
Game-theoretic Resource Allocation for Malicious Packet
Detection in Computer Networks

Ondřej Vaněk†, Zhengyu Yin∗, Manish Jain∗, Branislav Bošanský†,
Milind Tambe∗, Michal Pěchouček†

† Faculty of Electrical Engineering, Czech Technical University, Prague. Czech Republic.
{vanek,bosansky,pechoucek}@agents.fel.cvut.cz

∗ Computer Science Department, University of Southern California, Los Angeles, CA. USA.
{zhengyu.yin,manish.jain,tambe}@usc.edu

ABSTRACT
We study the problem of optimal resource allocation for
packet selection and inspection to detect potential threats in
large computer networks with multiple computers of differ-
ing importance. An attacker tries to harm these targets by
sending malicious packets from multiple entry points of the
network; the defender thus needs to optimally allocate her
resources to maximize the probability of malicious packet
detection under network latency constraints.

We formulate the problem as a graph-based security game
with multiple resources of heterogeneous capabilities and
propose a mathematical program for finding optimal solu-
tions. We also propose Grande, a novel polynomial time
algorithm that uses an approximated utility function to cir-
cumvent the limited scalability caused by the attacker’s large
strategy space and the non-linearity of the aforementioned
mathematical program. Grande computes solutions with
bounded error and scales up to problems of realistic sizes.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
Systems; C.2.0 [Computer-Communication Networks]:
Security and Protection

General Terms
Algorithms, Security, Performance

Keywords
computer networks, security, game-theory, approximation
algorithm, submodularity

1. INTRODUCTION
The problem of attacks on computer systems and cor-

porate computer networks gets more pressing each year as
the sophistication of the attacks increases together with the
cost of their prevention. A number of intrusion detection
and monitoring systems are being developed in order to in-
crease the security of sensitive information, and many re-

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

search works seek methods for optimizing the use of available
security resources [9, 20]. One such countermeasure is con-
ducting deep packet inspections, a method that periodically
selects a subset of packets in a computer network for anal-
ysis. However, there is a cost associated with conducting a
deep packet inspection: it leads to significant delays in the
throughput of the network. Thus, the monitoring system
works under a constraint of limited selection of a fraction of
all packets which can be inspected to bound the total delay.

Game-theoretic methods are appropriate for modeling such
problems and the optimal behavior of the involved parties
can be found using the well-defined concept of an equilib-
rium computation. We formulate this problem as a game
between two players: the attacker (or the intruder), and the
defender (the detection system). The intruder wants to gain
control over (or to disable) a valuable computer in the net-
work by scanning the network, compromising a more vulner-
able system, and/or gaining access to further devices on the
computer network. The actions of the attacker can there-
fore be seen as sending malicious packets from a controlled
computer (termed source) to a single or multiple vulnerable
computers (termed targets). The objective of the defender
is to prevent the intruder from succeeding by selecting the
packets for inspection, identifying the attacker, and subse-
quently thwarting the attack. However, packet inspections
cause unwanted latency and hence the defender has to de-
cide where and how frequently to inspect network traffic in
order to maximize the probability of a successful malicious
packet detection.

We build on previous work on game-theoretic approaches
to network security [1, 11] and security games [9, 20] to
present a novel approach to the challenges of malicious packet
detection. In our approach, we follow the deep packet in-
spection scenario on an arbitrary network topology, and con-
sider the following assumptions that hold true in this do-
main: the attacker can access the computer network through
multiple entry points, can attack multiple targets of differ-
ing importance in parallel, and the defender has limited re-
sources that can be used for packet analysis. To the best
of our knowledge, there is no previous work considering to-
gether all of these aspects of the problem.

This paper offers following contributions: (1) we propose
a novel game-theoretic model that can be characterized as a
graph-based security game with multiple heterogeneous at-
tacker’s and defender’s resources; (2) we give a mathemati-
cal program for finding the optimal solution for this problem

formulated both as a non-zero sum and zero sum game ap-
proximation; (3) we describe a polynomial approximation al-
gorithm Grande (GReedy Algorithm for Network DEfense)
that benefits from the submodularity property of the dis-
cretized zero-sum variant of the game and finds solutions
with bounded error in polynomial time; (4) we experimen-
tally evaluate these three algorithms and show the trade-off
in computational time and quality of found solutions.

2. RELATED WORK
Game theory has been applied to a wide range of security

problems, with many deployed applications in transporta-
tion networks [10, 20]. In fact, game-theoretic models of
real-world security problems are applicable in a wide variety
of domains with similar attributes, including (1) intelligent
players, (2) varying preferences among targets, (3) and lim-
ited resources to protect targets. This has led researchers to
model computer network security in game-theoretic frame-
works and a large body of work has been created (summa-
rized e.g. in [15]).

Most related is the recent work by Kodialam and Laksh-
man [11] since they also look at a scenario where the de-
fender conducts inspections on possible paths from a source
to a target. However, they look at a zero-sum setting for a
single source and a single target. Similarly, Otrok et al. [17]
present solutions for a domain with a single target, where the
attacker potentially uses multiple packets for an attack. On
the other hand, Chen et al. [2] present solutions for heteroge-
neous targets, with multiple attacker’s resources. However,
they only consider detection at the target nodes.

From the research focused on the security-games mod-
els, Korzhyk et al. [12] present a polynomial algorithm for
general-sum security games with multiple attacker’s resources,
however, without constraining underlying graph structure.
Jain et al. [9] present an algorithm for securing an urban net-
work with many sources and heterogeneous targets. How-
ever, this model is zero-sum and the attacker has a sin-
gle resource. Our approach mainly differs in considering a
network-security domain, where the payoffs are not necessar-
ily zero-sum and player’s utilities have more complex struc-
ture. We also model the attacker with multiple resources
used in parallel, so the defender succeeds in preventing an
attack only if all the attacker’s paths leading to a single
target are intercepted.

Our work also exploits the submodular properties of the
network security domain. Submodular functions for optimal
resource allocation optimization in adversarial environments
were first introduced by Freud et al. [6], and further devel-
oped by Krause et. al [13]. However, they do not work with
continuous defender’s resources and consider only zero-sum
setting.

3. FORMAL MODEL

3.1 Environment
We define the problem of the packet selection for inspec-

tion as a two-player game between the attacker and the de-
fender. The game is played on a graph G(N,E) that repre-
sents the topology of a computer network. The set of nodes
can be decomposed into three non-empty sets: (1) S is the
set of nodes that can be under the control of the attacker; (2)
T is the set of targets (S∩T = ∅); (3) A = N\{S∪T} is the

set of all other nodes in the network. From A, the defender
can inspect the traffic only on a subset of intermediate nodes
I ⊆ A (representing, for example, firewalls, proxy servers,
etc.). For our problem, we consider only nodes from S, T, I.

The packages are routed in the network by an underly-
ing deterministic routing protocol that is not under the at-
tacker’s control; therefore, for each tuple (s, t) : s ⊆ S, t ⊆
T , there is either a fixed single path through intermediate
nodes I, or there is a path without intermediate nodes lead-
ing from s to t, or there is no path from s to t in the graph.
Thus, the defender does not need to consider allocation of
resources to such intermediate nodes which do not lie on any
path (given the set of sources and targets).

Each target t has an associated value τt ≥ 0 that rep-
resents the importance of the target; the defender loses τt
if t is attacked successfully and gains 0 if she succeeds in
preventing the attack. The attacker gains τt if t is attacked
successfully. In case of an unsuccessful attack (i.e. a ma-
licious packet was detected by the defender), the attacker
pays a detection penalty γs ≥ 0 associated with using the
source s1. The penalty for the attacker models situations
when the defender detects that source s is being used to
send malicious packets and blocks this source from the net-
work. Due to this penalty, the attacker may choose not to
attack any of the targets, we thus define a virtual node in
the network — a dummy target tD that is directly connected
to all sources, and for which τtD = 0. Finally, for each in-
termediate node ni we define flow fi that represents the
amount of legitimate network traffic going through ni. We
assume this amount to be constant in time2 and we assume
that the amount of malicious packets sent by the attacker is
fractional compared to the legitimate network traffic3.

3.2 Players
Both players have multiple resources that they can use.

The resources of the attacker are determined by the size of
the set of sources |S| = k and we assume that the attacker
attacks from one source only a single target (however, one
target can be attacked from multiple sources). The strategy
of the attacker is to select k tuples determining which target
will be attacked from each of the sources:

P = {(si, ti) : si ∈ S, ti ∈ T, i = 1 . . . k, ∀j 6=isi 6= sj}

Since there is at most one path from source s to target t
in the graph, we refer to the attacker’s strategies as paths
and denote them as p(s,t) ⊆ I with subscript omitted if the
source-target is clear from the context. Hence, we denote
Ct to be a set of such paths that originate in some source
and end in a single target t. The attacker’s resources are
thus heterogeneous, since it may not be possible to attack
the same set of targets from all sources.

The strategy of the defender is an assignment of a vector
of probabilities X = (x1, x2, . . . , xm), where for each inter-
mediate node n ∈ I; (m = |I|), the probability xi represents
the fraction of the traffic going through the node ni that will

1We assume standard IP packets with a source IP address,
i.e. the source is traceable from the packet header; for spoof-
ing attacks [8], γs is set to zero.
2If the amount of traffic varies in time (e.g., weekends vs.
workdays, days vs. nights), we can compute multiple strate-
gies and switch between them.
3For flooding attacks, different detection/prevention coun-
termeasures instead of deep packet inspection are used.

be inspected. Therefore, the value xi also represents the
probability of the detection of a malicious packet sent by
the attacker through node ni

4. The available amount of the
defender’s resources is determined by the maximum amount
of inspected traffic B — the maximum allowed average la-
tency in the computer network. Therefore, the defender is
seeking her strategy satisfying the following constraint:

L(X) =
∑
ni∈I

xi · fi ≤ B

where xi ·fi represents the expected number of packets that
were inspected at node ni (for the complete network, we use
L(X) for brevity)5. As in the case of the attacker, the het-
erogeneity of the defender’s resources is given by the struc-
ture of the graph (different intermediate nodes provide a
malicious packet detection for different groups of targets)
and different flows for different ni ∈ I.

Finally, when designing an intrusion detection system, a
typical assumption is that the attacker will have a full knowl-
edge of techniques used by the system [19] and together with
the full knowledge of the network structure6 the attacker is
able to reconstruct the defender’s strategy; the attacker is
thus assumed to know the probability with which a packet
may be inspected at each of the intermediate nodes. In this
paper, we thus assume Stackelberg game formulation; how-
ever, the relaxation of these assumptions is subject of further
research.

3.3 Utility Functions
The utility functions of both the players are a function of

the probability of detection of the sent malicious packets.
Since the intermediate nodes inspect packets independently,
the probability of a single malicious packet avoiding de-
tection along the path p is given by:

π(X, p) =
∏
i∈p

(1− xi) (1)

where X is a strategy of the defender in the form of allo-
cation of detection resources at nodes ni. The probability
of detecting a packet on each path for a set of paths C is
computed as:

ψ(X, C) =
∏
p∈C

[1− π(X, p)]

Now, if P denotes the strategy of the attacker (i.e., paths
pj in the graph), and Ct is the set of all paths chosen by
the attacker leading to a target t, the utility of the defender
Ud(X,P) is defined as follows:

Ud(X,P) = −
∑
∀t∈T

τt · [1− ψ(X, Ct)] (2)

where the term (1− ψ(X, Ct)) denotes the probability that
at least one malicious packet avoids detection and reaches
target t. Therefore, the defender’s utility is an expected loss
of values of targets that were reached by malicious packets.

4This assumes having a perfect detector.
5The latency is not computed for every path but averaged
over the entire network, keeping our model tractable.
6Using standard network analysis tools, such as Nmap.

s1

s2

n1 n3

n2

t1

t2

td

Figure 1: Example graph. Two source nodes s1 and s2,
three intermediate nodes n1, n2 and n3, two target nodes t1
and t2, and a dummy target node td.

Analogously, we define the attacker’s utility Ua(X,P) as:

Ua(X,P) = −Ud(X,P)−
∑

p(s,t)∈P

γs · [1− π(X, p)] (3)

The attacker’s utility equals to the expected gain of values
of targets that were reached by malicious packets reduced by
the detection penalty γs for each path that the attacker uses;
recall the attacker needs to pay a penalty when a packet is
detected, as discussed in Section 3.1. As such, for any non-
zero γs, the game is not zero-sum.

3.4 Example
The example on Figure 1 depicts a simple graph with two

sources s1, s2, three intermediate nodes n1, n2, n3 with flows
f1 = 5, f2 = 3, f3 = 5 and two targets t1, t2 with values
τt1 = 2, τt2 = 6. The number of adversary resources k = 2
and defender’s latency budget is set toB = 6. The attacker’s
strategy set is:

P = { [(s1, t1), (s2, t1)], [(s1, t1), (s2, t2)],

[(s1, tD), (s2, t1)], [(s1, tD), (s2, t2)],

[(s1, t1), (s2, tD)], [(s1, tD), (s2, tD)]}.

If, for example, the defender chooses her strategy to be
X = {x1 = 0.0, x2 = 0.5, x3 = 0.1}, the latency caused is
L(X) = 0.0 · 5 + 0.5 · 3 + 0.1 · 5 = 2. If the attacker selects a
strategy P = [(s1, t1), (s2, t1)], the defender’s utility will be:
Ud(X,P) = −2·[1−(1−(1−0.0)·(1−0.1))·(1−(1−0.0)·(1−
0.1))] = −1.98. The attacker’s utility will be (when setting
γs1 = γs2 = 1): Ua(X,P) = −Ud(X,P)− 1 · (1− (1− 0.0) ·
(1−0.1))+(1− (1−0.0) · (1−0.1)) = 1.98−0.2 = 1.78. The
optimal setting is X∗ = {x1 = 0.0, x2 = 0.857, x3 = 0.686},
forcing the attacker to select P ∗ = [(s1, tD), (s2, t2)], giving
the defender expected utility Ud(X∗, P ∗) = −0.858; and the
attacker’s expected utility is Ua(X∗, P ∗) = 0.001.

4. SOLUTION APPROACH
First, we look for Strong Stackelberg Equilibrium (SSE)

of the full general-sum game. Second, we propose a zero-
sum game model (Section 4.2) that is capable of scaling to
larger problem sizes. Third, we prove the submodularity
of the problem (Section 4.3). Finally, we propose Grande,
an iterative algorithm for finding suboptimal solutions in
polynomial time (Section 4.4).

4.1 General-sum Game Model
Given the assumptions stated above, we model the prob-

lem as a Stackelberg general-sum game between the defender
and the attacker: the defender is the leader, committing to
her strategy first, and the attacker is the follower, choosing
his strategy after the leader’s commitment. The SSE gives

the optimal strategy for the leader given that the follower
acts with the knowledge of this optimal leader strategy. It
is found by solving multiple programs [3] as follows:

max
X

Ud(X,P ∗) (4)

s.t. L(X) ≤ B (5)

Ua(X,P ∗) ≥ Ua(X,P) ∀P (6)

xi ∈ [0, 1] (7)

The inputs of the programs are all possible pure strategies of
the attacker P and P ∗ is assumed to be the current best re-
sponse for the attacker. We compute the defender’s strategy
X that maximizes the defender’s utility Ud(X,P ∗) (Equa-
tion 4) while adhering to the latency constraint (Equation 5)
and ensuring that the assumed best response of the attacker
P ∗ is better than all other attacker’s pure strategies ∀P
(Equation 6). While this program may not always be fea-
sible if some choice of P ∗ is strictly dominated by others,
it will still always return a solution for all non-dominated
P ∗. The number of programs needed to be solved to find an
optimal solution is given by the number of attacker’s strate-
gies, which is |T |k, since there are |T | targets and k sources.
This approach has two main scalability limitations: first, the
non-linear formulations of Ud and Ua prohibit us from using
fast linear-program solvers; second, the attacker’s strategy
space is extremely large (for a graph with 5 sources, 5 tar-
gets and one dummy target, we get over 7500 (65) programs
with similar number of non-linear equations), limiting the
usability of the non-linear solvers.

An alternative approach, inspired by algorithms comput-
ing SSE by solving a single mixed-integer program [18], would
introduce into each Equation 6 an integer variable zi (for
each attacker’s strategy Pi) and restrict the variables by∑
zi = 1, i.e., only one attacker’s strategy can be selected

as the best response. However, this program would be very
large, having (|T |k)2 non-linear equations (which is over 56
million for the problem with 5 sources and 5 targets). Hence,
we look at the zero-sum game formulation for the problem
which allows us to exploit the structure in ways that keep
the solution tractable.

4.2 Zero-sum Game Approximation
Finding an optimal solution using the full general-sum

game representation is computationally demanding on large
problems. We thus propose a zero-sum game formulation
which reduces the complexity of the model. Setting the
cost of each source to γs = 0, the utility function of the
attacker becomes a negation of the utility of the defender
(Ua(X,P) = −Ud(X,P)), and the game becomes zero-sum.
In zero-sum games, the SSE is also a Nash Equilibrium,
which can be computed using the minimax theorem. This
approximation causes an error quantified in Section 5. SSE
of our zero-sum game can be found by solving a single non-
linear mathematical program:

max
X

V (8)

s.t. Ud(X,P) ≥ V ∀P (9)

L(X) ≤ B (10)

xi ∈ [0, 1] (11)

In this mathematical program, the main scalability limita-
tion persists – as for the general sum model – the non-linear
nature of the utility function (Equation 9) and the size of

the linear program, depending on the size of the attacker’s
strategy space (Equation 9). However, in spite of the large
problem size, zero-sum games are generally easier to solve
optimally (e.g., iterative algorithms can be used as in [7,
9]) or to approximate [14]. We follow the latter approach
and investigate approximation algorithms that utilize the
property of submodularity and are able to find solutions for
zero-sum games with guaranteed bounded error.

4.3 Submodularity
In our problem formulation, the defender’s resources ex-

hibit diminishing returns, i.e., as the number of defender’s
resources is increased, the marginal utility of deploying one
extra resource keeps decreasing. This property is formal-
ized by the concept of submodularity [16] which is utilized
in many domains (e.g., sensor networks) to design effec-
tive algorithms for solving problems with a large number
of defender’s resources. A real-valued function F defined on
subsets A of a finite set V is called submodular, if for all
A ⊂ B ⊂ V and for all s ∈ V \B holds that F (A ∪ {s}) −
F (A) ≥ F (B∪{s})−F (B). The constrained optimization of
a submodular set function is NP-hard in general, however, a
number of approximation algorithms with provable quality
guarantees can be used [22].

In our formulation, we have intermediate nodes that de-
tect the activity of the attacker. The value of the detected
activity in this problem setting is a probability between
[0, 1], as opposed to being binary which is generally assumed
in submodularity. Thus, our requirements do not meet the
assumptions of most prior work on submodularity, except
the work by Vondrak et al. [22], which studied smooth con-
tinuous extension of submodular functions by taking expec-
tations, defining sensors making observations independently
with probability in range [0, 1]. The approach requires the
continuous function to be twice partially differentiable and
an approximation bound is established by exploiting the up-
concavity7 of the resulting continuous function [5]. However,
this work is not applicable to our problem since our objec-
tive function, Ud(X,P), is not up-concave which can be de-
termined by taking the double derivative of the defender’s
utility function.

4.4 GRANDE Algorithm
We choose a different approach (in contrast to standard

submodular approaches) to exploit the submodularity of the
problem: we transform Ud into a submodular function de-
fined over sets by discretizing the sampling rate of each
node and we allow nodes to sample only a fixed portions
of traffic defined by a discretization step d ≤ 1; e.g. for
d = 0.1, the sampling rate at each node can be set only to
0, 10, 20, . . . , 100%. Then, each node ni can be seen as a set

of 1/d sensors S(ni) = {n1
i , n

2
i , . . . , n

1/d
i }. A sensor nj

i can
be switched either on (and sample a portion of the traffic)
or off which is expressed by a binary variable xji ∈ {0, 1}
having value of 1 for a sensor switched on. The defender’s
strategy is defined using the sensor notation as X = {xji}.
We redefine the Equation 1 defining the probability of a sin-

7Up-concavity means that the function is concave along any
non-negative direction vector; however, it is not necessarily
concave in all directions.

Algorithm 1 GReedy Algorithm for Network DEfense.

budget← B
I ← nodesOnPaths
repeat

updated← false
bestNode← null
bestIncrement← 0
attackerBR← getAttackerBR(graph)
for node ∈ I do

increment = getSecurityIncrement(d, attackerBR)
if bestIncrement < increment then

if d · flow(node) < Budget then
bestIncrement← increment
bestNode← node

end if
end if

end for
if bestNode! = null then

bestNode.sampling ← bestNode.sampling + d
budget← budget− d · flow(node)
updated← true

end if
until not updated

gle malicious packet avoiding detection along a path p as:

π(X, p) =
∏
ni∈p

(1− d ·
∑
S(ni)

xji) (12)

Having a submodular utility function defined over sets
for the defender Ud (which has the same formulation as in
Equation 2), we are able to design an iterative greedy algo-
rithm to achieve at least (1 − 1/e)-optimal (approximately
63.2%) solution (compared to the zero-sum game SSE) [6]
similarly to work of Krause et al. [14]. However, it is also
necessary to consider the cost of each sensor, given by the
budget constraint L(X) ≤ B. When inspecting the same ra-
tio of packets at two nodes ni, nk with flows f(ni) > f(nk),
the cost of inspection at the node ni (and thus switching
on a sensor at node ni) is higher than inspection cost at
node nk. The cost of switching on a sensor is defined as
c(nj

i) = d · f(ni). As shown in [13], the greedy algorithm

has to select a sensor xj∗i with the highest cost-benefit ratio
to guarantee bounded error of the solution:

xj∗i = arg max
x
j
i

Ud(X ∪ {xji}, P)− Ud(X,P)

c(nj
i)

(13)

Based on this formalization, we introduce Grande (GRe-
edy Algorithm for Network DEfense), depicted in Algorithm 1.
Grande iteratively selects sensors with the highest security
increment vs. cost ratio to add to the defender’s strategy,
following the greedy approach. To find the best sensor to
add, we find attacker’s optimal strategy attackerBR and
test each candidate sensor against this strategy. The algo-
rithm ends when there is no budget left or there is no sensor
to be added.

The complexity of the algorithm is thus dependent on the
number of nodes n = |I|, the discretization step d, the min-
imum amount of traffic flow at each node f , the sampling
budget B and the complexity of the attacker’s best response
oracle O(BR), and is O(nB/fd) ·O(BR).

The attacker’s optimal strategy attackerBR is a best re-
sponse to the current defender’s strategy (following the orig-
inal Stackelberg formulation). The algorithm thus needs a
fast best response oracle providing best response to the cur-

Algorithm 2 Attacker’s Best Response Oracle

H ← {}
K ← attackerResources
Pairs← enumerateAllPairs()
repeat

(s∗, t∗)← emptyPair
for (s, t) ∈ Pairs do

if U((s, t)|H) > U((s∗, t∗)|H) then
(s∗, t∗)← (s, t)

end if
end for
H ← H ∪ (s∗, t∗)

until size(H) = K

rent strategy of the other player. The following section de-
fines such oracle and provides insight into the complexity of
this approach.

Attacker’s Best Response Oracle
Recall that the attacker only selects for each source a target
to attack and the routing path is automatically assigned.
The attacker’s best response is thus an optimal assignment
of a target to every source, given a fixed defender’s strategy
X, maximizing the attacker’s utility. The attacker’s best
response can be found using an iterative greedy approach.

Let’s assume we have the defender’s strategy — a mix-
ture of sampling probabilities xi for each node ni. We
can compute for each source-target pair, what is the like-
lihood of being detected ρts = 1− π(X, p(s,t)). Let’s denote
the source-target pairs by STP = {(s1, t1), . . . , (sn, tm)}.
We also know that two different source-target pairs (with
different sources) can share the same target t. Given in-
put {STP, ρts}, the best response is k source-target pairs,
{(s1, t1), (s2, t2), . . . , (sk, tk)} such that the attacker’s util-
ity is maximized.

The greedy algorithm (summarized in Algorithm 2) works
as the following: we choose one source-target pair at a time
that maximizes the attacker’s immediate gain in utility. Let’s
assume some pairs H, have been chosen and we need to
choose the next one. Since pairs in H have already been
chosen, we know there is some probability of successfully at-
tacking a target t, denoted by qt, which may or may not be
0. If we choose source s, and target t, the additional utility
we will get will be:

U((s, t)|H) = [1− ρts · (1− qt)] · τt − qt · τt
= (1− ρts) · (1− qt) · τ t (14)

If H is empty, all qt = 0 and U((s, t)|{}) = (1 − ρts) · τ t,
is the expected value of attacking t from s. The greedy
algorithm would then choose (s∗, t∗) such that U((s∗, t∗)|H)
is maximized.

Theorem 1. The attacker’s oracle always returns attacker’s
best response to a given defender’s strategy.

Proof. Consider at any point of the algorithm, a set of
source-target pairs H has been chosen. The greedy algo-
rithm returns (s∗, t∗). We want to show (s∗, t∗) must be
in the best solution conditioned on H being included. This
will allow us to do induction on the number of pairs cho-
sen. Let’s denote the optimal solution by C∗. The first pair
chosen, which is the best one from STP , must be in C∗ be-
cause H1 is empty (no condition required). And if the pairs

up to k are all in the optimal solution, implying Hk is in C∗,
therefore the k + 1-th pair must be in the optimal solution.

This implies that we want to show (s∗, t∗) must be in the
best solution conditioned on H being included. To show
this by contradiction, we consider another candidate best
solution C (having H) which does not have (s∗, t∗). Two
cases to consider:

1. C contains no pair attacking target t∗ other than those
in H. Then we find an arbitrary pair (s′, t′) in C
but not in H (such set is denoted as C\H) and re-
place it by (s∗, t∗). We know the attacker gains ex-
actly U((s∗, t∗)|H) (since no other pair in C\H at-
tacks t∗) and loses at most U((s′, t′)|H) (since there
might be another pair in C\H). Recall U((s∗, t∗)|H) ≥
U((s′, t′)|H) given how (s∗, t∗) is chosen, the new solu-
tion C+ (s∗, t∗)− (s′, t′) must be better than C which
also includes H, leading to a contradiction.

2. C\H has at least another pair attacking t∗ that is not
(s∗, t∗). Let the pair be (s′, t∗). We replace it by

(s∗, t∗). We know ρt
∗
s∗ ≥ ρt

∗
s′ because U((s∗, t∗)|H) ≥

U((s′, t∗)|H). Therefore the total probability of suc-
cessfully attacking t∗ must increase after the replacing
given other pairs in C remain fixed. Again this shows,
C + (s∗, t∗) − (s′, t∗) is a better solution which is the
contradiction.

Having reached contradiction in both points, we have shown
that (s∗, t∗) must be in the best solution conditioned on H
being included, implying validity of the induction step.

The complexity of the algorithm is O(STn + S2T) =
O(n3), where the O(STn) is complexity of the initializa-
tion and O(S2T) is complexity of iterations. Here, S is the
number of sources, T is number of targets and n = |I| is the
number of nodes.

5. EVALUATION
In the evaluation, we focus on exploring the trade-off be-

tween scalability and the quality of the solution. We con-
sider the solution of the general-sum model to be optimal
and compare it with the solution of the mathematical pro-
gram representing the zero-sum game model, and the solu-
tion from Grande. Additionally, we want to explore finer
properties of Grande, specifically, the dependency of the
solution error on the discretization step of the sampling rate.

Experimental scenarios of the analyzed problem depend
on a large set of parameters that affect both the performance
of the algorithms, as well as the quality of produced solutions
for the approximative ones. The key parameter is the graph
on which the game is played; more specifically the number
of intermediate nodes |I|, the number of sources |S|, and the
number of targets |T |. Moreover, the degree of overlapping
paths also plays an important role in the non-linear models.
The detection penalty γs has no direct impact on the run
time of Grande; the defender’s budget B, traffic flow fi and
discretization step d proportionally influence mainly the run
time of Grande.

While we conducted experiments for different graph struc-
tures, we present results only on scale-free graphs since these
graphs are known to be the closest to general computer net-
works in their structure. We performed experiments with

(a) Defender’s exp. util-
ity. Red diamonds denote
locally optimal solution.

(b) Distribution of de-
fender’s resources between
n1 and n2 (log x axis).

Figure 2: Impact of detection penalty γ on the solution
structure. While increasing value of γ, the defender redis-
tributes her resources between n1 and n2 and her exp. utility
changes (b), however, it stays equal to zero for γ > 1.2 (a).

random flows (e.g. the flow at each node is set indepen-
dently on the flow of the others) as well as with network-
flow constrained traffic distribution (the flow at each node
is computed from the network-flow equations by randomly
selecting traffic sources and sinks in the network) which did
not directly influence both the performance and quality of
the solution. Without loss of generality, in every experi-
ment, the traffic flow in the graph is set between [0, 1] at
each node. We have included the dummy target in each
model to keep the graph size constant for all algorithms,
even though the zero-sum model as well as the iterative al-
gorithm never consider the attacker to attack the dummy
target. The detection penalty was set to γs = 1 for each
source.

5.1 Solving Non-linear Constrained Programs
To obtain an optimal solution of the program representing

the general-sum game model, we use a non-linear solver to
find optimal or locally optimal solution. NEOS server [4]
provides on-line solvers for solving non-linear programs. We
used LINDOGlobal [21], a non-linear constrained program
solver able to find globally optimal solutions for many con-
strained non-linear programs. The input to the solver is a
file describing the program in the GAMS format, which is
sent by a remote procedure call to the NEOS server using
XML remote procedure call API. The solution is computed
on the server and the results are sent back to the user.

5.2 General-sum vs. Zero-sum Model
As a first step, we compare the quality of the general-

sum and the zero-sum game model. The difference in the
solution quality between these two models will be directly
affected by the value of the detection penalty γ, as it can be
observed from Equations 2 and 3. For the example described
in Section 3.4, the trend of defender’s expected utility while
varying γ is depicted on Figure 2a. As γ is increased (i.e. the
attacker is penalized more for a detected malicious packet,
thus the utility of players is further from zero-sum), the de-
fender’s expected utility rises. Two rapid transitions occur
for (γ = 0.8 and γ = 1.2) which are caused by the switch of
attacker’s strategies to attack the dummy target tD. In the
interval from [0, 0.8], the attacker attacks from both sources,
in the interval from [0.8, 1.2] the attacker attacks only from
one source, and from [1.2,∞], the attacker chooses not to
attack at all. Figure 2b shows the distribution of defender’s

(a) General-sum NLP (b) Zero-sum NLP (c) Grande

Figure 3: Scalability of the three models with respect to the number of sources and targets on scale-free graphs with 100
intermediate nodes (note the different scale of the x axis). For comparison of Grande with other two approaches, we have
displayed one result of the zero-sum NLP in the Figure (c) denoting performance of the zero-sum model for 4 targets.

resources between nodes n1 and n2 as γ is varied. Notice
that the defender has to redistribute the resources to dis-
courage the attacker from attacking, while still adhering to
the latency constraints, i.e. the node sampling rates multi-
plied by the flows through the nodes x1 ·f1+x2 ·f2 ≤ B = 6.
The results of the zero-sum model are equal to the results
of the general-sum model with γ = 0.

5.3 Performance
Figure 3 depicts the scalability of the three main algo-

rithms. The results for general-sum NLP are restricted to a
maximum of 3 sources and 3 targets, since the NEOS server
limits the size of the input that can be sent to it. Similarly,
for the zero-sum NLP, the limit was reached at 5 sources and
4 targets. However, even on these problem sizes it is possible
to see performance trends: the runtime of the general-sum
as well as zero-sum NLP is exponential (even in logarithmic
coordinates) in the number of sources (i.e. number of at-
tacker’s strategies) and time needed to solve a graph with
3 sources and 3 targets is over three minutes in average for
the general-sum NLP. Using the zero-sum NLP, we are able
to compute solutions on graphs with 5 sources and 4 targets
in approximately 30 seconds.

Comparing Grande to mathematical program formula-
tions, we can observe its superiority on Figure 3c (perfor-
mance of the zero-sum NLP on 4 targets is depicted as a
single line on the left of the chart). The performance of
Grande is linearly dependent on the discretization step d
(see Section 4.4). The algorithm is able to find solution
on graphs with 20 sources and 4 targets in seconds, having
the discretization step set to d = 0.01 (which is sufficient
to compute solutions with an average error under 10%, see
Section 5.4). The largest problem tried, with 2000 nodes,
200 sources and 20 targets was solved in approximately 50
hours on a standard PC.

5.4 GRANDE Solution Error
The theoretical error bounds of greedy algorithms opti-

mizing submodular set functions shown in [22] are valid only
for zero-sum settings. We explore the error of Grande com-
pared to the general-sum game solution, which can be pos-
sibly unbounded. It is necessary to set the discretization
step of Grande to a specific step, which has a direct im-
pact on the quality of solution. To evaluate the error, we
have varied both the discretization step as well as attacker

loss expressed by γ. The budget constraint of the defender
was fixed to B = 4.

For every graph, we have computed the defender’s re-
source allocation X∗ and attacker’s best response P ∗ us-
ing the program of the general-sum NLP, which served as
a reference optimal solution (even if only a local optimum
was found by the solver, due to lack of other globally optimal
techniques). Then we computed the defender’s resource allo-
cationXG using Grande. To evaluate the quality ofXG, we
have found the attacker’s best response PG to XG using the
general-sum utility formulation. Then, we computed the er-

ror of XG as err = UD(X∗,P∗)−UD(XG,PG)
T , where T =

∑
τt

(maximum achievable error).
Figure 4 quantifies errors of Grande from 50 different

scale-free graphs with two sources and two targets (prob-
lem sizes limited due to restrictions imposed by the NEOS
server). The graph depicts the median error (denoted by
the circle) with the 25th and the 75th percentile (denoted
by a thick bar) and maximal and minimal error (denoted
by whiskers). As we refine the discretization step from 1 to
0.001 (i.e. the sensors can increase their sampling rate by
0.1% for d = 0.001), the quality of solution increases. An
average error under 10% is reached when the discretization
step is set to d = 0.01, however Grande is able to compute
strategies with discretization step set to 0.001 resulting into
errors under 5%. The variance is observed to be the highest
for d = 0.1 as the solutions varied from close-to-optimal to
100% ineffective.

6. CONCLUSION
Effectively securing large computer networks without sti-

fling the quality of service is a practical and theoretical chal-
lenge of grave impact in the real-world. In this paper, we
outline the mathematical model of the network security do-
main. We provide the mathematical formulation for the
two person security game between the defender and the
attacker, where the attacker sends malicious packets from
some (known) set of sources and the defender uses packet
inspections to detect such malicious traffic. Since the non-
linear calculations render the model intractable for computer
networks with even 5 sources and 5 targets, we also intro-
duce a zero-sum simplification of the original model. We
then propose Grande, a novel error-bounded approxima-
tion algorithm that relies on the submodular property of the
malicious packet detection problem.We validate our algo-

Figure 4: Error of Grande evaluated over different scale-
free graphs. The errors are grouped according d, and in each
group, γ was set to {0.1, 1, 2, 5, 20}.

rithms experimentally, and show that Grande, on average,
produces results with orders of magnitude higher solution
quality as projected by the theoretical worst case bounds.
This work contributes by outlining the challenges present
in the network security domain, and by introducing state-
of-the-art algorithms that compute the optimal strategy for
the defender in computer networks.

7. ACKNOWLEDGMENTS
This research was supported by the United States De-

partment of Homeland Security through the National Cen-
ter for Risk and Economic Analysis of Terrorism Events
(CREATE) under award number 2010-ST-061-RE0001, by
the Czech Ministry of Education, Youth and Sports (grant
no. LH11051), by the Czech Science Foundation (grant
no. P202/12/2054) and by the AirForce Office of Scien-
tific Research, Air Force Material Command, USA (grant
no. FA8655-10-1-3016).

8. REFERENCES
[1] T. Alpcan. Network Security: A Decision and

Game-Theoretic Approach. Cambridge University
Press, 2010.

[2] L. Chen and J. Leneutre. A game theoretical
framework on intrusion detection in heterogeneous
networks. IEEE Transactions on Information
Forensics and Security, 4(2):165–178, 2009.

[3] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM
conference on Electronic commerce, pages 82–90.
ACM, 2006.

[4] J. Czyzyk, M. Mesnier, and J. Moré. The NEOS
server. Computational Science & Engineering, IEEE,
5(3):68–75, 1998.

[5] S. Dughmi. Submodular Functions: Extensions,
Distributions, and Algorithms. A Survey. CoRR, 2009.

[6] Y. Freund and R. Schapire. Adaptive game playing
using multiplicative weights. Games and Economic
Behavior, 29(1-2):79–103, 1999.

[7] E. Halvorson, V. Conitzer, and R. Parr. Multi-step
Multi-sensor Hider-Seeker Games. Proceedings of the
Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI), 2003.

[8] L. Heberlein and M. Bishop. Attack class: Address
spoofing. In Proceedings of the 19th National

Information Systems Security Conference, pages
371–377, 1996.

[9] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer,
M. Pěchouček, and M. Tambe. A double oracle
algorithm for zero-sum security games on graphs. In
Proceedings of the Tenth International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Taipei, Taiwan, 2011.

[10] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi,
M. Tambe, and F. Ordóñez. Software Assistants for
Randomized Patrol Planning for the LAX Airport
Police and the Federal Air Marshals Service.
Interfaces, 40:267–290, 2010.

[11] M. Kodialam and T. Lakshman. Detecting network
intrusions via sampling: a game theoretic approach. In
Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. (INFOCOM),
volume 3, pages 1880–1889. IEEE, 2003.

[12] D. Korzhyk, V. Conitzer, and R. Parr. Security games
with multiple attacker resources. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2011.

[13] A. Krause and C. Guestrin. Near-optimal observation
selection using submodular functions. In Proceedings
of the National Conference on Artificial Intelligence
(AAAI), 2007.

[14] A. Krause, A. Roper, and D. Golovin. Randomized
sensing in adversarial environments. In Proceedings of
the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI), pages 2133–2139, 2011.

[15] M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and
J. Hubaux. Game theory meets network security and
privacy. EPFL, Lausanne, Tech. Rep, 2010.

[16] G. Nemhauser and L. Wolsey. Maximizing submodular
set functions: formulations and analysis of algorithms.
Studies on Graphs and Discrete Programming, pages
279–301, 1981.

[17] H. Otrok, M. Mehrandish, C. Assi, M. Debbabi, and
P. Bhattacharya. Game theoretic models for detecting
network intrusions. Computer Communications,
31(10):1934–1944, 2008.

[18] P. Paruchuri, J. Pearce, J. Marecki, M. Tambe,
F. Ordonez, and S. Kraus. Playing games for security:
an efficient exact algorithm for solving Bayesian
Stackelberg games. In Proceedings of the 7th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 895–902, 2008.

[19] V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer networks,
31(23-24):2435–2463, 1999.

[20] J. Pita, C. Kiekintveld, M. Tambe, E. Steigerwald,
and S. Cullen. GUARDS - Game Theoretic Security
Allocation on a National Scale. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2011.

[21] L. Schrage and I. LINDO Systems. Optimization
modeling with lingo. 1999.

[22] J. Vondrak. Optimal approximation for the
submodular welfare problem in the value oracle model.
In Proceedings of the 40th annual ACM symposium on
Theory of computing, STOC ’08, pages 67–74, 2008.

