
DISCOVERHISTORY: Understanding the Past in Planning
and Execution

Matthew Molineaux
Knexus Research Corporation

9120 Beachway Lane
Springfield, VA 22153 USA

matthew.molineaux
@knexusresearch.com

Ugur Kuter
Smart Information Flow

Technologies
211 North 1st Street

Minneapolis, MN 55401 USA
ukuter@sift.net

Matthew Klenk
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA

Matthew.Klenk@parc.com

ABSTRACT
We consider the problem of automated planning and control for
an execution agent operating in environments that are partially-
observable with deterministic exogenous events. We describe a
new formalism and a new algorithm, DISCOVERHISTORY, that en-
ables our agent, DHAgent, to proactively expand its knowledge of
the environment during execution by forming explanations that re-
veal information about the world. We describe how DHAgent uses
this information to improve the projections made during planning.
Finally, we present an ablation study that examines the impact of
explanation generation on execution performance. The results of
this study demonstrate that our approach significantly increases the
goal achievement success rate of DHAgent against an ablated ver-
sion that does not perform explanation.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Plan ex-
ecution, formation, and generation; I.2.3 [Deduction and Theo-
rem Proving]: Abductive Reasoning; I.2.11 [Distributed Artifi-
cial Intelligence]: Intelligent Agents

General Terms
Algorithms

Keywords
Planning, execution, abductive reasoning, explanation generation

1. INTRODUCTION
In real-world tasks, perceptions are incomplete and the world is

constantly changing due to exogenous events. Such events often
cause plans to fail, and understanding why they occur is sometimes
necessary to achieve strong performance. Real-world agents do not
necessarily observe such events directly, so they must reason that
changes in the world are explained by events.

Consider the following real-world example of the power of ex-
planation. In May 2005, NASA’s Opportunity rover was crossing a
dune on the surface of Mars when its human operators noticed an
inconsistency with their expectations: Opportunity was not moving
as much as expected [23]. The operators were not able to observe

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the surroundings of the rover fully and precisely, but they never-
theless explained this inconsistency by assuming that the rover was
stuck in loose soil. This explanation enabled the operators to for-
mulate a new plan to escape from the unobserved loose soil and
continue the mission.

The focus of this work is on algorthmically explaining the history
of a partially-observable, dynamic environment in order to under-
stand prediction failures and thereby improve future predictions. To
accomplish this, we have devised an algorithm that models change
in terms of deterministic exogenous events that can be predicted
and reasoned about. This reasoning about prediction failures con-
trasts with typical work on replanning approaches, which focuses
on resolving failures between individual causal links in the plan,
and does not attempt to understand the causes of that failure (e.g.,
[18, 10, 24, 1]). In the diagnosis field, work on constructing plan
diagnoses addresses similar issues of constructing histories during
execution in planning domains (e.g., [6], [4]) and discrete-event
systems (e.g., [20]), but this work is based on a traditional represen-
tation of exogenous events as actions conducted by another agent
or nature. Our work represents events as natural consequences that
occur automatically, rather than by choice, which is not supported
by current replanning or diagnosis systems. Finally, the SDR sys-
tem (e.g., [19]) uses regression to generate causal explanations of
an agent’s history based on a contingent planning domain. In this
work, different possible outcomes of actions are possible, which is
modeled using conditional effects. While this work is similar in
aim to ours, the representation understood by the SDR system is
strictly less expressive than the representation used in our work.

Our contributions are the following:

• We describe a formalism for reasoning about the causes of in-
consistencies between observations and expectations that arise
during plan execution. This formalism includes a novel model
for deterministic exogenous events and their effects on the world
that models partial observability using a distinction between ob-
servable and hidden facts.

• We describe DISCOVERHISTORY, an algorithm that generates
abductive explanations of possible histories during plan execu-
tion.

• We describe DHAgent, a simple planning and execution agent
that uses DISCOVERHISTORY to maintain its description of the
world and reason about hidden state. This allows DHAgent to
(1) discard plans which would fail due to the occurrence of pre-
dicted events and (2) take advantage of opportunities afforded
by future events.

• We discuss experiments in two planning domains, modified ver-
sions of the Rovers and Satellite domains from past International

Planning Competitions, to show that DHAgent’s performance is
improved by a statistically significant margin when using DIS-
COVERHISTORY for explanation. These experiments do not
compare DISCOVERHISTORY with existing algorithms, which,
as we describe later, do not support these domains.

2. DEFINITIONS AND NOTATION
In this section, we describe a new formalism for explanation gen-

eration. Representations and reasoning in this formalism use obser-
vations, actions, and events as the basic building blocks, so that an
agent can conduct planning and explanation using a single domain
model. This reduces the knowledge engineering burden by making
an additional use of existing knowledge; it works because explana-
tion is an inversion of planning.

Unlike typical formalisms from planning and diagnosis, ours
models events as deterministic. These are somewhat similar to con-
ditional effects on actions, since they occur deterministically fol-
lowing the execution of an action. However, deterministic events
can be triggered by any action, or another event; modeling the same
information as effects of actions would require the domain author
to consider the effects of all series of events that could ever happen
following an action’s execution. Therefore, the size of an equiv-
alent domain model using conditional effects rather than events
would be exponential in the number of events to be represented.

The advantages of representing deterministic exogenous events
are twofold: (1) we can determine (predictively or after the fact)
the exact time when events must occur, reducing the set of potential
explanations for a given series of observations and (2) interacting
effects can combine without causing an explosion in the number of
actions or events considered. Unpredictability in environments un-
der our representation arises only from hidden facts, not a "choice"
made by an environment as to whether an event will occur.

2.1 Basics
We use the standard definitions from classical planning for vari-

able and constant symbols, logical predicates and atoms, literals,
groundings of literals, propositions, planning operators and actions
[3, Chapter 2].

Let P be the finite set of all propositions describing a planning
environment; the state of the environment is described by assign-
ing a value to each proposition in P . A planning environment is
partially observable if an agent only has access to the environment
through observations which do not cover the complete state. We let
Pobs be the set of all propositions that the agent will observe when
true. An observation associates a truth value with each of these
propositions. Let Phidden be a set of hidden propositions repre-
senting aspects of the world an agent cannot observe; for example,
the exact location may be hidden to a robot with no GPS contact.

An event template is defined syntactically the same as a classi-
cal planning operator: (name, preconds, effects), where name, the
name of the event, preconds and effects, the preconditions and ef-
fects of the event, are sets of literals. We use effects− and effects+

to denote the negative and positive literals in effects, respectively.
An event is a ground instance of an event template. We assume that
an event always occurs immediately when all of its preconditions
are met in the world. After each action, any events triggered by
that action occur, followed by events triggered by those events, etc.
When no more events occur, the agent receives a new observation.

2.2 Explanations
We formalize the planning agent’s knowledge about the changes

in its environment as an explanation of the world. We define a finite
set of symbols T = {t0, t1, t2, . . . , tn}, called occurrence points.

An ordering relation between two occurrence points is denoted as
ti ≺ tj , where ti, tj ∈ T .

There are three types of occurrences. An observation occurrence
is a pair of the form (obs, t) where obs is an observation. An action
occurrence is a pair of the form (a, t) where a is an action. Finally,
an event occurrence is a pair (e, t) where e is an event. In all of the
occurrence forms, t is an occurrence point. Given an occurrence
o, we define occ as a function such that occ(o) 7→ t; that is, occ
refers to the occurrence point t of any observation, action, or event.

An execution history is a finite sequence of observations and ac-
tions obs0, a1, obs1, a2, . . . , ak, obsk+1. A planning agent’s ex-
planation of the world given an execution history is a tuple χ =
(C,R) such that C is a finite set of occurrences that includes each
obsi for i = 0, . . . , k − 1 and each action aj for j = 1, . . . , k
for some number k. C may also include zero or more event oc-
currences that happened according to that explanation. R is a par-
tial ordering over a subset of C, described by ordering relations
occ(oi) ≺ occ(oj) such that oi, oj ∈ C. As a shorthand, we
sometimes will say oi ≺ oj if and only if occ(oi) ≺ occ(oj).

We use the definitions knownbefore(p, o) and knownafter(p, o)
to refer to the value of a proposition p before or after an occurrence
o ∈ C occurs. Let o be an action or event occurrence. Then, the
relation knownbefore(p, o) is true iff p ∈ preconds(o). Similarly,
the relation knownafter(p, o) is true iff p ∈ effects(o). If o is an
observation occurrence and p ∈ obs, then both knownbefore(p, o)
and knownafter(p, o) are true, and otherwise are false.

We say that an occurrence o is relevant to a proposition p if the
following holds:

relevant(p, o) ≡ knownafter(p, o) ∨ knownafter(¬p, o)∨
knownbefore(p, o) ∨ knownbefore(¬p, o).

We use the predicates prior(o, p) and next(o, p) to refer to the prior
and next occurrence relevant to a proposition p. That is to say,
prior(o, p) = {o′ | relevant(p, o′) ∧ ¬∃o′′s.t.relevant(p, o′′) ∧
o′ ≺ o′′ ≺ o}. Similarly, next(o, p) = {o′ | relevant(p, o′) ∧
¬∃o′′s.t.relevant(p, o′′) ∧ o ≺ o′′ ≺ o′}.

2.3 Plausibility
The proximate cause of an event occurrence (e, t) is an occur-

rence o that satisfies the following three conditions with respect to
some proposition p: (1) p ∈ preconds(e), (2) knownafter(p, o),
and (3) there is no other occurrence o′ such that o ≺ o′ ≺ (e, t).
Every event occurrence (e, t), must have at least one proximate
cause, so by condition 3, every event occurrence must occur imme-
diately after its preconditions are satisfied.

An inconsistency is a tuple (p, o, o′) where o and o′ are two oc-
currences in χ such that knownafter(¬p, o), knownbefore(p, o′),
and there is no other occurrence o′′ such that o ≺ o′′ ≺ o′ ∈ R
and p is relevant to o′′.

An explanation χ = (C,R) is plausible if and only if the fol-
lowing holds:

1. There are no inconsistencies in χ;

2. Every event occurrence (e, t) ∈ χ has a proximate cause in
χ;

3. For every pair of simultaneous occurrences such that
o, o′ ∈ C and occ(o) = occ(o′), there may be no con-
flicts before or after: for all p, knownafter(p, o) =⇒
¬knownafter(¬p, o′), and knownbefore(p, o) =⇒
¬knownbefore(¬p, o′).

4. If preconds(e) of an event e are all satisfied at an occurrence
point t, e is in χ at t;

Figure 1: Example of an inconsistent explanation, with occurrence points ordered on the left hand side. Relevant action and event
descriptions are given on the right. Boolean values are the knownbefore and knownafter relations; for example, the value “false” at
top right indicates that the relation knownbefore((¬ (rover-at r L1)), oi) holds.

Algorithm 1: A high-level description of DISCOVERHISTORY.

1 Procedure DISCOVERHISTORY (χ)
2 begin
3 if Inconsistencies(χ) = ∅ then
4 χ←FINDEXTRAEVENTS (χ)
5 if χ = ∅ then return ∅
6 if Inconsistencies(χ) = ∅ then return {χ}
7 arbitrarily select an i ∈ Inconsistencies(χ)
8 X ← REFINE (χ, i)
9 foreach χnew ∈ X do

10 X ←X∪ DISCOVERHISTORY (χnew)
11 return X

EXAMPLE 1. Suppose that a rover r attempts to move after its
wheel has, unobserved, become stuck. Figure 1 illustrates part of
an inconsistent explanation, which includes the prior observation
occurrence at ti, in which the rover is observed at location L0;
followed by a navigate action occurrence, illustrating the rover’s
attempt to move, at ti+1 directing the rover to location L1; followed
by an event occurrence illustrating the predicted event oi+2 at ti+2

that changes the rover’s location from L0 to L1; followed by the
most recent observation occurrence oi+3 at ti+3, which states that
the rover is at L0.

There are two inconsistencies in this explanation, between the
event occurrence and observation occurrence: 〈(rover-at r L0),
oi+2, oi+3〉 and 〈¬(rover-at r L1), oi+2, oi+3〉.

3. GENERATING ABDUCTIVE EXPLA-
NATIONS

This section describes DISCOVERHISTORY, our search algo-
rithm for generating plausible explanations by recursively apply-
ing refinements to implausible explanations. DISCOVERHISTORY
is designed to find possible histories of a partially-observable dy-
namic environment. DISCOVERHISTORY generates successive ex-
planations by attempting to resolve inconsistencies in the current
explanation given its observations.

Algorithm 1 shows a high-level description of DISCOVERHIS-

TORY. The base case occurs when the current explanation is plau-
sible. In the recursive case, REFINE chooses an inconsistency and
generates a set of explanations that resolve it. Each such explana-
tion is then recursively considered by DISCOVERHISTORY to re-
move any remaining inconsistencies.

Let χ be a planner’s current explanation of the world, which in-
cludes obs, the most recent observation received by the agent. DIS-
COVERHISTORY starts by finding all inconsistencies in the current
explanation χ by calling Inconsistencies(χ). If none are present,
then the first condition for plausibility is met, so the other condi-
tions are checked to ensure plausibility (see Section 2.3). Plausi-
bility condition 3 is assumed to be true of the initial explanation,
and are maintained throughout the resolution process by remov-
ing events that contradict any new additions. Once no inconsis-
tencies exist, therefore, FINDEXTRAEVENTS checks plausibility
conditions 2 and 4. Condition 2 requires that any explanation con-
taining events with no proximate cause be rejected; condition 4
requires that any new events caused by the changes to χ be added
to χ as well. These new events may cause new inconsistencies.
Otherwise, all four conditions for a plausible explanation are met
and DISCOVERHISTORY returns the explanation χ in Line 6.

In Line 7, DISCOVERHISTORY selects an inconsistency i from
Inconsistencies(χ) and attempts to resolve it.1 The REFINE sub-
routine (Line 8 of Algorithm 1) finds all explanations that result
from resolving that inconsistency and recursively calls itself on
each. We further describe REFINE below.

We refer to the initial explanation constructed by the agent as
χ0. We use this explanation as the basis for our definition of good-
ness. An explanation χa is better than χb if DISCOVERHISTORY
requires fewer changes to transform χ0 into χa than χb. We use
an iterative deepening search to find all explanations at a minimum
depth. Since each invocation of REFINE adds a single change to
its base explanation, these explanations are the best explanations
by our goodness definition. To prevent searches from continuing
indefinitely, we employ a maximum depth bound (not shown in
pseudocode). The search conducted by DISCOVERHISTORY has a

1Any inconsistency may be selected; it does not affect the correct-
ness of the algorithm. It may affect the algorithm’s efficiency, but
we do not discuss this topic further.

Algorithm 2: Subroutines REFINE and REMOVEOCC

1 Procedure REFINE (χ = (C,R), i =(p,o,o’))
2 begin
3 X ← ∅

/* Adding a new event occurrence */
4 foreach (t, t′) ∈ T × T : t′ ⊀ t do
5 if occ(o) ≺ t ≺ occ(o′) ∧ occ(o) ≺ t′ ≺ occ(o′)

then
/* (t, t′) is a possible interval in which the */
/* occurrence o could happen */

6 foreach e ∈ E : effects(e) |= p do
7 new symbol t′′
8 o′′ ← (e, t′′) // New event occurrence
9 χnew ← (C + o′′, R+ t ≺ t′′ ≺ t′)

10 X ← X + χnew // New explanation added
/* Removing an occurrence */

11 if o /∈ χ0 ∧ o is an event occurrence then
12 X ← X ∪ REMOVEOCC (χ, o)
13 if o′ /∈ χ0 ∧ o′ is an event occurrence then
14 X ← X ∪ REMOVEOCC (χ, o′)

/* Hypothesizing an initial value */
15 if p ∈ Phidden ∧ o = occ0 then
16 X ← X + (C + (ep, t0), R) // New initial
17 return X // value occurrence
18
19 Procedure REMOVEOCC (χ = (C,R), o)
20 begin
21 X ← ∅
22 foreach p ∈ preconds(o) do
23 X ← X + (C \ o+ (er, occ(o)), R) // New removal
24 return X // occurrence

maximum depth of |C| ∗ (2|E|)2 and a maximum branching factor
of |E|, where E is the finite set of all possible event occurrences.

As shown in algorithm 2, there are three possible ways for RE-
FINE to resolve an inconsistency in an explanation, each of which
has different conditions for applicability. They are: (1) adding a
new occurrence, (2) removing an occurrence, and (3) hypothesiz-
ing a different initial value for some proposition. All applicable
methods must be tried, resulting in multiple explanations. Each
resolution may create or resolve other inconsistencies, so the in-
consistencies found in refined explanations are not necessarily a
subset of those found in the parent. To save space, we omit the
pseudo-code for REFINE. We detail the resolution strategies below.

3.1 The REFINE Subroutine

3.1.1 Adding a New Event Occurrence
Let χ = (C,R) be an explanation with an inconsistency i =

(p, o, o′). One way to resolve an inconsistency is to show that some
occurrence changed the value of a literal in between the preced-
ing occurrence o and the following occurrence o′. This occurrence
must be an event o′′ relevant to p such that o ≺ o′′ ≺ o′.

To find such occurrences REFINE considers every possible con-
secutive ordered pair of occurrence points (t, t′) between occ(o)
and occ(o′), given the partial-orderingR (lines 3-4). For each such
pair (t, t′) and every e such that effects(e) |= p (line 5), REFINE
creates a new occurrence point t′′ (line 5) and a new event occur-
rence o′′ = (e, t′′) . Then the algorithm adds o′′ intoC and updates
the partial ordering R with t ≺ t′′ ≺ t′. This results in one new
explanation that does not contain the inconsistency i for each event

Figure 2: (a) Example of adding an occurrence (left). (b) Ex-
ample of removing an occurrence (right).

e : effects(e) |= p.

EXAMPLE 2. Continuing Example 1, the event Rover-Moves
causes the rover to enter a different location, so it could be added
to resolve the inconsistency (¬ (rover-at r L1), oi+2, oi+3). In
order for this to work, a new occurrence must be added between
ti+2 and ti+3 (see Figure 2(a)). REFINE creates a new explanation
with added occurrence onew = (e, tnew) and new ordering rela-
tions ti+2 ≺ tnew ≺ ti+3. A new inconsistency is also generated
(see Figure 2(a)). The new inconsistency occurs because another
precondition of the Rover-Moves event is the literal (attempting-
move r east), which is false after such an event occurs. The new
inconsistency, ((attempting-move r east), oi+2, onew), will need
to be eliminated in a recursive call to DISCOVERHISTORY.

3.1.2 Removing an occurrence
Another possible way to resolve (p, o, o′), where o and/or o′ is

an event, is to refine the current explanation to generate new expla-
nations in which either o or o′ is removed.

REFINE checks both o and o′ for presence in χ0; if either
was, then removing it would cause a cycle. Otherwise, if it an
event occurrence, each is eligible for removal. REMOVEOCC

Figure 3: Example of hypothesizing an initial value.

first creates a new set of occurrences, C′, by removing o from
C. Then, in order to explain why the occurrence does not hap-
pen, one of the preconds(e) must be found not to hold at occur-
rence point t. Therefore, REMOVEOCC creates a new explanation
for each precondition p′ of e by creating a removal occurrence
or = (er, occ(o)). The occurrence or occurs at the same time,
and instead of o; and the new event er has no effects and satisfies
preconds(er) = {¬p′}. Due to the presence of the removal event,
no new occurrence can be added to the resulting explanation which
would cause o to recur.

EXAMPLE 3. The above mechanism resolves the inconsistency
found in example 2 by removing oi+2. Note that no inconsistencies
are generated by removing it (recall from example 1 that the rover
really didn’t move). Finally, the preconditions are examined to look
for a precondition which could explain why oi+2 might not have
occurred. Two preconditions on oi+2 are shown in Figure 2(b):
(rover-at r L0) and ¬ (pit-at L0). A new explanation is created for
each, with a removal occurrence corresponding to the negated pre-
condition. Each dummy occurrence will cause a new inconsistency,
as shown in Figure 2(b).

3.1.3 Hypothesizing an initial value
Given an inconsistency (p, o, o′), where o refers to the initial

observation in the execution history, and p is not observable, a dif-
ferent initial occurrence o may be hypothesized. When this is the
case, REFINE generates a new explanation by adding to χ an event
occurrence op = (ep, t0). The event ep in this occurrence is the
reserved initially-true event ep, which has no preconditions or neg-
ative effects, and satisfies effects+(ep) = {p}. This operation has
no side effects to any other literal, and thus will never cause new
inconsistencies.

EXAMPLE 4. One of the alternate inconsistencies found in ex-
ample 3, (¬ (pit-at L0), occ0, occi+2), has the characteristics re-
quired for hypothesizing an initial occurrence. A pit-at literal is not
observable, and the prior occurrence of the inconsistency is occ0.
Therefore, the discrepancy can be resolved by adding the event oc-
currence o(pit−atL0), as shown in Figure 3.

3.2 The FINDEXTRAEVENTS Subroutine
When an explanation no longer has any inconsistencies, it must

still be checked for missing events and missing causes. This is due

Algorithm 3: The FINDEXTRAEVENTS Subroutine

1 Procedure FINDEXTRAEVENTS (χ = (C,R))
2 begin
3 foreach occi ∈ C do
4 occj ←FINDPROXIMATECAUSE(C)
5 if occj = ∅ then return ∅
6 foreach ti ∈ T do
7 C ← C ∪ ENUMERATECAUSEDEVENTS(χ)
8 return χ

to requirements 2 and 4 of a plausible explanation (see Section 2.3).
Requirements 2 and 4 implement the notion of deterministic event
execution, by requiring that all events fire immediately when their
conditions are met. We now discuss these requirements in more
detail.

According to requirement 2, an explanation that includes an
event for which no proximate cause is implausible (because the
event should have happened earlier). To ensure that such an ex-
planation is not returned, FINDEXTRAEVENTS iterates over each
event occurrence occi in χ, and attempts to find its proximate
cause. This is shown in Algorithm 3, lines 3-5.To do so, it it-
erates over all occurrences in the explanation and execution his-
tory to find the set PO = [occ0 . . . occn] of occurrences where
for every occj ∈ PO, occj ≺ occi and there is no occk such
that occj ≺ occk ≺ occi. If for any occj ∈ PO the set
post(occj)∩ pre(occi) is non-empty, occi has a proximate cause.
If there is an occi that has no proximate cause in the explanation,
then the explanation is faulty and a null explanation is returned.

According to requirement 4, all events that are possible must
occur. FINDEXTRAEVENTS guarantees this, as shown in Algo-
rithm 3, lines 6-7, by adding events that are not in χ but do have
causes in χ. This is done by considering each occurrence point
ti ∈ T , and enumerating all events ej whose preconditions are met
at time ti. If an occurrence occij = (ej , ti) is not already present
in the explanation χ, that occurrence is added to the explanation.

4. DHAGENT
DHAgent is a software agent that operates in planning domains

using a PDDL+ [2] domain definition to represent actions, events,
and predicates. It conducts planning using the SHOP2 PDDL+
planner [13] and automatically maintains a consistent explanation
of the world, which it modifies using the DISCOVERHISTORY al-
gorithm as necessary.

Algorithm 4 shows a high-level description of DHAgent. It takes
as input a set of top-level tasks to be performed. It then receives
the initial observation, which gives the truth value for the initial
state for the observable literals Pobs. Because some literals are not
observable, many possible worlds may be consistent with this ob-
servation. DHAgent creates an initial state according to the closed
world assumption, and creates a plan to accomplish the top-level
task from this initial state. Because of the closed world assumption,
it plans only for the possible world where all unobservable facts are
false. DHAgent then loops over the actions in the plan, executing
them one at a time, adding projected events to its explanation, and
receiving new observations.

When a new observation is inconsistent with its current expla-
nation, DHAgent refines its explanation of the past using DISCOV-
ERHISTORY, as described in Section 3. Although it may some-
times choose an incorrect explanation, it can retract prior assump-
tions and explained occurrences during subsequent execution steps
if they become untenable. Every time the explanation is refined in

Algorithm 4: DHAGENT

input: A set T of tasks to perform
1 Procedure DHAGENT(T)
2 begin
3 obs0 ←RECEIVEOBSERVATION()
4 π ←PLAN(T, preconds(obs0))
5 χ← ({obs0}, ∅)
6 i← 1
7 while π 6= ∅ do
8 ai ←POP(π)
9 χ← χ+ ai

10 χ←FINDEXTRAEVENTS(χ)
11 EXECUTEACTION(ai)
12 obsi ←RECEIVEOBSERVATION()
13 χ← χ+ obsi
14 if Inconsistencies(χ) 6= ∅ then
15 Xnew ←DISCOVERHISTORY (χ)
16 if Xnew 6= ∅ then χ←FIRST(Xnew)
17 else χ← ({obsi}, ∅)
18 Create a set S of all literals satisfied at occ(obsi)

according to χ
19 p←PLAN(T, S)

20 i← i+ 1

this way, DHAgent replans, because its current plan may no longer
accomplish its task. As part of the explanation refinement process,
DHAgent considers the initial world to have been a different pos-
sible world consistent with the initial observation. However, it still
makes a closed world assumption about the initial state with regard
to all literals not hypothesized to have different initial values in the
explanation; thus it considers only one possible world at any given
time. When no explanations are found, the explanation cannot be
maintained further, because there will always be inconsistencies in
any explanation based on the current one. Therefore, a new expla-
nation is started as if the most recent observation was the initial
observation.

When replanning, DHAgent takes into account the state of the
unobservable literals found by projecting the effects of explanation
events on the current assumed initial world state. The loop exits
only when all actions from a plan have been performed. This occurs
either when each top-level task has either been accomplished or has
become unachievable.

The way DHAgent makes assumptions about the initial possible
world is consistent with the way belief revision is performed in
many BDI agents. In the language of belief revision, DHAgent
initially believes that all facts in the initial observation are true, and
all others are false. Over time it changes its beliefs according to the
actions executed and the events in the explanation. Thus DHAgent
always believes the state to be the projection of some individual
initial world state to the present.

We believe that DHAgent’s policy of making strong assumptions
about the initial state until observations contradict them is reason-
able in domains with many possible worlds and automatic sensing.
In such domains, the high number of hidden facts causes planning
for all possible worlds to be intractable. Furthermore, DHAgent
will be relatively successful in domains where certain literals are
rarely true, and cannot be observed directly; the existence of such
a true literal would be surprising. For example, although sand pits
may be ubiquitous on Mars, a Mars rover could not reason about all
possible such pits. Indeed, by assuming sand pits are everywhere
it might remain stuck in one place, never moving for fear of falling

in. Instead, it initially assumes that the ground is safe and be pre-
pared to revise its assumptions when new evidence arrives. In the
same way, DHAgent is an agent that is prepared for surprises, but
does not consider every possibility that might occur.

5. EXPERIMENTAL EVALUATION
We examined the performance of DHAgent in the context of

planning and execution in two partially-observable domains. These
domains have been engineered to include events that are triggered
by hidden facts. Thus, events will occur at execution time that can
not be predicted due to lack of knowledge at planning time.

Rovers-With-Compass (RWC) is a navigation domain with hid-
den obstacles inspired by the difficulties encountered by the Mars
Rovers. Specifically, individual locations may be windy, sandy,
and/or contain sand pits, which the rover cannot observe directly.
Sandy locations cause the rover to be covered in sand; while cov-
ered in sand, the rover cannot observe its location or perform the
"recharge" action. Sand pits stop the rover from moving; the rover
can dig itself out at a high energy cost. Windy locations clear the
sand off of the rover, but due to a malfunction, may confuse the
rover’s compass, causing it to move in the wrong direction. When
rovers run out of energy, they stop moving.

Satellite-With-Malfunctions (SWM) is based on the Satellites
domain from the 2002 International Planning Competition. The
objective in each scenario is to acquire images of various phe-
nomena and transmit them to earth. Our additions to this domain
include various causes of satellite malfunction: supernova explo-
sions, which can damage sensitive instruments that are pointed
toward them; fuel leaks, which cause fuel reserves to diminish
rapidly; and motor malfunctions, which delay a satellite’s turn to a
new perspective. When fuel reserves are depleted, no further goals
can be accomplished.

We compared the performance of DHAgent with an ablated
version that does not perform explanation, called Non-DHAgent.
Non-DHAgent differs in how it replans; replanning occurs when-
ever the planner incorrectly predicts the new observation. Non-
DHAgent then plans based on a state consisting of the latest obser-
vation, plus those hidden facts consistent with the events predicted
so far by SHOP2. Other systems capable of reasoning about par-
tially observable worlds such as Contingent-FF [5] and SDR[19]
provide no support for deterministic exogenous events, or domains
where no plan or conditional plan is guaranteed success. To our
knowledge, no existing systems can operate in these domains, so
we do not compare with existing work.

We wrote a problem generator for each domain that randomly
creates an initial state including both observable and hidden facts
and goals. For the RWC domain, each starting state contained 3
rovers, and a goal for each rover that required it to move to a new
destination. Goal destinations were generated randomly such that
the rover must cross at least 3 distinct locations to accomplish its
goal. Each scenario took place on a 6 × 6 grid of locations con-
nected in the four compass directions. Hidden state was assigned
independently for each location and condition with probability p.

Each randomly-generated SWM problem included 3 satellites
and required the attainment of 8 image acquisition goals. Each im-
age target was chosen randomly from a set of 20. Targets were as-
sociated with supernovae, fuel leaks, and motor malfunctions based
on a probability p.

We randomly generated 25 problems in each domain; Table 1
shows a comparison of the performance of DHAgent and Non-
DHAgent. Here, performance is defined as a percentage of goals
completed. For the RWC domain, the probability of hidden dif-
ficulties was p = 0.1; in the SWM domain, the probability of

Table 1: Statistical t-test results, comparing our explanation-
based and non-explanation based systems in the RWC and
SWM domains.

Domain Non-DHAgent DHAgent t-test
Rovers 65.3% 78.7% 0.001

Satellite 52.5% 76.0% < 0.001

Figure 4: Comparison at various difficulty levels.

hidden state that induces malfunctions was p = 0.3. We used a
depth bound of 7 in our experiments, i.e., the search for explana-
tions could not include more than 7 recursive refinements.

We compared the mean performances of DHAgent and Non-
DHAgent using a two-tailed t-test with paired samples, which
showed that DHAgent statistically outperformed Non-DHAgent in
both domains. As the only difference between the two agents is
the use of explanation, it’s clear that the use of DISCOVERHIS-
TORY improved performance. This shows that abductive explana-
tion of state events can improve performance over replanning alone
in partially-observable dynamic environments.

To further examine the impact of hidden state on performance,
we increased the difficulty of the RWC domain by varying the prob-
ability of hidden states. Figure 4 compares the performance of the
two agents at 4 difficulty levels: p = 0.0, 0.1, 0.2, and 0.3. At
p = 0.0, there is no hidden state; as expected, we see perfect per-
formance from both agents since no explanation is necessary. As
the probability of obstacles rises, both agents perform more poorly,
but DHAgent continued to statistically outperform Non-DHAgent.
At p = 0.3, DHAgent accomplished goals 50% more often than
Non-DHAgent. Differences between them were statistically sig-
nificant for all p > 0.0.

6. RELATED WORK
As with many topics in Artificial Intelligence, our work is related

to research conducted in several subfields. We’ve tried to separate
the related work by body of literature below, starting with the most
closely related first.

Planning and Execution. Other work in planning and execu-
tion that involves reconsidering what happened in the past includes
that by Molineaux, Klenk, and Aha [12] and Shani and Brafman
[19]. Our work extends the work from [12] with a more principled
formalism for exogenous events and the capability to reason over
a longer history. In more recent work by Shani and Brafman [19],
the SDR planner maintains beliefs by reconsidering facts from the
past and initial state through a regression process. Unlike our DIS-
COVERHISTORY algorithm, a series of events that explain the ob-
servations is not constructed. Instead, SDR tries to determine what
possible facts are consistent by searching paths through a branching
and/or tree that covers possible histories tracing through executed

sensing actions. SDR considers multiple possible initial states si-
multaneously to find a plan that works under a sample of possible
worlds. The plan will not necessarily execute in the true world,
however. When an action’s preconditions are not known to be true,
the agent replans. In contrast, DHAgent replans when any incon-
sistency is discovered. As a result of this, SDR will execute some
number of actions in an incorrect plan before coming to one that
is no longer possible. In contrast, DHAgent never executes actions
toward a plan that is inconsistent with its knowledge of the world.

CASPER [10] uses a continuous planning approach to achieve a
higher level of responsiveness in dynamic planning situations. The
planner has goals, initial state, current state, and a model of the ex-
pected future state. The goals or current state may change at any
time and invoke the planning process. The planner will then cre-
ate a new plan based on the current information. This can happen
repeatedly and the planner stands ready to continually modify the
plan.

Continuous Planning and Execution Framework (CPEF) is in-
troduced in [18]. CPEF assumes that plans are dynamic, that is,
that they must be evolving in response to the changes in the envi-
ronment. Over the years, there has been a large body of research
on replanning and plan repair during execution in dynamic envi-
ronments. These works focus only on execution-time failures as
discrepancies; that is, an unexpected state observed during execu-
tion triggers a re-planning or plan repair process [24, 9, 1, 22, 21,
18, 17].

In all of the previous works mentioned above, a discrepancy is
defined as based on causal links between the preconditions and ef-
fects of different actions in the plan. In particular, when the ob-
served state of the world violates such causal-links in the plan,
a discrepancy occurs and triggers the re-planning or plan-repair
process. In contrast, our formalism and algorithms are designed
to generate more expressive and informative explanations of the
world, including causal-link failures as well as other changes that
may occur due to exogenous events.

Real-Time Control and Planning. Existing research on real-
time control and execution in Artificial Intelligence typically em-
ploys a reactive planning foundation, where the agent decides on an
action and executes it immediately [14, 15, 16, ?, 8]. Sometimes,
the systems decide on the action to be executed by using planning
heuristics. Sometimes, they generate a complete plan, off-line, that
achieves the goal, and then execute the plan.

The Cooperative Intelligent Real-time Control Architecture
(CIRCA) is an autonomous planning and control system that builds
and executes safety-preserving plans in the face of unpredictable
events [14]. CIRCA includes a Reaction Planner which devises
a plan to accomplish mission goals while avoiding or preventing
failures. The Reaction Planner takes in a problem description that
species the initial state of the world, a set of goal states that the
planner attempts to reach, a distinguished failure state that the plan-
ner must avoid, and a set of transitions that move the world from
one state to another. Unlike most planning systems, CIRCA rea-
sons about uncontrollable sources of changes, such as environmen-
tal disturbances, failures, and adversaries. The transition models
also include timing characteristics that specify how fast the vari-
ous transitions can occur. The Reaction Planner uses formal veri-
fication techniques to check its plans and ensure that failure is not
reachable.

Diagnosis. In the diagnosis literature, some work (e.g., [11],
[20], [7]) has focused on finding action histories that resolve contra-
dictions by assuming the presence of faulty actions and/or missing
assumptions about the initial state. This work differs from ours in

that it does not take place in the context of an execution framework,
nor does it consider a model of deterministic exogenous events,
which requires both simultaneous event occurrence and the elimi-
nation of explanations in which caused events fail to occur. Other
work in diagnosis (e.g. [6], [4]) has supplemented the diagnosis ca-
pability with an execution component; however, when replanning
in an execution context, re-explanation may also be necessary, and
this earlier work does not support amending earlier explanations by
removing events (or actions) previously believed to have happened.
Finally, none of these authors has considered the capability of ex-
plaining directly based on common planning models as our system
does, to reduce the effort required of experts in creating multiple
domain models.

7. CONCLUSIONS AND FUTURE WORK
We have described a formalism and algorithm to abductively rea-

son about unexpected event occurrences during planning and ex-
ecution. The explanations generated using this approach can be
used by a planning and execution system to proactively expand its
knowledge of the exogenous events and hidden state in the world,
and thereby improve the performance of its re-planning process.
Our experiments in two planning domains showed that the percent-
age of goals achieved was significantly higher when using our ab-
ductive explanation generation algorithm, compared to an identical
system that did not use them. We have shown that this algorithm
can improve performance in environments with repeated exposure
to hidden events and discrepancies.

There are several tasks that we would like to accomplish in the
future based on our results. First, we’ll investigate the theoreti-
cal properties of abductive reasoning in planning and execution in
general. Based on this theory, we intend to generalize our work to
investigate explanatory diagnosis in planning with incomplete ac-
tion and event models, and in temporal planning, where actions and
events may have durative effects.
Acknowledgments. This work was supported, in part, by DARPA
and the U.S. Army Research Laboratory under contract W911NF-
11-C-0037. The views expressed are those of the authors and do
not reflect the official policy or position of the funders.

8. REFERENCES
[1] F. Ayan, U. Kuter, F. Yaman, and R. P. Goldman. HOTRiDE:

Hierarchical Ordered Task Replanning in Dynamic
Environments. In F. Ingrand and K. Rajan, editors, ICAPS-07
Workshop on Planning and Plan Execution for Real-World
Systems, pages 31–36, 2007.

[2] M. Fox and D. Long. PDDL+: Modelling continuous
time-dependent effects. In Proc. 3rd International NASA
Workshop on Planning and Scheduling for Space, 2002.

[3] M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
Theory and Practice. Morgan Kaufmann, May 2004.

[4] S. Gspandl, I. Pill, M. Reip, G. Steinbauer, and A. Ferrein.
Belief management for high-level robot programs. In
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[5] J. Hoffmann and R. Brafman. Contingent planning via
heuristic forward search with implicit belief states. In
Proceedings of the 15th International Conference on
Automated Planning and Scheduling (ICAPS-05), pages
71–80, 2005.

[6] G. Iwan. History-based diagnosis templates in the framework
of the situation calculus. KI 2001: Advances in Artificial
Intelligence, pages 244–259, 2001.

[7] G. Iwan and G. Lakemeyer. What observations really tell us.
KI 2003: Advances in Artificial Intelligence, pages 194–208,
2003.

[8] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control
rules for reactive agents. Artificial Intelligence,
95(1):67–113, 1997.

[9] S. Kambhampati and J. A. Hendler. A
validation-structure-based theory of plan modification and
reuse. Artificial Intelligence, 55:193–258, 1992.

[10] R. Knight, G. Rabideau, S. Chien, B. Engelhardt, and
R. Sherwood. Casper: Space exploration through continuous
planning. IEEE Intelligent System, pages 70–75,
September/October 2001.

[11] S. McIlraith. Explanatory diagnosis: Conjecturing actions to
explain observations. In Proceedings of the Int’l Conference
on Principles of Knowledge Representation and Reasoning,
pages 167–179. Morgan Kaufmann Publishers, 1998.

[12] M. Molineaux, M. Klenk, and D. Aha. Goal-driven
autonomy in a Navy strategy simulation. In Twenty-Fourth
AAAI Conference on Artificial Intelligence, pages
1548–1554, 2010.

[13] M. Molineaux, M. Klenk, and D. Aha. Planning in dynamic
environments: Extending htns with nonlinear continuous
effects. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[14] D. Musliner, E. Durfee, and K. Shin. CIRCA: a cooperative
intelligent real-time control architecture. IEEE Transactions
on Systems, Man and Cybernetics, 23(6):1561–1574, 1993.

[15] D. J. Musliner and R. P. Goldman. CIRCA and the Cassini
Saturn orbit insertion: Solving a prepositioning problem. In
Working Notes of the NASA Workshop on Planning and
Scheduling for Space, 1997.

[16] D. J. Musliner, M. J. S. Pelican, R. P. Goldman, K. D.
Krebsbach, and E. H. Durfee. The evolution of CIRCA, a
theory-based AI architecture with real-time performance
guarantees, 2008.

[17] K. L. Myers. Advisable planning systems. In A. Tate, editor,
Advanced Planning Technology. AAAI Press, 1996.

[18] K. L. Myers. A continuous planning and execution
framework. AI Magazine, 20(4):63, 1999.

[19] G. Shani and R. Brafman. Replanning in domains with
partial information and sensing actions. In Twenty-Second
Int’l Joint Conference on Artificial Intelligence, 2011.

[20] S. Sohrabi, J. Baier, and S. McIlraith. Diagnosis as planning
revisited. Proceedings of the International Conference on the
Principles of Knowledge Representation and Reasoning,
pages 26–36, 2010.

[21] X. Wang and S. Chien. Replanning using hierarchical task
network and operator-based planning. Recent Advances in AI
Planning, pages 427–439, 1997.

[22] I. Warfield, C. Hogg, S. Lee-Urban, and H. Munoz-Avila.
Adaptation of hierarchical task network plans. In
Proceedings of the Twentieth International FLAIRS
Conference (FLAIRS-07), 2007.

[23] G. Webster. Nasa’s rovers continue martian missions.
http://marsrover.nasa.gov/newsroom/
pressreleases/20050524a.html, May 2005.

[24] S. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for
probabilistic planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, pages
352–359, 2007.

