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ABSTRACT
This paper considers the communication complexity of ap-
proximating common voting rules. Both upper and lower
bounds are presented. For n voters and m alternatives, it is
shown that for all ε ∈ (0, 1), the communication complexity
of obtaining a 1−ε approximation to Borda is O(log( 1

ε
)nm).

A lower bound of Ω(nm) is provided for fixed small values
of ε. The communication complexity of computing the true
Borda winner is Ω(nm log(m)) [5]. Thus, in the case of
Borda, one can obtain arbitrarily good approximations with
less communication overhead than is required to compute
the true Borda winner.

For other voting rules, no such 1±ε approximation scheme
exists. In particular, it is shown that the communication
complexity of computing any constant factor approximation,
ρ, to Bucklin is Ω(nm

ρ2
). Conitzer and Sandholm [5] show

that the communication complexity of computing the true
Bucklin winner is O(nm). However, we show that for all δ ∈
(0, 1), the communication complexity of computing a mδ ap-
proximate winner in Bucklin elections is O(nm1−δ log(m)).
For δ ∈ ( 1

2
, 1), a lower bound of Ω(nm1−2δ) is also provided.

Similar lower bounds are presented on the communication
complexity of computing approximate winners in Copeland
elections.
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The naive application of a voting rule requires each voter
to send their entire preference order over the set of alter-
natives. If there are n voters and m alternatives communi-
cating every voter’s preference order requires Θ(nm log(m))
bits be communicated. However, using an intelligent elicita-
tion protocol can result in significant savings. Conitzer and
Sandholm [5] show that a number of voting rules can be com-
puted with low communication overhead. For example, the
communication complexity of plurality is O(n log(m)) and
the communication complexity of single transferable vote is
O(n log2(m)). Conitzer and Sandholm further characterized
the communication complexity of a number of common vot-
ing rules by presenting lower bounds on the communication
complexity of each.

Not every voting rule can be computed with a low amount
of communication overhead [5]. Determining the true win-
ner in Borda and Copeland elections requires communication
complexity Θ(nm log(m)). Likewise, computing the win-
ner in a Bucklin election requires communication complexity
Θ(nm).

Conitzer and Sandholm [5] suggest that when, for exam-
ple, voting over issues of relatively low importance:

Knowing which voting rules require little commu-
nication is especially important when the issue to
be voted on is of low enough importance that the
following is true: the parties involved are willing
to accept a rule that tends to produce outcomes
that are slightly less representative of the voters’
preferences, if this rule reduces the communica-
tion burden on the voters significantly.

A more natural approach in such situations is to use a
low communication complexity approximation to the de-
sired voting rule. For example, rather than selecting plu-
rality (with communication complexity Θ(n log(m))) over
the preferred voting rule Borda (with communication com-
plexity Θ(nm log(m))), it is more natural to obtain a 1 − ε
approximation to Borda, for some ε ∈ (0, 1), using a reduced
amount of communication.

This paper considers the communication complexity of ap-
proximating common score-based rules. It is shown that it is
possible to obtain arbitrarily good approximations to some
voting rules using less communication than is required to
compute the actual winner. For example, an approximation
scheme for Borda voting is presented that, for all ε ∈ (0, 1),
obtains a 1−ε approximation to Borda with communication
complexity O(log( 1

ε
)nm). It is shown that, up to constant

factors, this approximation scheme is optimal. That is, it
is shown that for all δ ∈ (0, 1 − 1√

2
), the communication



complexity of computing a 1√
2

+ δ approximation to Borda

is Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

While some voting rules, such as Borda, admit 1 ± ε ap-
proximation schemes, others do not. We show that for any
ρ > 1, the communication complexity of computing a ρ ap-

proximate winner in Bucklin elections is Ω
(
nm
ρ2

)
. Conitzer

and Sandholm [5] show that O(nm) bits of communication
are sufficient to determine the true Bucklin winner.

For sufficiently good approximations, lower bounds on the
communication complexity of Ω(nm) for computing approx-
imate winners in Copeland elections are presented as well.

Both incremental preference elicitation [6, 8, 9] and ap-
proximation of voting rules [2, 3, 10] has seen increasing
attention. Most work on approximation of voting rules con-
siders rules under which it is NP-hard to compute the true
winner [2, 3, 10], or attempts to employ approximation in an
effort to guarantee strategy-proofness [11]. However, to the
best of the authors’ knowledge, this paper is the first to pro-
vide bounds on the communication complexity of computing
approximate winners under voting rules.

The remainder of this paper is structured as follows. Pre-
liminary definitions and background are presented in Section
2. Section 3 presents the upper and lower bounds on the
communication complexity of approximating Borda, Buck-
lin, and Copeland. Section 4 presents a discussion of the
results and some future work.

2. PRELIMINARIES
This section provides basic background related to voting

rules, communication complexity, and the proof methods
employed in this paper.

2.1 Voting Rules
Let V be a set of n voters and let A be a set of m alterna-

tives. Each voter, vi, has a strict preference order, �i, over
the m alternatives. A preference profile is a vector of voter
preference orders.

A voting rule is a mapping from preference profiles to
winning alternatives. In the interest of obtaining results on
approximating voting rules, this paper restricts its attention
to rules that assign each alternative a score-based on the
voters’ preference. That is, if sc : A → R is a function
assigning a score to each alternative, then the winner is the
alternative that maximizes/minimizes its score. Score-based
voting rules allow for natural measures of approximation.

This paper considers the following voting rules.

1. Borda: Each alternative a is awarded m− k points for
every voter that ranks a in its k-th position. The Borda
winner is the alternative with the greatest score. If w
is the Borda winner and a any other alternative, then

the approximation ratio obtained by a is sc(a)
sc(w)

≤ 1.

2. Bucklin: The Bucklin score of each alternative a is
the minimum value of k such that a strict majority of
voters rank a in one of the top k positions. The Bucklin
winner is the alternative with the least score. If w is
the Bucklin winner and a any other alternative, then

the approximation ratio obtained by a is sc(a)
sc(w)

≥ 1.

3. Copeland: An alternative a is said to defeat an alter-
native b in a pairwise election if a strict majority of

voters prefer a to b. Under Copeland every alternative
a receives one point for every alternative that a defeats
in a pairwise election and half a point for every alter-
native a ties. The Copeland winner is the alternative
with the greatest score. If w is the Copeland winner
and a any other alternative, then the approximation

ratio obtained by a is sc(a)
sc(w)

≤ 1.

For Borda and Copeland, the approximation ratio ob-
tained by a communication protocol, f , is ρ ∈ [0, 1] if for

every preference profile, P , sc(f(P ))
sc(w)

≤ ρ, where f(P ) is the

alternative selected by f under P and w is the winning al-
ternative in P . Likewise, f obtains a ρ ≥ 1 approxima-
tion in Bucklin elections if for every preference profile, P ,
sc(f(P ))
sc(w)

≥ ρ.

For each voter v ∈ V and alternative a ∈ A, let v(a) be
the rank of a in v’s preference order. For example, if v has
the preference order

x � y � a � z,

then v(a) = 3.

2.2 Communication Complexity
This paper employs the standard model of communication

complexity [5, 7, 12]. The objective is to compute the out-
come of a voting rule f(�1, · · · ,�n). However, each piece of
the input �i is known only to a single voter vi. A protocol
for computing f consists of a number of rounds. During each
round, a single voter announces a single bit to all other vot-
ers. In a deterministic protocol, the next voter to announce
a bit and the bit to be announced are completely determined
by the preceding rounds and that voter’s preference order.
A communication pattern is the sequence of bits announced.
The winner elected by the voters is then a function of the
particular communication pattern observed. Note that in a
k round deterministic protocol there are at most 2k possible
communication patterns.

During each round of the protocol all voters have observed
the same sequence of communicated bits. The protocol ter-
minates when sufficient information has been communicated
for every voter to compute f , or in our case to determine
an approximate winner. The communication complexity of
approximating a voting rule f is the worst case number of
bits sent by the best approximation protocol.

In order to compute lower bounds on the amount of com-
munication required to approximate certain voting rules, a
slight generalization of the standard lower bound technique
of constructing a fooling set is employed. The definition for
rules that select alternatives that maximize their score is
presented. The definition for rules that select alternatives
that minimize their score is analogous.

Definition 1 (Fooling set). Let sc be a score-based voting
rule. A ρ-fooling set S for sc is a set of preference profiles
with the following properties:

1. w ∈ A is the winning alternative in every preference
profile in S under the score-based voting rule sc.

2. In every preference profile P ∈ S, every a ∈ A \ {w}
does not obtain a ρ-approximate solution in P . That

is sc(a)
sc(w)

< ρ, for every a ∈ A \ {w}.



3. For every N preference profiles P1 = (v11 , · · · , v1n), · · · ,
PN = (vN1 , · · · , vNn ) in S, there exists a vector of in-
dices (r1, · · · , rn) ∈ {1, · · · , N}n such that w does not
obtain a ρ-approximation in Pr = (vr11 , · · · , vrnn ) (i.e.,
it is possible to mix voters from the N preference pro-
files such that w no longer obtains a ρ-approximation).
That is, there exists some alternative a ∈ A such that
sc(w)
sc(a)

< ρ.

Theorem 1. If sc is a score-based voting rule and S a fool-
ing set, then the deterministic communication complexity of

computing a ρ-approximation to sc is Ω
(

log
(
|S|
N

))
.

Proof. Suppose there is a deterministic protocolD that com-

putes a ρ-approximation to sc in
⌊
log
(
|S|
N

)⌋
−1 bits. Thus,

there are at most 2

⌊
log
(
|S|
N

)⌋
−1

< |S|
N

possible communica-
tion patterns. By the pigeonhole principle, there exists N
preference profiles Pi = (vi1, · · · , vin) for i = 1, · · · , N in S
that have the same communication pattern under D.

Since all the Pi’s exhibit the same communication pat-
tern, the protocol must select the same alternative w under
each. Let r = (r1, · · · , rn) ∈ {i, j}n such that w does not
obtain a ρ-approximation in Pr. By assumption, such an r
exists. It is known that D produces the same communica-
tion pattern on Pr as it does on all the Pi’s [1]. Since D
exhibits the same communication pattern on Pr as it does
all the Pi’s, D must select w as the winning alternative in
Pr. However, w does not obtain a ρ-approximation in Pr;
a contradiction. Hence, the communication complexity of

obtaining a ρ approximation is Ω
(

log
(
|S|
N

))
.

A natural question is whether Conitzer and Sandholm’s [5]
fooling set constructions already provide lower bounds on
the communication complexity of computing approximate
winners for the score-based voting rules considered in this
paper. However, on inspection, it is observed that Conitzer
and Sandholm’s lower bound proofs for Borda, Bucklin, and
Copeland construct fooling sets in which the single winning
alternative a has a constant number of points more than
the next highest alternative(s). Unfortunately, in our set-
ting, Contizer and Sandholm’s constructions are not strong
enough to lower bound the deterministic communication re-
quirements of approximately computing these rules. That
is, the ratio of the scores of the winning alternative to the
scores of the other alternatives need to be bounded away
from 1. With Contizer and Sandholm’s constructions, the
ratio of the score of any alternative to that of the winning
alternative tends towards 1 for increasingly large elections.

2.3 Probabilistic Method
The stronger requirements on the fooling sets needed to

lower bound the deterministic communication complexity of
approximately computing voting rules complicates the con-
struction of fooling sets. However, the fooling set need not
actually be constructed. Showing the existence of such a set
is sufficient for the lower bound proofs.

Instead of explicit constructions, the lower bound proofs
in this paper employ a powerful method from combinatorics
to show the existence of objects satisfying certain properties.
The probabilistic method proves the existence of a combi-
natorial object satisfying certain properties as follows:

1. First, construct a probability distribution over the ob-
jects of interest.

2. Second, show that an object drawn from that distri-
bution possesses the desired properties with strictly
positive probability.

Since with probability greater than zero the object drawn
from the distribution satisfies the requirements, it is assured
to exist. Using the probabilistic method, an appropriate
fooling set can be shown to exist without providing an ex-
plicit construction.

The probabilistic method is employed in our lower bound
proofs by constructing a distribution over preference pro-
files. This distribution over preference profiles then implic-
itly defines a distribution over sets of preference profiles (i.e.,
potential fooling sets). It is shown that a set of k preference
profiles drawn from this distribution satisfies the fooling set
properties with strictly positive probability. It can be con-
cluded that a fooling set of size k exists, which implies a
Ω(log( k

N
)) lower bound on the communication complexity.

All of the presented lower bound results hinge on Chernoff
bounds [4].

Theorem 2 (Chernoff [4]). Let X1, · · · , Xn be n indepen-
dent random variables taking on values 0 or 1, such that
Pr(Xi = 1) = p, for each i = 1, · · · , n. Let X =

∑n
i=1Xi

and let δ ∈ (0, 1) then

Pr(X < (1− δ)E(X)) = Pr(X < (1− δ)pn) < e
−pnδ2

2 .

3. RESULTS
Upper bounds on the communication complexity of ob-

taining approximations to Borda and Bucklin are presented
first. It is shown that arbitrarily good approximations to
Borda can be obtained with less communication overhead
than computing the true Borda winner. For Bucklin, it is
shown that a number of non-constant approximations can
be achieved with less communication complexity than com-
puting the true Bucklin winner.

A number of lower bounds are then presented on the com-
munication complexity of obtaining a number of approxima-
tion ratios with respect to Borda, Bucklin, and Copeland.
In particular, it is shown that the Borda and Copeland vot-
ing rules require Ω(nm) communication complexity to com-
pute sufficiently good constant factor approximations. For
Bucklin, it is shown that for any constant ρ, the communi-
cation complexity of computing a rho-approximate winner
in Bucklin elections is Ω( 1

ρ2
nm), which, for fixed ρ, matches

the upper bound given by Conitzer and Sandholm for com-
puting the true Bucklin winner.

3.1 Upper Bounds
Conitzer and Sandholm [5] show that the communication

complexity of determining the Borda winner is Θ(nm log(m)).
Theorem 3 shows that a (1− ε) approximation to Borda can
be obtained by a protocol with communication complexity
O(log( 1

ε
)nm).

Informally, in the protocol presented in Theorem 3, each
voter announces an approximate rank of each alternative in
its preference order using a O(log( 1

ε
)) bits. That is, the

preference order of each voter is divided into k equally sized
segments and each voter indicates which of the k segments



each alternative falls into using only O(log(k)) bits per al-
ternative. With this information, upper and lower bounds
can be inferred for the Borda score of each alternative. The
alternative with the greatest upper bound is selected as the
winner. The proof of Theorem 3 shows that arbitrarily good
approximation ratios can be obtained given an appropriate
choice of k.

Theorem 3. For all ε ∈ (0, 1), there is a deterministic
communication protocol that approximates Borda to within a
factor of 1−ε with communication complexity O(log( 1

ε
)nm).

Proof. Given ε ∈ (0, 1), let k =
⌈
4
ε

⌉
. Let a1, a2, · · · , am be

a fixed ordering on the alternatives in A. For each ai, every
voter, v, announces in order the value l ∈ (0, k − 1) such
that

v(ai) ∈
[⌈
lm

k

⌉
,

⌈
(l + 1)m

k

⌉
+ 1

]
.

This procedure requires dlog(k)enm = O(log( 1
ε
)nm) bits

for fixed ε.
For a voter v and alternative a, let vl(a) be the value

of l returned by voter v for a. For each alternative a ∈ A,
define the following lower and upper bounds, lb(a) and ub(a),
respectively, on a’s true Borda score:

lb(a) =
∑
v∈V

(
m−

⌈
(vl(a) + 1)m

k

⌉
+ 1

)
,

ub(a) =
∑
v∈V

(
m−

⌈
vl(a)m

k

⌉)
.

In essence, the upper bound on a’s true Borda score is ob-
tained by assuming that a’s true rank in each voter’s pref-
erence order falls at the lower end of the range of ranks
reported by each voter. The lower bound is obtained by as-
suming that a’s true rank falls at the upper end of the range
reported by each voter.

Then, for each a ∈ A

ub(a)− lb(a) =
∑
v∈V

(⌈
(vl(a) + 1)m

k

⌉
−
⌈
vl(a)m

k

⌉
− 1

)

≤
∑
v∈V

(
(vl(a) + 1)m

k
+ 1− vl(a)m

k
− 1

)
=

nm

k
.

The protocol selects the alternative a with the greatest
ub(a) value. Now it is shown that a is a 1 − ε approximate
winner.

Let w be the true Borda winner. Since the sum of all the
alternatives scores is nm(m−1)

2
, sc(w) ≥ n(m−1)

2
. Also since

a was selected, sc(w) ≤ ub(w) ≤ ub(a). The approximation

ratio is

sc(a)

sc(w)
≥ lb(a)

sc(w)

≥
ub(a)− nm

k

sc(w)

=
ub(a)

sc(w)
−

nm
k

sc(w)

≥ ub(a)

ub(a)
− 2m

k(m− 1)

≥ 1− 4

k
≥ 1− ε.

It will be shown that obtaining any constant factor ap-
proximation to Bucklin requires Ω(nm) communication com-
plexity. Since, the true Bucklin winner can be determined
using O(nm) bits of communication complexity, there does
not exists any asymptotically better communication proto-
col to obtain a constant factor approximation to Bucklin.
However, non-constant factor approximations can be easily
obtained in Bucklin elections.

Theorem 4. For every δ ∈ (0, 1), there is a deterministic
communication protocol that obtains a mδ approximation to
Bucklin with communication complexity O(nm(1−δ) log(m)).

Proof. Consider the following protocol. Every voter broad-
casts the top m(1−δ)− 1 entries in its preference order using
O(nm(1−δ) log(m)) bits. If any alternative appears in the

top m(1−δ) positions in a strict majority of voters, then the
true Bucklin winner must also appear in the top m(1−δ) po-
sitions by a strict majority of the voters as well. Hence, the
true Bucklin winner can be computed given the partial lists
of preferences reported by each voter.

Otherwise, if no alternative appears in the top m(1−δ) po-
sitions in a strict majority of voters, the Bucklin score of
any alternative is at least m(1−δ). Since the Bucklin score
of every alternative is at most m, every alternative is a

m

m(1−δ) = mδ approximation solution. Hence, an arbitrary
alternative may be selected in this case.

3.2 Lower Bounds
All of the lower bound proofs will employ the same pa-

rameterized distribution over preference profiles.
Let the set of m alternatives be A = {a1, · · · , am}. Fix

w ∈ A and partition A \ {w} into the following sets

1. X = {xi : i = 1, · · · , |X|},

2. Y = {yri : i = 1, · · · , |Y |
2

and r ∈ {0, 1}}

3. Z = {zri : i = 1, · · · , |Z|
2

and r ∈ {0, 1}}.

The sizes of the sets X, Y , and Z will depend upon the
particular voting rule and desired approximation ratio. In-
formally, we construct a distribution over preference profiles
that satisfies the following properties:

1. w is preferred to every alternative in X by every voter,

2. for every alternative in a ∈ Z ∪ Y , half of the voters
prefer w to a and the other half prefer a to w, and



3. for every two alternatives a, b ∈ A \ {w}, half of the
voters prefer a to b and the other half prefer b to a.

Thus, every alternative in A\{w} obtains a roughly average
score under the considered voting rules.

We then show that for any N preference profiles drawn
from this distribution with high probability it is possible to
mix and match the voters from theN preference profiles such
that, there is some alternative z ∈ Z that an overwhelming
majority of the voters prefer to all members of Y ∪X. That
is, it is possible to mix and match the voters such that the
score of some z ∈ Z is significantly higher than z’s score in
any of the individual preference profiles. In particular, z’s
score will be significantly higher than that of w.

For r ∈ {0, 1}, let Yr = {yri : i = 1, · · · , |Y |
2
}, similarly for

Zr. Let πX be a fixed permutation over X. Let n = 2n′.
Construct a distribution P over preference profiles as fol-

lows. Every preference profile from P is constructed using
the following random procedure. For each i ∈ {1, · · · , n′},
select r ∈ {0, 1}|Z0| and j ∈ {0, 1}|Y0| uniformly at random.
Voter v2i has preference order:

zr11 � · · · � z
r|Z0|
|Z0|

� yj11 � · · · � y
j|Y0|
|Y0|

� w � πX(1) � · · · � πX(|X|)

� y¬j11 � · · · � y
¬j|Y0|
|Y0|

� z
¬r|Z0|
|Z0| � · · · � z¬r11

Voter v2i−1 has preference order:

z¬r11 � · · · � z
¬r|Z0|
|Z0|

� y¬j11 � · · · � y¬j|Y ||Y |

� w � πX(|X|) � · · · � πX(1)

� yj11 � · · · � y
j|Y |
|Y |

� z
r|Z0|
|Z0| � · · · � z

r1
1

Notice that w is preferred to every alternative in X and
is ranked among the upper half of the alternatives by ev-
ery voter. Thus, w has a strictly better than average score
under Borda, Bucklin and Copeland. However, every other
alternative a ∈ A \ {w} obtains a score that is roughly aver-
age, since if voter v2i ranks a in position k, then v2i−1 ranks
a in position m− k. Also notice that each z ∈ Z0 is placed
among the top |Z0| positions in voter v2i with probability
1
2
, independent of the rankings of the other members of Z0.
Lemma 1 shows that with high probability, given any

N preference profiles P1, · · · , PN , it is possible to mix and
match voters from the N profiles in such a way that w no
longer obtains a good approximation ratio.

Lemma 1. Let Pi = (vi1, · · · , vin) for i = 1, · · · , N be ran-
dom preference profiles drawn from P and let δ ∈ (0, 1).
There exists a z ∈ Z0 and a r ∈ {1, · · · , N}n such that in
Pr = (vr11 , · · · , vrnn ), z is ranked among the top |Z0| posi-

tions by at least (1 − δ)(1 − 1
2

N−1
)n voters with probability

at least 1− e−
|Z0|(1−

1
2
N−1

)n′δ2

2 .

Proof. Recall that for each i ∈ {1, · · · , n′} and z ∈ Z0, ex-
actly one of v12i and v12i−1 rank z among the top |Z0| posi-

tions. Without loss of generality, assume that v12i ranks z
among the top |Z0| positions.

The probability that for each j ∈ {2, · · · , N}, vj2i also

ranks z among the top |Z0| positions (rather than vj2i−1)

is 1
2

N−1
. Hence, independently for each i ∈ {1, · · · , n′},

with probability p = 1 − 1
2

N−1
there exists indices j, k ∈

{1, · · · , N} such that vj2i and vk2i−1 both rank z among the
top |Z0| positions.

By Chernoff bounds, for each δ ∈ (0, 1), there are fewer
than (1− δ)pn′ indices i ∈ {1, · · · , n′} such that there exists
j, k ∈ {1, · · · , N}, where vj2i and vk2i−1 both rank z among

the top |Z0| positions with probability at most e−
pn′δ2

2 .
If at least (1−δ)pn′ such indices i exists, then there exists

an r ∈ {1, · · · , N} such that z is ranked among the top
|Z0| positions by 2(1− δ)pn′ = (1− δ)pn voters, since each
such i contributes 2 voters that rank z among the top |Z0|
positions.

As each z ∈ Z0 is placed independently of the other mem-
bers of Z0, the probability that for every z ∈ Z0 there exist
fewer than (1−δ)pn′ indices i ∈ {1, · · · , n′}, such that there
exist j, k ∈ {1, · · · , N} where vj2i and vk2i−1 both rank z

among the top |Z0| positions, is at most e−
|Z0|pn

′δ2
2 .

Theorem 5 will provide the basis for all of the lower bound
proofs.

Theorem 5. Let ε ∈ (0, 1
2
), δ = 1− (1− ε)

1
2 , n = 2n′, and

N = 2 + dlog( 1
δ
)e = O(log( 1

ε
)). There exists a set of

2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)
preference profiles S such that

1. w is ranked in position |Z0|+ |Y0|+ 1 by all voters in
every preference profile in S,

2. For every N preference profiles Pi = (vi1, · · · , vin), i =
1, · · · , N , from S, there exists an r ∈ {1, · · · , N}n and
z ∈ Z0, such that in Pr = (vr11 , · · · , vrnn ), z is ranked
among the top |Z0| positions by at least (1−ε)n voters.

Proof. The proof of Theorem 5 employs the probabilistic
method. Let S be a collection of[

e
|Z0|(1−

δ
2
)n′δ2

8

] 1
N

− 1 = 2
Ω

(
ε2

log(1/ε)
n|Z0|

)

random preference profiles drawn from P. Note that the col-
lection S may not contain distinct preference profiles, since
we sample from P with replacement.

Clearly, by construction, every preference profile in S sat-
isfies property (1).

Notice that 1
2

N−1 ≤ δ
2
. Consider N random preference

profiles P1, · · · , PN drawn from P. By Lemma 1, the proba-
bility that there is no z ∈ Z0 and r ∈ {1, · · · , N}n such that,

in Pr there are at least (1 − δ
2
)(1 − 1

2

N−1
)n > (1 − δ)2n =

(1− ε)n voters that rank z among the top |Z0| positions is

e−
|Z0|(1−

1
2
N−1

)n′δ2

8 < e−
|Z0|(1−

δ
2
)n′δ2

8 .



The probability that the collection S satisfies property (2)
is

Pr[S satisfies (2)] ≥ 1− Pr[S fails (2)]

≥ 1−

(
|S|
N

)
Pr[P1, · · · , PN fails (2)]

> 1− |S|NPr[P1, · · · , PN fails (2)]

≥ 1− |S|N · e−
|Z0|(1−

δ
2
)n′δ2

8

> 0,

where, in the second and third lines, Pr[P1, · · · , PN fails (2)]
is the probability that N randomly selected preference pro-
files from P fails to satisfy property (2).

Since with probability strictly greater than 0, S satisfies
property (2), it is concluded that such a collection S exists.

Notice that if a given preference profile P appears in S
more than N −1 times, then S does not satisfy property (2)
(because mixing and matching voters from N copies of P
results in another copy of P ). Hence, there are necessarily
a set of

|S|
N

= 2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)

distinct preference profiles that satisfies (1) and (2).

For a given ε ∈ (0, 1), let Sε be the set shown to exist in
Theorem 5 and let Nε be the corresponding value of N .

Theorem 5 can be used to prove lower bounds on the
communication complexity of approximating Borda, Buck-
lin, and Copeland.

Theorem 6. Let ρ ∈ ( 1√
2
, 1) and 1√

2
+ δ = ρ. The com-

munication complexity of obtaining a rho-approximation to

Borda is Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

Proof. Let c = 1
2
(1 + 1√

2ρ
). Let α = 1 − 1

2cρ
and let β =

1− 2(1− α)2. Notice that 1
1−α = 2cρ and 1−α

1−β = 1
2(1−α) .

Let m be sufficiently large so that
(

m−1
m−1/(1−α)

)
< 1

c
. Let

ε = 1− c. Thus, 1
1−ε = 1

c
.

Employing Theorem 5 requires that we must specify how
A is partitioned into X, Y , and Z. It suffices to specify the
sizes of each set, as we are indifferent to the particular alter-
natives in each. Let Z0 and Z1 each contain βm alternatives
and let Y0 and Y1 each contain (α−β)m alternatives. Thus,
|Z| + |Y | = 2αm and |X| = m − 2αm − 1. Notice that
β < α < 1

2
, so A can be partitioned in this manner.

Let Sε be the set shown to exist in Theorem 5. Then

|Sε| = 2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)

= 2
Ω

(
δ3

log(1/δ)
nm− log(log(1/δ))

)
.

It will be shown that Sε is a ρ-fooling set.
In every preference profile in Sε, w is ranked in position
|Z0| + |Y0| + 1 = αm + 1. Hence, the Borda score of w is
n(m− αm− 1) in every preference profile in S. The Borda
score of every other alternative is at most nm−1

2
. Thus, the

approximation ratio obtained by any x ∈ A \ {w} is

sc(x)

sc(w)
≤

nm−1
2

n((1− α)m− 1)

=

(
1

1− α

)(
m− 1

m− 1/(1− α)

)
1

2

< (2cρ) · 1

c
· 1

2
= ρ

Thus, in every preference profile in S, no alternative other
than w obtains a rho-approximation.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by (1 − ε)n of the voters. Hence, the
Borda score of z is at least (1 − ε)n(m − βm). In Pr the
approximation obtained by w is then

sc(w)

sc(x)
≤ n((1− α)m− 1)

(1− ε)n(1− β)m

<
1− α

(1− ε)(1− β)

=
1

2(1− α)(1− ε)

<
1

2
· (2cρ) · 1

c
= ρ

Therefore, in any Nε = O(log(1/δ)) preference profiles, it
is possible to mix voters in such a way that w no longer ob-
tains a rho-approximation. Therefore, the communication
complexity of computing a rho-approximation to Borda is

log

(
|Sε|
Nε

)
= Ω

(
δ3

log(1/δ)
nm− log(log(1/δ))

)
.

Our construction shows that sufficiently good approxi-
mations to Borda have communication complexity Ω(nm).
The lower bound for Bucklin is significantly stronger. It is
shown that any deterministic communication protocol that
computes any constant factor approximation to Bucklin has
communication complexity Ω(nm). Further, non-trivial lower
bounds are presented for a number of non-constant approx-
imation ratios.

Theorem 7. Let ρ > 1. The communication complexity of

obtaining a ρ-approximation to Bucklin is Ω
(
nm
ρ2

)
.

Proof. Let α = 1
2(ρ+1)

and β = 2α2. Let m be sufficiently

large so that m−1
m

> ρ
ρ+1

. Let ε = 1
4
.

Let Z0 and Z1 each contain βm alternatives and let Y0 and
Y1 each contain (α − β)m alternatives. Thus, |Z| + |Y | =
2αm and |X| = m− 2αm− 1. Notice that β < α < 1

2
, so A

can be partitioned in this manner.
Let Sε be the set shown to exist in Theorem 5, then

|Sε| = 2Ω (n|Z0|) = 2
Ω

(
nm

ρ2

)
.

In every preference profile in Sε, w is ranked in position
|Z0| + |Y0| + 1 = αm + 1. Hence, the Bucklin score of w is
αm+ 1. The Bucklin score of x ∈ A \ {w} is at least m−1

2
.



Hence, the approximation obtained by x ∈ A \ {w} is

sc(x)

sc(w)
≥

m−1
2

αm
= (ρ+ 1)

m− 1

m
> ρ.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by at least (1 − ε)n = 3n

4
of the voters.

Hence, the Bucklin score of z is at most βm. In Pr, the
approximation obtained by w is then at least

sc(w)

sc(x)
≥ αm

βm
=
α

β
=

1

2α
> ρ.

Therefore, in any Nε preference profiles, it is possible to
mix voters in such a way that w no longer obtains a ρ-
approximation. By Theorem 1, the communication com-
plexity of obtaining a ρ-approximation to Bucklin is

log

(
|Sε|
Nε

)
= Ω

(
nm

ρ2

)
.

The previous subsection showed that for each δ ∈ (0, 1),
the communication complexity of computing a mδ approxi-
mate winner in Bucklin elections is O(nm(1−δ) log(m)). The

next result provides a lower bound of Ω(nm(1−2δ)) for all
δ ∈ ( 1

2
, 1) on the communication complexity of computing a

mδ approximate winner in Bucklin elections.

Theorem 8. Let δ ∈ (0, 1
2
). The communication complexity

of obtaining a mδ approximation to Bucklin is Ω(nm(1−2δ)).

Proof Sketch. The Theorem follows from the proof of The-
orem 7, by letting ρ = mδ. The fooling set Sε in the proof
of Theorem 7 contains

|S| = 2
Ω

(
nm

ρ2

)

= 2
Ω
( nm
m2δ

)
= 2

Ω
(
nm(1−2δ)

)
.

All that needs to be observed is that the partition of A
into X, Y , and Z, given the selection of sizes for each in
the proof of Theorem 7, is still valid. However, this is easily
determined to be true.

Therefore, the communication complexity of computing a
mδ approximation to Bucklin is

log

(
|S|
Nε

)
= Ω

(
nm(1−2δ)

)
.

A lower bound on the communication complexity of com-
puting ρ-approximate winners for Copeland is provided next.

Theorem 9. Let ρ ∈ ( 1√
2
, 1) and 1√

2
+ δ = ρ. The commu-

nication complexity of obtaining a ρ-approximation to Copeland
is Ω (δnm).

Proof. Let m = m′ + 1, c = 1
2
(1 + 1√

2ρ
). Let α = 1 − 1

2cρ

and let β = 1 − 2(1 − α)2. Notice that 1
1−α = 2cρ and

1−α
1−β = 1

2(1−α) . Let m′ be sufficiently large so that 1
(1−β)m′ <

(1− c)ρ. Let ε = 1
4
.

Let Z0 and Z1 each contain βm′ alternatives and let Y0

and Y1 each contain (α−β)m′− 1 alternatives. Thus, |Z|+
|Y | = 2αm′ − 2 and |X| = m′ − 2αm′ + 2. Notice that
β < α < 1

2
, so A can be partitioned in this manner.

Let Sε be the set shown to exist in Theorem 5, then

|Sε| = 2Ω (n|Z0|) = 2Ω (δnm).

It will be shown that Sε is a ρ-fooling set.
In every preference profile in Sε, w defeats all members of

X and ties all members of Z∪Y in pairwise elections. Hence,

the Copeland score of w is |X|+ |Z|+|Y |
2

= (1− 2α)m′+ 2 +
αm′ − 1 = (1 − α)m′ + 1 in every preference profile in S.

The Copeland score of every other alternative is at most m′

2
.

Thus, the approximation ratio obtained by any x ∈ A \ {w}
is

sc(x)

sc(w)
=

m′

2

(1− α)m′ + 1

<
1

2(1− α)
= cρ

< ρ.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by over half of the voters. Hence, in
pairwise elections z defeats all alternatives in X and Y .
By construction, if z0i ∈ Z defeats z in a pairwise elec-
tion, then z necessarily defeats z1i in a pairwise election.

Hence, the Copeland score of z is at least |X|+ |Z|
2

+ |Y | =
(1− 2α)m′ + 2 + βm′ + 2(α− β)m′ − 2 = (1− β)m′.

Likewise, w defeats every alternative in X in a pairwise
election. However, if w defeats z0i then z1i necessarily defeats
w. Likewise, for the alternatives in Y . Thus, the Copeland

score of w is at most |X|+ |Z|+|Y |
2

= (1−2α)m′+2+αm′−1 =
(1− α)m′ + 1.

Thus, in Pr, the approximation obtained by w is

sc(w)

sc(x)
≤ (1− α)m′ + 1

(1− β)m′

=
(1− α)

(1− β)
+

1

(1− β)m′

=
1

2(1− α)
+

1

(1− β)m′

< cρ+ (1− c)ρ
= ρ.

Therefore, the communication complexity of obtaining a
rho-approximation to Copeland is

log

(
|Sε|
Nε

)
= Ω (δnm) .

4. CONCLUSIONS
This paper presents upper and lower bounds on the com-

munication complexity for computing approximate winners
in Borda, Bucklin, and Copeland elections. It is shown
that for every ε > 0 the communication complexity of com-
puting a 1 − ε approximate winner in a Borda election is



O
(
log( 1

ε
)nm

)
. For δ ∈ (0, 1 − 1√

2
), we show that comput-

ing a 1√
2

+ δ approximate winner in Borda elections has

communication complexity Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

However, computing the true Borda winner has communi-
cation complexity Ω(nm log(m)).

In Bucklin elections, the communication complexity of
computing the true winner is Θ(nm). We show that for
all ρ > 1, computing a ρ approximate winner in a Buck-

lin election has communication complexity Ω
(
nm
ρ2

)
. Hence,

fixed constant factor approximate winners in Bucklin elec-
tions cannot be computed with asymptotically less commu-
nication than computing the true Bucklin winner. How-
ever, we show that for all δ ∈ (0, 1), computing a mδ ap-
proximate Bucklin winner has communication complexity
O(nm1−δ log(m)). For δ ∈ ( 1

2
, 1), a lower bound on the

communication complexity of computing a mδ approximate
Bucklin winner of Ω(nm(1−2δ)) is presented.

A Ω(δnm) lower bound is also presented for the com-
munication complexity of computing 1√

2
+ δ, δ ∈ (0, 1 −

1√
2
) approximate winner in Copeland elections. However,

as the communication complexity of determining the true
Copeland winner is Θ(nm log(m)), this lower bound leaves
open the possibility of an approximation scheme for Copeland,
similar to the scheme presented for Borda.

The lower bounds on the communication complexity for
computing approximate Borda and Copeland winners only
hold for sufficiently good approximation ratios. It may be
the case that worse constant factor approximation ratios can
be obtained to these rules with a reduced communication
complexity overhead. However, we conjecture that the com-
munication complexity of obtaining any constant factor ap-
proximation to Borda and Copeland is Ω(nm). This is an
interesting line of future work.

A second line of future work is the design of non-constant
factor approximation protocols similar to the one presented
for Bucklin. Along this theme, a construction that allows
for non-constant factor lower bound proofs is desirable. The
construction presented in this paper is limited to sufficiently
small constant factor lower bound proofs for Borda and
Copeland. It is also desirable to extend this construction
to Maximin elections also.

Finally, a third, and potentially fruitful line of further
work is the study of the randomized communication com-
plexity of both exact and approximation winner determina-
tion. To the best of our knowledge, the randomized commu-
nication complexity of (approximate or exact) winner deter-
mination has not be studied.
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