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ABSTRACT
We present a supervised learning from demonstration system
capable of training stateful and recurrent collective behaviors
for multiple agents or robots. A model space of this kind is
often high-dimensional and consequently may require a large
number of samples to learn. Furthermore, the inverse prob-
lem posed by emergent macrophenomena among multiple
agents presents major challenges to supervised learning meth-
ods. Our approach reduces the size of the state space, and
shortens the gap between individual behaviors and macrophe-
nomena, by manually decomposing individual behaviors and
arranging the agents into a tree hierarchy. This makes it
possible to train potentially large numbers of agents using a
small number of samples. We demonstrate our system using
hundreds of agents in a simulated foraging task, and on real
robots performing a collective patrolling task.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Performance

Keywords
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1. INTRODUCTION
Programming agent behaviors is a tedious, time consuming

task involving multiple code, test, and debug cycles. Creat-
ing these behaviors requires significant programming ability,
which makes training the agents attractive. One training
approach is Learning from Demonstration (LfD), where the
agent learns a behavior in real-time based on examples pro-
vided by a human demonstrator. LfD teaches an agent a
policy which maps environmental features to agent actions.

Supervised learning methods are a natural fit for LfD, as
the trainer is directly providing examples. But we note that
supervised cooperative multiagent training has a surprisingly
small literature. From an extensive survey of cooperative
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multiagent learning [15] it was found that only a small num-
ber of papers deal with supervised learning, and most of
those are in the area of agent modeling, whereby agents learn
about one another, rather than being trained by the experi-
menter. The lion’s share of the remaining literature tends
to fall into feedback-based methods such as reinforcement
learning or stochastic optimization (genetic algorithms, etc.).
For example, in one of the more well-known examples of
multiagent layered learning [17], the supervised task (“pass
evaluation”) may be reasonably described as agent-modeling,
while the full multiagent learning task (“pass selection”) uses
reinforcement learning. This is not unusual.

Why is this so? Supervised training, as opposed to agent
modeling, generally requires that agents be told which micro-
level behaviors to perform in various situations; but the
experimenter often does not know this. He may only know
the emergent macro-level phenomenon he wishes to achieve.
This inverse problem poses a significant challenge to the appli-
cation of supervised methods to such problems. The standard
response to inverse problems is to use a feedback-based tech-
nique. But there is an alternative: to decompose the problem
into sub-problems, each of which is simple enough that the
gulf between the micro- and macro-level behaviors is reduced
to a manageable size. This is our approach.

Our multiagent training method rests upon an LfD system
we have developed called Hierarchical Training of Agent
Behaviors (or HiTAB). In its basic form this system is a
single-agent training system which learns a hierarchical finite
state automaton (HFA) represented as a Moore machine.
Individual states in the automaton either correspond to
agent behaviors, or may themselves be another HFA. An
HFA is constructed iteratively: using with a behavior library
consisting solely of atomic behaviors (e.g., turn, go forward),
the demonstrator trains an automaton describing a more
complicated composed behavior, which is then saved to the
behavior library. The now expanded behavior library is again
used to train a more abstract and capable automaton, which
is likewise saved to the library. This process continues until
the desired behavior is trained.

Our goal is to apply this training technique not just to
single agents but to supervised training of teams and swarms
of arbitrary size. Our approach is as follows. We organize
the agents into an agent hierarchy, a tree structure where leaf
nodes are the individual agents or robots performing tasks,
and non-leaf nodes are (possibly virtual) controller agents.
After we have trained and distributed individual behaviors
to the leaf-node agents using HiTAB, we the group them into
small, manageable teams (perhaps of size five), each headed



by a controller agent. We then train the controller using
HiTAB in much the same way that the individual agents
were trained: but his states dictate the collective behaviors
of his small team. After we have trained the small team, we
group controller agents together in teams, each such team
headed by a higher-level controller agent. This training and
grouping continues until the entire swarm has been organized
into a hierarchy.

This tree-structured organization fits between fully decen-
tralized (“swarm”-style) multiagent systems and fully cen-
tralized systems. While the tree structure has obvious dis-
advantages (e.g., it is not robust to agent failure), it has
one overriding scaling advantage: regardless of its size, at
any position in the structure an agent must deal only with
a fixed number of agents (his superior and immediate sub-
ordinates). We are taking advantage of this to make the
multiagent training task feasible regardless of the size of the
swarm. At all times we are training a controller to direct a
small number of agents (his immediate subordinates), regard-
less of the position of the controller in the hierarchy. The
micro-to-macro gulf is much smaller and simpler with five
or fewer agents than it it is with hundreds or thousands of
agents. Furthermore, the use of HFAs at the controller level
allows us to decompose complex team behaviors into simpler
ones in much the same way that we simplified the problem
in the single-agent HiTAB case.

Hierarchies are a natural fit for organizing heterogeneous
agent swarms, but interestingly they’re also useful for swarms
of agents with homogeneous behaviors too. In this paper we
show this: we train hierarchies of behaviors to control ho-
mogeneous agents, and demonstrate trained behaviors which
are superior to those found in flat (“swarm”-style) structures.

2. RELATED WORK
Agent Hierarchies. Hierarchies have long been employed
to control a robot programmatically, from the traditional
multi-tier planner/executive/control hierarchical frameworks,
to behavior hierarchies establishing precedence among com-
peting robot behaviors, of which an early example is the
Subsumption architecture [2]. A significant body of liter-
ature has constructed groups of agents, with each agent
employing its own internal hierarchical behavior mechanism
[16, 5, 21]. Hierarchies among agents are less common, for
example [6]. Some recent literature has focused on hierar-
chies of control among heterogeneous agents [8]. Hierarchies
may also be constructed dynamically as a mechanism for
task allocation [12].

Learning from Demonstration. Much of the learning from
demonstration literature may be divided into systems which
learn plans (for example [14, 20]) and those which learn
policies, that is, stateless mappings from the agent’s feature
vector to a desired action [1, 4, 10, 13]. Some work involves
stateful models related to ours, notably via Hidden Markov
Models. For example, [9] treat states not as behaviors but
as hidden world conditions which the learner is attempting
to discover and optimize for. [7] learns transitions between
states corresponding to behaviors, though it does not label
the transitions.

Multiagent Learning. One of the primary challenges ad-
dressed by this paper is in applying learning from demon-
stration — at its heart a supervised task — to the multiagent

case. As noted in [15], supervised learning methods are
not very common in multiagent learning: by far the lion’s
share of literature is based on reward-based methods such
as reinforcement learning or stochastic optimization. Of
those supervised methods, many fall in the category of agent
modeling, where agents learn about one another rather than
about a task given to them by demonstrator. For example,
in the celebrated [18], the supervised task (“pass evaluation”)
is reasonably described as agent modeling, while the full
multiagent learning task (“pass selection”) uses reinforcement
learning. Multiagent learning may also be achieved via confi-
dence estimation rather than reinforcement learning [3]. An
alternative way to bridge the macro-micro gulf is to eliminate
the macrobehaviors entirely by issuing separate micro-level
training directives each individual agent [11, 19]. We argue
that this approach is unlikely to scale.

3. AGENT BEHAVIOR TRAINING
HiTAB develops behaviors in the form of hierarchical finite-

state automata (HFA), where each state in an automaton is
either an atomic behavior in the agent, or another automaton.
Multiple states in the automaton may map to the same
atomic behavior or lower-level automaton. As the objective
is to enable learning from demonstration with a minimum
number of samples, the trainer first defines the behavior by
manually decomposing it into a hierarchy of sub-behaviors.
For each sub-behavior, he then selects the features of the
environment and the states needed to learn the behavior.
HiTAB thus learns only the transition functions from each
state within the HFA. These simplifications, made possible
by decomposition, radically reduce the dimensionality of the
problem and enable learning on a much smaller number of
samples. Formally, the HFA is a tuple 〈S,B, F, T 〉 ∈ H:

• S = {S1, . . . , Sn} is the set of states in the automaton.
Included is one special state, the start state S0, and zero
or more flag states. Exactly one state is active at a time,
designated St.

The purpose of a flag state is simply to raise a flag in the
automaton to indicate that the automaton believes that
some condition is now true. Two obvious conditions might
be done and failed, but there could be many more. Flags
in an automaton appear as optional features in its parent
automaton. For example, the done flag may be used by
the parent to transition away from the current automaton
because the automaton believes it has completed its task.

• B = {B1, . . . , Bk} is the set of basic behaviors. Each
state is associated with either a basic behavior or another
automaton from H, though recursion is not permitted.

• F = {f1, . . . , fm} is the set of observable features in the
environment. At any given time each feature has a nu-
merical value. The collective values of F at time t is the
environment’s feature vector ~ft = 〈f1, . . . , fm〉.

• T = ~ft × S → S is the transition function which maps the

current state St and the current feature vector ~ft to a new
state St+1.

• Optional free variables (parameters) G1, . . . , Gn for basic
behaviors and features generalize the model: each behav-
ior Bi and feature fi are replaced as Bi(G1, . . . , Gn) and
fi(G1, . . . , Gn). The evaluation of the transition function



and the execution of behaviors are based on ground in-
stances of the free variables. For example, rather than have
a behavior called go to the ball, we can create a behavior
called goTo(A), where A is left unspecified. Similarly, a
feature might be defined not as distance to the ball but
as distanceTo(B). If such a behavior or feature is used in
an automaton, either its parameter must be bound to a
specific target (such as “the ball” or “the nearest obsta-
cle”), or it must be bound to some higher-level parent
of the automaton itself. Thus HFAs may themselves be
parameterized.

Single-Agent Training. Training is an iterative process be-
tween a training mode and a testing mode. In the training
mode, the agent performs exactly those behaviors as directed
by the demonstrator. During training, each time the demon-
strator chooses a new behavior, the agent records a training

example: a tuple 〈St, ~ft, St+1〉 which stores the current fea-
ture vector, along with the states corresponding to the old
and new behaviors. If state St+1 must be executed exactly
once, then no additional examples are recorded. Otherwise,

a default example is stored: 〈St+1, ~ft, St+1〉, which tells the
agent to continue in the current state if the given feature
vector is observed again. The feature vector is specified by
the user from a library of predefined but parameterizable
features selected for the behavior.

Once enough examples are collected, the demonstrator
switches to the testing mode, which causes the agent to learn
the transition functions within the finite-state automaton.
For a given state Si, HiTAB takes all examples of the form
〈Si, ft, Sj〉 and reduces them to 〈ft, Sj〉. HiTAB then applies
a classification algorithm to these examples, using the ft as
data and Sj as their labels. At present HiTAB uses decision
trees with probabilistic leaf nodes for our classifiers.

After all the transition functions are built, the agent be-
gins performing the learned behavior. If the demonstrator
observes the agent performing an incorrect behavior, he may
issue corrections, causing the agent to switch back to training
mode and collect additional examples, then reenter testing
mode with revised training functions. This continues until
the demonstrator is satisfied with the behavior, and saves
it to the behavior library. At this point, unused states and
features are trimmed from the automaton, and any param-
eterized behaviors and features are bound to a target (e.g.,
“nearest obstacle”), or to a parameter of the automaton itself.
The behavior is now available as a state for training another,
higher-level HFA.

Multiagent Training. Once we have trained a library of
useful individual behaviors using HiTAB, how might we
extend this to training collective multiagent behavior? The
obvious (distributed) approach is to simply endow all agents
with the same top-level behavior. An alternative centralized
approach is to define a single master controller agent in charge
of all subsidiary agents. The subsidiary agents all have the
same behaviors in their libraries; but the controller agent has
its own separate library of behaviors, both basic behaviors
and learned automata. A controller agents’ basic behaviors
do not manipulate the controller, but instead correspond to
a unique behavior in the libraries of the subsidiaries. When
a controller agent transitions to a new basic behavior, this
directs the subsidiaries to immediately start performing the
corresponding behavior in their libraries.

(A)

Patrol Patrol Patrol Patrol

(C)

Attack Attack Disperse Disperse

Collective Patrol Collective Patrol

Save Humanity

(B)

Disperse Disperse Disperse Disperse

Collective Patrol

Figure 1: Three notions of homogeneity. (A) Each
agent has the same top-level behavior, but acts in-
dependently. (B) The top-level behavior all agents
is the same, but may all be switched according to
a higher-level behavior under the control of a con-
troller agent. (C) Squads in the team are directed
by different controller agents, whose behaviors are
the same but may all be switched by a higher-level
controller agent (and so on).

Our framework is in-between: we define a hierarchy of con-
troller agents. The basic agents are grouped into subgroups,
each headed by a level-1 controller agent; then various level-1
controller agents are grouped as subsidiaries to level-2 agents,
and so on, up to level-m agents forming one or more roots.
Just as all basic agents have the same behaviors, all controller
agents at a given level have the same behaviors. The actual
structure of the hierarchy (number of levels, number of agents
per controller, etc.) is pre-defined by the user. Depending
the configuration of the hierarchy, this framework can range
from fully distributed to fully centralized, with many points
in-between.

The agents are trained starting at the leaf nodes, and
working towards the root node one level at a time. After
training basic agents in the usual fashion, we may then train
a level-1 controller agent, then a level-2 controller agent, and
so on. All agents at a given level within the hierarchy run
the same HFA, but at any time they may be in different
states of that HFA. controller agent training is essentially
the same as for basic agents: the user directs the controller
agent to perform various behaviors, which in turn cause the
controller’s subsidiaries to perform behaviors. This adds
examples to a database from which transitions are learned.

While the basic behaviors for a controller agent are straight-
forward, what is a controller agent’s set of features? We
presume that, unlike a basic agent, a controller agent isn’t
embodied: his features are derived from statistical results
from his subsidiaries: for example “a basic agent in my group
is stuck (or isn’t)”, or “all my immediate subsidiaries are
‘done’ (or not)”, or “the average Y position of basic agents
in my group”. Typically a controller agent only accesses its
immediate subsidiary agents, but there are no restrictions as
to how deep in the hierarchy the controller agent can gather
information. Like an agent’s basic features, the choice of
features available to a controller agent are domain-specific.

We ultimately plan to use this method to develop hetero-
geneous team behaviors: but for now we are concentrating
on homogeneous behaviors. We note that this embedding of
the HFA training into an agent hierarchy suggests at least
three different notions of “homogeneous” behaviors, as shown
in Figure 1. First, all agents may simply perform the exact
same HFA, but independent of one another. But we can go



Figure 2: Learned multi-robot behavior. Demon-
strator is holding a green (“intruder”) target.

further than this and still stay within the aegis of homogene-
ity: we may add a controller agent which controls which HFA
the agents are performing. It does so by running its own HFA
with those subsidiary HFA as basic behaviors. Coordination
may continue further up the chain: second- or higher-level
controller agents may also dictate their subsidiaries’ choice
of HFAs.

4. ROBOT DEMONSTRATION
We begin with a simple demonstration which illustrates

this approach on actual robots, using a simple hierarchy of
four Pioneer robots under the control of a single controller
agent. We trained this group to perform a pursuit task while
also deferring to and avoiding a “boss”. Each robot had a
color camera and sonar, and was marked with colored paper.
The boss, intruders to pursue, and a home base were also
marked with paper of different colors. (See Figure 2).

The task was as follows. Ordinarily all agents would Dis-
perse in the environment, wandering randomly while avoiding
obstacles (by sonar) and each other (by sonar or camera).
Upon detecting an intruder in the environment, the robots
would all Attack the intruder, servoing towards it in a stateful
fashion, until one of them was close enough to “capture” the
intruder and the intruder was eliminated. At this point the
robots would all go to a home base (essentially Attack the
base) until they were all within a certain distance of the base.
Only then would they once again Disperse. At any time, if
the boss entered the environment, each agent was to Run
Away from the boss: turn to him, then back away from him
slowly, stopping if it encountered an obstacle behind.

This task was designed to test and demonstrate every
aspect of the hierarchical learning framework: it required
the learning of hierarchies of individual agent behaviors,
stateful automata, behaviors and features with targets, both
continuous and categorical features, multiple agents, and
learned hierarchical behaviors for a controller agent.

Each robot was provided the following simple basic be-
haviors: to continuously go Forwards or Backwards, to con-
tinuously turn Left or Right, to Stop, and to Stop and raise
the Done flag. Transitions in HFAs within individual agents
were solely based on the following simple features: whether
the current behavior had raised the Done flag; the minimum
value of the Front Left, Front Right, or Rear sonars; and the X
Coordinate or the Size of a blob of color in the environment
(we provided four colors as targets to these two features,
corresponding to Teammates, Intruders, the Boss, and the
Home Base). Each robot was dressed in the Teammate color.

We began by training agents to learn various small parame-

terized HFAs, as detailed in Figure 3, Subfigures 1 through 7.
Note that the Servo and Scatter HFAs are stateful: when the
target disappeared, the robot had to discern which direction
it had gone and turn appropriately. Since our system has only
one behavior per state, we enabled multiple states with the
same behavior by training the trivial HFAs in subfigures 3A
through 3D. Training these behaviors required approximately
30 minutes.

We then experimented with the “basic” homogeneous be-
havior approach as detailed in Figure 1(A): each agent simply
performing the same top-level behavior but without any con-
troller agent controlling them. This top-level behavior was
Patrol (Figure 3, Subfigure 8), and iterated through the three
previously described states: dispersing through the environ-
ment, attacking intruders, and returning to the home base.
We did not bother to add deferral to the “boss” at this point.

Coordinated Homogeneity. Simple homogeneous coordi-
nation like this was insufficient. In this simple configuration,
when an agent found an intruder, it would attack the in-
truder until it had “captured” it, then go to the home base,
then resume dispersing. But other agents would not join in
unless they too had discovered the intruder (and typically
they had not). Furthermore, if an agent captured an intruder
and removed it from the environment, other agents presently
attacking the intruder would not realize it had been captured,
and would continue searching for the now missing intruder
indefinitely!

These difficulties highlighted the value of one or more
controller agents, and so we have also experimented with
placing all four robots under the control of a single controller
that would choose the top-level behavior each robot would
perform at a given time. The controller was trained to follow
the CollectivePatrol behavior shown in Figure 3, Subfigure
9. This HFA was similar to the Patrol behavior, except that
robots would attack when any robot saw an intruder, would
all go to the Home Base when any robot had captured the
intruder, and would all resume dispersing when all of the
robots had reached the Home Base. This effectively solved
the difficulties described earlier.

We provided the controller with three simple features:
whether any robot had seen the Intruder’s color; whether
any robot was Done, and whether all robots were Done.
We trained a simple hierarchical behavior on the controller
agent, called CollectivePatrolAndDefer (Subfigure 10). We
first added a new statistical feature to the controller agent:
whether anyone had seen the Boss color within the last N−10
seconds. The controller agent would perform CollectivePatrol
until someone had seen the Boss within the last 10 seconds,
at which point the controller agent would switch to the
RunAway behavior, causing all the agents to search for the
Boss and back away from him. When no agent had seen
the Boss for 10 seconds, the controller would resume the
CollectivePatrol behavior (Figure 2).

Summary. This is a reasonably comprehensive team behav-
ior, with a large non-decomposed finite-state automaton,
spanning across four different robots acting in sync. We
do not believe that we could train the agents to perform
a behavior of this complexity without decomposition, and
certainly not in real-time. There are too many states and
aliased states, too many features (at least 12), and too many
transition conditions. However decomposition is straightfor-
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ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS
After conducting the robot demonstration above, we pro-

ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.

We performed experiments involving swarms of indepen-
dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features were DistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.
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Figure 4: A screenshot of our system in action (show-
ing part of the environment). The large grey circles
are the boxes, and the X in the middle is the col-
lection location. Note that while the agents pulling
the box on left are all from the same subgroup, the
box in the bottom is being pulled by agents from
different subgroups.

• Using Goto(X), GrabBox, ReleaseBoxAndFinish, and Dis-
tanceTo(X), we trained ReturnWithBox, which pulled the
box back to the deposit location and released it when the
agent was close enough to home.

• Using Wander and ReturnWithBox, we trained Forage, a
simple top-level composition which foraged for boxes and
brought them to the deposit.

If agents were acting on their own (they had no controller),
their top-level behavior would be simply Forage. When
acting under a Level 1 controller, the current behavior of the
agent would be determined by the controller. Training the
agent’s behavior required approximately 30 –40 minutes.

Level 1 Controller Agent Behavior Decomposition. A
Level 1 controller’s behavior hierarchy was as follows:

• A controller’s basic features were SomeoneIsFinished and
SomeoneIsAttachedToABox. The latter feature was true
if any subsidiary agent had raised its finished flag. A con-
troller also had access to an additional target: closest-
attached-agent, which pointed to the subsidiary agent
which had grabbed the box (if any).

• A controller’s basic behaviors corresponded to the full set
of behaviors of its subsidiary agents: Forward, RotateLeft,
RotateRight, GrabBox, ReleaseBoxAndDone, Done, Wan-
der, Goto(X), ReturnWithBox, and Forage.

• Using Goto(closest-attached-agent), ReleaseBox, Return-
WithBox, Forage, SomeoneIsAttachedToABox, and Some-
oneIsFinished, we trained the behavior ControlForage,
which directed agents to Forage until an agent found a box.
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Figure 5: Mean number of boxes collected over time
for the first experiment.

Then, the controller would direct agents to Goto(closest-
attached-agent); once agents where close to the attached
agent, they would grab the box and begin pulling it towards
the deposit location. Once one agent finished pulling the
box, the controller would direct the agents to ReleaseBox,
and to resume Forage. We also trained trivial Return-
WithBox and Goto(X) behaviors which simply called their
corresponding basic behaviors.

If the agents were acting on their own (they had no Level 2
controller), their top-level behavior would be simply Control-
Forage. When acting under a Level 2 controller, the current
behavior of the Level 1 controllers would be determined by
their Level 2 controllers. Training Level 1 controller agents
required a few minutes.

Level N≥2 Controller Agent Behavior Decomposition.
All controller agents at levels ≥ 2 used exactly the same
behavior hierarchy, which was:

• A controller’s basic features were SomeoneIsFinished and
SomeoneNeedsHelp. The former feature is true if a sub-
sidiary agent knows of a box which requires more agents
to push it than are available to the subsidiary agent. A
Level N≥2 controller also had an additional target: biggest-
attached-agent, which is the agent attached to the largest
box that the N≥2 controller “knows about”. The controller
would learn of such boxes from its superior, or from sub-
sidiary controllers unable to manage the box themselves.

• A Level N≥2 controller’s basic behaviors corresponded to
behaviors from its subsidiary controllers: ControlForage,
ReturnWithBox, Goto(X).

• We trained a version of ControlForage similar to the
Level 1 ControlForage behavior. The difference is that
the Level N≥2 behavior directs agents to Goto(biggest-
attached-agent) when a Level 1 controller requires help. We
also trained trivial ReturnWithBox and Goto(X) behaviors
which simply called their corresponding basic behaviors.
Training level N ≥ 2 controller agents required a few min-
utes for each level.

A Level N≥2 controller’s top behavior was ControlForage.
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Figure 6: Mean number of boxes collected over time
for the second experiment.

5.1 Experiments
For the first two experiments, we considered three hierarchi-

cal structures: (1) 50 independent agents (2) ten independent
Level 1 controller agents, each heading a five-agent subgroup
(3) two independent Level 2 controller agents, each heading
five Level 1 controller agents, each heading a five-agent sub-
group. These structures roughly correspond to the notions
illustrated in Figure 1.

In the first experiment, we sought to demonstrate that a
simple hierarchy can out-perform a group of independent
agents; and additionally, that the behaviors learned in this
experiment would perform adequately compared to fine-tuned
hand-coded behaviors. In the second experiment, we sought
to demonstrate that a two-layer hierarchy could outperform
a one-layer hierarchy. In these experiments, the environment
was 200× 200 units and agents moved 0.1 units per timestep.
Agents started at uniformly randomly distributed locations.

Finally, we tried a scalability experiment, comparing a dif-
ferent, even larger hierarchy against 625 independent agents.

Each experimental run lasted 100,000 timesteps, and each
treatment had 100 independent runs. Treatments were
gauged based on the mean number of boxes returned. Differ-
ences in results were measured at the final timestep with a
95% confidence, using Bonferroni-corrected two-tailed t-tests.

First Experiment: 1-Level Hierarchies. We began by
comparing an entirely distributed swarm of 50 agents against
a group of ten controller agents, each in charge of five basic
agents. For each of these configurations, we performed runs
using a set of trained behaviors and using a set of hand-coded
behaviors. Figure 5 shows the results of all four sets of runs.

Independent Agents Versus Hierarchies: We expected the
controller agents to outperform a distributed swarm due
to the semi-centralized coordination available, because the
controller enabled specific groups of agents to work together
on a single box. Without controller agents, agents could
become stranded at boxes waiting for other agents to help
pull. These waiting agents simply relied on random discovery
of the box by other agents to gather enough helpers. Figure
5 verifies the expected improvement due to the controllers.
The improvement was statistically significant in both cases.
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Figure 7: Mean number of boxes collected over time
for the third experiment.

Hand-Coded Versus Trained: We then compared the trained
versions of the two previous structures with hand-coded ver-
sions of the same. Figure 5 again shows the results. We
had expected the hand-coded solutions to perform better,
since trained solutions contained significant training error.
But in fact, in the Level 1 hierarchy case, the trained so-
lution actually performed statistically significantly better
than the hand-coded solution! This was due to a more ran-
dom exploration strategy which allowed agents to disperse
throughout the environment better. This same exploration
strategy didn’t fare as well in the swarm case, however, be-
cause this strategy resulted in too many agents distributed
across multiple boxes rather than pulling on the same box.
While the results do not present a clear advantage to either
training or programming, they do suggest that training the
agents will crucially not significantly impair performance.

Second Experiment: 2-Level Hierarchies. We then com-
pared the same Level 1 hierarchy as before against a two-level
hierarchy: two Level 2 controllers, each in charge of five Level
1 controllers, each in charge of five agents. We changed the
scenario to favor two levels of coordination: the environment
now had eight boxes which each required five agents to pull,
and two boxes which each required twenty-five agents to
pull. Just as the first experiment was constructed so as
to demonstrate the value of some degree of homogeneous
coordination, the second experiment is meant to show the
value of homogeneous coordination at two levels.

As shown in Figure 6, two levels significantly outperformed
a single level, and for similar reasons as the first experiment.
If in the one-level case a group discovered a 25-agent box,
4 other groups had to randomly discover the box before it
could be moved and all the groups freed. But with two layers
of coordination, we could train agents to work together not
only in 5-agent groups but also in 25-agent groups.

Third Experiment: Large Numbers of Agents. Finally,
we reran the first experiment using a four-level hierarchy: a
single Level 4 controller in charge of five Level 3 controllers,
each in charge of five Level 2 controllers, each in charge of
five Level 1 controllers, each in charge of five agents. This
arrangement results in 625 agents and 156 controller agents.



We compared this against a swarm of 625 independent agents.
With the larger number of agents, we expanded the environ-
ment to 225× 225, and provided the environment with 25
size-5 boxes, five size-25 boxes, and one size-125 box.

As would be expected, this was no contest: the swarm of
agents were simply outclassed, as shown in Figure 7. This
somewhat unfair contest was not intended to show the efficacy
of the hierarchy, but simply that it this approach is capable
of scaling to large numbers of agents and more complex
environments.

6. CONCLUSIONS
This paper demonstrates a novel approach to the challeng-

ing task of multiagent learning from demonstration. The
approach makes progress against the inherent inverse prob-
lem by performing macro-behavior decomposition throughout
a swarm hierarchy, to the point that the differences between
the micro-level and macro-level behaviors are small enough
to be surmounted. It also applies behavior decomposition
on the individual agent level, enabling a variety of tricks to
significantly reduce the complexity and dimensionality of the
learning space, so as to get by on a very small number of
samples.

Though the obvious target for hierarchies in swarms is
heterogeneous behaviors (and that is our first task as future
work), the demonstrations here show that hierarchies may
still be of benefit in the homogeneous behavior case. In
this case, such hierarchies provide an alternate method of
consistent, learnable coordination among agents.

We note that, from a machine learning perspective, the
individual learned behaviors shown here are often quite sim-
ple. But this is exactly the point. Our goal is to enable
rapid agent and robot behavior development. From this
perspective, decomposition of a very complex joint model
into many simple models promises to allow even novices to
build multiagent behaviors rapidly because the number of
samples need not be large.
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