own experiments. With such changes, experiments become more
easily reproducible, and new algorithms can be directly compared

to old, making improvements and tradeoffs clear. Published li-
braries of scenarios, in which practitioners share their experience
of expected use-cases, can be created, enabling input from industry
experts to be incorporated in academic work.

Future work involves developing libraries of protocols, scenarios
and metrics. Current work in this area focuses on the domain of dis-
tributed energy resource management, a highly multi-disciplinary
field. The aim is to show that sophisticated agent-based experi-
mentation can be made accessible to a broad audience. The Mea-
surement package and Web Interface package for the AgentScope
toolkit are also under development.
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ABSTRACT
We present AgentSpeak(RT), a real-time BDI agent programming
language based on AgentSpeak(L). AgentSpeak(RT) extends AgentS-
peak intentions with deadlines which specify the time by which
the agent should respond to an event, and priorities which spec-
ify the relative importance of responding to a particular event. The
AgentSpeak(RT) interpreter commits to a priority-maximal set of
intentions: a set of intentions which is maximally feasible while
preferring higher priority intentions. We prove some properties of
the language, such as guaranteed reactivity delay of the AgentS-
peak(RT) interpreter and probabilistic guarantees of successful ex-
ecution of intentions by their deadlines.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Languages, Theory

Keywords
Agent programming languages, Belief Desire and Intention logics,
Complexity of reasoning

1. INTRODUCTION
Belief-Desire-Intention (BDI) based agent programming languages

facilitate the development of rational agents specified in terms of
beliefs, goals and plans. They allow an agent to balance deliberat-
ing about which plan to adopt in response to events (changes in its
beliefs or goals) and executing its current intentions. An agent is
rational if it adopts and executes intentions which achieve its goals,
given its current beliefs.

If an agent’s task environment is real-time, the requirements for
rational behaviour are more complex. In a real-time environment,
the events to which the agent must respond are characterized by a
deadline, e.g., the time by which a goal must be achieved or the
agent must respond to a change in its beliefs. In such an environ-
ment, a rational agent should not adopt an intention which it be-
lieves cannot be successfully executed by its deadline or continue
to execute an intention after its deadline. For example, an agent

Cite as: Agent programming with priorities and deadlines, Vikhorev,
Alechina and Logan, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 397-404.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

should not adopt an intention of writing a research proposal which
must be submitted by 4pm on Friday if there is insufficient time to
write the proposal. Similarly, if the agent believes it cannot achieve
every goal or respond to every change in its environment by the
relevant deadline, it should adopt intentions for the highest priority
events which are feasible.

We define a real-time BDI agent as one which is rational in this
sense, i.e., it adopts and schedules intentions so as to respond to
events by their deadlines; if not all events can be processed by their
deadlines, the agent favours intentions responding to high priority
events. For a real-time BDI agent, correctness of the agent’s pro-
gram depends not only on the actions the agent performs but the
time at which it performs them. However programming real-time
BDI agents in most existing BDI languages is hard as they lack the
notion of a deadline or the ability to deliberate about the feasibility
of intentions.

In this paper we present AgentSpeak(RT), a programming lan-
guage for real-time BDI agents in applications such as UAVs, pro-
cess control, trading agents, etc. AgentSpeak(RT) extends AgentS-
peak(L) [9] with deadlines and priorities, and, given the estimated
execution time of plans, schedules intentions so as to achieve a
priority-maximal set of intentions by their deadlines with a spec-
ified level of confidence. Real-time tasks can be freely mixed with
tasks for which no deadline and/or priority has been specified, and
if no deadlines and priorities are specified, the behaviour of the
agent defaults to that of a non real-time BDI agent. We prove a
number of properties of AgentSpeak(RT), including that the reac-
tivity delay of an AgentSpeak(RT) agent is bounded, that it com-
mits to a priority-maximal set of intentions, and that in a static en-
vironment its intentions will complete successfully by their dead-
lines with specified confidence. We also develop a model of the
‘difficulty’ of the agent’s environment, and show how it can be
used to determine the priority of intentions which will complete
successfully by their deadlines with specified confidence. A key
contribution of the paper is the analysis of real-time guarantees for
BDI agents and how these can be achieved within a BDI program-
ming framework. Although our approach to real-time BDI agents
is developed in the context of a particular BDI agent programming
language, we believe it can be applied to other BDI-based agent
programming languages.

The remainder of this paper is organised as follows. In section
2 we present the syntax of AgentSpeak(RT) and briefly describe
the execution cycle of the AgentSpeak(RT) architecture. In section
3 we show that under certain reasonable assumptions, the time re-
quired to execute a single cycle of the AgentSpeak(RT) interpreter
(and hence the reactivity delay of the agent) is bounded. We also
prove that an AgentSpeak(RT) agent commits to a priority-maximal
set of intentions, and that in a static environment its intentions will
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complete successfully by their deadlines with specified confidence.
In section 4 we develop a model of the ‘dynamism’ of the agent’s
environment, and show how it can be used to determine the prior-
ity of intentions which can be reliably scheduled, and to estimate
the probability that a scheduled intention of given priority will be
displaced from the schedule by the arrival of an intention of higher
priority. Finally, in sections 5 and 6 we briefly review related work
and conclude.

2. THE AgentSpeak(RT) ARCHITECTURE
In this section we introduce the AgentSpeak(RT) agent program-

ming language and its associated interpreter.
We assume that an AgentSpeak(RT) agent operates in a real-time

task environment in which events (external goals and changes in
the agent’s beliefs about its environment) may be associated with a
deadline and/or a priority. The agent responds to events by adopting
and executing intentions. A developer can specify a required level
of confidence for the successful execution of intentions in terms of a
probability, α, and the agent schedules its intentions so as to ensure
that the probability that intentions complete by their deadlines is at
least α.1 Setting α = 1 gives hard real-time behaviour, i.e., the
agent will only commit to intentions that are certain to complete
by their deadlines. If not all intentions can be executed with the
required level of confidence, the agent favours intentions triggered
by high priority events.

The syntax and semantics of AgentSpeak(RT) is based on AgentS-
peak(L) [9]. We briefly review the syntax of AgentSpeak(L) and
explain the extensions to support real-time applications. To illus-
trate the syntax of AgentSpeak(RT) we use a simple running ex-
ample of a trading agent which buys commodities in an electronic
marketplace. The agent receives requests from clients to bid on
their behalf, and notifications of goods for sale which the agent
may also bid for on its own behalf. The deadline of an event is the
deadline for the corresponding auction. The priority is determined
by the importance of the client and the type of goods for sale.

The AgentSpeak(RT) architecture consists of five main compo-
nents: a belief base, a set of events, a plan library, an intention
structure, and an interpreter.

2.1 Beliefs and Goals
The agent’s beliefs represent its information about its environ-

ment, e.g., sensory input, information about other agents, etc. Be-
liefs are represented as ground atomic formulas. For example, the
agent may believe that client1 is a client, and that good1 is the type
of good that the agent buys:
client(client1)

buys(good1)

A belief atom or its negation is referred to as a belief literal. A
ground belief atom is called a base belief, and the agent’s belief
base is a conjunction of base beliefs.

A goal is a state the agent wishes to bring about or a query to
be evaluated. An achievement goal, written !g(t1, . . . , tn) where
ti, . . . , tn are terms, specifies that the agent wishes to achieve a
state in which g(t1, . . . , tn) is a true belief. A test goal, writ-
ten ?g(t1, . . . , tn), specifies that the agent wishes to determine if
g(t1, . . . , tn) is a true belief. For example, the goals
!bid(client1, a101, price1)

1For simplicity, we assume that α is the same for all intentions;
however the real time guarantees we prove in sections 3 and 4 still
hold if α is different for different events.

?credit(client1, price1)

indicate that the agent should bid price1 in auction a101 on behalf
of client1, and determine if client1 has sufficient credit to cover
price1.

2.2 Events
Changes in the agent’s beliefs or the acquisition of new achieve-

ment goals give rise to events. An addition event, denoted by +,
indicates the addition of a base belief or an achievement goal. A
deletion event, denoted by −, indicates the retraction of a base
belief.2 We distinguish between internal and external events. An
external event is one originating in the agent’s environment while
internal events result from the execution of the agent’s program. As
in AgentSpeak(L), all belief change events are external, while goal
change events may be external (goals originated by a user or an-
other agent) or internal (subgoals generated by the agent’s program
in response to an external event).

To allow the specification of real-time tasks, external events may
optionally specify a deadline and a priority. A deadline specifies
the time by which a goal should be achieved or the agent should
respond to a change in its beliefs. Deadlines are expressed as real
time values in some appropriate units, e.g, a user may specify a
deadline for a goal as “4pm on Friday”. Deadlines in AgentS-
peak(RT) are hard—it is assumed that there is no value in achiev-
ing a goal or responding to a belief change after the deadline has
passed. A priority specifies the relative importance of achieving
the goal or responding to a belief change. Priorities define a partial
order over events and are expressed as non-negative integer values,
with larger values taken to indicate higher priority. For example,
the events
+!bid(client2, a102, price2)[1010, 15]

+auction(a201, good1)[1060, 10]

indicates the acquisition of a goal to bid price2 on behalf of client2
in auction a102 with deadline 1010 and priority 15, and a new belief
that good1 is being offered in auction a201, with deadline 1060
and priority 10. By default the deadline is equal to infinity and the
priority is equal to zero.

2.3 Plans
Plans specify sequences of actions and subgoals an agent can use

to achieve its goals or respond to changes in its beliefs. The head
of a plan consists of a triggering event which specifies the kind of
event the plan can be used to respond to, and a belief context which
specifies the beliefs that must be true for the plan to be applicable.
The body of a plan specifies a sequence of actions and (sub)goals
to respond to the triggering event.

Actions are the basic operations an agent can perform to change
its environment in order to achieve its goals. Actions are denoted by
action symbols and are written a(t1, . . . , tn) where a is an action
symbol and t1, . . . , tn are the (ground) arguments to the action.
For example, the action
send-bid(a102, price2)

will cause the agent to bid price2 in auction a102. Performing an
action may result in changes in the agent’s beliefs when the action’s
effects on the environment are sensed at subsequent cycles of the
interpreter.

Plans may also contain achievement and test (sub)goals. Achieve-
ment subgoals allow an agent to choose a course of action as part
of a larger plan on the basis of its current beliefs. An achievement
subgoal !g(t1, . . . , tn) gives rise to a internal goal addition event

2In the interests of brevity, we do not consider goal deletion events.
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+!g(t1, . . . , tn) which may in turn trigger subplans at the next ex-
ecution cycle. Test goals are evaluated against the agent’s belief
base, possibly binding variables in the plan. For example, the plan

+!bid(C, A, P,) : client(C) <-
?credit(C, P); send-bid(A, P).

is triggered by a request from agent C to bid price P in auction A. If
C is a client, then the agent will check that the client has sufficient
credit and, if so, make the bid on the client’s behalf.

The BNF for plans is given below:
plan ::= event [ “:” context] “<-” body “.”
event ::= “+” [“!”] atomic-formula |

“-” atomic-formula
context ::= true | literal ( “&” literal )∗

literal ::= atomic-formula | “not” atomic-formula
atomic-formula ::= p(t1, . . . , tn)
body ::= true | step ( “;” step )∗

step ::= a(t1, . . . , tn) | “!” atomic-formula |
“?” atomic-formula

where p and a are respectively predicate and action symbols of
arity n ≥ 0, and t1, . . . , tn are terms. (As in Prolog, constants are
written in lower case and variables in upper case, and all negations
must be ground when evaluated.)

2.4 Execution Time Profiles
In order to determine whether a plan can achieve a goal by a

deadline with a given level of confidence, each action and plan has
an associated execution time profile which specifies the probabil-
ity that the action or plan will terminate successfully as a function
of execution time. We assume that plans can be arbitrarily inter-
leaved, and the estimated execution time of a plan is independent
of any other plans the agent is currently executing. The expected
execution time for an action or plan φ at confidence level α is given
by et(φ, α). We assume that execution times increase monotoni-
cally with α, i.e., in general, to have higher confidence that a plan
will complete successfully, we need to allow more time for the plan
to execute. The shape of the execution time profile will typically
be influenced by the (assumed) characteristics of the environment
in which the agent will operate. For example, the probability of a
plan to move to a location terminating successfully within a given
time may be lower in environments with many obstacles than in
environments with fewer obstacles. Execution time profiles can be
derived from an analysis of the agent’s actions, plans and environ-
ment, or using automated techniques, e.g., stochastic simulation.
In the simple case of plans consisting of a sequence of actions,
the execution time profile for the plan can computed from the ex-
ecution time profiles of its constituent actions. However for plans
which contain subgoals, the execution time profile will depend on
the relative frequency with which the possible plans for a subgoal
are selected in the agent’s task environment.

2.5 Intentions
The intention structure contains plans that have been chosen to

achieve goals or respond to changes in the agent’s beliefs. Plans
triggered by changes in beliefs or the acquisition of an external
(top-level) achievement goal give rise to new intentions. Plans trig-
gered by the processing of an achievement subgoal in an already
intended plan are pushed onto the intention containing the subgoal.
Each intention consists of a stack of partially executed plans, a set
of substitutions for plan variables, and a deadline and priority. The
set of variable substitutions for each plan in an intention results
from matching the belief context of the plan and any test goals it
contains against the agent’s belief base. The deadline and priority

of an intention are determined by the triggering event of the root
plan.

2.6 The AgentSpeak(RT) Interpreter
The interpreter is the main component of the agent. It manip-

ulates the agent’s belief base, events and intention structure, de-
liberates about which plan to select in response to belief and goal
change events, and schedules and executes intentions.

The agent’s state is a tuple 〈B,E, I〉 consisting of a set of base
beliefsB, a set of eventsE, and an (ordered) set of intentions I . We
formalize the execution of the interpreter as a sequence of function
applications which compute the new state of the agent and an exe-
cuted action based on its current state and its inputs at the current
cycle

(〈B′, E′, I ′〉, a) = exec(sched(opt(evt(〈B,E, I〉, P,G))))

where P is a set of percepts, G is a set of external goal addition
events, B′, E′, I ′ are the updated belief, event and intention sets,
and a is an action or null.

The function evt generates a set of events based on the agent’s
percepts P and external goal addition events G. It updates the be-
lief base B with the percepts in P to give an updated belief base
B′ and a set of belief addition and removal events EP , and returns
a new state

〈B′, E1 = E ∪ EP ∪G, I〉 = evt(〈B,E, I〉, P,G)

The second function, opt , takes 〈B′, E1, I〉 as input and returns
a pair consisting of a new state and a set of applicable plans or
options O

(〈B′, ∅, I1〉, O) = opt(〈B′, E1, I〉)
In contrast to AgentSpeak(L) which processes a single event at
each interpreter cycle, to ensure reactivity, AgentSpeak(RT) iter-
ates through E1, and, for each event e ∈ E1, generates a set
of applicable plans Oe. A plan is relevant if its triggering event
can be unified with e and a relevant plan is applicable if its be-
lief context is true in B′. In general, there may be many appli-
cable plans or options for each event. A selection function SO
chooses one of these plans for each event to give a set of options
O = {SO(Oe) | e ∈ E1}. SO is a partial function, i.e., it is not
defined ifOe is empty. If the event was triggered by a subgoal of an
existing intention, failure to find a applicable plan for the subgoal,
i.e., if Oe = ∅, aborts the intention which posted the subgoal and
the intention is removed from I (hence the change from I to I1).

The third function, sched , takes (〈B′, ∅, I1〉, O) as input and
returns a new state

〈B′, ∅, I2〉 = sched(〈B′, ∅, I1〉, O)

For each plan π in O, it either pushes π on top of the existing
intention in I1 that generated the triggering event (if the triggering
event for π was internal), or creates a new intention τ and adds
it to a set IE (if the triggering event for π was external). I2 is
the result of applying the scheduling algorithm (see Algorithm 2
below) to I1∪IE . The scheduling algorithm returns a set of feasible
intentions in deadline order (earliest deadline first).

Finally, exec takes 〈B′, ∅, I2〉 as input and returns a pair consist-
ing of a new state and an executed action

(〈B′, E′, I ′〉, a) = exec(〈B′, ∅, I2〉)
where I ′ is the result of executing the first intention in the sched-
ule I2, E′ contains any internal goal addition event generated by
executing the intention, and a is the action executed (or null if no
action was executed). Executing an intention involves executing
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the first goal or action of the body of the topmost plan in the stack
of partially executed plans which forms the intention. Executing
an achievement goal adds a corresponding internal goal addition
event to E′. Executing a test goal involves finding a unifying sub-
stitution for the goal and the agent’s base beliefs. If a substitution
is found, the test goal is removed from the body of the plan and the
substitution is applied to the plan. If no such substitution exists,
the test goal is not removed and may be retried at the next cycle.
Executing an action results in the invocation of the Java code that
implements the action. If the action completes within its expected
execution time et(a, α), it is removed from the body of the plan.
Actions which time out are not removed and may be retried at the
next cycle.3 The executed action is returned as a. Reaching the
end of a plan (denoted by true below) causes the plan to be popped
from the intention and any substitutions for variables appearing in
the head of the popped plan are applied to the topmost plan in the
intention.

Algorithm 1 AgentSpeak(RT) Interpreter Cycle
E := E ∪G ∪ belief -events(B,P )
B := update-beliefs(B,P )
for all 〈e, τ〉 ∈ E do

Oe := {πθ | θ is an applicable unifier for e and plan π}
πθ := SO(Oe)
if πθ 6= ∅ and τ 6∈ I then

I := I ∪ πθ
else if πθ 6= ∅ and τ ∈ I then

I := (I \ τ) ∪ push(πθσ, τ) where σ is an mgu for πθ and τ
else if πθ = ∅ and τ ∈ I then

I := I \ τ
end if

end for
I := SCHEDULE(I)
if I 6= ∅ then

τ := first(I)
if first(body(top(τ))) = true then

π := pop(τ), π′ := pop(τ)
push((head(π′)← rest(body(π′)))θ, τ)
where θ is an mgu such that head(π)θ = π′θ

else if first(body(top(τ))) = !g(t1, . . . , tn) then
E = {〈+!g(t1, . . . , tn), τ〉}

else if first(body(top(τ))) = ?g(t1, . . . , tn) then
if ?g(t1, . . . , tn)θ is an answer substitution then

π := pop(τ)
push((head(π)← rest(body(π)))θ, τ)

end if
else if first(body(top(τ))) = a(t1, . . . , tn) then

if execute(a(t1, . . . , tn), et(a(t1, . . . , tn), α)) then
π := pop(τ)
push(head(π)← rest(body(π)), τ)

end if
end if

end if

The interpreter code is shown in Algorithm 1. The functions
head and body return the head and body of an intended plan, and
first and rest are used to return the first and all but the first ele-
ments of a sequence. The function top returns the topmost plan in
an intention. The function pop removes and returns the topmost
plan of an intention and the function push takes a plan (and any
substitution) and an intention and pushes the plan onto the top of
the intention. The function execute takes an action and an expected
execution time, and executes the action for at most the expected
execution time. It returns true if the action completes successfully

3Allowing test goals and actions to be retried is not critical, but
means that successful execution of intentions is less dependent on
precise characterization of the execution time profile of actions.

within its expected execution time; otherwise it returns false.
The scheduling algorithm is shown in Algorithm 2. The set of

candidate intentions is processed in descending order of priority.4

A candidate intention is added to the schedule if it can be inserted
into the schedule in deadline order while meeting its own and all
currently scheduled deadlines. A set of intentions τ1, . . . , τn is
feasible if there exists a schedule where each intention is executed
before its deadline. To check whether a schedule exists for a set of
intentions ordered earliest deadline first, it suffices to check that for
every scheduled intention τi

Σj≤i et(τj , α)− ex(τj) ≤ d(τi)

where ex(τj) is the time τj has spent executing up to this point, and
d(τi) is the deadline for τi. That is, the sum of expected remaining
execution time of intentions scheduled earlier than τi including τi
itself is less that the deadline of τi. A set of tasks is feasible iff
they can be scheduled earliest deadline first [7]. Intentions which
are not feasible in the context of the current schedule or which have
exceeded their expected execution time are dropped.5

Algorithm 2 AgentSpeak(RT) Scheduling Algorithm
function SCHEDULE(I)

Γ := ∅
for all τ ∈ I in descending order of priority do

if {τ} ∪ Γ is feasible then
Γ := {τ} ∪ Γ

end if
end for
sort Γ in order of increasing deadline
return Γ

end function

The scheduler returns a set of intentions which is ‘maximally
feasible’ (no more intentions can be added to the schedule if the
scheduled intentions are to remain feasible at the specified con-
fidence level) and moreover, intentions which are dropped are in-
compatible with some scheduled higher priority intention(s). Schedul-
ing in AgentSpeak(RT) is pre-emptive in that the adoption of a new
high-priority intention τi may prevent previously scheduled inten-
tions with priority lower than i (including the currently executing
intention) being added to the new schedule.

Note that if deadlines and priorities are not specified for external
events (and hence d =∞, p = 0 for all intentions), et(φ, α) =∞
for all φ, 0 ≤ α ≤ 1, the behaviour of an AgentSpeak(RT) agent
defaults to that of a non real-time BDI agent.

2.7 Implementation
We have implemented AgentSpeak(RT) in Java, and the current

prototype implementation includes the core language described above
and implementations of some basic actions. Additional user-defined
actions can be added using a Java API. AgentSpeak(RT) supports

4If there are multiple intentions with the same priority and/or dead-
line, we assume they are processed in a fixed order.
5The real time guarantees we prove in section 3 still hold in some
circumstances if intentions that exceed their expected execution
time are not dropped, but it complicates the presentation. The basic
idea is that an intention τ which has exceeded its expected execu-
tion time has its priority reduced to 0. τ will only be scheduled
if, after scheduling all higher priority intentions, there is sufficient
slack in the schedule to execute at least one step in τ before its
deadline. Given sufficient slack in the schedule, τ can therefore
still complete successfully. It will be however dropped if it exceeds
its deadline.
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two mechanisms for defining primitive actions: writing a class which
implements the ExternalAction interface, and direct invoca-
tion of methods in existing Java legacy code.

2.8 Example
In this section we sketch a simple example AgentSpeak(RT) agent

and show how it allows the specification of tasks with priorities and
deadlines.

Consider a trading agent which buys commodities in an elec-
tronic marketplace both on its own behalf and as a broker on behalf
of clients. The market operates as a series of concurrent first-price
sealed-bid auctions of short duration in which sellers offer goods
for sale. Each auction has a deadline by which bids must be re-
ceived. Once the deadline for an auction has passed, the market
determines the highest bid and notifies successful agents of their
purchase and remaining credit level. The trading agent responds
to two kinds of events: requests from clients to make a specified
bid on their behalf in a particular auction, and notifications of new
auctions where the agent may decide to bid on its own behalf. The
deadline of an event is the deadline for bids for the corresponding
auction, and priorities are assigned to events based on the impor-
tance of the client (for client requests) and the type good sold in the
auction (for auction notifications). The agent’s primary role is as a
broker, so the priority of auction notification events is lower than
that of client requests. When the agent receives a request to bid in
an auction, it checks that the requesting agent is a client and that
the client has sufficient credit before making the bid. When it re-
ceives notification of a new auction, the agent may decide to bid on
its own account. Determining what price it should offer depends
on the type of good offered for sale. We require that scheduled
intentions complete by their deadlines with probability α = 0.9.

The agent’s program is shown below.

Beliefs:
client(client1)
client(client2)
credit(client1, price1)
credit(client2, price2)
credit(agent, price3)
buys(good1)
buys(good2)

Plans:
+!bid(C, A, P,) : client(C) <-
?credit(C, P); send-bid(A, P).

+auction(A, G) : buys(G) <-
price(G, P); ?credit(agent, P); send-bid(A, P).

At time 1000 the agent receives the following events.

+!bid(client1, a101, price1)[1100, 20] A request from
client1 to bid price1 in auction a101. The deadline for this event
is 1050 and the client is important so the priority of this event is 20.

+!bid(client2, a102, price2)[1010, 15] A request from
client2 to bid price2 in auction a102 with deadline 1010 and pri-
ority 15.

+auction(a201, good1)[1060, 10] A notification of an auc-
tion a201 offering good1 with deadline 1060 and priority 10.

These events trigger instances of the two plans in the agent’s pro-
gram to give three candidate intentions, τ1 (plan 1 with trigger-
ing event client1), τ2 (plan 1 with triggering event client2) and τ3
(plan3 with triggering event a201). The expected execution time
of τ1 and τ2 (plan 1) at the specified confidence level α = 0.9 is
20. The expected execution time of τ3 (plan 2), which involves

determining what price the agent should bid, is 50. τ2 is not fea-
sible, and is dropped. τ1 and τ3 are feasible and are scheduled in
deadline order: τ3 is scheduled first from 1000–1050, as it has the
earliest deadline, followed by τ1 from 1050–1070. The agent starts
execution of τ3.

Consider a new event arriving at time 1030 while τ3 is still ex-
ecuting (e.g., after the step price(good1, P) has been executed
but not ?credit(agent, P)). The new event is a a request for the
agent to bid in auction a103 for client2: +!bid(client2,a103,
price2). The deadline is 1065 and priority is 15, and the resulting
candidate intention, τ4 has an expected execution time of 20. τ1
and τ4 are inserted into the new schedule in deadline order. How-
ever it is not possible to schedule τ3 by its deadline—its expected
completion time exceeds its deadline by 20. (Note that it doesn’t
matter the order in which τ3 and τ4 are scheduled, they cannot both
be achieved by their deadline.) τ3 is therefore dropped, and the
agent begins to execute τ4.

While the plans and events in this example are extremely sim-
ple, it illustrates how the agent continually updates its scheduled
intentions in response to events to give a priority maximal set of
intentions that can be achieved by their deadlines with confidence
α.

3. REAL-TIME AGENCY
In this section we show that under certain assumptions (which we

believe are reasonable for real-time applications), the time required
to execute a single cycle of the AgentSpeak(RT) interpreter (and
hence the reactivity delay of the agent) is bounded. We also show
that an AgentSpeak(RT) agent commits to a priority-maximal set
of intentions, and that, given a fixed schedule, the probability that
an intention will complete successfully by its deadline is α.

We make the following assumptions about the agent’s program
and task environment:

1. the set of possible beliefs has a fixed maximal size (for exam-
ple, the set of possible beliefs can be restricted to the set of
ground instances of any atomic formula appearing in a belief
context or a test goal for a finite set of constants);

2. the set of possible goals has a fixed maximal size (for ex-
ample, the set of possible goals can be limited to the set
of ground instances of any atomic formula appearing in an
achievement goal for a finite set of constants);

3. the maximal possible interval between the arrival time and
deadline of any event is a constant dmax;

4. the minimal expected execution time for any plan is a con-
stant tmin; and

5. there is a maximal expected execution time, tmax, for any
action in the agent program (i.e., tmax = max(et(a, α)) for
any action a at the specified α)

THEOREM 1. If the sets of possible beliefs and goals, the max-
imal expected action execution time and the maximal distance to
deadline have a fixed maximal size, and the minimal plan execu-
tion time has a fixed minimal size, then the time required to execute
a single cycle of the AgentSpeak(RT) interpreter is bounded by a
constant δc.

PROOF. The time required to compute evt depends on the size
of the sets P and G. If the set of all possible beliefs is limited
to a fixed finite set of ground belief atoms (assumption 1 above),
then the number of possible percepts |P | is bounded by a constant
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(assuming that the agent’s percepts are limited to changes in its
beliefs).

If the set of all possible agent goals is similarly limited (assump-
tion 2), then the number of possible goals |G| is also bounded by
a constant. This means that |E| and |B| are also bounded by a
constant at all stages of the cycle.

The time required to compute opt is bounded if |B| is bounded.
Computing the set of applicable plans for each event involves eval-
uating the belief context of each plan whose trigger matches the
event against the agent’s beliefs. Assuming that returning the set
of plans which match an event is a constant time operation and
matching the belief context of a plan against the agent’s beliefs is
bounded by a polynomial in |B|, if |B| is bounded, then the time
required to compute opt is also bounded by a constant. Computing
sched is bounded by a polynomial (in fact, a quadratic function) in
|I|. In the worst case, when priority varies with deadline and inten-
tions are inserted into the schedule in order of decreasing deadlines,
then the feasibility of each new intention involves checking the fea-
sibility of all currently scheduled intentions. |I| is bounded if the
maximal possible interval between the arrival time and deadline of
any event is a constant dmax (assumption 3), and the minimal ex-
pected execution time for any plan is a constant tmin (assumption
4). Then the maximal possible number of schedulable intentions is
bounded by dmax/tmin. By assumption 5, maximum action exe-
cution time and hence the time to compute exec is bounded by a
constant tmax.

The total cycle execution time is bounded by a constant δc which
is the sum of the bounds on computing each of the functions.

By the reactivity delay of an agent we mean the time the system
takes to recognize and respond to an external event [4] (i.e., the
time from the arrival of the event to the selection of a plan for the
event or deciding not to respond to the event).

THEOREM 2. Given assumptions 1-5, the reactivity delay of an
AgentSpeak(RT) agent is bounded.

PROOF. The maximum reactivity delay is for an event which
arrives just after the evaluation of evt begins, which is guaranteed
to be responded to by the end of the next agent cycle. Since the
agent’s cycle is bounded by δc, the maximum reactivity delay is
hence bounded by 2δc.

Note that the analogous result does not hold for AgentSpeak(L)
[9], even when the set of beliefs and goals are bounded. AgentS-
peak(L) processes a single event per cycle, and the order in which
events are processed is determined by the event selection function
SE . If SE preferentially returns events of a particular type and
events of this type arrive sufficiently frequently, then other events
will never be processed.

We now show that an AgentSpeak(RT) agent commits to a priority-
maximal set of intentions.

DEFINITION 1. Consider a set of intentions I . A set Γ ⊆ I is a
priority-maximal set of intentions (with respect to I) if:

1. Γ is feasible;

2. ∀τ ∈ I such that τ /∈ Γ: {τ} ∪ Γ is infeasible;

3. ∀τ ∈ I such that τ /∈ Γ, either {τ} is infeasible, or ∃Γ′ ⊆
Γ: the minimal priority of an intention in Γ′ is greater or
equal to p(τ), and Γ′ ∪ {τ} is infeasible.

Intuitively, this definition describes a subset of I which is ‘max-
imally feasible’ (no more intentions from I can be added if the

intentions are to remain feasible at the specified confidence level)
and moreover, intentions in I \ Γ are incompatible with some sub-
set of Γ which contains higher priority intention(s). Observe that
if all intentions in I have a unique priority, then there is only one
priority-maximal subset of Γ, containing the maximal number of
highest priority intentions which are jointly feasible.6

THEOREM 3. Given a partially ordered set of intentions I =
{τ1, τ2, . . . , τn}, where p(τi) ≥ p(τj) for i < j, the AgentS-
peak(RT) scheduling algorithm generates a priority-maximal set of
intentions Γ ⊆ I .

PROOF. Note that the AgentSpeak(RT) scheduling algorithm gen-
erates a sequence of sets starting with Γ0 = ∅, and sets Γi to be
Γi−1 ∪ {τi}, τi ∈ I if Γi−1 ∪ {τi} is feasible in deadline order, or
Γi−1 otherwise. The last set Γn is Γ. By construction, Γ is a fea-
sible set of intentions. Γ is also clearly a maximally feasible subset
of I: there is no τ ∈ I such that τ /∈ Γ and Γ ∪ {τ} is feasible.
To prove that it is priority-maximal, let τi ∈ I , {τi} feasible, and
τi /∈ Γ. We need to show that τi is incompatible with some subset
of Γ which contains only intentions of the same or higher priority
than p(τi). Since the intentions are added to Γ in descending or-
der of priority, when τi is considered and found incompatible with
Γi−1, p(τi) ≤ min({p(τ ′) : τ ′ ∈ Γi−1}).

THEOREM 4. The probability that an intention τ will execute
successfully in a static environment is equal to α.

PROOF. Immediate, from the fact that the execution time pro-
files of plans give us the estimate of duration of the task with the
probability α.

4. DYNAMIC ENVIRONMENTS
The guarantees in the previous section are for a static environ-

ment and schedule. They do not consider cases where a new in-
tention generated by the arrival of an event cannot be scheduled,
or a scheduled intention is dropped as a result of the arrival of a
higher priority task. In this section we develop a simple model of
task arrival which can be used to characterise the ‘difficulty’ of an
agent’s task environment. We show how this model can be used
to determine the priority of intentions which can be reliably sched-
uled in an environment of specified difficulty, and to estimate the
probability that an intention of given priority will not be displaced
from the schedule by the arrival of an intention of higher priority.

We characterise the agent’s task environment in terms of the av-
erage arrival rate and time available for the execution of intentions
of a given priority. Let ri be the average triggering rate of inten-
tions of priority i (expressed as the number of triggering events /
unit time), and ai the average time available for their execution,
i.e., the difference between the intention’s deadline and the time
at which it was triggered. For example, if each external achieve-
ment goal has a distinct priority level, ri and ai correspond to the
arrival rate and average time to achieve a particular type of goal.
We assume that ai ≥ ti where ti is the average execution time of
intentions of priority i at the specified confidence level α, i.e., that
deadlines advance with the time at which intentions are triggered
6In general, a priority-maximal set of intentions is not guaranteed
to contain the largest number of high priority intentions. For exam-
ple, if S = {τ1, τ2, τ3, τ4}, where p(τ1) = p(τ2) = p(τ3) = 2,
p(τ4) = 1, and it is possible to schedule either τ1 and τ4 to-
gether, or τ2 and τ3 together, both sets {τ1, τ4} and {τ2, τ3}will be
priority-maximal sets (but, for example, {τ1} will not be). Com-
puting the set containing the largest number of highest priority in-
tentions is a hard combinatorial problem, which can not be solved
by a real-time scheduler.
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such that intentions are always individually feasible on average. ti
can be computed from the execution time profiles of the plans in
the agent’s plan library for the task environment. The larger ri and
the smaller the difference between ai and ti, the more difficult the
agent’s environment. The larger the value of ri the greater the num-
ber of intentions the agent must execute in a given period of time;
the smaller the value of ai − ti the less time there is to accom-
modate intentions of priority less than i. In general, the probability
that an intention of priority j will be unschedulable is an increasing
function of ri and decreases with ai − ti for all i > j.

In the worst case, when the schedule is full and intentions com-
plete their execution just before their deadlines, the long term av-
erage number of intentions of priority i in the agent’s schedule
is given by λi = riai. The amount of uncommitted or ‘slack’
time unused by intentions of priority i in such a schedule is si =
λi(ai − ti). We assume that si ≥ 0 for all i given an otherwise
empty schedule, i.e., that the average arrival rate and time available
for execution of intentions of each priority level are feasible for the
agent. For intentions of priority i− 1 to be reliably scheduled, the
total time required for their execution, λi−1 ti−1, must be less than
si. If the maximum priority of any intention is m, then the time
available to schedule intentions of priority j is

sj+1 = λm(am − tm)−
mX

i=j+1

λiti

Hence intentions of priority j < m are typically unschedulable if
sj+1 � λjtj . For given values of ri, ai and ti, we can there-
fore determine the priorities of intentions which can be typically
scheduled.

For a new intention of priority j to be schedulable, there must
be at least tj slack in the schedule at level j, i.e., sj ≥ tj . The
amount of slack at priority level j in the schedule depends on the
number of intentions in the schedule at priority levels j, . . . ,m.
(A new intention of priority j can displace already scheduled in-
tentions with priority < j but not already scheduled intentions of
priority j or higher.) Any currently scheduled intentions of priority
i, j ≤ i ≤ m, must have arrived in the last ai time units, i.e., be-
tween−ai and now. The number of intentions of each priority level
j, . . . ,m arriving between times −aj , . . . ,−am and now can be
represented as a vector 〈fj , . . . , fm〉 where fi for i ∈ {j, . . . ,m}
is the number of intentions of priority i which arrive within the last
−ai. Thus, for an intention of priority j to be schedulable, the
following must hold:

tj ≤ fm(am − tm)−
mX
i=j

fiti

Let the set of vectors satisfying this condition be

F = {〈fj , . . . , fm〉 : fm(am − tm)−
mX
i=j

fiti ≥ tj}

The probability that an intention of priority j is schedulable, Fj , is
then the probability that at most the number of intentions of each
priority level specified by one such sequence of arrivals occurs. If
the arrival of triggering events is a Poisson process, the probability
that at most fi intentions are added to the schedule in time ai is
given by

F (fi) =

fiX
x=0

e−λiλxi
x!

That is, the probability that exactly 0 or 1 or 2 or . . . or fi intentions
are added to the schedule in an interval of length ai. The probability

that at most the number of intentions of each priority level specified
by one such sequence occurs is then

Fj = 1−
Y

〈fj ,...,fm〉∈F
(1− F (fj)× . . .× F (fm))

We can also determine the probability that a scheduled inten-
tion of priority j is displaced from the schedule by the arrival of
a higher priority intention. If the uncommitted time at priority m,
sm, is sufficient to schedule the expected number of intentions of
priority m − 1, then for an intention of priority m − 1 to be dis-
placed from the schedule, um = dsm−1/tme intentions must be
added to the schedule during time am−1. The expected number of
prioritym intentions arriving in time am−1 is λm = rmam−1. The
probability that at least um intentions are added to the schedule in
time am−1 is given by

U(um) = 1− F (um−1)

That is, 1− the probability that exactly 0 or 1 or 2 or . . . or um−1

events arrive in an interval of length am−1.
In general, for a scheduled intention of priority j < m to be

displaced, sufficient intentions of priority > j, with total execution
time> sj , must arrive within a time interval aj . A set of intentions
with priorities j+1, j+2 . . . ,m sufficient to displace an intention
of priority j can be represented as a vector 〈uj+1, . . . , um〉 where
ui ∈ {j+1, . . . ,m} is the number of intentions of priority iwhich
arrive within aj . To displace an intention of priority j such vectors
must satisfy a number of conditions. First, the number of intentions
of each priority must be feasible given sj . Second, the combined
execution time of all intentions in the set must be greater than sj .
Third, that the combined execution time of the intentions should
exceed sj by at most the least execution time of any intention in
the set. Let the set of vectors satisfying the conditions be

U = {〈uj+1, . . . , um〉 : 0 ≤ ui ≤ sj/ti,P
uiti > sj ,P
uiti − min(ti)

i∈{j+1,...,m}
≤ sj}

That is, the set of all possible sequences of intentions of priority
> j which have combined execution time “just greater” than sj .
The probability that an intention of priority j is displaced, Uj , is
then the probability that at least the number of intentions of each
priority level specified by one such sequence occurs

Uj = 1−
Y

〈uj+1,...,um〉∈U
1− (U(uj+1)× . . .× U(um))

where U(ui) = 1−Pui−1
x=0

e−λiλxi
x!

as above.
The probability that an AgentSpeak(RT) agent will execute an

intention of priority j to completion is then

Ej = Fj × (1− Uj)× α
For given values of ri, ai and ti, we can therefore determine the
probability that an intention of given priority will not be scheduled,
or will be displaced from the schedule by a higher priority inten-
tion before it can complete successfully. For example, given the
rate at which requests to bid arrive and the time it takes to execute
the agent’s plan to process bids, we can determine the probability
that an intention to bid will be executed. For different applications
and priority levels, different probabilities of execution may be ap-
propriate. If, for the intended application, Ej is deemed to be too
low, the agent developer must either reduce the average triggering
rate of intentions of priority > j or increase ai − ti for i ≥ j, e.g.,
by reducing the execution time of the agent’s plans.
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5. RELATED WORK
A number of agent architectures and platforms have been pro-

posed for the development of agents which must operate in highly
dynamic environments. For example, the Procedural Reasoning
System (PRS) [5] and PRS-like systems, e.g., JAM [6] and SPARK
[8], have features such as metalevel reasoning which facilitate the
development of agents for real time environments. However, to
guarantee real time behaviour, these systems have to be programmed
for each particular task environment—there are no general methods
or tools which allow the agent developer to specify that a particular
goal should be achieved by a specified time or that an action should
be performed within a particular interval of an event occurring. In
contrast, AgentSpeak(RT) provides a high-level programmatic in-
terface to a standardised real-time reasoning mechanism for tasks
with different priorities and deadlines.

Perhaps the work most similar to that described here are archi-
tectures such as the Soft Real-Time Agent Architecture [12] and
AgentSpeak(XL) [1]. These architectures use the TÆMS (Task
Analysis, Environment Modelling, and Simulation) framework [3]
together with Design-To-Criteria scheduling [13] to schedule inten-
tions. TÆMS provides a high-level framework for specifying the
expected quality, cost and duration of of methods (actions) and re-
lationships between tasks (plans). Like AgentSpeak(RT), methods
and tasks can have deadlines, and TÆMS assumes the availabil-
ity of probability distributions over expected execution times (and
quality and costs). DTC decides which tasks to perform, how to
perform them, and the order in which they should be performed,
so as to satisfy hard constraints (e.g., deadlines) and maximise
the agent’s objective function. In comparison to AgentSpeak(RT),
TÆMS allows the specification of more complex interactions be-
tween tasks, and DTC can produce schedules which allow inter-
leaved or parallel execution of tasks. However the view of ‘real-
time’ used in these systems is different from that taken by AgentS-
peak(RT). Deadlines are not hard (tasks still have value after their
deadline) and no attempt is made to offer probabilistic guarantees
regarding the successful execution of tasks. In addition, although
DTC can be used in an ‘anytime’ fashion, neither SRTA or AgentS-
peak(XL) execute in bounded time. In [11] we described ARTS,
a version of PRS which allows the specification of deadlines and
priorities, but which does not provide real-time guarantees for the
execution of intentions.

6. CONCLUSIONS
The AgentSpeak(RT) architecture provides a flexible framework

for the development of real-time BDI agents. An AgentSpeak(RT)
agent will achieve a priority-maximal set of intentions by their
deadlines with specified confidence. If not all intentions can be
achieved by their deadlines, the agent prefers intentions with greater
priority. By varying the confidence level, the developer can con-
trol the degree of ‘optimism’ the agent adopts when determining
the time required to complete a task in a given environment. In
task environments requiring a higher level of confidence, the agent
will typically allow more time to complete tasks (and so schedule
fewer tasks). As tasks are scheduled in priority order, increasing
the level of confidence also has the effect of causing the agent to
focus more on high priority tasks at the expense of lower priority
tasks which might be achievable given a more optimistic view of
execution time. Real-time tasks can be freely mixed with tasks for
which no deadline and/or priority is specified. Tasks without dead-
lines will be processed after any task with a specified deadline. If
no deadlines or priorities are specified, the behaviour of the agent
defaults to that of a non real-time BDI agent. Although the ap-

proach to real-time BDI agents we have presented here has been
developed in the context of a particular BDI agent programming
language, we believe it can be applied to other BDI-based agent
programming languages.

AgentSpeak(RT) adopts a single-threaded execution model. While
this is appropriate for the majority of real-time applications where
the execution times of intentions are relatively short, there are situ-
ations where it would be advantageous to be able to execute long-
running actions and plans in parallel with other intentions. In future
work we plan to extend the AgentSpeak(RT) architecture to allow
the parallel execution of intentions as in [2, 10] and investigate al-
ternative approaches to handling plan failure.
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ABSTRACT
Goals are central to the design and implementation of intelligent
software agents. Much of the literature on goals and reasoning
about goals in agent programming frameworks only deals witha
limited set of goal types, typically achievement goals, andsome-
times maintenance goals. In this paper we extend a previously
proposed unifying framework for goals with additional richer goal
types that are explicitly represented as Linear Temporal Logic (LTL)
formulae. We show that these goal types can be modelled as a com-
bination of achieve and maintain goals. This is done by providing
an operationalization of these new goal types, and showing that
the operationalization generates computation traces thatsatisfy the
temporal formula.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; I.2.5 [Artificial In-
telligence]: Programming Languages and Software; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Constructs; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Theory, Languages

Keywords
Agent Programming, Goals, Formal Semantics

1. INTRODUCTION
A widely-accepted approach to designing and programming agents

is thecognitiveapproach, where agents are modeled in terms of
mental concepts such as beliefs, goals, plans and intentions. Of the
various concepts that have been used for cognitive agents, akey
concept isgoals. This is because agents are (by common defini-
tion) proactive, and goals are what allow agents to be proactive.
It is also noteworthy that (the existence of explicitly represented)
goals is one of the clearer differences between (proactive) agents
and active objects. Goals have been extensively studied in artificial
intelligence and multi-agent systems (e.g. [2, 13,16,21]).

Earlier work focused mostly on achievement goals, which rep-
resent a desired state that the agent wants to reach. However, in-
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creasingly othergoal typesare being studied such as maintenance
goals, which represent a state the agent wants to maintain, and
perform goals, which represent the goal to execute certain actions
(e.g., [4, 7, 8, 11]). However, only considering a small number of
goal types can be limiting, since in practical applicationsthere may
be goals that cannot be captured well by achievement or mainte-
nance or perform goals.

To make this discussion more concrete, consider a personal as-
sistant agent that manages a user’s calendar and tasks. One goal
the agent may have is booking a meeting. This would typicallybe
modelled as an achievement goal that aims to bring about a state
where all required participants have the meeting in their calendar.
However, in practice, diaries change, and we want to ensure that
the meeting remains in participants’ diaries, and that should a key
participant become unable to attend, a new time will be negoti-
ated. This is not captured by an achievement goal. Rather, itis
better modelled by a combined “achieve then maintain” goal which
achieves a certain condition, and then maintains it over a certain
time period. Another task that we might want the agent to under-
take is to ensure that booking travel is not done until the budget is
approved. Note that budget approval may be under the control(or
perhaps just influence) of the agent, i.e. the agent may have plans
for attempting to have the budget approved. Alternatively,it may
be completely outside the agent’s control, in which case theagent
can just wait for it to happen and then enable the travel booking
process.

A number of papers have taken this line of research a step fur-
ther by taking arbitrary Linear Temporal Logic (LTL) formulae as
goals [1, 2, 12, 13, 16], rather than considering specific goal types.
The advantage of this approach is that it does not restrict the goal
types that can be used. However, a possible disadvantage is that it
requires extensive alterations of a more basic agent programming
framework, the practical implications of which are not yet clear.

Temporal logic is also used by MetateM [10], but it is used
directly for agent execution, whereas we use temporal logicas a
design framework for specifying goaltypeswhich are mapped to
existing implementations of achieve and maintenance goals. Addi-
tionally, MetateM requires a particular format for its rules: all rules
are in one of the three forms:start → ϕ, or ψ → ϕ or ψ → φ
whereϕ is a disjunction of literals,ψ is a conjunction of literals,
andφ is a positive literal.

In this paper, we propose an approach that is somewhere in be-
tween those focusing on a limited set of goal types and those in
which arbitrary LTL formulae can be taken as goals. We propose
an approach in which goals that are represented by relatively com-
plex LTL formulae are operationalized bytranslating these LTL
formulae to more basic achieve and maintain goals. The advantage
of this approach is that the goal types can be integrated in existing
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agent programming frameworks that already have an operational-
ization of achieve and maintain goals. We illustrate the approach
by showing how a number of LTL formulae can be translated to
achieve and maintain goals.

This paper builds on previous work [19] which presented a uni-
fying framework for goals based on viewing goals as LTL formulae
that described desired progressions. This previous work captured
existing basic goal types, whereas we propose a framework that
allows the use of richer goal types. Section 2 provides a brief de-
scription of the unifying framework on which we build. Section 3
presents the new goal types which are formalized and realised in
sections 4 and 5. Finally, in Section 6 we conclude the paper and
discuss some future directions.

2. A UNIFYING FRAMEWORK FOR GOAL
TYPES

This paper builds on the framework of van Riemsdijket al. [19]
in which a goal type is informally considered as a property char-
acterising a set of computation traces. The framework is explained
in terms of an abstract architecture for operationalizing goals such
as achieve and maintain goals. In particular, the operationalized
architecture aims to capture essential aspects of goals in agent pro-
gramming frameworks in terms of properties of computation traces,
abstracting from particular goal types.

The framework models goals as follows. The state includes state-
related propositions, which capture the state of the world,as well
as propositions of the formdonei (a) which capture the performance
of actions. This approach takes an abstract view of a goal type as
a particular pattern, or structure, of a formula in Linear Temporal
Logic (LTL). A given LTL formula corresponds to a set of traces
which make it true, and is viewed as a goal in that it allows a given
system trace to be classified as satisfying the goal or not.

van Riemsdijket al.[19] defined four commonly-used goal types:
achievement goal, (reactive) maintenance goal1, perform goal, and
query goal. These goals are classified into a taxonomy (below), and
an operationalization is provided for them within a single frame-
work, using a simple execution cycle which was extended withad-
ditional rules of the form〈condition,action〉 where actions could
be to Suspend, Activate or Drop a goal.

Goal

State-based
(declarative)

Action-based
(procedural)

single-state multiple-state perform

query achieve maintain
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��	
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A key feature of this approach is that it balances flexibilitywith
being structured enough to ensure desired properties of goals, and
hence for it to make sense for the resulting constructs to be called
“goals”. A range of desired properties of goals have been identified
in the literature. Winikoff et al. [21, Section 2] survey existing lit-
erature and, based on this, identify the following desired properties
of goals:

1. Persistent: goals should only be dropped for a good reason.
1Maintenance goals are defined as beingproactivewhere violation
of desired state is anticipated and avoided, orreactive, where the
desired state is “recovered” once it is violated [8].

2. Unachieved: goals should not already hold; alternatively,
they are dropped when they are achieved.

3. Possible: goals should be dropped when they are impossible
to achieve.

4. Known: the agent should be aware of its goals. In implemen-
tation terms, this implies a measure of reflectiveness.

5. Consistent: goals should not be in conflict with other adopted
goals.

A number of additional properties are identified by [4]. Someof
these (Producible/Terminable and Suspendable) simply correspond
to the existence of a goal life-cycle. The others (Variable Duration
and Action Decoupled) relate to the notion of long term goalsthat
they argue for.

One advantage of the proposed goals framework is that the prop-
erties representing a specific goal type can be dealt with in ageneral
and systematic way. Suppose we have a goalφ of a certain type.
The framework mapsφ to a goal constructg(R, . . .) whereR is a
collection of rules (derived fromφ) that govern transitions between
goal states. We can then show that the goal’s realization meets the
properties of being persistent, unachieved, and possible,by requir-
ing that the operationalization ofg(R, . . .) results in the goal being
dropped exactly whenφ becomes known to be true, or known to
be impossible. For example, consider the goal to achievep. This
is mapped [19, Section 3.3.1] tog(R, . . .) whereR consists of two
rules: one to activate the goal when it is adopted, and one to drop
the goal whens∨ f becomes true, wheres is the “success con-
dition”, i.e. when the goal is succeeded, heres = p; and f is a
description of a condition under which the goal becomes impos-
sible to achieve. Heref depends on properties ofp, but may be
simply false, if it always remains possible to achievep. Then it is
straightforward to show that, under the operational semantics for
goals defined by [19], the goalg(R, . . .) is dropped exactly whenp
becomes known to be true, or known to be impossible (properties
1–3, above). The property of being known (property 4) is achieved
by having an explicit goal base which allows the agent to reflect on
which goals it has. Consistency (property 5) concerns interactions
between goals, and is beyond the scope of this paper.

3. NEW GOAL TYPES
In this paper, goals are represented explicitly as specific formu-

lae in Linear Temporal Logic (LTL) [9]. While [19] defined the
notion of goal as representing preferred progressions, andinfor-
mally referred to LTL to explain this, the operationalization itself
did not use LTL explicitly in the representation of goals. The LTL
formulae that we use to represent goals are defined by the following
grammar. In addition to basic propositions (p), and standard propo-
sitional connectives, it has the temporal connectives (“eventu-
ally”),  (“always”), andU (“until”). We use standard abbrevia-
tions such as⊤ ≡ p ∨ ¬p andφ1 ∨ φ2 ≡ ¬((¬φ1) ∧ (¬φ2)). Note
that we do not use the next () connective because the goals we
consider in this paper does not use this operator.

φ ::= p | ¬φ | φ1 ∧ φ2 |φ | φ | φ1 U φ2

The semantics are the usual ones (given below). They are defined
over a modelM which is an infinite sequence of states, where each
state is a set of propositions that hold in that state. A formula φ
is true with respect to a modelM and an indexi, indicating the
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current state. We useMi to denote theith state inM.

M, i |= p iff p ∈ Mi

M, i |= ¬φ iff M, i 6|= φ
M, i |= φ1 ∧ φ2 iff M, i |= φ1 andM, i |= φ2

M, i |=φ iff ∃k ≥ i :M, k |= φ
M, i |= φ iff ∀k ≥ i :M, k |= φ

M, i |= φ1 U φ2 iff ∃k ≥ i :M, k |= φ2 and

∀ j such thati ≤ j < k :M, j |= φ1

We now extend the taxonomy of [19] with additional goal types,
including those discussed in the introduction. Specifically, the per-
sonal assistant agent example introduced new goal types. The first,
booking a meeting and then maintaining participant availability,
can be formalised as follows. Letpabe short forparticipantsAvailable,
msbe short formeetingScheduled, andmobe short formeetingOccurs,
then we represent the goal of booking a meeting as the following
LTL formula:

(ms∧ (paU mo))

Considering the second goal, not booking travel until the budget
has been approved, this can be formalised as2:

(¬bookTravel) U budgetApproved

Abstracting from the specific goal instances to general goaltypes,
we have defined goal types of the form(φ1 ∧ (φ2 U τ)) (achieve
φ1 and then maintainφ2 until τ), andφU τ (maintainφ until τ). We
now generalise these goal types by considering a range of ways in
which a (non-temporal) propertyφ can be required to hold over a
number of states.

Consider a multiple-state goal where a (non-temporal) property
φ is required to hold over a number of states in the trace. The
taxonomy in the previous section (from [19]) only supports asingle
multiple-state goal. However, there are a number of ways in which
a goal pattern can apply to a sequence of states. It can apply:

1. to all states:φ;

2. at the start of the trace:φU τ, whereτ is a formula that de-
scribes the state at whichφ is no longer required to be true;

3. at the end of the trace:(τ∧φ), whereτ is a “trigger” for-
mula that describes the state at whichφ begins to be required
to be true; or

4. in the middle of the trace:(τ ∧ (φU τ′)), whereτ is the
starting trigger andτ′ the ending trigger; or

5. it can apply to a number of sub-sequences of states:(τ →
(φU τ′)), whereτ is a trigger that describes a state at which
φ begins to be required to hold, andτ′ describes the states at
whichφ is no longer required to hold.

These cases for multiple-state goal types are summarised inFig-
ure 1. Note that in all cases we require thatφ hold at all states
within the specified region.

Considering the personal assistant example, the first goal(ms∧
(paU mo)) corresponds to the fourth case above and the second
goal corresponds to the second case above. Note that we could
also consider a goal where¬bookTravelmust hold on different se-
quences of states, e.g. that once there is no more money in thebud-
get (nmm) then travel cannot be booked until a (new) budget is ap-
proved, formally:(nmm→ (¬bookTravelU budgetApproved)).

2This goal would be expected to be used in conjunction with a goal
to book travel,bookTravel.

<DDDφDDD> φ<D φDD>τMMM φU τMMMτ<D φDD> (τ ∧φ)MMτ<DφD>τ′MM (τ ∧ (φU τ′))Mτ<Dφ >τ′Mτ<Dφ >τ′M (τ→ (φU τ′))

Figure 1: Multiple-state goal types

We thus define the possible LTL patterns that we allow as multiple-
state goal types as follows, whereφ and τ are propositional (i.e.
non-temporal). Instead of only supporting a single type of multiple-
state goal, as in previous work, we support the following, which
correspond with the cases in Figure 1:

Gm ::= φ | φU τ |(τ ∧φ) |(τ ∧ (φU τ′) | (τ→ (φU τ′))

We also allow the single-state goal typeφ. We would like to
emphasize that the proposed temporal goal types are by no means
exhaustive and that other LTL patterns can be identified to repre-
sent other multiple-state goal types as well. Our claim is that the
proposed goal types are intuitive in that the correspondingLTL pat-
terns represents desirable execution traces as illustrated by the ex-
amples, and that they can be operationalized by means of achieve
and maintain goals. We also would like to note that other goal
types (e.g., those mentioned in Figure 1) can be representedin our
framework as well. For example, the query goal can be represented
as (Bp)∨ (B¬p) (whereBpdenotes that agent believesp in the cur-
rent state), the achieve goal asp, the maintenance goal asp,
and the perform goal asdone(a), wheredone(a) denote the fact that
actiona is performed.

4. REALISING THE NEW GOAL TYPES
The most characterising feature of our programming approach

is to represent goals explicitly as temporal formulae and tooper-
ationalize these formulae in terms of achieve and maintain goals.
The advantage of this approach is that achieve and maintain goal
types have already well-defined operational semantics in some of
the existing agent programming frameworks (e.g., 2APL [6],Ja-
dex [15], and JACK [5]) such that our goal types can be used to
extend these frameworks.

In order to realise the new goal types in an operational setting,
we assume that an agent configuration comprises a belief base, con-
sisting of propositional atoms, and two goal bases. The firstgoal
base, called thetemporal goal base, contains goals specified by
temporal LTL formulae. The second goal base, called thebasic
goal base, consists of achieve goals of the formA(φ) (read as:φ
should be achieved) and maintain goals of the formM(φ, τ) (read
as:φ should be maintained untilτ), whereφ andτ are propositional
formulae. The maintain goalM(φ,⊥) represents thatφ should be
maintained indefinitely.

The operationalization of temporal goal types can then be de-
fined in terms of operations on temporal and basic goal bases.In
this paper, we assume that the achieve and maintain goals have a
correct operationalization. In particular, for the achieve goal we
assume that ifA(φ) is in the basic goal base, then the agent belief
base will eventually entailφ, and for the maintain goals we assume
that if M(φ, τ) is in the basic goal base, then the agent belief base
entailsφ until τ is entailed by the belief base. The latter assump-
tion thus ensures that there is no need for reachievingφ (typically
referred to as reactive maintain goal), since we assume it does not
become false once the basic maintain goal has been adopted. The
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Figure 2: Temporal (top) and basic (bottom) goal life cycles

basic maintain goal is thus interpreted as proactive avoiding the vi-
olation of desired states. Clearly, our assumption for the achieve
goal is realistic as many agent programming languages such as
2APL [6] provide already programming constructs to implement
achieve goals with the correct interpretation. Also, our assumption
for the maintain goal is realistic as there exist operationalization
proposals for the maintain goals [11] that perform lookahead steps
to avoid generating execution paths where the goal is violated.

For the purposes of this paper we want to show that our frame-
work realises temporal goals correctly if we have correct opera-
tionalization of achieve and maintain goals. The idea is that the
temporal goalφ can be operationalised by adding the achieve
goalA(φ) to the basic goal base. Similarly, the temporal goalφU τ
can be operationalised by adding the maintain goalM(φ, τ) to the
basic goal base. More complex temporal goals can be operational-
ized by adding both achieve and maintain goals to the basic goal
base, as will be shown in the sequel.

In our framework, goals have a life cycle as illustrated in Fig-
ure 2. Both temporal (top) and basic (bottom) goals begin in an
initial state (I), and can then be either in active (A) or suspended
(S) states. For the reasons explained in the next section, a temporal
goal can be adopted entering in a suspended state and a basic goal
(either an achieve or a maintain goal) can be adopted entering in the
active state. A temporal goal in a suspended state can be activated
after which it can be either suspended again or dropped. A basic
goal in an active state can be either suspended or dropped.

While temporal goals are assumed to be given by an agent pro-
gram (specified by an agent programmer), the basic (achieve and
maintain) goals are adopted as a consequence of processing tem-
poral goals. In our framework, a temporal goal is dropped if it
can be satisfied by adopting an achieve or a maintain goal. A tem-
poral goal is suspended if it can bepartially satisfied by adopting
an achieve or a maintain goal. For this reason, the actionsDrop(X)
andS uspend(X) drop and suspend the corresponding temporal goals
and, at the same time, add the basic goalX to the basic goal base.
This notation should not be confused and read as parameterised
drop and suspend actions. Finally, the actionsDrop(∅) andS us-
pend(∅) remove a temporal goal from temporal goal base and leave
the basic goal base unchanged.

4.1 Life Cycle for Temporal Goals
In order to specify the state transitions of temporal goals,a set

of condition-action pairs is assigned to each temporal goal. The
condition of such a pair is a test on an agent’s belief base andthe
action is to change the goal’s state. The condition-action pairs can
be either generic or domain related. A generic condition-action
pair specifies a transition for all instances of a goal type while a
domain related condition-action pair specifies a transition for a spe-
cific instance of a goal type depending on the application at hand.

φ δg(φ)

φ {〈φ,Drop(∅)〉 , 〈¬φ,Drop(A(φ))〉}
φ {〈φ,Drop(M(φ,⊥))〉 , 〈¬φ,S uspend(A(φ))〉,

〈φ, Activate〉}
φU τ {〈φ,Drop(M(φ, τ))〉 , 〈¬φ,S uspend(A(φ))〉,

〈φ, Activate〉}
(τ ∧φ) {〈φ ∧ τ,Drop(M(φ,⊥))〉 ,

〈¬(φ ∧ τ),S uspend(A(φ ∧ τ))〉,
〈φ ∧ τ,Activate〉}

(τ ∧ (φU τ′)) {〈φ ∧ τ,Drop(M(φ, τ′))〉 ,
〈¬(φ ∧ τ),S uspend(A(φ ∧ τ))〉,
〈φ ∧ τ,Activate〉}

(τ→ (φU τ′)) {〈τ ∧ φ,S uspend(M(φ, τ′))〉 ,
〈τ ∧ φ,Activate〉}

Figure 3: Generic Condition-Action Pairs for Temporal Goals

The domain related condition-action pairs can be used for various
purposes, e.g., to activate temporal goals in domain specific situa-
tions in which the goals are likely to be realised (in addition to the
generic ones) or to suspend them in situations in which the goals
are not likely to be realised (in addition to the generic ones). These
domain related condition-action pairs should be designed carefully
since otherwise they may cause undesirable behavior. We assume
domain related condition-action pairs are assigned to eachtempo-
ral goal by the agent programmer in order to influence the lifecycle
of temporal goal based on domain dependent knowledge. We use
δg(φ) to refer to the set of generic condition-action pairs of temporal
goalφ as specified in Figure 3.

It is important to note that these condition-action pairs are only
applicable when goals are in specific states, e.g., goals canonly
be dropped when they are active and activated when they are sus-
pended. The suspension condition-action pairs can not onlyfire in
the active state, but also when a goal is adopted (which movesthe
goal into the suspended state). The applicability of condition-action
pairs are formally specified by the transition rules in Section 5.1.

The first temporal goal type is characterised asφ, whereφ is
a non-temporal formula. The first generic condition-actionpair as-
signed to this goal indicates that whenφ is entailed by the agent’s
beliefs in its current state, then the goalφ can be dropped and no
basic goal is added to the basic goal base. In this case, the tempo-
ral goal is already believed to be satisfied. The second condition-
action pair indicates that ifφ is not entailed by the agent’s beliefs in
its current state, then the goalφ can be dropped, but simultane-
ously the agent adopts the achieve goalA(φ) by adding it to its basic
goal base. Our assumption that the achieve goal is operationalized
correctly ensures that the temporal goalφ will be satisfied by the
agent execution. As we will see later on, these drop actions only
take place if the temporal goal is in its active state. It should be no-
ticed that there is no condition-action pair to activate this temporal
goal. We assume such a condition-action pair is added as a do-
main related pair by the programmer. An example of such a pairis
〈⊤, Activate〉, which is a strong activation condition as it indicates
that the temporal goal should always be activated.

The second temporal goal is characterised byφ, whereφ is
a non-temporal formula. The first condition-action pair drops the
temporal goal and adopts the maintain goal, adding it at the same
time to the basic goal base. Again, our assumption of correctoper-
ationalisation of maintain goals ensures that the temporalgoal will
be satisfied, which is why we can drop the temporal when adopting
the basic maintain goal. That is, there is no need to suspend and
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reactivate this temporal goal shouldφ no longer be believed, since
the latter is assumed not to occur once the basic maintain goal is
adopted. Note that a maintain goalM(φ,⊥) is adopted in a state
that satisfies the maintain conditionφ. The second condition-action
pair indicates that the temporal goalφ should be suspended ifφ
is not entailed by the current agent’s beliefs, while adopting the
achieve goalA(φ) to pursue a state from which the maintain goal
can be maintained. This can occur only when adopting this tempo-
ral goal whileφ does not hold. Since this temporal goal is dropped
after activation, it cannot be suspended again from the active state.
The third pair ensures that the temporal goal is activated again upon
achievement ofφ.

The operationalisation of the third temporal goal type is very
much similar to the second one sinceφ is equivalent toφU⊥,
i.e., the only difference is thatφ should be maintained untilτ holds,
and thus not indefinitely as was the case withφ.

The fourth temporal goal type is characterised by(τ ∧ φ).
The first condition-action pair ensures thatφ is maintained indefi-
nitely if the agent’s current beliefs entailsφ ∧ τ. However, if either
φ or τ do not hold, then the temporal goal is suspended and the
achieve goalA(φ ∧ τ) is added to the basic goal base. This ensures
that the agent will pursue the condition before maintainingφ indef-
initely. The third pair ensures that the goal is activated again once
the conditionφ ∧ τ is satisfied. We adopt a goal to achieve bothφ
andτ, and not justτ, because in the state in which the agent transi-
tions from achievingτ to maintainingφ, we wantφ to be true (so it
can be maintained). This is also the reason why the third condition-
action pair has a condition ofφ ∧ τ, and not justτ. These points
also apply to the following temporal goal types.

The fifth temporal goal type is characterised by(τ ∧ (φU τ′)).
The first condition-action pair indicates that ifφ∧ τ holds, then the
temporal goal can be dropped and at the same time the basic main-
tain goalM(φ, τ′) is adopted. Note that ifφ ∧ τ holds, the maintain
goal M(φ, τ′) ensures thatφ is maintained untilτ′ is achieved. The
second condition-action pair covers the situation where eitherφ or
τ does not hold. In such a situation, the temporal goal cannot be
realized. The temporal goal is therefore suspended, but thebasic
achievement goalA(φ ∧ τ) is added in order to achieve the condi-
tion for the first condition-action pair and the goal is activated again
once this condition is satisfied.

Finally, the sixth temporal goal type is characterized by(τ →
(φU τ′)). The first condition-action pair specifies that whenφ ∧ τ
is entailed by an agent’s belief base the temporal goal can besus-
pended (not dropped) and the basic maintain goalM(φ, τ′) adopted.
The adopted maintain goal ensures the maintenance ofφ until τ′.
Note that the temporal goal can be pursued again since it was sus-
pended, instead of being dropped. The second condition-action pair
is to activate the temporal goal. Note that the condition of this pair
is the same as the condition of the first pair, but that the firstpair
is applicable only to active goals and the second only to suspended
goals. However, in order to avoid a loop (suspend, activate,sus-
pend, . . . ) we impose an additional condition that a suspended goal
of this type cannot be activated again until the plan generated for the
goal has been performed. Formalising this restriction is straightfor-
ward but is omitted for space reasons.

4.2 Life Cycle for Basic Goals
Generic condition-action pairs are also assigned to basic goals

when they are adopted for a temporal goal. As we will see later,
these condition-action pairs implement the generic relation between
beliefs and goals, e.g., an achieve goalA(φ) is dropped whenφ is
believed and a maintain goalM(φ, τ) is dropped ifτ is believed.

Note that the second condition-action pair for basic maintenance

BGoal Condition − Action Pairs λ
A(φ) {〈φ,Drop〉 }
M(φ, τ) {〈¬φ ∧ ¬τ,S uspend〉 , 〈φ ∨ τ, Activate〉 , 〈τ,Drop〉}

Figure 4: Generic Condition-Action Pairs for Basic Goals

goals, which activates the goal, is only applicable to suspended
goals (as defined in the transition rules in Section 5.2). On the
other hand, the last condition-action pair, which drops a basic main-
tenance goal, can only be applied to an active basic maintenance
goal. It should also be observed that our assumption about correct
operationalisation of maintain goals implies that the condition of
the suspend action is never satisfied, and therefore the basic main-
tain goal never gets into the suspended state. This condition-action
pair is used in cases where the assumption that maintenance goals
are correctly operationalised does not hold.

Additionally, a set of domain related condition-action pairs are
assigned to each basic goal. Like temporal goals, domain related
condition-action pairs for basic goals should be used with care
since otherwise they may cause undesirable behavior. The condition-
action pairs for basic goals may seem redundant as they do notcon-
tribute to the operationalisation of temporal goals. However, these
condition-action pairs generalise the presented framework, thus al-
lowing for the design of arbitrary basic goal behaviors, which may
be useful for a variety of domain dependent applications. For ex-
ample, a robot with an achieve goal to be at a certain positionwill
suspend its achieve goal when its battery charge is not sufficient.

5. OPERATIONAL SEMANTICS
The operationalization of goal types is accomplished by opera-

tional semantics, which indicate possible transitions between agent
configurations due to goal processing.

Definition 1 The agent configuration is defined as a tuple〈σ, γt, γb〉,
whereσ is the agent’s belief base (a finite set of propositional
atoms),γt is the temporal goal base (a finite set of triples of the
form (φ, state,∆) whereφ is a temporal formula, state is the state
of the temporal goal (init, active or susp(ended)), and∆ is the set of
condition-action pairs governing the life cycle), andγb is the basic
goal base (a finite set of triples of the form(g, state,∆) where g is
one of A(φ) or M(φ, τ), or M(φ,⊥), and the remaining components
are the same as for the temporal goal base). A(φ) and M(φ, τ) de-
note goals to achieve and maintain the non-temporal formulaφ, re-
spectively. The maintain goal M(φ, τ) has an additional argument,
a propositionτ, that indicates the deadline until whichφ should be
maintained.

The operational semantics defines how the agent pursues com-
plex temporal goals in terms of the pursuit of basic achievement and
maintenance goals. How the agent pursues basic achievementand
maintenance goals is not defined here, and can be found elsewhere
(e.g. [19]). We make assumptions about the pursuit of achieve-
ment and maintenance goals being operationalised correctly, and
then show that, given these assumptions, the semantics given here
correctly achieve complex temporal goals.

5.1 Transition Rules for Temporal Goals
Below, we specify transition rules for individual temporalgoals,

and after that transition rules that lift these to sets of temporal goals.
Letφ be a temporal goal,δd a set of domain related condition-action
pair for φ, andδg(φ) be the set of generic condition-action pairs as
defined in Section 4.1. Letλ be the generic condition-action pair
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for basic goals as defined in Figure 4. We define+(X, γb) (i.e., γb

extended with basic goalX) as follows (note that we do not add any
domain related condition-action pair to basic goals).

• +(∅, γb) = γb

• +(X, γb) = γb ∪ {(X,active, λ)}
The first two rules below (Adopt1 andAdopt2) define the adop-

tion of a temporal goal (φ, init, δd), firstly in the case where there is
a condition-action pair to suspend the goal while adopting abasic
goal, and secondly where there is no applicable condition-action
pair to suspend the goal (no basic goal is added). Note that inboth
cases, temporal goals are adopted entering in the suspendedstate.
Temporal goals are initially suspended in order to ensure that their
corresponding maintain goal is added to the basic goal base only
in states where their maintain condition is satisfied. This can be
verified by observing the condition-action pairs that add maintain
goals to the basic goal base in Figure 3. Note that the application of
the first transition rule adds a maintain goal to the basic goal base
only for the sixth goal type and only when the condition of theto be
added maintain goal is satisfied. In other cases, the temporal goals
that would add a maintain goal are suspended without adding the
maintain goal to the basic goal base until the maintain conditions
are satisfied.

In contrast to temporal goals, basic goals are adopted in an ac-
tive state (see above in the definition of+(X, γb)). This is because
achieve goals can always be activated, i.e., there is no reason why
they should be suspended at the start. A maintain goal can also start
in an active state since its adoption condition ensures its maintain
condition holds as explained above.

It is also important to notice that in the first two transitionrules
we use generic condition-action pairs only fromδg (and not from
∆). This is because domain related condition-action pairs are only
used for activation and dropping of the goals, not for their adop-
tion. Finally, observe that the first five transition rules allow tran-
sitions from one single temporal goal to a set of temporal goals.
This means that these transition rules cannot be applied consecu-
tively. However, the last transition rule is designed to manage the
processing of a set of temporal goals in terms of transitionsthat are
derivable from the first five transition rules.

〈c,S uspend(X)〉 ∈ δg(φ) σ |= c

〈σ, (φ, init, δd), γb〉 → 〈σ, {(φ, susp, δd ∪ δg(φ))},+(X, γb)〉 Adopt1

¬∃〈c,S uspend(X)〉 ∈ δg(φ) : σ |= c

〈σ, (φ, init, δd), γb〉 → 〈σ, {(φ, susp, δd ∪ δg(φ))}, γb〉 Adopt2

The following rule activates a suspended temporal goal.

〈c, Activate〉 ∈ ∆ σ |= c
〈σ, (φ, susp,∆), γb〉 → 〈σ, {(φ,active,∆)}, γb〉 Activate

The following rule suspends an active temporal goal and (possi-
bly) adds a basic goal to the basic goal base.

〈c,S uspend(X)〉 ∈ ∆ σ |= c

〈σ, (φ,active,∆), γb〉 → 〈σ, {(φ, susp,∆)},+(X, γb)〉 S uspend

The following rule drops a temporal goal and (possibly) addsa
basic goal to the basic goal base.

〈c,Drop(X)〉 ∈ ∆ σ |= c

〈σ, (φ,active,∆), γb〉 → 〈σ, {},+(X, γb)〉 Drop

The following transition rule specifies how the above rules for
single temporal goals (denoted asg) can be lifted to temporal goal

bases. Note that whereasg is a single goal (a tuple),g′ is a set of
goals (either singleton or empty).

g ∈ γt 〈σ,g, γb〉 → 〈σ,g′, γ′b〉
〈σ, γt, γb〉 → 〈σ, (γt \ {g}) ∪ g′, γ′b〉

Lift

5.2 Transition Rules for Basic Goals
The following rules specify the life cycle of a basic goalX. The

DropBasicrule indicates that if a basic goal is in an active state,
then it can be dropped if there is a corresponding condition-action
pair for which the condition is satisfied in the current stateand the
action is a drop action. It should be noted that for a basic achieve-
ment goal we have〈φ,Drop〉, which indicates that the basic goal
A(φ) can be dropped whenφ holds. Similarly, for a basic main-
tain goal we have〈τ,Drop〉, which indicates that the maintain goal
M(φ, τ) can be dropped ifτ holds in the current state.

〈c,Drop〉 ∈ ∆ σ |= c

〈σ, γt, (X,active,∆)〉 → 〈σ, γt, {}〉 DropBasic

The following transition rule (S uspB) specifies that a goal in an
active state can be suspended. Note that the corresponding condition-
action pair for a maintain goal indicates that a maintain goal can be
suspended if neitherφ nor τ hold in the current state.

〈c,S uspend〉 ∈ ∆ σ |= c

〈σ, γt, (X,active,∆)〉 → 〈σ, γt, {(X, susp,∆)}〉 S uspB

The next transition rule is designed to manage the transition of
a basic goal from suspended to active state. Note that the corre-
sponding condition-action pair for a maintain goal states that the
basic maintain goalM(φ, τ) can be activated if eitherφ or τ hold in
the current state.

〈c,Activate〉 ∈ ∆ σ |= c
〈σ, γt, (X, susp,∆)〉 → 〈σ, γt, {(X,active,∆)}〉 ActivB

Finally, as for temporal goals, we have a transition rule that spec-
ifies how the above rules for single basic goals (denoted asg) can
be lifted to basic goal bases. Note again that whereasg is a single
basic goal (a tuple),g′ is a set of basic goals (either singleton or
empty).

g ∈ γb 〈σ, γt, g〉 → 〈σ, γt,g′〉
〈σ, γt, γb〉 → 〈σ, γt, (γb \ {g}) ∪ g′〉 LiftB

5.3 Properties
In the following, we useP to denote the set of non-temporal

propositional formulae, and we use|=, |=cwa, and |=LT L to respec-
tively denote propositional entailment, propositional entailment based
on the closed-world assumption, and LTL entailment.

We define the transition systemΣ to include the rules defined ear-
lier in this section. It is important to observe that the transition sys-
temΣ contains other transition rules in addition to those presented
in sections 5.1 and 5.2. In particular,Σ is assumed to contain transi-
tion rules for action execution, which may change the beliefstates.
As the application of transition rules may be interleaved, possible
belief changes may influence the goal life cycles. One assumption
that we make about the details of transition systemΣ, is that the
rules defined earlier in this section have a higher priority than other
rules. So for instance, if there are two applicable transition rules,
say one for deriving/allowing an action execution transition, and
the other for the application of a condition-action pair of agoal,
then the second transition rule is applied to derive/allow the tran-
sition of goal life cycle. This assumption is crucial to showthe
properties of our transition system in the rest of this section.
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Definition 2 LetS = 〈σ1, γ1
t , γ

1
b〉 → 〈σ2, γ2

t , γ
2
b〉 → . . . be an infi-

nite sequence of configurations generated by the transitionsystem
Σ. In this sequence, the transition〈σi , γi

t, γ
i
b〉 → 〈σi+1, γi+1

t , γi+1
b 〉 is

derived by the application of a transition rule ofΣ. The sequence
S is called atraceof Σ. The traceS of Σ is called afair traceif it
is generated by afair run of the transition system, that is, a run in
which every transition rule that is enabled infinitely often, is also
applied infinitely often.

Note that every finite trace is a fair trace. Furthermore, theprior-
ity assumption does not affect fairness, since in any given configu-
ration, there is only a finite number of goal-related transitions that
can be applied. In the following, we consider only infinite traces
(which can be guaranteed by adding an “idling” rule that transitions
a configuration to itself if no other transition rules are applicable).
We useσi , γi

b, andγi
t to denote the ingredients of theith state of a

traceS.

Definition 3 Let S be a traceof Σ. We define B(S), called the
belief trace ofS, to be the LTL-trace s= s1s2 . . . (where si is
a state assigning a truth value to each atomic proposition),if the
following condition holds:

∀φ ∈ P,∀i ∈ N : σi |=cwa φ ⇔ si |= φ
Furthermore, observe that sinceφ is non-temporal, we also have
that si |= φ⇔ B(S), i |=LT L φ.

The following proposition states that for every trace thereis one
unique belief trace possible.

Proposition 1 Let S be a trace ofΣ. The belief trace B(S) is
uniquely determined byS.
Proof: This proposition is the direct consequence of matching be-
lief basesσi with states si using the closed-world assumption. I.e.,
state si assigns the truth value of propositions based on their truth
values inσi using closed-world assumption.

Assumption 1 The achieve goal A(φ) is properly operationalized
by a transition system S if the following condition holds forevery
traceS of Σ:

∀i : (A(φ),active,∆) ∈ γi
b ⇒ ∃ j ≥ i : σ j |=cwa φ

Assumption 2 The maintain goal M(φ, τ) is properly operational-
ized by a transition system S if the following condition holds for
every traceS of Σ:

∀i : (M(φ, τ),active,∆) ∈ γi
b⇒

(∃ j ≥ i : σ j |=cwa τ) ∧ (∀ i ≤ k < j : σk |=cwa φ)
or τ = ⊥ ∧ (∀k ≥ i : σk |=cwa φ)

The following propositions show that the operational semantics
defined in section 5 correctly operationalize complex temporal goals
(in γt) using the basic achievement and maintenance goals (inγb).
Generally, correct realisation is the property that if a temporal LTL
formulaχ is in the temporal goal base of statei and is active, for-
mally (χ,active,∆) ∈ γi

t, thenB(S), i |=LT L χ. However, since this
only holds for the particular goal patterns that have been opera-
tionalized, we prove this for each case separately. All propositions
are based on assumptions 1 and 2.

Proposition 2 If (φ,active,∆) ∈ γi
t, then B(S), i |=LT L φ for

all fair tracesS of Σ.
Proof: Case 1: Assume thatσi 6|=cwa φ. By the definition of the
condition-action pairs forφ and the transition rule for Drop, we

have that, sinceφ ∈ γi
t, we must have that A(φ) ∈ γi+1

b . There-
fore by assumption 1 (and definition 3) we have that∃ j ≥ i + 1 :
B(S), j |=LT L φ and hence by the semantics of LTL that B(S), i |=LT L

φ. Case 2: Assume thatσi |=cwa φ. Hence B(S), i |=LT L φ and
trivially B(S), i |=LT Lφ.

The following proposition states that a property can be main-
tained if it already holds.

Proposition 3 If (φ,active,∆) ∈ γi
t andσi |=cwa φ, then B(S), i |=LT L

φ for all fair tracesS of Σ.
Proof: Sinceφ ∈ γi

t, by the definition of the condition-action
rules and the transition rule for Drop, we have that M(φ,⊥) ∈
γi+1

b . By assumption 2 (and definition 3), sinceσi |=cwa φ and
∀ j ≥ i + 1 : σ j |=cwa φ, we have∀ j ≥ i : B(S), j |=LT L φ and
hence B(S), i |=LT L φ.

The following proposition shows thatφU τ is correctly opera-
tionalized. It assumes thatτ , ⊥, sinceφU⊥ is false in LTL.

Proposition 4 If (φU τ, active,∆) ∈ γi
t (whereτ , ⊥), andσi |=cwa

φ, then B(S), i |=LT L φU τ for all fair tracesS of Σ.
Proof (sketch): Since(φU τ) ∈ γi

t, by the definition of the condition-
action pairs and of the transition rules, we have M(φ, τ) ∈ γi+1

b . By
assumption 2 the traceS at configuration i+ 1 satisfies∃ j ≥ i + 1 :
σ j |=cwa τ ∧ ∀k : i + 1 ≤ k < j : σk |=cwa φ. From this condition
together with the definition 3 and the fact that B(S), i |=LT L φ, it is
easy to see that B(S), i |=LT L φU τ.

Proposition 5 If ((τ ∧ φ),active,∆) ∈ γi
t, then B(S), i |=LT L

(τ ∧φ) for all fair tracesS of Σ.
Proof (sketch): We consider two cases in configuration i. Case 1:
σi 6|=cwa φ ∧ τ (eitherφ or τ is not believed in the current configu-
ration). Since(τ ∧φ) ∈ γi

t, by the definition of the condition-
action pairs and of the transition rules, we have A(φ ∧ τ) ∈ γi+1

b .
By assumption 1 (and definition 3), we have that∃ j ≥ i + 1 :
B(S), j |=LT L φ ∧ τ. Since(τ ∧ φ) is never removed from
the temporal goal base (the condition-action pairs always suspend,
and never drop it), we have(τ ∧φ) ∈ γ j

t . By the definition of
the condition-action pairs and of the transition rules, andbecause
σ j |=cwa φ ∧ τ, we have M(φ,⊥) ∈ γ j+1

b . From,σ j |=cwa φ, assump-
tion 2 and the definition 3, we have B(S), j |=LT L φ and hence
B(S), i |=LT L (τ ∧φ). Case 2:σi |=cwa φ ∧ τ. It is easy to see
that the proposition holds in this case by having i= j in the proof
sketch of case 1.

Proposition 6 If ((τ∧(φU τ′)),active,∆) ∈ γi
t, then B(S), i |=LT L

(τ ∧ (φU τ′)) for all fair tracesS of Σ.
Proof (sketch): The proof is similar to the proof of the previous
proposition.

The following proposition assumes thatτ→ φ. The justification
for this assumption is that we want to show that the temporal goal is
correctly realised. In the case whereτ becomes true butφ does not
hold, the temporal goal immediately fails, i.e.nooperationalisation
is able to realise the goal. We thus exclude this case.

Proposition 7 If ((τ→ (φU τ′)),active,∆) ∈ γi
t andτ→ φ, then

B(S), i |=LT L (τ→ (φU τ′)) for all fair tracesS of Σ.
Proof (sketch): We want to show that B(S), i |=LT L (τ→ (φU τ′)),
i.e. that for any j≥ i, we have B(S), j |=LT L (τ → (φU τ′)). There
are two cases. Case 1:σ j 6|=cwa τ. In this case the implication triv-
ially holds. Case 2:σ j |=cwa τ. Sinceτ → φ, we haveσ j |=cwa φ.
Since the temporal goal is always suspended and never dropped,
(τ → (φU τ′)) ∈ γ

j
t for all j ≥ i. Thus, by the definition of
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the condition-action pairs and of the transition rules, andsince
σ j |=cwa τ ∧ φ, we have M(φ, τ′) ∈ γ j+1

b . By assumption 2 the trace
S at configuration j+ 1 ensures thatφ will be entailed by the belief
base untilτ′ is entailed. Becauseσ j |=cwa φ, traceS at configura-
tion j ensures thatφ is entailed by the belief base untilτ′ is entailed,
i.e. B(S), j |=LT L φU τ′, from which B(S), j |=LT L (τ → (φU τ′))
trivially follows.

6. DISCUSSION
In this paper we built on a temporal logic view of agent goals by

defining new, novel, goal types, and showing how these new goal
types could be operationalized in terms of existing base goal types
(achievement and maintenance). The operationalization isbased
on a goal life cycle where transitions between states of goals are
governed by condition-action pairs. We show that the operational-
ization realizes traces on which the temporal goals are satisfied, as-
suming satisfaction of the basic goal types. Through this wehave
provided a flexible framework for operationalizing rich goal types.
Other goal types can be added by providing their translationto the
basic goal types. Although we have provided several examples in
the paper, future work will have to show which goal types are par-
ticularly useful in practice. This may also depend on the domain
that is modelled.

An important topic for future work to allow gaining more practi-
cal experience with the framework is implementing it on top of con-
ventional agent-oriented programming languages, such as 2APL
[6], Jadex [15], Jason [3], JACK [5] etc. It is interesting tonote
that the proposed framework appears to be a good match with rule-
based systems, as used in Opal [20]. Also, we aim to extend the
framework to include subgoals along the lines of [14], and then
using this as a basis for incorporating goal suspension/resumption
and abortion (based on [17,18]).
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ABSTRACT
Increasingly in both traditional, and especially Internet-based
marketplaces, knowledge is becoming a traded commodity.
This paper considers the impact of the presence of knowledge-
brokers, or experts, on search-based markets with noisy sig-
nals. For example, consider a consumer looking for a used
car on a large Internet marketplace. She sees noisy signals
of the true value of any car she looks at the advertisement
for, and can disambiguate this signal by paying for the ser-
vices of an expert (for example, getting a Carfax report, or
taking the car to a mechanic for an inspection). Both the
consumer and the expert are rational, self-interested agents.
We present a model for such search environments, and ana-
lyze several aspects of the model, making three main contri-
butions: (1) We derive the consumer’s optimal search strat-
egy in environments with noisy signals, with and without
the option of consulting an expert; (2) We find the optimal
strategy for maximizing the expert’s profit; (3) We study the
option of market designers to subsidize search in a way that
improves overall social welfare. We illustrate our results in
the context of a plausible distribution of signals and values.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics

Keywords
Economically-motived agents, Modeling the dynamics of MAS

1. INTRODUCTION
In many multi-agent system (MAS) settings, agents en-

gage in one-sided search [13, 6]. This is a process in which
an agent faces a stream of opportunities that arise sequen-
tially, and the process terminates when the agent picks one
of those opportunities. A classic example is a consumer look-
ing to buy a used car. She will typically investigate cars one
at a time until deciding upon one she wants. Similar settings

Cite as: Expert-Mediated Search, Meenal Chhabra, Sanmay Das, and
David Sarne, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 415-422.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

can be found in job-search, house search and other applica-
tions [12, 15]. In modern electronic marketplaces, search is
likely to become increasingly important as, with the prolif-
eration of possible sellers of a good, consumers will turn to
artificial agents, whom we term “searchers,” to find the best
prices or values for items they are interested in acquiring.

The decision making complexity in one-sided search usu-
ally arises from the fact that there is a cost incurred in find-
ing out the true value of any opportunity encountered. For
example, there is a cost to arranging a meeting to test drive a
car you are considering purchasing. The searcher thus needs
to trade off the potential benefit of continuing to search and
seeing a more valuable opportunity with the costs incurred
in doing so. The optimal stopping rule for such search prob-
lems has been widely studied, and is often a reservation
strategy, where the searcher should terminate search upon
encountering an opportunity which has a value above a cer-
tain reservation value or threshold [18, 13]. Most models
assume that the searcher obtains the exact true value of
the opportunities it encounters. However, in many realistic
settings, search is inherently noisy and searchers may only
obtain a noisy signal of the true value. For example, the
drivetrain of a used car may not be in good condition, even
if the body of the car looks terrific. The relaxation of the
assumption of perfect values not only changes the optimal
strategy for a searcher, it also leads to a niche in the market-
place for new knowledge-brokers. The knowledge brokers, or
experts, are service providers whose main role is to inform
consumers or searchers about the values of opportunities.

An expert offers the searcher the option to obtain a more
precise estimate of the value of an opportunity in question,
in exchange for the payment of a fee (which covers the cost
of providing the service as well as the profit of the expert).
To continue with the used car example, when the agent is
intrigued by a particular car and wants to learn more about
it, she could take the car to a mechanic who could investi-
gate the car in more detail to make sure it is not a lemon.
The expert need not be a mechanic – it could be, for ex-
ample, an independent agency, like Carfax, that monitors
the recorded history of transactions, repairs, claims, etc. on
cars. It can also be a repeated visit of the searcher to see
the car, possibly bringing an experienced friend for a more
thorough examination. In all these cases, more accurate in-
formation is obtained for an additional cost (either monetary
or equivalent).

In this paper we investigate optimal search and mecha-
nism design in environments where searchers observe noisy
signals and can obtain (i.e., query the expert for) the ac-
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tual values for a fee. Our main contributions are threefold:
First, we introduce a specific model of one-sided search with
noisy signals and prove that the optimal search rule, for a
large class of real-life settings, is reservation-value based.
Second, we formally introduce the option of consulting an
expert in such noisy search environments, and derive the
optimal strategy for the searcher given a cost of consulting
the expert, as well as the profit-maximizing price for the
expert to charge for its services. As part of the analysis
we prove that under the standard assumption that higher
signals are “good news” (i.e., the distribution of the true
value conditional on a higher signal stochastically domi-
nates the distribution conditional on a lower signal), the
optimal search strategy is characterized by a “double reser-
vation value” strategy, wherein the searcher rejects all sig-
nals below a certain threshold, resuming search, and accepts
all signals above another threshold, thus terminating search,
without querying the expert; the agent queries the expert for
all signals that are between the two thresholds. Finally, we
study a market design mechanism (introduction of a sub-
sidy) with the potential to improve social welfare in such
domains. These mechanisms may be implemented by either
an electronic marketplace that employs the expert (for ex-
ample a website for used cars that has a relationship with a
provider of car history reports), or an entity with regulatory
power like the government. Along with the general theory,
we illustrate our results in a specific, plausible distributional
model, in which the true value is always bounded by the sig-
nal value, and the probability monotonically decays as the
discrepancy between the two increases.

2. THE GENERAL MODEL
The standard one-sided search problem [13] considers an

agent or searcher facing an infinite stream of opportunities
from which she needs to choose one. While the specific value
v of each future opportunity is unknown to the searcher, she
is acquainted with the (stationary) probability distribution
function from which opportunities are drawn, denoted fv(x).
The searcher can learn the value of an opportunity for a cost
cs (either monetary or in terms of resources that need to be
consumed for this purpose) and her goal is to maximize the
net benefit, defined as the value of the opportunity eventu-
ally picked minus the overall cost incurred during the search.
Having no a priori information about any specific opportu-
nity, the searcher reviews the opportunities she encounters
sequentially and sets her optimal stopping rule. The stop-
ping rule specifies when to terminate and when to resume
search, based on the opportunities encountered.

Our model relaxes the standard assumption that the sear-
cher receives the exact true value of an opportunity. Instead,
we assume that the searcher receives, at cost cs, a noisy sig-
nal s, correlated with the true value according to a known
probability density function fs(s|v). In addition, the sear-
cher may query and obtain from a third party (the expert)
the true value v of an opportunity for which signal s was
received, by paying an additional fee ce. The goal of the
searcher is to maximize the total utility received i.e., the ex-
pected value of the opportunity eventually picked minus the
expected cost of search and expert fees paid along the way.

The first question that arises is how to characterize the
optimal strategy for the searcher. A second question is how
the expert sets her service fee ce. In this paper we consider a
monopolist provider of expert services. The searcher’s opti-

mal strategy is directly influenced by ce, and thus implicitly
determines the expected number of times the services of the
expert are required, and thus the expert’s revenue. The
problem can be thought of as a Stackelberg game [5] where
the expert is the first mover, and wants to maximize her
profits with respect to the fee ce she charges searchers.

The new search model raises interesting new questions
about market design. Assuming exogeneity of opportuni-
ties, social welfare, denoted W , is a function of the expected
value to searchers and the expected profit of the expert. (We
abstract away from modeling the existence of “sellers” of op-
portunities, instead viewing them as exogenous, or else as
being offered at some “fair price” by the seller.) We assume
that the provider of expert services has already performed
the “startup work” necessary, and only pays a marginal cost
de per query, and that social welfare is additive. Since the
process scales up linearly in the number of searchers, we can
simply consider the interactions involving a single searcher
and the expert. The social welfare is then the sum of the
expected net benefit to the searcher and the expected profit
of the expert. It turns out that social welfare can be signif-
icantly affected (and improved) if the market designer (or
a regulator like the government) subsidizes queries by com-
pensating the expert in order to reduce query costs to the
searcher.

We now turn to developing the mathematical machinery
to address these problems.

3. OPTIMAL POLICIES
In this section, we analyze the searcher’s optimal search

strategy and her expected use of the expert’s services, given
the fee ce set by the expert. The analysis builds on the triv-
ial non-noisy model and gradually adds the complexities of
signals and having the expert option. From the searcher’s
optimal search strategy we derive the expert’s expected ben-
efits as a function of the fee she sets, enabling maximization
of the expert’s revenue.

One-Sided Search.
The optimal search strategy for the standard model, where

the actual value of an opportunity can be obtained at cost cs,
can be found in the extensive literature of search theory [13,
6]. In this case, the searcher follows a reservation-value rule:
she reviews opportunities sequentially (in random order) and
terminates the search once a value greater than a reservation
value x∗ is revealed, where the reservation value x∗ satisfies:

cs =

∫ ∞
y=x∗

(y − x∗)fv(y)dy (1)

Intuitively, x∗ is the value where the searcher is precisely
indifferent: the expected marginal benefit from continuing
search and obtaining the value of the next opportunity ex-
actly equals the cost of obtaining that additional value. The
reservation property of the optimal strategy derives from the
stationarity of the problem — resuming the search places
the searcher at the same position as at the beginning of the
search [13]. Consequently, a searcher that follows a reserva-
tion value strategy will never decide to accept an opportu-
nity she has once rejected and the optimal search strategy is
the same whether or not recall is permitted. The expected
number of search iterations is simply the inverse of the suc-
cess probability, 1

1−Fv(x∗) , since this becomes a Bernoulli
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sampling process, as opportunities arise independently at
each iteration.

One-Sided Search with Noisy Signals.
Before beginning the analysis of search with noisy signals,

we emphasize that, given fv(x) and fs(s|v), we can also
derive the distribution of the signal received from a ran-
dom opportunity, fs(x), and the distribution of true values
conditional on signals, fv(v|s) (the conditionals are inter-
changeable by Bayes’ law). In many domains, it may be
easier to assess/learn fs(s) than fv(v|s) as most past ex-
perience involves signals, with the actual value revealed for
only a subset of these signals.

When the searcher receives a noisy signal rather than the
actual value of an opportunity, there is no guarantee that
the optimal strategy is reservation-value based as in the case
where values obtained are certain. Indeed, the stationarity
of the problem still holds, and an opportunity that has been
rejected will never be recalled. Yet, in the absence of any
restriction over fs(s|v), the optimal strategy is based on a set
S of signal-value intervals for which the searcher terminates
the search. The expected value in this case, denoted V (S),
is given by:

V (S) = −cs + Pr(s /∈ S)V (S) + Pr(s ∈ S)E[v|s ∈ S]

= −cs + V (S)

∫
s/∈S

fs(s) ds+

∫
s∈S

fs(s)E[v|s] ds (2)

The fact that the optimal strategy may not be reservation-
value based in this case is because there may be no correla-
tion between the signal and the true value of the opportu-
nity. Nevertheless, in most real-life cases, there is a natural
correlation between signals and true values. In particular,
a fairly weak and commonly used restriction on the condi-
tional distribution of the true value given the signal goes a
long way towards allowing us to recapture a simple space of
optimal strategies. This is the restriction that higher signal
values are “good news” in the sense that when s1 > s2, the
conditional distribution of v given s1 first-order stochasti-
cally dominates that of v given s2 [19, 14]. The condition
requires that given two signals s1 and s2 where s1 > s2, the
probability that the actual value is greater than any particu-
lar value v is greater for the case where the searcher receives
signal s1. Formally:

Definition 1. Higher signals are good news (HSGN)
assumption: If s1 > s2, then, ∀y, Fv(y|s1) ≤ Fv(y|s2).

This enables us to prove the following theorem.

Theorem 1. For any probability density function fv(v|s)
satisfying the HSGN assumption, the optimal search strategy
is a reservation-value rule, where the reservation value, t∗,
satisfies:

cs =

∫ ∞
s=t∗

(
E[v|s]− E[v|t∗]

)
ds (3)

Proof: The proof is based on showing that, if according to
the optimal search strategy the searcher should resume her
search given a signal s, then she must necessarily also do so
given any other signal s′ < s. Let V denote the expected
benefit to the searcher if resuming the search. Since the
optimal strategy given signal s is to resume search, we know
V > E[v|s]. Given the HSGN assumption,

∫
y
yfv(y|s′) dy <∫

y
yfv(y|s) dy holds for s′ < s. Therefore, V > E[v|s′],

proving that the optimal strategy is reservation-value. Then,
the expected value of the searcher when using reservation
signal t is given by:

V (t) = −cs + V (t)

∫ t

s=−∞
fs(s) ds+

∫ ∞
s=t

E[v|s]fs(s) ds

=
−cs +

∫∞
s=t

E[v|s]fs(s) ds

1− Fs(t)
(4)

where Fs(s) is the cumulative distribution function of the
signal s. Setting the first derivative according to t of Equa-
tion 4 to zero we obtain: V (t∗) = E[v|t∗]. The second
derivative for t∗ that satisfies the latter equality confirms
that this is indeed a global maximum. Finally, using integra-
tion by parts over the derivative according to t of Equation
4 we obtain Equation 3, and the value t∗ can be calculated
accordingly. 2

The social welfare W is the expected gain to the searcher
from following the optimal strategy, V (t∗) = E[v|t∗]. The
expected number of search iterations is 1

1−Fs(t∗) , since this

is a Bernoulli sampling process.

The Expert Option.
The introduction of an expert extends the number of de-

cision alternatives available to the searcher. When receiving
a noisy signal of the true value, she can choose to (1) reject
the offer without querying the expert, paying search cost cs
to reveal the signal for the next offer; (2) query the expert
to obtain the true value, paying a cost ce, and then make
a decision; or (3) accept the offer without querying the ex-
pert, receiving the (unknown) true value of the offer. In case
(2), there is an additional decision to be made, whether to
resume search or not, after the true value v is revealed.

As in the no-expert case, a solution for a general density
function fv(v|s) dictates an optimal strategy of a complex
structure. In our case, the optimal strategy will have the
form of (S′, S′′, V ), where: (a) S′ is a set of signal inter-
vals for which the searcher should resume her search with-
out querying the expert; (b) S′′ is a set of signal intervals
for which the searcher should terminate her search without
querying the expert (and pick the opportunity associated
with this signal); and (c) for any signal that is not in S′

or S′′ the searcher should query the expert, and terminate
the search if the value obtained is above a threshold V , and
resume otherwise. The value V is the expected benefit from
resuming the search and is given by the following modifica-
tion of Equation 2:

V = −cs + V

∫
s∈S′

fs(s) ds− ce
∫

s 6∈{S′,S′′}
fs(s) ds+∫

s 6∈{S′,S′′}
fs(s)

(
V

∫ V

−∞
fv(x|s) dx+∫ ∞

x=V

xfv(x|s) dx
)
ds+

∫
s∈S′′

fs(s)E[v|s] ds (5)

The first element on the right hand side of the equation
applies to the case of resuming search, in which case the
searcher continues with an expected benefit V . The second
element is the expected payment to the expert. The next
elements relate to the case where the search is resumed based
on the value received from the expert (in which case the
expected revenue is once again V ) and where the search is
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terminated (with the value E[v|s] obtained as the revenue),
respectively. Finally, the last element applies to the case
where the searcher terminates the search without querying
the expert.

We can show that under the HSGN assumption, each of
the sets S′ and S′′ actually contains a single interval of sig-
nals, as illustrated in Figure 1.

Theorem 2. For fv(y|s) satisfying the HSGN assump-
tion (Definition 1), the optimal search strategy can be de-
scribed by the tuple (tl, tu, V ), where: (a) tl is a signal
threshold below which the search should be resumed; (b) tu
is a signal threshold above which the search should be termi-
nated and the current opportunity picked; and (c) the expert
should be queried given any signal tl < s < tu and the op-
portunity should be accepted (and search terminated) if the
value obtained from the expert is above the expected value of
resuming the search, V , otherwise search should resume (see
Figure 1). The values tl, tu and V can be calculated from
solving the set of Equations 6-8:

V =− cs + V

∫ tl

s=−∞
fs(s) ds− ce

∫ tu

s=tl

fs(s) ds+∫ tu

s=tl

fs(s)
(
V

∫ V

x=−∞
fv(x|s) dx ds+∫ ∞

x=V

xfv(x|s) dx ds
)

+

∫ ∞
s=tu

fs(s)E[v|s] ds (6)

ce =

∫ ∞
y=V

(y − V )fv(y|tl) dy (7)

ce =

∫ V

−∞
(V − y)fv(y|tu) dy (8)

Proof: The proof extends the methodology used for proving
Theorem 1. We first show that if, according to the optimal
search strategy the searcher should resume her search given a
signal s, then she must also do so given any other signal s′ <
s. Then, we show that if, according to the optimal search
strategy the searcher should terminate her search given a
signal s, then she must also necessarily do so given any other
signal s′′ > s. Again, we use V to denote the expected
benefit to the searcher if resuming the search.

If the optimal strategy given signal s is to resume search
then the following two inequalities should hold, describing
the superiority of resuming search over terminating search
(Equation 9) and querying the expert (Equation 10):

V > E[v|s] (9)

V > −ce +

∫ ∞
y=V

yfv(y|s) dy + V

∫ V

y=−∞
fv(y|s) dy (10)

Given the HSGN assumption and since s′ < s, Equation 9
holds also for s′, and so does Equation 10 (which can be
formalized after some mathematical manipulation as: V >
−ce + V +

∫∞
y=V

(y − V )fv(y|s) dy). The proof for s′′ > s is

similar: the expected cost of accepting the current oppor-
tunity can be shown to dominate both resuming the search
and querying the expert. We omit the details because of
space considerations. The optimal strategy can thus be de-
scribed by the tuple (tl, tu, V ) as stated in the Theorem.
Therefore, Equation 5 transforms into Equation 6. Taking
the derivative of Equation 6 w.r.t. tl and equating to zero,

we obtain a unique tl which maximizes the expected benefit
(verified by second derivative), and similarly for tu. Finally,
using integration by parts over the derivatives of Equation
6 w.r.t. tl and tu we obtain Equations 7-8. 2

Intuitively, tl is the point at which a searcher is indifferent
between either resuming the search or querying the expert
and tu is the point at which a searcher is indifferent between
either terminating the search or querying the expert. The
cost of purchasing the expert’s services must equal two dif-
ferent things: (1) the expected savings from resuming the
search when the actual utility from the current opportunity
(which is not known) turns out to be greater than what
can be gained from resuming the search (once it is revealed)
(this is the condition for tl); (2) the expected savings from
terminating the search in those cases where the actual util-
ity from the current opportunity (once revealed) is less than
what can be gained from resuming the search (for tu).

Figure 1: Characterization of the optimal strat-
egy for noisy search with an expert. The searcher
queries the expert if s ∈ [tl, tu] and accepts the offer if
the worth is greater than the value of resuming the
search V . The searcher rejects and resumes search
if s < tl and accepts and terminates search if s > tu,
both without querying the expert.

It is notable that there is also a reasonable degenerate case
where tl = tu(= t). This happens when the cost of querying
is so high that it never makes sense to engage the expert’s
services. In this case, a direct indifference constraint exists
at the threshold t, where accepting the offer yields the same
expected value as continuing search, so V = E[v|t]. This
can be solved in combination with Equation 4, since there
are now only two relevant variables.

Expected number of queries: The search strategy
(tl, tu, V ) defines how many times the expert’s services are
consulted. In order to compute the expected number of
queries, we consider four different types of transitions in the
system. Let A be the probability that the searcher queries
the expert and then does not accept, resuming search, B
be the probability that the searcher resumes search without
querying, C be the probability that the searcher terminates
without querying, andD be the probability that the searcher
queries the expert and terminates search. Then:

A = Pr(tl ≤ s ≤ tu and v < V ) (11)

B = Pr(s < tl) (12)

C = Pr(s > tu) (13)

D = Pr(tl ≤ s ≤ tu and v ≥ V ) (14)

Let Pj denote the probability that the searcher queries
the expert exactly j times before terminating. The searcher
can terminate search after exactly j queries in one of two
ways: either she makes j − 1 queries, then queries the ex-
pert and chooses to terminate, or she makes j queries and
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then chooses to terminate without querying the expert. Fac-
toring in all the possible ways of interleaving j queries with
an arbitrary number of times that the searcher chooses to
continue search without querying the expert, we get:

Pj =

∞∑
m=0

(m+ j − 1)!

m!(j − 1)!
Aj−1BmD +

∞∑
m=0

(m+ j)!

m!j!
AjBmC

=
Aj

(1−B)j
(
D

A
+

C

1−B )

Then the expected number of queries, when charging an
expert fee ce, is given by

∑∞
j=0 jPj , yielding

ηce = E(Number of queries|ce) =
(1−B)D + CA

(1−B −A)2
(15)

Expected number of opportunities examined: Us-
ing the same notation as above, we see that the probability
of terminating the search at any iteration is C + D, and
these are independent Bernoulli draws at each opportunity.
Therefore the expectation of the number of opportunities
examined is simply ηs = 1/(C +D).

Expected profit of the expert: Let de denote the
marginal cost of the service the expert is providing. The
expected profit of the expert is then simply

πe = E(Profit) = (ce − de)ηce

The expert can maximize the above expression with respect
to ce (ηce decreases as ce increases) to find the profit maxi-
mizing price to charge searchers.

Social Welfare: The social welfare is given by the sum
of all parties involved, thus far just the searcher and the
expert. Of course this generalizes to multiple agents as well,
since each search process would be independent. We define:

W = Vc∗e + πe (16)

where c∗e is the fee that maximizes the expert’s profit.

4. MARKET DESIGN
Above, we have described the basics of search in such

expert-mediated markets. In this section, we describe possi-
ble uses of the theory described above to improve the design
of markets in which such search takes place. The prospect
of designing or significantly influencing these markets is not
remote. Consider the design of a large scale Internet web-
site like autotrader.com. The listings for cars that users see
are signals, and they may be unsure of a car’s true worth.
autotrader can partner with a provider of reports like Car-
fax, to make it easy for users to look up a car’s worth. In or-
der to be general, let us refer to autotrader as “the market”
(or in some instances as “the market designer”) and Carfax
as the expert. The market wants to attract customers to
it, rather than to rival markets. The best way of doing this
is to provide customers with a high value shopping experi-
ence. The expert wishes to maximize its profits. Since the
market and the expert both have significant power, it is rea-
sonable to imagine them coming up with different models
of the kinds of relationships they may have. It is notable
that while we are thinking about private markets here, this
entire discussion is equally relevant to a big player like the
government as market designer, and independent providers
of expert services.

In order to provide customers with the highest value shop-
ping experience, the market may choose to subsidize the
cost of expert services. A typical problem with subsidiza-
tion is that it often decreases social welfare because the true
cost of whatever is being subsidized is hidden from the con-
sumer, leading to overconsumption of the resource. In this
instance, however, the natural existence of many monopo-
lies in expert services, combined with the existence of search
frictions, make it quite possible that subsidies will in fact in-
crease social welfare. We show in Section 5 that this is in
fact the case for some natural distributions.

The basic framework of subsidization works as follows.
Suppose a monopolist provider of expert services maximizes
its profits by setting the querying cost to c∗e , yielding an
expected profit πe = (c∗e − de)ηc∗e (this discussion is on a
per-consumer basis). The market designer can step in and
negotiate a reduction of the fee ce charged by the expert, for
the benefit of the agents. In return for the expert’s agree-
ment, the market designer will need to offer a per-consumer
payment β to the expert, which fully compensates the ex-
pert for the decreased revenue, leaving her total profit the

same. Since c
′
e < c∗e , ηc

′
e
> ηc∗e (the consumer queries more

often because she has to pay less). The compensation for a

requested decrease in the expert’s fee from c∗e to c
′
e is thus

β = (c∗e−de)ηc∗e−(c
′
e−de)ηc

′
e
. The overall welfare per agent

in this case increases by Vc
′
e
−Vc∗e , where Vc

′
e

and Vc∗e are the

expected value of searchers according to Equation 6-8, when

the expert uses a fee c
′
e and c∗e respectively, at a cost β to

the market designer. Since the expert is fully compensated
for her loss due to the decrease in her fee, the change in the
overall social welfare is Vc

′
e
− Vc∗e − β. Under the new pric-

ing scheme c
′
e, and given the subsidy β, the social welfare

is given by W
′

= Vc
′
e

+ πe − β. In the following section we

illustrate how such a subsidy β can have a positive change
over the social welfare.

An interesting special case to consider is when de = 0.
We can think of this case as “digital services,” analogous to
digital goods like music MP3s – producing an extra one of
these has zero marginal cost. Similarly, producing an ex-
tra electronic history of a car, like a Carfax report, can be
considered to have zero marginal cost. In this case, there is
no societal cost to higher utilization of the expert’s services,
so subsidy is welfare improving right up to making the ser-
vice free. These are the cases where it could make sense for
the market designer or government to take over offering the
service themselves, and making it free, potentially leverag-
ing the increased welfare of consumers by attracting more
consumers to their market, or increasing their fees.

5. A SPECIFIC EXAMPLE
In this section we illustrate the theoretical analysis given

in the former section for a particular plausible distribution of
signals and values. This case illustrates the general structure
of the solutions of the model and demonstrates how inter-
ventions by the market designer can increase social welfare.

We consider a case where the signal is an upper bound on
the true value. Going back to the used car example, sellers
and dealers offering cars for sale usually make cosmetic im-
provements to the cars in question, and proceed to advertise
them in the most appealing manner possible, hiding defects
using temporary fixes. Specifically, we assume signals s are
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Figure 2: Effect of cs on the signal thresholds (tl,tu) and agent utility V

uniformly distributed on [0, 1], and the conditional density
of true values is linear on [0, s]. Thus

fs(s) =

{
1 if 0 < s < 1

0 otherwise
fv(y|s) =

{
2y
s2 for 0 ≤ y ≤ s
0 Otherwise

We can substitute in these distributions in Equations 6
through 8 and simplify. From Equation 6:

V = −cs + V tl − ce(tu − tl) +
V 3(tu − tl)

3tutl
+

1− t2l
3

V =
2tl
3

+
V 3

3t2l
− ce (from Equation 7)

ce =

∫ V

0

(V − y)fv(y|tu) dy =
V 3

3t2u
(from Equation 8)

We can find feasible solutions of this system for differ-
ent parameter values, as long as the condition tl < tu holds.
Otherwise, when ce is high enough that querying never makes
sense, a single threshold serves as the optimal strategy, as
in the case with no expert. In the latter case, we obtain the
optimal reservation value to be used by the searcher from
Equation 3, yielding t∗ = 1−√3cs.

The other thing to note here is that Equation 8 above
is for the case when the support on signal s is unbounded.
When there is an upper limit on s i.e s ≤ m for some m (as
is the case here, where signals are bounded in [0, 1]), once
tu reaches m (we never buy without querying), Equation 8
does not hold. Now the system rejects if the signal is below
tl or queries if it is above.

Figure 2(a) illustrates how the reservation values tl and
tu change as a function of cs for ce = 0.05. The vertical axis
is the interval of signals. As can be seen from the graph,
for very small search cost (cs) values, the searcher never ter-
minates search without querying the expert.1 Due to the
low search cost the searcher is better off only querying the
expert when a high signal is received. The expert option
is preferred over accepting without querying the expert for
those high signals, because if a low value is received from the
expert then the cost of finding a new opportunity with a high
signal is low. As the search cost cs increases, there is some

1When search costs are 0 the problem is ill-defined. The
first point on the graph shows an extremely low, but non-
zero search cost. In this case tu = 1 and tl is almost 1, but
not exactly, and the expert is again always queried.
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Figure 3: Expert’s profit as a function of ce and de

for cs = 0.01.

behavior that is not immediately intuitive. The reservation
values tl and tu become closer to each other until coinciding
at cs = 0.08, at which point the expert is never queried any-
more. The reason for this is that the overall value of contin-
uing search goes down significantly as cs increases, therefore
the cost of querying the expert becomes a more significant
fraction of the total cost, making it comparatively less de-
sirable. This is a good example of the additional complexity
of analyzing a system with an expert, because in the static
sense the cost of consulting the expert does not change, so
the fact that the expert should be consulted less and less
frequently is counter-intuitive. Figure 2(b) illustrates the
change in the searcher’s welfare as a function of the search
cost, cs, for different values of the service fee, ce, charged
by the expert. As expected, the searcher’s welfare is better
with the expert option than without, and the smaller the fee
charged by the expert, the better the searcher’s welfare.

Expected number of queries.
We can find the expected number of queries in this case

by using our knowledge of the uniform distribution and the
noise distribution in Equations 11-15, yielding
A = V 2( 1

tl
− 1

tu
); B = tl; C = (1− tu);

D = tu − tl − V 2( 1
tl
− 1

tu
)

which give the final expressions:

ηce =
tltu(tu − tl)

tut2l − tlV 2 − tutl + tuV 2
; ηcs =

1

1− tl − V 2( 1
tl
− 1

tu
)
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The monopolist expert’s optimal strategy.
Using the above derivations, it is now easy to calculate

numerically the value of c∗e that maximizes πe, trading off
decreasing number of queries η and increasing revenue per
query ce. Figure 3 shows examples of the graph of expected
profit for the expert as a function of the expert’s fee, ce,
for different values of de, the marginal cost to the expert of
producing an extra “expert report”, for cs = 0.01.

Subsidizing the expert.
As discussed above, the market designer or the govern-

ment can guarantee the reduction of the expert’s charge from

c∗e to c
′
e, keeping πe constant, by paying a per-consumer sub-

sidy β to the expert. Figure 4 shows the improvement in so-
cial welfare, denoted δ(W ), as a function of the subsidy paid
to the expert, β, for various de values (where cs = 0.01).

From the graphs, we do indeed find that subsidization can
lead to substantial increases in social welfare, even when
there is a significant marginal cost of producing an expert
report. While this could be from a reduction in search and
query costs or an increase in the expected value of the op-
portunity finally taken, the data in Table 1 indicates that
the latter explanation is the dominant factor in this case.
It is also worth noting that social welfare is maximized at
the point where the searcher pays exactly de per query, thus
fully internalizing the cost to the expert of producing the
extra report. If the searcher had to pay less, it would lead
to inefficient overconsumption of expert services, whereas
if she had to pay more, the expected decline in the value
she receives from participating in the search process would
outweigh the savings to the market designer or government
from having to pay less subsidy.

6. RELATED WORK
The autonomous agents literature has often considered

the problem of search which incurs a cost [2, 9, 10]. The
underlying foundation for such analysis is search theory [4,
15], and in particular, its one-sided branch which considers
an individual sequentially reviewing different opportunities
from which she can choose only one. The search incurs a cost
and the individual is interested in minimizing expected cost
or maximizing expected utility ([13, 7, 16], and references
therein). To the best of our knowledge, none of the one-
sided search literature in either search theory or multi-agent
systems, has considered the resulting market dynamics when
observations are not accurate and more accurate information
can be purchased from a self-interested agent.

Relaxation of the perfect signals assumption is typically
found in models of two-sided search [1], including marriage
or dating markets [3] and markets with interviewing [11].
The literature has not to this point focused on the decision
problems faced by self-interested knowledge brokers, or how
their presence affects the market.

In terms of market interventions, the two-sided search lit-
erature has considered the impact of search frictions on labor
markets (the 2010 Nobel Prize in Economics was awarded
for this work [15, 4]). One classic regulatory intervention in
these models is the introduction of a minimum wage, which
can be shown to be welfare increasing in many contexts [8],
but we are unaware on any work on subsidizing providers of
expert knowledge, as we discuss here.

7. DISCUSSION AND CONCLUSIONS
The power of modeling markets using search theory is well

established in the literature on economics and social science
[12; 1, inter alia]. It has led to breakthroughs in under-
standing many domains, ranging from basic bilateral trade
[17] to labor markets [15]. While knowledge has always been
an economically valuable commodity, its role continues to
grow in the Internet age. The ubiquity of electronic records
and communications means there is an increasing role for
knowledge brokers in today’s marketplaces. For example, it
is now feasible for agencies like Carfax to collect the avail-
able records of every recorded accident, insurance claim, oil
change, inspection, and so on for every car. The presence of
such knowledge brokers necessitate that we take them into
account in modeling the search process of consumers.

This paper takes the first step in this direction. We in-
troduce a search model in which agents receive noisy signals
of the true value of an object, and can pay an expert to
reveal more information. We show that, for a natural and
general class of distributions, the searchers optimal strategy
is a “double reservation” strategy, where she maintains two
thresholds, an upper and a lower one. When she receives
a signal below her lower threshold, she rejects it immedi-
ately. Similarly, when she receives a signal above her upper
threshold, she accepts it immediately. Only when the signal
is between the thresholds does she consult the expert, de-
termining whether to continue searching or accept the offer
based on the information revealed by the expert.

In such models, there is scope for an authority like a mar-
ket designer or regulator to improve social welfare by sub-
sidizing the cost of querying the expert. The benefit to the
searcher of having less friction in the process could poten-
tially more than offset the cost to the authority. The down-
side would be that if the authority provided too much sub-
sidy, this could lead to inefficient overconsumption of costly
(to produce) expert services. By solving the model for a
natural combination of the distribution of signals and the
conditional distribution of the true value given the signal, we
can analyze such questions more specifically. We show that
in our example, subsidies can in fact be welfare-enhancing,
and, in fact, social welfare is maximized when the searcher
has to pay exactly the marginal production cost of expert
services. Both the model and our results are significant for
designers of markets in which consumers will search and the
need for expert services will arise naturally (like an Internet
marketplace for used cars), because by enhancing social wel-
fare, the market designer can take market share away from
competitors, or perhaps charge higher commissions, because
it is offering a better marketplace for consumers.

There are several directions for future research, from both
the expert’s perspective and the market-designer’s. An in-
teresting problem for the monopolist expert is the optimal
pricing of bundles of queries, where agents must purchase a
bundle, instead of individual reports. More realistic model-
ing of “startup costs” and hence the average “supply curve”
of expert services (instead of the marginal cost considered
here) may also explain a richer range of behaviors. The
existence of the expert has ramifications beyond one-sided
search, our focus in this paper. For example, in two-sided
search markets like labor markets, there may be different
types of experts: those who conduct background checks, for
example, or providers who run independent testing services
to vet potential employees. What are their incentives, and
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Without Subsidy With Subsidy
de ce ηcece csηs Worth V W subsidy ce ηcece csηs Worth V W
0 0.06 0.10 0.08 0.7472 0.5653 0.6656 0.1003 0 0 0.1036 0.7928 0.6893 0.6893

0.025 0.06 0.10 0.08 0.7472 0.5653 0.6238 0.0585 0.025 0.05 0.09 0.7712 0.6295 0.6295
0.05 0.061 0.09 0.08 0.7365 0.5637 0.5806 0.0169 0.05 0.09 0.08 0.7536 0.5824 0.5824

Table 1: The different components of social welfare with and without subsidy for cs = 0.01. “Worth” is the
expected value of the opportunity eventually picked. Initially the decrease in query cost contributes more to
the increase in social welfare, but as de increases, this contribution becomes less significant. Note that the
first two columns in the case without subsidy are similar because the profit-maximizing ce is the same and
the searcher’s cost depends only on value of selected ce, not de.
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Figure 4: Increase in social welfare vs subsidy. When there is no marginal cost (de = 0), it is better for the
market designer to make the service available for free but when there is some marginal cost involved, then
increase in social welfare is a concave peaked at marginal cost.

how do these affect two-sided search markets? From the
market designer’s point of view, new alternatives to sub-
sidization as a means for improving social welfare can be
explored, e.g., inducing competition, or provision of expert
services by the market designer herself (e.g., a government
takes over the role of providing expert services).
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ABSTRACT
Creating agents that properly simulate and interact with
people is critical for many applications. Towards creating
these agents, models are needed that quickly and accurately
predict how people behave in a variety of domains and prob-
lems. This paper explores how one bounded rationality the-
ory, Aspiration Adaptation Theory (AAT), can be used to
aid in this task. We extensively studied two types of prob-
lems – a relatively simple optimization problem and two
complex negotiation problems. We compared the predic-
tive capabilities of traditional learning methods with those
where we added key elements of AAT and other optimal and
bounded rationality models. Within the extensive empirical
studies we conducted, we found that machine learning mod-
els combined with AAT were most effective in quickly and
accurately predicting people’s behavior.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Experimentation

Keywords
bounded rationality, cognitive models, agent learning

1. INTRODUCTION
The challenge of creating agents that effectively simulate

and interact with people is of utmost importance in many
systems [7, 8, 9, 16]. These agents form the backbone of
many mixed human-agent systems such as entertainment
domains [7], Interactive Tutoring Systems [9], and mixed
human-agent trading environments [8]. In order to effec-
tively interact with people, the agents have to understand
and predict people’s behavior. To date, these agents have
often been created based on the perspectives of unbounded
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rationality including expected utility, game theory, Bayesian
models, or Markov Decision Processes (MDP) [10, 15].

While these models are mathematically elegant and have
proven effective in some situations [10, 15], several funda-
mental obstacles exist in applying them to many real-world
applications. First, previous research in experimental eco-
nomics and cognitive psychology has shown that human de-
cision makers often do not adhere to fully rational behav-
ior. For example, Kahneman and Tversky [3] have shown
that individuals often deviate from optimal behavior as pre-
scribed by Expected Utility Theory. Second, decision mak-
ers often lack complete information and thus do not neces-
sarily know the quantitative structure of the environment in
which they act. Thus, even assuming that people act ratio-
nally, they cannot always compute the optimal solution for
a given problem, as they lack facts required to arrive at this
decision. Finally, even if people wish to act rationally and
have complete information about a given problem, it may
still be impossible for them to compute the optimal solu-
tion. Previous research has found that many classes of real-
world problems exist for which finding the optimal sequence
of actions is of intractable computational complexity [12].
Thus, even in the best of circumstances, expecting people
to behave optimally based on full rationality is unrealistic.

We posit that models based on Bounded Rationality hold
the most promise to best predict people’s behavior. This re-
search direction, initiated by Simon [17], assumes that peo-
ple – except in the simplest of situations – lack the cognitive
and computational capabilities to find optimal solutions. In-
stead they proceed by searching for non-optimal alternatives
to fulfill their goals. Simon coined the term “satisfice” to
capture that bounded decision makers seek “good enough”
solutions and not optimal ones. In this tradition, Sauermann
and Selten proposed a framework called Aspiration Adap-
tation Theory (AAT) [16] as a boundedly rational model of
decision making.

This paper’s major contribution is support for the claim
that learning models that aim to predict people’s behavior
should be based on bounded rationality models, and specifi-
cally AAT. To empirically support this claim, we studied two
types of problems – one relatively simple optimizing problem
and two complex negotiation problems. Within the opti-
mization problem, we found that traditional machine learn-
ing methods such as decision trees were successful in discov-
ering the strategies most people used. We note that these
strategies were consistent with AAT and were not represen-
tative of other bounded theories or the problem’s optimal
policy. Furthermore, we found that an AAT based predic-
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tion policy was extremely accurate, even when trained with
very limited data. Second, in the negotiation domains we
studied, traditional learning algorithms such as those in the
Weka learning package [21] were unable to effectively pre-
dict how people would behave due to the inherent problem
complexity. Nonetheless, by adding statistical information
about people’s bounded AAT strategies, we were able to sig-
nificantly improve models’ prediction accuracy beyond the
base algorithm.

2. RELATED WORK
Many multi-agent researchers have found that classical

models based on rigid models of expected utility often are
not effective in domains they studied. [1, 4, 5, 6, 8, 14].
Consequently, a key research question is what should be
used in place of these models. For example, designers of
automated negotiation agents found that when the auto-
mated agents follow their equilibrium strategies, the human
negotiators who negotiate with them become frustrated as
the equilibrium strategy requires the automated agent to re-
peatedly propose the same offer. Thus, negotiation sessions
often ended with no agreement [4]. Similarly, Lin et al. [6],
created an equilibrium agent for the negotiation domains
studied in this paper. They also found that in many situ-
ations the equilibrium agent failed to reach any agreement
when playing with people [6]. Thus, both the KB and QO
agents they created also intentionally steered away from the
equilibrium strategies [6]. In fact, a survey article of auto-
mated negotiators [5] found that none of the reviewed agents
implemented equilibrium strategies. They attributed this to
the assumption that people avoid equilibrium strategies in
complex environments due to their bounded nature.

However, once classical rationality models have been re-
jected, the question then becomes what model to use in-
stead. Towards this goal, previous works typically model
people’s preferences based on historical information. For
example, Gal and Pfeffer use a statistical approach to learn
which bid a person will select from a known number of pos-
sibilities [1]. Pardoe and Stone used machine learning tech-
niques to create a trading agent to predict the likelihood
that a person would accept a given bid price [11]. How-
ever, a key methodology difference exists between these and
works similar to ours. While previous works typically used
existing machine learning algorithms, our goal is to find a
general model of bounded rationality and use it to better
learn people’s actions. This important difference impacts
two key research issues. First, by using only generalized
bounded theories, we can prove or disprove the applicability
of psychological or economic bounded models in new prob-
lem domains. Possibly more importantly, and as we demon-
strate in this paper, once a generalized theory is found to be
accurate, it can be applied to new problems in order to fur-
ther improve existing learning algorithms’ accuracy above
traditionally used machine learning methods.

Previously, we studied the applicability of bounded ra-
tionality models, and even AAT [14]. However, that study
focused on validating if AAT was relevant, and not how it
could be used for improving learning accuracy. Additionally,
that work used human judges to decide if AAT was being
used, and thus leaves open concerns regarding possible hu-
man bias. This paper is the first that uses classic decision
tree models [13] to decide what decision model, bounded
or not, is used and how to use these theories for improved
learning.

3. ASPIRATION ADAPTATION THEORY
Aspiration Adaptation Theory (AAT) was proposed by

Selten as a general economic model for how people make cer-
tain economic decisions without any need for expected util-
ity functions [16]. AAT was originally formulated to model
how people make decisions where utility functions cannot
be constructed. For example, assume you need to relocate
and choose a new house to live in. There are many factors
that you need to consider, such as the price of each possible
house, the distance from your work, the neighborhood and
neighbors, and the schools in the area. How do you decide
which house to buy? While in theory utility based models
could be used, many of us do not create rigid formulas in-
volving numerical values to weigh trade-offs between each of
these search parameters.

AAT provides an alternative to utility theory for how deci-
sions can be made in this and other problems. First, m goal
variables are sorted in order of priority, or their urgency. Ac-
cordingly, the order of G1, . . . , Gm refers to goals’ urgency,
or the priority by which a solution for the goal variables is
attempted. Each of the goal variables has a desired value,
or its aspiration level, that the agent sets for the current pe-
riod. This desired valued is not necessarily the optimal one,
and the agent may consider the variable “solved” even if it
finds a sub-optimal, but yet sufficiently desired value. The
agent’s search starts with an initial aspiration level and is
governed by its local procedural preferences. The local pro-
cedural preferences prescribe which aspiration level is most
urgently adapted upward if possible, second most urgently
adapted upward if possible, etc. and which partial aspiration
level is retreated from or adapted downward if the current
aspiration level is not feasible. Here, all variables except for
the goal variable being addressed are assigned values based
on ceteris paribus, or all other goals being equal a better
value is preferred to a worse one.

The search procedure as described by AAT is different
from traditional search methods such as Hill-climbing or ma-
chine learning methods such as Gradient Descent techniques
in two aspects. First, within traditional learning or search,
optimal values for all variables are sought for simultaneously
[15]. In contrast, within AAT only one goal is attempted to
be satisfied at a time. Second, in AAT, the focus is on “sat-
isficing” goal values based on their aspiration levels. This
approach makes no attempt to find optimal values beyond
these “good enough” values – something machine learning
methods do search for.

It is important to note that two key differences exist be-
tween classic AAT, and how we apply AAT within this study.
First, AAT assumes that the m goal variables used to solve
G are incomparable as no utility function is possible to con-
nect goal variables. For example, in buying a house the goal
variables for location, price and size are likely to be incom-
parable with no evident utility function to compare them. In
this paper, we consider simpler problems where a concrete
function between G and the m goal variables clearly exists.
Nonetheless, we hypothesize that people will not attempt to
calculate G due to their bounded nature. This represents a
significant generalization to AAT’s theory and its relevance
even within domains that contain concrete, albeit difficult
to quantify, utility functions. Second, AAT is based on the
premise that the person’s search will be based on an aspira-
tion scale which sorts the m goal variables and attempts to
satisfice values for these goals. As we consider optimization
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and negotiation problems were utility can be calculated, it
is more natural for people to consider optimizing the instru-
ment variables that constitute the basis of these goals rather
than the more abstract general goal variables. This differ-
ence again represents a significant generalization of AAT.

We recognize that AAT is not the only possible model
that can predict human decisions. In both of the problems
we studied, optimal search methods or negotiation strategies
could have been used. Additionally, other bounded strate-
gies other than AAT are possible. Psychological models of
bounded rationality have suggested that people use domain
specific biases or heuristics to solve problems sub-optimally
[2, 3]. Following the psychological approaches, simple prede-
fined or greedy heuristics could be used. In the optimizing
domains, predefined values could have been used instead of
attempting to solve the problems. Within the negotiation
domains simple compromise heuristics could have been used.
Possibilities of such heuristics include always countering the
middle position between the previous offer of both sides or
offering the middle position between all previous offers of
both sides. These types of approaches would be consistent
with basic implementations of Gigerenzer and Goldstein’s
fast and frugal heuristics [2] and involve using simplistic pre-
set values that are seen as “good enough”.

4. EXPERIMENT SETUP
We studied how people solved two types of problems –

a relatively simple optimization problem and more complex
negotiation problems. We used the optimization problem as
a baseline as we believe it would be easier to understand
the decision making models used by people in this problem.
By focusing on more complex problems as well, we show the
applicability of our findings to real-world applications.

We specifically studied negotiation problems as various
real-world tasks are based on negotiation capabilities. These
can be as simple and ordinary as haggling over a price in the
market or deciding what television show to watch. Negoti-
ation issues can also involve issues where millions of lives
are at stake, such as interstate disputes [20]. The use of
simulation and role-playing is common for training people
in negotiations (e.g., the Interactive Computer-Assisted Ne-
gotiation Support system (ICANS)) [18]. These simulations
can be used in conjunction with people to alleviate some of
the efforts required of people during negotiations and also as-
sist people that are less qualified in the negotiation process.
Additionally, there may be situations in which simulations
can even replace human training procedures.

4.1 Optimization Domain
In the first optimization problem, we consider a problem

where a person must minimize the price in buying a com-
modity (a television) given the following constraints. As-
sume a person must personally visit stores in order to ob-
serve the posted price of the commodity. However, some
cost exists from visiting additional stores. We assume this
cost is due to factors such as an opportunity cost with con-
tinuing the search instead of working at a job with a known
hourly wage. For any given discrete time period, the person
must decide if she wishes to terminate the search. At this
point, we assume she can buy the commodity from any of
the visited stores without incurring an additional cost. The
goal of the agent is to minimize the overall cost of the pro-
cess which is the sum of the product cost and the aggregated

search cost.
From a strategic point of view, the game is played un-

der a time constraint. An optimal solution to this problem
can be found as an instance of the Pandora’s problem [19]
resulting in a stationary threshold below which the search
should be terminated. Formally, we can describe this prob-
lem as follows: We assume that there is a finite timeline
T = {1, 2, ..., k}. In each time step t, t ≤ k, the agent ob-
serves a cost and needs to decide whether to end the search.
All of the observed costs, regardless of the time step, are
drawn from the same distribution. We denote ct as the low-
est price the agent observed up to and including the time
period t (i.e., ct ≤ ct−1). At the end of the game the agent’s
cost is cost(t, ct) = ct + λ ∗ t, λ > 0. The agent’s goal is
to minimize this cost. As has been previously proven, the
optimal strategy in such domains is as follows: exists c̄ such
that if ct ≤ c̄ the agent should stop the search [19].

Intuitively, it seems strange that the decision as to whether
the agent should stop the search does not depend on how
much time is left, i.e., c̄ does not depend on k − t. How-
ever, the reason for this is as follows. If the agent’s overall
expected benefit from continuing the search (i.e., the reduc-
tion in price that it will obtain) is lower than the overall cost
due to the added search time, the agent clearly should not
continue the search. Furthermore, it was proven that it is
enough for the agent to consider only the next time period,
i.e., it should stop the search if and only if the expected re-
duction in the price in the next time period is less than the
cost of continuing one time period (λ) [19].

In our implementation, the prices are distributed normally
with a mean µ and a standard deviation σ. We denote by
x the price for which the expected reduction in the price for
one time period is equal to λ. For a given price p the benefit
is x− p and the probability1 for p is

1

σ
√

2π
e−

1
2 ( p−µ

σ
)2

Given these definitions we must generally solve:

∫ x

0

(x− p) 1

σ
√

2π
e−

1
2 ( p−µ

σ
)2dp = λ

In our specific implementation, µ = 1000, σ = 200 and
λ = 15. Thus we specifically solve,

∫ x

0

(x− p) 1

200
√

2π
e−

1
2 ( p−1000

200 )2dp = 15

Solving this equations yields a solution of x = 789.

4.2 Negotiation problems
We also studied two previously defined negotiation do-

mains [6] and focused on how people came to agreements
with other people in these problems. The goal of these prob-
lems was to negotiate as high a utility as possible given a
known weight of all issues. To reach an agreement, people
sent offers through a web interface which facilitated their
choosing the different values that constitute an offer. This
offer was then sent to the other person in plain English. A
time effect existed that assigned a time cost which influences

1In the domain, when a negative price was drawn, we drew
a new price. Since the probability of such an event is ex-
tremely small, we did not consider it in our analysis.

425



the utility of each player as time passed (there can be differ-
ent time costs for each player). The time effect was either
negative or positive. If no agreement is reached by the end
of the final turn then a status quo agreement was imple-
mented resulting in a status quo value for each player. Each
player could also quit the negotiation session at any given
time if he/she decided that the negotiation session is not
proceeding in a favorable way. This resulted in the imple-
mentation of an opt out outcome. During each phase of the
negotiation session, the instructions and parameters subject
to negotiation were accessible to the players. The players
were also aware of the current turn and time left until the
end of the turn and until the negotiation session terminates.
The history of past sessions was also easily accessible. When
receiving an offer the player can choose whether to accept
or reject it, or make a counter-offer.

4.2.1 Employer / Employee Negotiation Domain
In the first problem, we consider a negotiation session that

takes place after a successful job interview between an em-
ployer and a job candidate. In the negotiation session both
the employer and the job candidate wish to formalize the
hiring terms and conditions of the applicant. Below are the
issues under negotiation: The Salary issue dictates the to-
tal net salary the applicant will receive per month. The
possible values are (a) $7,000, (b) $12,000, or (c) $20,000.
The Job Description issue describes the job description
and responsibilities given to the job applicant. The job de-
scription has an effect on the advancement of the candidate
in his/her work place and his/her prestige. The possible
values are (a) QA, (b) Programmer, (c) Team Manager, or
(d) Project Manager. In addition to the base salary, other
job benefits may also be negotiated. The Car Benefits is-
sue revolves around the possibility that the company will
provide a company car for use by the employee with possi-
ble values being (a) a leased company car or (b) no leased
car. Pension benefits must also be negotiated and set as
percentage of the work’s salary. The possible value for the
Pension benefits are (a) 0%, (b) 10%, or (c) 20%. The
Promotion possibilities issue describes the commitment
by the employer regarding the fast track for promotion for
the job candidate. The possible values are (a) fast promo-
tion track (2 years), or (b) slow promotion track (4 years).
The Working hours issue describes the number of work-
ing hours required by the employee per day (not including
over-time). The possible values are (a) 8 hours, (b) 9 hours,
or (c) 10 hours. In total, this scenario allows for a total of
1,296 possible agreements (3× 4× 12× 3× 3 = 1296)2.

Each turn in the negotiation simulation is equivalent to
two minutes of an actual negotiation session, and the total
negotiation session is limited to 28 minutes. If the sides do
not reach an agreement by the end of the allocated time,
the job interview ends with the candidate being hired with
a standard contract, which cannot be renegotiated during
the first year. This outcome is modeled for both agents as
the status quo outcome.

During negotiation, each side can also opt-out of the ne-
gotiation session if it feels that the prospects of reaching
an agreement with the opponent are slim or if they feel it
is no longer able to negotiate a fair deal. If the employer

2Note that it is possible for there to be no agreement for
many of these parameters. In these case, we considered the
negotiation to have failed.

opts out then she will incur an expense due to the lost time
and work from the potential employee. As we assume the
employer will be required to postpone the project for which
the candidate was interviewing, this cost can be consider-
able. Conversely, the employee also has some leverage. If
the employee accepts too little, he is likely to find better
work elsewhere. However, the employee also loses the time
and salary from lost wages in continuing their job search.
Additionally, opting-out will make it very difficult for him
to find another job, as the employer will spread his/her neg-
ative impression of the candidate to other CEOs of large
companies.

Time also has an impact on the interaction. As time ad-
vances the candidate’s utility decreases, as the employer’s
good impression has of the job candidate decreases. The
employer’s utility also decreases as the candidate becomes
less motivated to work for the company.

4.2.2 Political Dispute Negotiation Domain
The second negotiation is based on a scenario where Eng-

land and Zimbabwe attempt to reach an agreement evolv-
ing from the World Health Organization’s Framework Con-
vention on Tobacco Control, the world’s first public health
treaty. The principal goal of the convention is “to protect
present and future generations from the devastating health,
social, environmental and economic consequences of tobacco
consumption and exposure to tobacco smoke.”The leaders of
both countries are about to meet at a long scheduled sum-
mit and must reach an agreement on the following issues:
The Creation of a Global Tobacco Fund issue describes
the total amount to be deposited into the Global Tobacco
Fund to aid countries seeking to rid themselves of economic
dependence on tobacco production. This issue has an im-
pact on the budget of England and on the effectiveness of
short-range and long-range economic benefits for Zimbabwe.
The possible values are (a) $10 billion, (b) $50 billion, or (c)
$100 billion. The Impact on other aid programs is-
sue affects the net cost to England and the overall benefit
for Zimbabwe. If other aid programs are reduced, the eco-
nomic difficulties for Zimbabwe will increase. The possible
values are (a) no reduction, (b) reduction equal to half of
the Global Tobacco Fund, or (c) reduction equal to the size
of the Global Tobacco Fund. Both Zimbabwe and England
must negotiate Trade Issues. Countries can use restrictive
trade barriers such as tariffs (taxes on imports from the other
country) or they can liberalize their trade policy by increas-
ing imports from the other party. There are both benefits
and costs involved in these policies: tariffs may increase rev-
enue in the short run but lead to higher prices for consumers
and possible retaliation by affected countries over the long
run. Increasing imports can cause problems for domestic
industries. But it can also lead to lower consumer costs and
improved welfare. For both Zimbabwe and England possi-
ble values for this are: (a) reducing tariffs on imports or (b)
increasing tariffs on imports. The Forum to Study Long-
Term Health Issues issue revolves around the scope of a
forum to explore comparable arrangements for other long-
term health issues. This issue relates to the precedent that
may be set by the Global Tobacco Fund. If the fund is estab-
lished, Zimbabwe will be highly motivated to apply the same
approach to other global health agreements. This would be
very costly to England. The possible values are (a) creation
of a fund, (b) creation of a committee to discuss the cre-
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ation of a fund, or (c) creation of a committee to develop an
agenda for future discussions. Consequently, a total of 576
possible agreements exist (4× 4× 3× 3× 4 = 576)3.

5. EXPERIMENTAL RESULTS
In this section we detail the shortcomings of using op-

timal models to predict people’s behavior, and how AAT,
and not other bounded methods, should be used instead. In
general, we found that in the optimization and negotiation
problems we studied, key elements of AAT were present in
decisions people made. When sufficient data was present, as
we found was the case in the relatively simple optimization
problem, clear strategies consistent with AAT were learned
by standard machine learning algorithms such as C4.5 [13].
We found that estimates of people’s aspiration scales in this
problem were useful for formulating a very accurate predic-
tion model even without an extended learning period and
with only sparse data. Within the more complicated negoti-
ation problems, we found that adding statistical information
about people’s typically aspiration scales was critical for im-
proving the prediction models as using both the equilibrium
strategies and traditional learning methods yielded an ex-
tremely poor predictor of how people would act.

5.1 AAT to Predict Optimization Decisions
Our first goal was to use machine learning techniques to

determine if optimal polices, fast and frugal heuristics [2] or
AAT best predict people’s optimizing decisions. Recall from
Section 3.1 that an optimal policy exists based on price alone
– buy if the price in the current store is less than 789. Thus
classical expected utility theory would predict that people
would similarly buy the commodity at this price. Assuming
people used fast and frugal search heuristics, we would ex-
pect them to formulate simple strategies involving only one
variable (e.g. search until price < X, or visit Y stores and
buy in the cheapest store). However, using an AAT based
model for prediction would assume some type of combina-
tion strategy exists where one variable is first searched for,
but then retreated from assuming that value could not be
satisfied. For example, a person might initially search for
a price less than 650, but will settle on even a higher price
(e.g. the lowest found so far) after unsuccessfully finding
this price after 5 stores.

We did in fact find strong support that AAT best pre-
dicted when people would buy the commodity. To study
this point, we studied the log files taken from 41 people and
how they chose to buy the commodity. Each person was
presented with a simulated implementation of the problem
described in Section 3.14. Every interaction with the simula-
tion randomized the values for the commodity as described
in Section 4.1, and all people were told to interact with this
simulation until they formulated a clear policy for how they
would decide to buy the commodity. After this point, we
then logged a minimum of 20 additional interactions (aver-
age 25.56) where each interaction ended in a decision to buy
the commodity in a certain store. Our goal was to predict
where each person would end his search process.

To obtain a prediction model without bias, we first sep-

3We again consider the negotiation as having failed if no
agreement is reached on all issues.
4A web interface for this problem can be seen at:
http://www.jct.ac.il/∼rosenfa/costSearch.html

arated all logged interactions for each of the 41 people, en-
tered them as input for the Weka machine learning package
[21], and applied the C4.5 decision tree classification algo-
rithm as implemented by Weka to decide if each person’s
behavior was consistent with AAT. We chose this learning
algorithm, as opposed to others such as Bayes or Neural
Nets, as the output from the C4.5 algorithm would not just
predict the person’s behavior, but also provide the rules by
which the classifier operates. We could then judge if these
rules were consistent with the optimal rule (e.g. purchase if
price < 789) or if the classifier represented a fast and fru-
gal rule with only one rule (e.g. buy after 4 stores). Weka
found that 30 of the 41 strategies had decision rules based
on price and store combinations (e.g. buy immediately if
the price is less than 700, otherwise visit 5 stores and buy in
the cheapest one) which are clearly non-optimal and not fru-
gal. Instead, this decision process can be viewed as a classic
example of the urgency and retreat process within AAT. In
these strategies, a certain price threshold is desired (highest
urgency) but retreated from if believed to be unattainable.
Of the remaining 11 rules, 10 rules were found to be based
on the price variable alone, with one based on the number of
stores. While none of these 11 rules were optimal, they may
be viewed as fast and frugal heuristics. Thus, the C4.5 learn-
ing algorithm found that the majority of strategies (30 of 41
or 73%) were consistent with urgency and retreat concepts
of AAT, while the minority (27%) of the strategies were an
alternate bounded rationality model – namely simpler fast
and frugal heuristics. None of the strategies were found to
be optimal. This result provides strong support to the claim
that AAT, and not optimal or fast and frugal heuristics best
predict people’s behavior. Also note that these results are
consistent with our previous work [14] where human judges
were used instead of machine learning techniques.

Next, we wished to create a general prediction model and
check how AAT might be used to improve such a model.
To create and test such a model, we combined all 41 peo-
ple’s logged interactions to create a total of nearly 5000 in-
stances where people either decided to buy the commodity
or to continue their search. Using this data, we constructed
two baseline models, found in Figure 1. One baseline is a
Naive model that classifies all decisions based on the ma-
jority class, here assuming people will always continue the
search. As people didn’t typically buy the commodity right
away, the majority decision is to continue the search and
thus 78.56% of all decisions are of this type (see Column 1).
A second baseline class is a Learning decision tree model
constructed which was trained using Weka’s C4.5 classifier
on the combined data and tested with cross-validation (Col-
umn 2). It is interesting to note that this decision tree was
also consistent with AAT, but this result is not surprising
as most individual logs were consistent with AAT as well.

We then compared these baselines to models which con-
tained adding information about people’s AAT preferences.
Column 3 of Figure 1 is based on a learned C4.5 model, but
added information about people’s average AAT preferences
(e.g. buy immediately if the price is less than 750, other-
wise settle on the best price after visiting a total of 3 stores).
While this model is slightly better than the learned baseline,
this model was not significantly more accurate. We hypoth-
esized this is due to learned baseline being already based on
AAT. Thus, by adding additional information we did not
significantly aid the C4.5 to improve its accuracy.

427



Figure 1: Comparing the Prediction Accuracy be-
tween AAT and non-AAT Based Models

We hypothesized that when AAT preferences are clear,
such as seems the case in this problem, even sparse data
could be used to form an accurate model. In this prob-
lem, the most urgent goal variable is the commodity price
in the current store. By sampling only a limited number
of instances where people stopped the search based on this
value, we believe it is possible to approximate the accuracy
of the learned model from nearly 5000 logged instances. To
support this claim, we formed a learning policy based on
the average price used in 50 decisions to buy the commod-
ity and simply averaged the threshold for this parameter
(average search stopped at price = 767). The accuracy of
this policy is presented in column 4 of Figure 1. Observe
that this model is nearly equally accurate to the learned
policies. In contrast, creating traditional models with such
small amounts of data were not successful and yielded the
naive model (Column 1). We also observed that even ex-
tremely small samples of only 10 decisions formed similar
models. We took 5 such samples and noted that the devia-
tion between these samplings was not great and the lowest
prediction accuracy was 81.92%. Thus, we conclude that in
relatively basic domains, an accurate learning model can be
made even with only limited AAT data based on the most
important search parameter(s).

5.2 AAT to Predict Negotiation Decisions
In order to study more complex, real-world problems, we

also studied if AAT could be used to better predict peo-
ple’s negotiation activities in the two problems described in
Section 3.2. Recall that in these problems people must ne-
gotiate either 5 or 6 parameters. In this section, we study
two key issues: 1) Is AAT applicable to negotiation prob-
lems? 2) Assuming AAT is applicable, will it facilitate a
better prediction model for people’s behavior?

According to AAT, one would expect people to rank the
importance of each of the negotiation parameters according
to his or her aspiration scale. Assuming people often have
the same aspiration scales, we would also see an order where
issues are addressed, e.g. certain parameters are typically
negotiated first, second, etc. For example, in the employer /
employee domain, we might find that negotiations first focus
on the salary amount parameter and only then move on to
other parameters such as pension or transportation benefits.
Our premise is that by understanding these scales, one can

Figure 2: Frequency of Parameter Change in Em-
ployer / Employer Negotiation Domain

add this information into traditional models such as C4.5 to
more accurately predict what bids people will offer.

We did in fact find that aspiration scales existed whereby
certain negotiation parameters were stressed more frequently
than others. To study this point, we analyzed how fre-
quently the given parameters were changed, on average, over
the course of all collected negotiation interactions. As a
baseline, we also considered the actual weights these issues
were given [6]. This allowed us to compare if people stressed
negotiation issues differently from this baseline value.

Figure 2 presents how frequently each of the 6 parameters
in the employer / employee domain were changed. These re-
sults were taken from 47 negotiation sessions between peo-
ple. The first column in this Figure shows the frequency
people changed each of these issues (either a raised or lower
value). The second value represents the actual weights these
issues had. Note that clear aspiration scales existed, and
these scales were different from the actual issues weights.
Certain parameters, say promotion possibilities, clearly had
a lower urgency as these issues were typically not discussed.
In comparison, other parameters, such as working hours and
salary, were discussed frequently. Furthermore, we observed
that even within issues such as working hours and salary
that seemed to be equally discussed, the point where they
entered in negotiation was often not the same. Often the
salary point was discussed first, and only then the number
of hours. For example, within the first two negotiation inter-
actions, the salary issues was discussed in 45% of all session,
while the number of hours issues was only discussed in 24%
of the sessions. Again, this would represent that the salary
issue had a higher urgency at the start of negotiations.

Figure 3 presents how frequently each of the 5 parame-
ters in the tobacco trade domain were changed. These re-
sults were taken from 56 negotiation sessions between peo-
ple. Again, certain issues such as the Impact on other Aid
and Forum on Other Health Issues were clearly discussed
more frequently than issues such as England and Zimbabwe’s
Trade Policy. We again noted that certain issues were typ-
ically negotiated at different points of sessions. Also note
that the aspiration scales here differ greatly from the actual
weights of the issues. The actual weight for the Size of Fund
parameter was equal to all of issues combined (0.5 of the
total weight). Yet, people typically focused on other issues
more, such as the Impact on Other Aid and Forum on Other
Health Issues parameters. Thus, deriving aspirations from
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Figure 3: Frequency of Parameter Change in Trade
Negotiation Domain

the actual utility weights is not possible.
We then proceeded to study if adding AAT information

was helpful in predicting how people will negotiate. In the
problems we considered, the parameters to be negotiated
could have between 2 and 4 discrete values. Please refer
back to Section 3.2 for a description of these parameters
and their possible values. The goal of the models was to
accurately predict what changes, if any, would be made by
a person in the next offer.

In order to study this point we considered several models
for both negotiation problems (see Tables 1 and 2). The
goal of all of these models was to predict the next value for
each parameter. In the learning models, each parameter was
training and tested separately through cross-validation, but
did have access to the previous values for all parameters.
First, we considered the Majority Rule model. Given the
full log file, this rule assumes that a person would offer the
most popular value for any given parameter. For example,
in the employer / employee domain, the most popular ti-
tle was “Programmer”. Second, we implemented two mod-
els based on the equilibrium strategy. This strategy is
based on previous work in these problems [6]. However, as
the equilibrium strategy will change based on which person
is allowed to offer the last bid, we checked both what equilib-
rium strategies would predict for all parameters. Next, we
created a baseline strategy that uses the C4.5 algorithm to
predict the next offer for each parameter. This model used
historical information about the previous offer and the cur-
rent negotiation iteration. Next, we created a C4.5 with
AAT statistical information prediction model. As we
previously demonstrated, each parameter had different ur-
gencies. Thus, we attempted to create a more accurate
model by adding information about which parameters were
typically raised or lower for any given iteration. Specifically,
we added a field with a binary flag value to differentiate
between the iterations for which people typically changed
a given parameters’ value with a frequency of ≥ 0.5, and
those which were typically not changed and added informa-
tion would likely not help. This was done to avoid overfit-
ting the AAT statistics for any training / testing pair, and
to thus keep the generality of the results. Finally, we created
a C4.5 + Complete Behavior Knowledge model. This
final baseline had knowledge about what the previous offer
was, and also added perfect knowledge if the person would
revise upwards, downwards, or leave unchanged their previ-

ous offer. In cases where only two options exist, one would
expect this baseline to guarantee 100% accuracy. However,
when more than 3 values exist for a given parameter, even
this model cannot guarantee 100% accuracy. For example,
if a previous salary offer was $7,000 per month and we know
the next offer will be higher, we still do not know if it will be
raised to $12,000 or $20,000. Nonetheless, the goal of this
model was to provide an upper bound for how much AAT
based information could theoretically help.

Tables 1 and 2 demonstrate the effectiveness of adding
AAT information to boost prediction accuracy. The first row
of these tables show the parameter to be negotiated and the
number of possible values. The second row presents the ma-
jority rule baseline. The third and fourth rows present how
effective the equilibrium policies were in predicting what
people actually offered. Note that both of these policies in
both problems fall well below the naive majority baseline.
This again demonstrates the ineffectiveness of using equi-
librium theoretical policies to predict how people actually
behave. The fifth row presents the accuracy of the learned
C4.5 model. This model represents the effectiveness of this
traditional learning method in predicting each of the param-
eters. We then added AAT information, and reran the same
C4.5 algorithm, the results of which are in the sixth row.
Note that in both domains the improvement gained from
the AAT information is significant. However, in the To-
bacco Trade Domain (Table 2), the prediction improvement
is much larger from the base C4.5 algorithm (over a 10%
accuracy boost for many parameters), yet falls short of the
accuracy in the Employer / Employee Work Domain (Table
1). Also, in both domains, only one parameter did not gain
from the added aspiration information. For both of these
parameters, few instances existed where people had clear
general aspiration changes, preventing any accuracy boost
from this approach. Finally, the last line in both domains
presents the accuracy of the C4.5 algorithm with complete
behavior knowledge, or perfect information about whether a
person will retreat from (decrease) a given parameter value,
or upwardly revise its aspiration (increase). Note that as
expected even complete AAT information could not yield
100% prediction accuracy for parameters with more than 2
values.

6. CONCLUSIONS AND FUTURE WORK
This paper makes several significant contributions towards

creating more effective agents to interact with people in op-
timization and negotiation problems. First, we found that
“traditional” rationality models were often poor indication
how people will act. Consistent with previous research [1,
11], we found that a better alternative is to use traditional
learning techniques to predict how people will behave. How-
ever, in contrast to previous works, we used decision trees
[13] to formulate exactly which policy was used instead.
This classifier found that bounded rationality theories, and
specifically AAT, were used. Second, this paper represents
a unique approach where this general theory was then reap-
plied to improve learning models. Within the complex ne-
gotiation domain, this approach significantly improved pre-
diction accuracy, often by over 10%. Within the simpler
optimization problem, this approach was useful in produc-
ing accurate learning models even when extremely limited
learning data was available.

For future work, several directions are possible. First,
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Salary-3 Title-4 Car-2 Pension-3 Promotion-2 Hours-3 Average
Majority Rule 60.1852 67.5926 57.4074 70.3704 62.963 62.963 63.5803

Equilibrium Strategy 1 44.4444 67.5926 69.4444 66.6667 41.6667 67.5926 59.568
Equilibrium Strategy 2 25.9259 17.5926 69.4444 19.4444 43.5185 61.1111 39.5062

C4.5 Without AAT 61.111 68.5185 68.5185 67.5926 83.3333 69.4444 69.7531
C4.5 with AAT stats 62.963 68.5185 75.9259 71.2963 91.6667 76.8519 74.53705

C4.5 + Complete Knowledge 95.3704 89.814 100 96.2963 100 96.2963 96.2962

Table 1: Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Employer /
Employer Negotiation Domain

Fund Size-3 Aid-3 Zim. Tariff-2 Eng. Tariff-2 Forum-3 Average
Majority Rule 57.3333 45.3333 58.2222 62.6667 44 53.5111

Equilibrium Strategy 1 35.088 42.3849 41.962 61.9443 46.5569 45.58722
Equilibrium Strategy 2 35.088 42.3849 51.337 44.7568 41.9177 43.09688

C4.5 Without AAT 61.8257 46.888 57.7778 64 49.3776 55.97382
C4.5 with AAT stats 71.1111 56.4444 67.1111 64 55.5556 62.84444

C4.5 + Complete Knowledge 95.5556 93.7778 100 100 87.1111 95.2889

Table 2: Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Tobacco
Trade Negotiation Domain

once we have demonstrated that knowing people’s aspira-
tions improves learning, one may wish to study how these
values can be quickly and accurately identified to further
aid in the learning process. Second, this paper focuses on
how to best learn how people interact with each other. One
important application of this work is to create automated
agents that use this paper’s lessons to better interact with
people. State of the art automated negotiation agents [5, 6]
currently do not use this information. Third, we were suc-
cessful in demonstrating that AAT is more useful than tra-
ditional rationality or fast and frugal bounded heuristics to
predict how people in the problems we studied. However, an
open question is what other, likely bounded, general theories
will be helpful in creating learning agents in other real-world
environments where AAT might not be relevant.
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ABSTRACT
In many settings and for various reasons, people fail to make op-
timal decisions. These factors also influence the agents people de-
sign to act on their behalf in such virtual environments as eCom-
merce and distributed operating systems, so that the agents also act
sub-optimally despite their greater computational capabilities. In
some decision-making situations it is theoretically possible to sup-
ply the optimal strategy to people or their agents, but this optimal
strategy may be non-intuitive, and providing a convincing explana-
tion of optimality may be complex. This paper explores an alterna-
tive approach to improving the performance of a decision-maker in
such settings: the data on choices is manipulated to guide searchers
to a strategy that is closer to optimal. This approach was tested for
sequential search, which is a classical sequential decision-making
problem with broad areas of applicability (e.g., product search,
partnership search). The paper introduces three heuristics for ma-
nipulating choices, including one for settings in which repeated in-
teraction or access to a decision-maker’s past history is available.
The heuristics were evaluated on a large population of computer
agents, each of which embodies a search strategy programmed by a
different person. Extensive tests on thousands of search settings
demonstrate the promise of the problem-restructuring approach:
despite a minor degradation in performance for a small portion of
the population, the overall and average individual performance im-
prove substantially. The heuristic that adapts based on a decision-
maker’s history achieved the best results.

Categories and Subject Descriptors
[Agent theories, Models and Architectures]: Bounded rationality

General Terms
Human Factors, Experimentation

Keywords
Restructuring Decision Making

1. INTRODUCTION
For a variety of decision-making situations, it has been shown

that people do not choose optimally or follow an optimal strategy.
Research in psychology and behavioral economics has revealed
various sources of this suboptimal behavior, rooted in various char-
acteristics of human cognition and decision-making [2]. The phe-
nomena recurs also in agents that are designed by non-specialists
in decision-making theory [3]. A number of approaches have been
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pursued to design computer systems which will improve the de-
cisions made by people [13, 21]. These systems may be charac-
terized as attempting to improve a decision-maker’s judgment of a
situation and her ability to identify, reason about, and compare the
(full set of possible) outcomes of the different choices in a decision
setting in ways that yield a better decision-making process.

In this paper we use a different approach, one that parallels re-
cent developments in psychology and behavioral economics [18].
Instead of attempting to change a decision-maker’s strategy directly
so that it aligns better with the optimal one, we restructure the
decision-making problem itself. This strategy mimics approaches
to human decision-making that remove options to allow people to
focus on an appropriate set of choices and characteristics of those
choices. For instance, the buyer of a used car may reach a better
decision more quickly if presented with a smaller set of possible
cars and only the most important characteristics of those cars. The
work described in the paper is an exploration of the hypothesis that
a computer agent can make better decisions in certain settings given
fewer options, with the characteristics of each option adjusted to
compensate for possible reasoning biases of the agent.

Restructuring processes manipulate the choices originally avail-
able to the decision-maker. Manipulations include elimination of a
subset of the alternatives available and changing the values of their
characteristics. The decision-maker then makes the choices it be-
lieves to be optimal given the restructured problem. To maintain
the reliability of the restructured decision setting, all choices for
the manipulated problem must be legitimate choices in the origi-
nal problem. Similarly, all possible outcomes of each choice in the
original problem should be valid in the manipulated problem.

The advantage of the restructuring approach is that it completely
avoids the need to persuade the decision-maker (either an agent or
a person) of the optimality and correctness of the optimal strat-
egy. When the space of possible strategies is complex to express
or the optimal strategy is non-intuitive, substantial effort may be
required for such persuasion. Restructuring is also ideal when the
strategy of a searcher is pre-set and cannot be changed externally,
as in the case of an autonomous agent in eCommerce. This new
approach does not, however, guarantee optimality. In some cases,
a few decision-makers may perform slightly less well because they
lose alternatives or receive inaccurate information about the pos-
sible outcomes of the different options. The results given in this
paper show that, nonetheless, overall the method substantially im-
proves the expected outcome. While the idea that manipulating
information people receive can be beneficial is not new, prior work
[9, 7] mainly considered settings in which non-optimal selections
derive from people’s computational limitations. This paper, in con-
trast, deals with sequential decision-making in complex settings
which require structured decision-making strategies.

The application domain used in this paper for investigating the
usefulness of the problem-restructuring approach is economic search.
In economic search [19], the searcher chooses one of several op-
portunities, each associated with a distribution of gains. The ac-
tual gain from a particular opportunity can be obtained, but there
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Application Goal Opportunity Value Search Cost Source of uncertainty
Marriage mar-
ket

Maximize life-
time happiness

Date Lifetime utility Time spent, being alone
while searching

Uncertainty regarding the
potential spouse character

Job market Optimize
lifetime assets

Job inter-
view

Offered salary
and perks

Time spent, unemployment
while searching

Uncertainty about potential
employers

Product pur-
chase

Minimize over-
all expense

Store Product price Time, communication and
transportation expenses

Uncertainty regarding
asked prices

Table 1: Mapping applications to sequential search problem

is a cost for getting it. The searcher thus needs to take into con-
sideration the trade-off between the cost of further search and the
additional benefits of it [1, 5, 11]. The sequential decision setting
of economic search models a variety of daily activities. Prior lit-
erature shows that neither people nor agents they design for this
problem use the optimal search strategy [15, 3]. Furthermore, the
optimal solution for an economic search problem is conceptually
challenging and has many inherent counter-intuitive characteristics
[19] that make it difficult to persuade people to adopt it. Economic
search is thus an ideal domain in which to investigate the benefits
of problem-restructuring.

The paper presents three problem manipulation heuristics for
the sequential search problem, two of them non-adaptive and the
third adaptive. The non-adaptive heuristics apply a fixed set of
manipulation rules and do not require any prior knowledge about
the searcher. The first non-adaptive heuristic, denoted “informa-
tion hiding”, eliminates some of the alternatives available based on
the likelihood that these alternatives will not actually be needed by
the optimal strategy. The second non-adaptive heuristic, denoted
“mean manipulation”, attempts to manipulate the distribution of
gains associated with each alternative in a way that a searcher who
is influenced only by means (rather than the distribution of gains)
will actually end up following the optimal strategy. Finally, an
adaptive manipulation heuristic, denoted “adaptive learner”, is in-
troduced for cases where results of prior interactions with the user
are available. This heuristic attempts to model the decision-maker’s
strategy and classify it according to a set of pre-defined strategies.
Based on this classification, it then applies one of the non-adaptive
manipulation heuristics.

We evaluate the usefulness of the problem-restructuring method
and the effectiveness of the heuristics using computer agents that
were programmed by students for a search domain called “job -
assignment”. The results of the evaluation show that the use of
manipulated choices for search problems results in search strate-
gies that more closely resemble the optimal ones for the corre-
sponding non-revised settings. In addition, the evaluation reveals
that the heuristics differ in the nature of the improvement that in-
dividual agents achieve. With the “mean manipulation” heuristic
some searchers get maximum improvement, but others substan-
tially worsen their performance. The “information hiding” heuris-
tic, in contrast, does not achieve the maximum possible individ-
ual improvement for any agent, but the average improvement is
greater and the maximum degradation in any searcher’s expected
performance is substantially smaller. As expected, the “adaptive
learner” heuristic produces the best results in comparison to the
non-adaptive heuristics alone.

In the following section we formally present the economic search
problem, its optimal solution and the complexities associated with
recognizing its optimality. Section 3 explains and justifies the agent-
based methodology for testing. The three heuristics are described
in Section 4, and the details of the principles used for evaluating
them are given in Section 5. Section 6 summarizes the results. Sec-
tion 7 surveys literature from several research fields relevant to this
research. Finally we conclude in Section 8.

2. THE SEARCH MODEL
As the underlying framework for the research, we consider the

canonical sequential search problem described by Weitzman [19]
to which a broad class of search problems can be mapped. In this

Project α ω
Cost 15 20

Rewards (0.5,100) , (0.5,55) (0.2,240) , (0.8,0)

Table 2: Information for Simplified Example.

problem, a searcher is given a number of possible available op-
portunities B = {B1, ...,Bn} (e.g., to buy a product) out of which
she can choose only one. The value vi to the searcher of each
opportunity Bi (e.g., expense, reward, utility) is unknown. Only
its probability distribution function, denoted fi(v), is known to the
searcher. The true value vi of opportunity Bi can be obtained but
only by paying a fee, denoted ci, possibly different for each oppor-
tunity. Once the searcher decides to terminate her search (or once
she has uncovered the value of all opportunities) she chooses from
the opportunities whose values were obtained, the one with the
minimum or maximum value (depending on whether values rep-
resent costs or benefits). A strategy s is thus a mapping of a world
state W = (q,B′ ⊂ B) to an opportunity Bi ∈ B′, the value of which
should be obtained next, where q is the best (either maximum or
minimum) value obtained by the searcher so far and B′ is the set of
opportunities with values still unknown. (Bi = /0 if the search is to
be terminated at this point.) The optimal sequential search strategy
s∗ is the one that maximizes/minimizes the expected sum of the
costs incurred in the search and the value of the opportunity chosen
when the process terminates.

The search problem as so formulated applies to a variety of real-
world search situations. For example, consider the case of looking
for a used car. Ads posted by prospective sellers may reveal little
and leave the buyer with only a general sense of the true value and
qualities of the car. The actual value of the car may be obtained
only through a test drive or an inspection, but these incur a cost
(possibly varying according to the car make, model, location, and
such). The goal of the searcher is not necessarily to end up with
the most highly valued car, since finding that one car may incur
substantial overall cost (e.g., inspecting all cars). Instead, most car
buyers will consider the tradeoff between the costs associated with
further search and the marginal benefit of a better-valued oppor-
tunity. Table 1 provides mappings of other common search appli-
cations to the model. As it suggests, a large portion of our daily
routine may be seen as executing costly search processes.

While the problem is common, the nature of its optimal solution
is non-intuitive. A simplified version of an example from Weitzman
[19] may be used to illustrate. It deals with two possible invest-
ments. The benefits of each are uncertain and can only be known
if a preliminary analysis is conducted. If funds are limited, then no
more than one investment would actually be carried out. Table 2
summarizes the relevant information for decision-making: invest-
ment α might yield a total benefit of 100 with probability .5 and
of 55 with probability .5 and alternative investment ω with a prob-
ability of .2 might deliver a possible benefit of 240 and no benefit
with probability .8. Preliminary analysis shows costs of 15 for the
α investment and 20 for ω.

The problem is to find a sequential search strategy which maxi-
mizes expected value. When reasoning about which alternative to
explore first, one may notice that by any of the standard economic
criteria, α dominates ω. Investment α has a lower cost, higher ex-
pected reward, greater minimum reward and less variance. Conse-
quently, most people would guess that α should be researched first
[19]. However, and somewhat paradoxically, it turns out that the
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Figure 1: Solution to simplified example

optimal sequential strategy is to check ω first and if its payoff turns
out to be zero then to develop α. This is shown in the decision tree
in Figure 1.

It is quite simple to compute the optimal solution to the sequen-
tial search problem [19]. The solution is based on setting a reserva-
tion value (a threshold) denoted ri for each opportunity Bi. For the
expected cost minimization version of the problem, the reservation
value to be used should satisfy Equation 1(a):

(a) cBi =
∫ ri

x=−∞
(ri− x) fi(x)dx ; (b) cBi =

∫ ∞

x=ri

(x− ri) fi(x)dx.

(1)
Intuitively, ri is the value where the searcher is precisely indifferent:
the expected marginal benefit from obtaining the value of the op-
portunity exactly equals the cost of obtaining that additional value.
The searcher should always choose to obtain the value of the op-
portunity associated with the minimum reservation value and ter-
minate the search once the minimum value obtained so far is less
than the minimum reservation value of any of the remaining oppor-
tunities. For revenue maximization, the reservation value should
satisfy equation 1(b) and values should be obtained according to
descending reservation values, until a value greater than any of the
reservation values of the remaining opportunities is found.

One important and non-intuitive property of the above solution is
that the reservation value calculated for each opportunity does not
depend on the number and properties of the other opportunities, but
rather on the distribution of the value of the specific opportunity and
the cost of evaluating it.

Sequential search problems provide a good, and important, arena
for investigating whether restructuring the problem is preferred over
supplying the optimal search strategy to the decision-maker. As ev-
idenced in the results section (and in prior literature [3, 15]), both
people and the agents they program fail to follow the optimal strat-
egy when engaged in sequential search. Supplying the optimal so-
lution to the searcher may require extensive argumentation and ef-
fort because of the counter-intuitive nature of the optimal solution,
in particular its myopic nature and the fact that it often favors risky
opportunities [19]. A possible way to persuade a person that this is
the optimal strategy is by giving her the optimality proof, but that
is relatively complex and requires strong mathematical and search
theory background. A possible way to persuade an agent that this
is the optimal strategy is by calculating the expected value of every
other sequence of decisions and compare with the expected out-
come of the optimal strategy. However, the number of possible
sequences for which the expected outcome needs to be calculated
is theoretically infinite in the case of continuous value distributions
or exponential (combinatorial) for discrete probability distribution
functions. Thus, both these methods for proving optimality have
substantial overhead. In contrast, the problem restructuring ap-
proach can improve performance without requiring such complex
persuasion.

3. AGENT-BASED METHODOLOGY
We used computer agents rather than people to test the effective-

ness of the general approach of restructuring the problem space and
of the heuristics for manipulating the choices presented for several
reasons. First, from a methodological perspective, this approach
enables the evaluation to be carried out over thousands of different
search problems, substantially improving the statistical quality of
the result. Even more importantly, it eliminates people’s compu-
tational and memory limitations as possible causes of inefficiency.
The inefficiency of the agents’ search is fully attributable to their
designs, and result from the agent designers’ limited knowledge of
how to reason effectively in search-based environments.

Second, from an applications perspective, the ability to improve
the performance of agents for search-related applications and tasks,
especially in eCommerce, could significantly affect future markets.
The importance and role of such agents have been growing rapidly.
Many search tasks are delegated to agents that are designed and
controlled by their users (e.g., comparison shopping). Many of
these agents use non-optimal strategies. Once programmed, their
search strategy cannot be changed externally, but it can be influ-
enced by restructuring of the search problem.

Finally, the results from agent-based evaluations may be useful
in predicting the way the proposed heuristics would affect people’s
search. Some prior research has shown close similarities between
a computer agent’s decisions and the decisions made by people in
similar settings [15], in particular in search-based settings [3].

4. HEURISTICS
In this section, we define the three problem-reconstruction heuris-

tics used in our investigations: Information Hiding, Mean Manip-
ulation and Adaptive Learner. These heuristics differ primarily in
whether they adapt to a searcher’s strategy. The first two heuristics
do not adapt; they assume no prior information about the searcher
is available and apply a fixed set of manipulation rules. The third
heuristic uses information from a searcher’s prior searches to clas-
sify it and decide which of the other two heuristics to use.

For a manipulation heuristic to be considered successful, it needs
not only to improve average overall agent performance, but also to
avoid significantly harming the performance of any of the agents.

4.1 The Information Hiding Heuristic
This heuristic removes from the search problem opportunities for

which the probability that their value will need to be obtained ac-
cording to the optimal strategy s∗ is less than a pre-set threshold
α. By removing these opportunities, we prevent the searcher from
choosing them early in the search, yielding a search strategy that
is better aligned with the optimal strategy in the early, and more
influential, stages of the search. While the removal of alternatives
is likely to worsen the performance of fully rational agents (ones
that use the optimal strategy), the expected performance decrease
is small; the use of the threshold guarantees that the probability is
relatively small that these removed opportunities are actually re-
quired in the optimal search.

Formally, for each opportunity Bi we calculate its reservation
value, ri, according to Equation 1. The probability of needing to
obtain the value of opportunity Bi according to the optimal strat-
egy, denoted Pi, is given by Pi = ∏r j≤ri

P(v j ≥ ri) for the cost min-
imization version of the problem, and Pi = ∏r j≤ri

P(v j ≤ ri) for its
revenue maximization version. The heuristic omits from the prob-
lem every opportunity Bi (i≤ n) for which Pi ≤ α.

4.2 The Mean Manipulation Heuristic
This heuristic addresses the problem that people tend to overem-

phasize mean values, reasoning about this one feature of a distribu-
tion rather than the distribution more fully. Their search strategies
typically choose to obtain the value of the opportunity for which
the difference between its expected net value and the best value
obtained so far is maximal. We denote this strategy “naive mean-
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based greedy search”. Formally, denoting the mean of opportu-
nity Bi by µi, searchers using the naive mean-based greedy strategy
calculate for each opportunity the value wi = µi − ci (in the cost
maximization version) or wi = µi + ci (in the revenue minimiza-
tion version) and choose to obtain the value of opportunity Bi =
argmaxB j{w j|B j ∈B′∩w j ≥ v} (or argminB j{w j|B j ∈B′∩w j ≤ v}
in the cost minimization version), where v is the best value obtained
so far.

The heuristic restructures the problem such that wi of each op-
portunity Bi in the restructured problem equals the reservation value
ri calculated for that opportunity in the original problem. This
ensures that the choices made by agents that use the naive mean-
based greedy search strategy for the restructured problem are fully
aligned with those of the optimal strategy for the original prob-
lem. The restructuring is based on assigning to each opportunity Bi
(0 < i ≤ n) a revised probability distribution function f

′
i such that

w
′
i = ri, where ri is the reservation value calculated according to

Equation 1. The manipulation of fi is simple, as it only requires
allocating a large mass of probability around µ

′
i (the desired mean,

satisfying w
′
i = ri). The remaining probability can be distributed

along the interval such that µ
′
i does not change.

4.3 The Adaptive Learner Heuristic
The adaptive learner heuristic attempts to classify the strategy of

a searcher and uses this classification to determine the best problem
restructuring method to apply. For this purpose we need to have a
representative strategy for each strategy class that has all the typical
characteristics of strategies in the class. The heuristic thus requires
the development of agents, denoted “class-representing agents”.
Each “class-representing agent” employs the representative-strategy
of its class. The measure of similarity between any searcher’s strat-
egy and a given class is the relative distance between its perfor-
mance and the performance of the class-representing agent for that
class over the same set of problems. The searcher is classified as
belonging to the class for which the relative performance distance
to its representing-agent is minimal, and below a threshold γ. Oth-
erwise, it is classified as belonging to a default class. Once the
searcher is classified, the restructuring heuristic for its class can be
applied. The use of the threshold γ assures that for any agent that
cannot be accurately classified, a default manipulation heuristic is
used, one that guarantees no substantial possible degradation in the
performance of the agent. The adaptive learner heuristic is given in
Algorithm 1.

Algorithm 1 Adaptive Learner
Input: O - Set of prior problem instances.

S - Set of strategies.
T hreshold - classification threshold.

Output: s∗ - the classification strategy for the searching agent
(null if not classified or no previous data).

1: Initialization: ds← 0 ∀s ∈ S
2: for every o ∈ O do
3: for every s ∈ S do
4: ds← ds + ‖Per f ormanceagent (o)−Per f ormances(o)‖

Per f ormances(o)
5: end for
6: end for
7: if min{ds} ≤ T hreshold then
8: return argmins(ds)
9: else

10: return null
11: end if

The algorithm receives as an input the results of prior searches
and a set S of strategy classes. The function Per f ormances(o) re-
turns the performance of the class-representing agent s ∈ S given
the problem instance o (where Per f ormanceagent(o) is the perfor-

mance of the searcher being classified based on o). The algorithm
returns the strategy s∗ to which the agent is classified (or null, if
none of the distance measures are below the threshold set). Based
on the strategy returned we apply the manipulation heuristic which
is most suitable for this strategy type (or the default manipulation
if null is returned).

The results we report in this paper are based on two strategy
classes: optimal strategy and naive mean-based greedy search strat-
egy.1 For a searcher that cannot be classified as one of these two
strategies, we use the information hiding manipulation. To produce
the functionality Per f ormances(o) required in Algorithm 1, we de-
veloped the following two agents:
• Optimal Agent. This agent follows Weitzman’s optimal so-

lution [19].
• Mean-based Greedy Agent. This agent follows the naive

mean-based greedy search strategy described in Subsection
4.2.

The more observations of prior searcher behavior that the adap-
tive heuristic’s algorithm is given, the better the classification it can
produce, and consequently the better the searcher’s performance is
likely to be after the appropriate manipulation is applied. Obvi-
ously, an even greater improvement in performance could be ob-
tained if the heuristic had access to the searcher (i.e., the agent)
rather than just the records describing prior searches. If direct ac-
cess to the agent is allowed, then a straightforward improvement of
the method would be executing the agent over each set of choices
obtained, using any of the different methods and classifying it ac-
cordingly.

5. EVALUATION
To evaluate the three heuristics and our hypothesis that agents’

performance in search-based domains can be improved by restruc-
turing the search problem, we used a search domain called “job-
assignment”. Job-assignment is a classic server-assignment prob-
lem in a distributed setting that can be mapped to the general search
problem discussed in this paper. The problem considers the as-
signment of a computational job for execution to a server chosen
from among a set of homogeneous ones (servers). The servers dif-
fer in the length of their job queue. Only the distribution of each
server’s queue length is known. To learn the actual queue length of
a server, it must be queried, an action that takes some time (server-
dependent). The job can eventually be assigned only to one of the
servers that were queried. The goal is to find a querying strategy
that minimizes the overall time until the job starts executing. The
mapping of this problem to the sequential search problem (in its
cost minimization variant) is straightforward: each server repre-
sents an opportunity where its queue length is its true value and the
querying time is the cost of obtaining the value of that opportunity.

5.1 Agent Development
The evaluation used agents designed by computer science stu-

dents in a core Operating Systems course. While this group does
not represent human searchers in general, it fairly represents fu-
ture agent developers who are likely to design the search logic for
eCommerce and other computer-aided domains. As part of her reg-
ular course assignment, each student created an agent that receives
as input a list of servers, their distribution of waiting times and
querying costs (times); queries the servers (via a proxy program)
to learn its associated waiting time; and then chooses one of them
for executing a (dummy) program. The students’ grade in the as-
signment was correlated with their agent’s performance, i.e., the
time it takes until the program is executed on one of the servers.
1We use the optimal strategy class as a means for representing the
class of strategies that are better off without applying problem re-
structuring. The optimal strategy is part of this class, though, as
reported in the evaluation section, none of the agents we evaluated
actually used the optimal strategy.
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As part of their assignment, students provided documentation that
described the algorithm used for managing the search for a server.

An external proxy program was used to facilitate communication
with the different servers. The main functionality of the proxy was
to randomly draw a server’s waiting time, based on its distribution,
if queried, and to calculate the overall time elapsed from the begin-
ning of the search until the program is assigned to a server and starts
executing (i.e., after waiting in the server’s queue). To simplify the
search problem representation, distributions were formed as multi-
rectangular distribution functions. In multi-rectangular distribution
functions, the interval is divided into sub intervals x0, ..,xn and the
probability distribution is given by f (x) = pi

xi−xi−1
for xi−1 < x < xi

and f (x) = 0 otherwise, (∑n
i=1Pi = 1). The benefit of using a multi-

rectangular distribution function is its simplicity and modularity, in
the sense that any distribution function can be modeled through it
with a small number of rectangles.

5.2 Analysis Methodology
The agents that the students developed were executed on a set of

problems with the full set of search choices and no restructuring.
The problems in the set varied in their characteristics (e.g., number
of opportunities, characteristic of distribution functions, querying
costs). Each agent was then run on each problem restructured ac-
cording to the different restructuring heuristics. The performance
of the agents was logged. In parallel, the class-representing optimal
and mean-based greedy agents were executed over the same prob-
lem set. The results obtained by the students’ agents on the non-
manipulated problem set were compared with their results on the
restructured problems. The results of the optimal agent were used
as a baseline for evaluating the improvement achieved by each of
the restructuring heuristics. Results were tested for statistical sig-
nificance using t-test (with α = 0.05), whenever applicable.

The designs of the students’ agents were also analyzed to iden-
tify a set of common search strategy characteristics. We then looked
for common features among agents that performed similarly.

5.3 Performance Measures
The evaluation of the different heuristics used two complemen-

tary measures: (1) relative decrease in the time until the job is ex-
ecuted; and (2) the relative reduction in search inefficiency. For-
mally, we denote the expected time until execution for the optimal
search strategy by topt and the time until execution for an agent on
the manipulated and non-manipulated problem by tman and t¬man,
respectively. The first measure, calculated as t¬man−tman

t¬man
, relates di-

rectly to the time saved. It depends on the problem set, because
t¬man can vary widely. The second measure, calculated as tman−topt

t¬man−topt
,

takes into account that the search time using either the manipulated
or original data is bounded by the performance of the optimal agent.
It thus highlights the efficiency of the heuristic in improving per-
formance.

For each of the two measures, the average over the entire set
of problem instances and across all agents was calculated from
both social and individual perspectives. For the social perspec-
tive, we calculated the relative improvement in both measures over
the aggregated times obtained for all agents in all problems. For
the individual perspective, we calculated the average of individ-
ual improvements for both measures. For each evaluated heuris-
tic the maximum decrease in individual average performance was
also identified, because an important requirement for a successful
heuristic is that it does not substantially worsen any of the agents’
individual performance.

6. RESULTS AND ANALYSIS
Seventy six agents, each designed by a different student, were

used to evaluate the heuristics. The test set used for evaluation
consisted of 5000 problems that were generated with a random
number of servers in the range (2,20), costs of querying the differ-

ent servers uniformly drawn from the range (1,100), and a multi-
rectangular distribution function to each server generated by ran-
domly setting a width and probability for each rectangle and then
normalizing it to the interval (0,1000).

In this section we present the main analysis carried out over these
agents using this problem set. The results using two other problem
sets are given in Subsection 6.5.

6.1 Agent Strategy
The strategies students used reveal several characteristics along

which agent designs vary when programmers who are not search
experts do the design. Our analysis of the agents using program
documentation (and occasionally the code itself) revealed several
problem features commonly used in their search strategies, includ-
ing expected value (in 41 of the agents), variance (in 6 of the agents),
and the median (in 2 of the agents) of each server. Additional fac-
tors used in some designs were the time cost of querying servers (in
37 of the agents), randomness in the decision-making process (in
11 of the agents), a preliminary selection of servers for querying
(in 57 of the agents), the inclusion of the cost incurred so far (i.e.,
“sunk cost”) in the decision-making process (in 4 of the agents) and
the use of the probability of finding a server with a lower waiting
time than the minimum found so far (in two of the agents).

Several interesting observations may be made based on these
characteristics. First, many of the agents use the mean waiting time
of a server as a parameter that directly influences the search strat-
egy, even though the optimal strategy is not affected directly by
means (see Section 2). Second, a substantial number of agents (39
of 76) do not take into account the cost of search in their strategy.
One possible explanation for this phenomena is that the designers
of these strategies considered cost to be of very little importance in
comparison to the mean waiting times. Interestingly, several stu-
dents (11 of 76) use randomization in their search strategy, even
though, as explained in Section 2, randomness is not useful for
these problems (and plays no role in the optimal strategy).

The average performance of the different agents on the 5000 test
problem instances is given in Figure 2. The vertical axis represents
the average overall time until execution and the horizontal axis is
the agent id. The two horizontal lines in the figure represent the
performance of an agent searching according to the optimal strat-
egy and an agent using the random selection rule, “randomly query
a random number of servers and assign the job to the server with the
lowest waiting time”. As can be seen from the figure, none of the
students’ agent strategies reached the performance of the optimal
strategy. The average overall time obtained by the agents is 445.77,
while that of the optimal agent is 223.1. Furthermore, many of the
strategies (41 out of 76) did even worse than a random agent.

We attempted to identify clusters of agents, based on agent per-
formance and characteristics of agent design, as identified by our
analysis of agent designs. The following clusters emerged from this
assessment:
• The naive mean-based greedy search strategy and its variants

(e.g., agents 3-7).
• Mean-based approaches that involve preliminary filtering of

servers according to means and costs (e.g., agents 15-17).
• A variation of the naive mean-based greedy search strategy

that also takes the variance of each server as a factor (e.g.,
agents 22-23).
• Querying the two servers with the lowest expected queue

length and assigning the job to the one with the minimum
value found (e.g., agents 24-27).
• Assigning the job to the first/last/random server (e.g., agents

42-71).

For many agents, similarities in performance could not be ex-
plained by resemblances among the strategies themselves. Although
in some cases, agents used different variants of the same basic
strategy, apparently the differences among the variants resulted in
substantial differences in performance. The most interesting and
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Figure 2: Agent performance without any manipulation (to
make the results easier to follow, IDs are ordered based on per-
formance)

.

unique strategies deployed include: (a) adding up the costs of the
servers already queried, and based on this sum deciding whether
to continue to the next server or to assign the job to the server with
the lower execution time found so far; (b) taking 10% of the servers
with the highest variance and querying them one by one, until the
real value of one of them is less than the one of the server with the
minimal expected value.

There was one major distinction between agent designs that led
us to separate out a group of agents. Although many of the agents
used search strategies that took into account affected information
obtained in searching, a significant number did not follow any se-
quential decision-making rule, but rather queried only one server
chosen arbitrarily. While any selection rule was considered le-
gitimate for the students’ assignment, strategies of the latter type
are not true search strategies. Because these strategies are sim-
ple for the adaptive learner to identify (they choose a single server
according to a simple pattern) and a simple problem reconstruc-
tion method could easily improve their behavior (provide only one
choice: the server with the minimum sum of expected waiting time
and querying time), we removed the results for these agents (agents
32-75) from the main analyses given in this paper. If included in
the analysis, the improvement in the average overall performance
of the adaptive agent reported in the following subsections would
have been substantially better.

6.2 Analysis of Information Hiding
The threshold α used for removing alternatives from the prob-

lem instance is a key parameter affecting the “Information Hiding”
heuristic. Figure 3 depicts the average time until execution (over
all agents, for the 5000 problem instances) for different threshold
values. For comparison purposes, it also shows the average perfor-
mance on the non-manipulated set of problems, which corresponds
to α = 0 (the horizontal line). The shape of the curve has an in-
tuitive explanation. First, for small threshold values, an increase
in the threshold increases agent performance as it further reduces
the possible deviation from the optimal sequence. However, as the
threshold increases, the probability increases that the opportunities
this increase allows to be removed are ones that would be examined
by the optimal strategy.

As the graph in Figure 3 shows, the optimal threshold is α =
10%, for which an average time of 299.33 is obtained. This graph
also shows that for a large interval of threshold values around this
point — in particular for 3%≤ α≤ 30% — the performance level
is similar. Thus, the improvements are not extremely sensitive to
the exact value; relatively good performance may be achieved even
if the α value used is not exactly the one which yields the mini-
mum average time. In fact, any threshold below α = 55% results in
improved performance in comparison to the performance obained
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Figure 4: Average reduction in the search inefficiency of infor-
mation hiding for α = 10%

without the use of this manipulation heuristic (i.e., with α = 0).
Figure 4 depicts the average reduction in search inefficiency (over

the 5000 problem instances) of each agent with α = 10%. As the
figure shows, this heuristic decreased the search inefficiency of 24
of the 32 agents. The maximum improvement was obtained by
agent 32 (80.18%). The average reduction (individual welfare) is
14.49% and the overall reduction (social welfare) is 5.52%. The
downside of this heuristic is that it increases the overhead of some
of the agents’ searches. The highest increase in the overhead of
any agent was, however, minimal and equals 12.1% (for agent 1),
corresponding to an increase of 0.57% in its average time until its
job starts executing.

The main advantages of this strategy are that it improves the per-
formance of most agents and that even in cases in which an indi-
vidual agent’s performance degrades, the degradation is relatively
small. Thus, the heuristic is a good candidate for use as a default
problem-restructuring heuristic whenever there is no information
about searcher strategy or an agent cannot be classified accurately.

6.3 Analysis of Mean Manipulation
Figure 5 depicts the average reduction in search inefficiency, us-

ing the same standard problem set, of each agent when using the
“Mean Manipulation” heuristic. With this heuristic, seven agents
almost fully eliminate their search overhead. These agents use
variants of the naive mean-based greedy search strategy. Other
agents also benefited from this heuristic and substantially reduced
the overhead associated with their inefficient search. These agents
(e.g., 4, 7, 25) all also included mean-based considerations, to some
extent, in their search strategy.

This heuristic has a significant downside, however. Ten agents
did worse with the mean manipulation heuristic, 5 of them sub-
stantially worse. The search overhead of these agents, in compar-
ison to optimal search, increased by 50-250%. With this heuristic
the overall inefficiency (social welfare) actually increased by 2.5%
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Figure 5: Average reduction in the search inefficiency of Mean
Manipulation
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Figure 6: Average reduction in the search inefficiency of Adap-
tive Learner

even though the average overhead decreased by 1.3%, a classical
case of Simpson’s paradox [17]. The substantial increase in search
overhead for some of the agents makes this heuristic inappropriate
for general use. It is, however, very useful when incorporated into
an adaptive mechanism that attempts to identify those agents that
use mean-based strategies and applies this manipulation method on
their input.

6.4 Analysis of Adaptive Learner
The adapter learner has the best of both worlds. Figure 6 de-

picts the average reduction in search inefficiency, using the stan-
dard problem set, of each agent when using the adaptive learner
heuristic with γ = 10%. For agents that were badly affected by the
mean-manipulation heuristic, the information hiding manipulation
was used instead, improving their performance. Overall, the ineffi-
ciency (social welfare) decreased by 37.4%. The average reduction
in individual inefficiency (individual welfare) is 39%. Out of the 32
agents, 5 agents slightly worsened their performance (maximum of
8% increase in inefficiency, which is equivalent to a 1.3% increase
in the expected waiting time of that agent).

6.5 Evaluation with Different Problem Sets
To show that the results were not due to a wise selection of prob-

lem instance characteristics, we repeated the evaluation with other
distributions of queue lengths and different querying costs. Two
problem sets were used,
• Increased possible querying time (denoted “Inc Quer”): same

as the original set of problems, except that the querying time
was taken from an interval that was three times as large (re-
sulting in an increased ratio between querying time and pos-
sible waiting times in queue).
• Increased queue time variance (denoted “Inc Var”): same as

the original set of problems, except that the possible waiting

time interval was increased from 1,000 to 10,000 (resulting
in a substantial increased variance in server waiting time in
queue).

Each of these problem sets also contains 5000 different problems.
Table 3 presents the results obtained for the new problem sets

in comparison to the original set. As can be seen from the table,
the improvement obtained from the different heuristics is consistent
with the one obtained using the original set.

Original Inc. Var Inc. Quer.
Non-Manipulated 322.3 2449.4 461.9
Adaptive 223.1 2203.0 388.1
Optimal 285.2 1349.7 332.3
Average individual improve-
ment

10.2% 9.7% 10.5%

Overall (social) improvement 11.5% 10.1% 16.0%
Maximum individual perfor-
mance decrease

2.2% 2.0% 1.9%

Average individual inefficiency
reduction

39.0% 29.0% 46.5%

Overall inefficiency reduction 37.4% 22.4% 56.9%

Table 3: Performance for different classes of problems

7. RELATED WORK
People are bounded rational [16], unlike computer agents, which

may deploy rational strategies and are significantly less bounded
computationally. They cannot be trusted to exhibit optimal behav-
ior [14]. Furthermore, people often tend not to use the optimal
strategy even when one is provided [10]. Their decision-making
may be influenced by selective search, the tendency to gather facts
that support certain conclusions while disregarding other facts that
support other conclusions [2], and by selective perception — the
screening-out of information that one does not think is important
[6]. Others [18], have attributed people’s difficulty in decision-
making to the conflict between a “reflective system” (e.g., involved
in decisions about which college to attend, where to go on trips and
in most circumstances, whether or not to get married) and an “auto-
matic system" (e.g., that leads to smiling upon seeing a puppy, get-
ting nervous while experiencing air turbulence, and ducking when
a ball is thrown at you).

Over the years a variety of work has addressed the challenge
of improving people’s decision-making, mostly by developing de-
cision support systems to assist users in gathering, merging, an-
alyzing, and using information to assess risks and make recom-
mendations in situations that may require tremendous amounts of
the users’ time and attention [21]. Recently, several approaches
have been proposed that attempt to reconstruct the decision-making
problem [18] instead of attempting to change people’s decision-
making strategies directly. This prior work focused on psycholog-
ical aspects of human decision-making, and does not involve any
learning or adaptation. Furthermore, none of this prior work dealt
with a sequential decision-making process.

The search model discussed in this paper, which considers an
optimal stopping rule for individuals engaged in costly search (i.e.,
ones for which there is a search cost) builds on economic search
theory,2 and in particular its sequential search model [12]. While
search theory is a rich research field, its focus is on the theoretical
aspects of the optimal search strategy and it does not address the
non-optimality of search strategies used by people or rationally-
bounded agents.

A range of research in multi-agent systems has examined peo-
ple’s use of agents designed to represent them and act on their be-
half. For example, Kasba [4] is a virtual marketplace on the Web

2A literature review of search theory may be found elsewhere [12].
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where people create autonomous agents in order to buy and sell
goods on their behalf. Various research has involved programming
agents in the decision-theoretic framework of the Colored-Trails
game [8]. Here, the agents had to reason about other agents’ per-
sonalities in environments in which agents are uncertain about each
other’s resources. In the Trading Agent Competition (TAC) [20],
agents are used to collect people’s strategies. Work involving peo-
ple who design agents provides some evidence that people fail to
build in the optimal strategy [3], in particular in search-based en-
vironments [15]. This work has not, however, provided methods
for improving the performance of such agents through problem re-
structuring of any sort.

8. DISCUSSION AND CONCLUSIONS
The results reported in Section 6 are encouraging and a proof of

concept for the possibility of substantially improving agent perfor-
mance in sequential search by restructuring the problem space. The
extensive evaluation reveals that even with no prior information re-
garding an agent’s strategy, a heuristic such as information hiding
produces substantial improvement in average performance while
limiting individual potential performance degradation. With even
limited information about the prior search behavior of an agent,
heuristics such as the adaptive learner can further improve the over-
all performance and lower even further the possible decrease in in-
dividual agent performance. These results were consistent across
three different classes of search environments in extensive evalua-
tions involving a large number of agents, each designed by a differ-
ent person, and a large number of problems within each class.

Restructuring of the problem space is applicable in settings for
which the optimal choice cannot be revealed but rather an optimal
sequential exploration should be devised, and the optimal explo-
ration strategy cannot be provided directly to the decision-maker
or the decision-maker cannot easily be convinced of its optimality.
Instead, we can only control the information the decision-maker
obtains in the problem.

The problem restructuring technique has great potential for mar-
ket designers (who also have the domain-specific information that
can lead to more intelligent restructuring heuristics). Consider for
example large scale Internet websites like autotrader.com or
expedia.com. These web-sites attempt to attract as many users
as possible to increase their revenues from advertisements. Every
listing for a flight or a car on these web-sites is an opportunity that
needs to be explored further to realize its true value to the user. The
welfare of users or the agents they use can thus be substantially
improved by manipulating the listings.

The heuristic that provides the best performance is the adaptive
learner. As our ability to recognize and differentiate additional
strategy clusters and produce appropriate choice manipulations for
them improves, we expect the performance improvement obtained
by applying the adaptive strategy to increase even further. The
adaptive heuristic’s architecture is modular, allowing its augmen-
tation using the new manipulation heuristics to be straightforward.

The research reported in this paper is, to the best of our knowl-
edge, the first to attempt to restructure the decision-making prob-
lem in order to improve performance in a sequential decision-making
setting. The fact that the searcher is facing a sequence of decisions
and all manipulations over the choices take place prior to beginning
the process, substantially increases the complexity for heuristics.
In this case the search strategy used by the searcher becomes more
complex as her decisions are also affected by the temporal nature
of the problem and the new data that is being obtained sequentially.
The challenge faced by the manipulation designer is thus substan-
tially greater than in one-shot decision processes. In the latter case
many simple and highly efficient manipulation techniques can be
designed. For example, if the searcher is limited to obtaining the
value of only one opportunity overall, the simplest and most effi-
cient choice of a manipulation technique would be to remove all
opportunities other than the optimal one.

A natural extension of this work involves developing heuristics

that will choose the manipulation method to be applied not only
based on agent classification but also based on problem instance
characteristics. This, of course, requires a more refined analysis in
the agent level.
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Boucké, Nelis, 803
Boukricha, Hana, 1135
Bowring, Emma, 133, 457
Brânzei, Simina, 1281
Brandt, Felix, 183
Brazier, Frances, 389
Broda, Krysia, 1137
Brooks, Logan, 1239
Brooks, Nathan, 1245
Brown, Matthew, 457
Bsufka, Karsten, 1325
Bulling, Nils, 275, 1187
Burguillo-Rial, Juan C., 669
Bye, Rainer, 1325

Cai, Kai, 879
Caire, Patrice, 895
Calisi, Daniele, 1327
Caminada, Martin, 1127, 1307
Cap, Michal, 1201
Carlin, Alan, 157, 1149
Carnevale, Peter, 937
Carvalho, Arthur, 635
Cavalcante, Renato L.G., 165, 1099
Cavazza, Marc, 449, 1323
Centeno, Roberto, 1243
Ceppi, Sofia, 981, 1125
Cerquides, Jesus, 133, 379
Chaib-draa, Brahim, 947
Chakraborty, Nilanjan, 685
Chalkiadakis, Georgios, 787
Chandramohan, Mahinthan, 1321
Chang, Yu-Han, 1313
Charles, Fred, 449, 1323
Chen, Shijia, 1301
Chen, Xiaoping, 1301
Chen, Yiling, 175, 627
Chen, Yingke, 1229
Cheng, Chi Tai, 1319
Cheng, Min, 1301
Cheng, Shih-Fen, 1147
Cheng, Yong Yong, 1321
Chernova, Sonia, 617
Chhabra, Meenal, 63, 415
Chinnow, Joël, 1325
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