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ABSTRACT
Revenue maximization in multi-item settings is notoriously elusive.
This paper studies a class of two-item auctions which we call a
mixed-bundling auction with reserve prices (MBARP). It calls VCG
on an enlarged set of agents by adding the seller—who has reserve
valuations for each bundle of items—and a fake agent who receives
nothing nor has valuations for any item or bundle, but has a valu-
ation for pure bundling allocations, i.e., allocations where the two
items are allocated to a single agent. This is a strict subclass of
several known classes of auctions, including the affine maximizer
auction (AMA), λ-aution, and the virtual valuations combinatorial
auction (VVCA). As we show, a striking feature of MBARP is that
its revenue can be represented in a simple closed form as a function
of the parameters. Thus, we can solve first-order conditions on the
parameters and obtain the optimal MBARP. The optimal MBARP
yields significantly higher revenue than prior auctions for which the
revenue-maximizing parameters could be solved for in closed form:
separate Myerson auctions, pure-bundling Myerson auction, VCG,
and mixed-bundling auction without reserve prices. Its revenue
even exceeds that obtained via simulation within broader classes:
VVCA and AMA.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— Multi agent system; J.4 [Social and Behavior Science]: Eco-
nomics

General Terms
Theory, Economics

Keywords
Auction, optimal auction, combinatorial auction, revenue maxi-
mization, bundling, reserve price

1. INTRODUCTION
Perhaps one of the most important open problem in combinato-

rial auctions (CAs), and mechanism design at large, is to design
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revenue-maximizing (aka optimal) auctions. Specifically, the prob-
lem is, for the seller, to design an auction that maximizes her ex-
pected revenue, subjected to the incentive compatibility (IC) and
individual rationality (IR) constraints, given the information about
bidders’ valuation distributions but not the actual values. There
has been a significant amount of research on this topic, but even
the 2-item case with additive valuations is open. In fact, the prob-
lem of designing an optimal CAs (even in a one-bidder setting) is
NP-hard [3], so a general concise characterization cannot exist (un-
less P=NP). This is in contrast to the one-item setting, where the
problem was elegantly solved, by Myerson [11]. This was later
generalized to multiple identical units of one item [10].

In this paper, we consider a setting with two items, where each
bidder’s valuation functions are additive, that is, a bidder’s valu-
ation for the bundle of the two items is the sum of his valuations
for the individual items. Thus, each bidder has a two-dimensional
type: he has a valuation for the first item and a valuation for the
second item. We consider the revenue optimization problem within
a general symmetric class of auction: mixed-bundling auction with
reserve price (MBARP). It is a subclass of existing classes of auc-
tions such as affine maximizer auctions (AMAs) [14], λ-autions [6],
and virtual valuations combinatorial auctions (VVCAs) [8, 9, 15].
The dominant-strategy IC of MBARPs follows from the fact that
each of the above three classes are also dominant-strategy IC.

While MBARPs are a narrower class than the three others, it
is general enough to incorporate the ideas of reserve pricing and
bundling, which are known to increase revenue in many settings.
Specifically, MBARP calls VCG on an enlarged set of agents by
adding the seller—who has a reserve valuation for each bundle—
and a fake agent who receives nothing and has no valuation for any
item or bundle, but has a valuation for pure bundling allocations
(i.e., ones where both items are allocated to the same (any) bidder).

As we show, one striking feature of MBARP is that its revenue
can be represented in a simple closed form as a function of its pa-
rameters. Thus, we can solve first-order conditions on the parame-
ters and obtain the optimal MBARP. We give a system of equations
of the optimal parameters in general and solve it for some simple
yet common settings: for instance, in the most trivial setting, where
there are two agents and each agent’s valuation for each item is
drawn uniformly on [0,1], our optimal auction yields expected rev-
enue 0.871, which significantly outperforms VCG (0.667), separate
Myerson auctions (0.833) (i.e, selling the two items via a sequence
of separate optimal single-item auctions), pure-bundling Myerson
auction (0.800) and mixed bundling auction without reserve prices
(0.786). More surprisingly, it even outperforms the optimal empiri-
cal results returned by sampling and approximation on its supersets
AMA (0.860) and VVCA (0.838) [15].

We wish to emphasize the generality of our approach to analyz-



ing the problem. We start from one bidder’s (say i’s) perspective,
find critical values of the other bidder’s (say j’s) valuations such
that these critical values completely partition j’s type spaces while
within each partition, the expected revenue of i can be represented
with the same function of the auction parameters. The expected
revenue from i is then the sum/integration of revenues from all
parts of that partition. Another aspect of the generality of our ap-
proach is that we reduce the revenue maximization problem of an
N-agent auction to that of a 2-agent auction. This can be achieved
by, again from one bidder’s perspective, using a fake agent to sim-
ulate the maximal values of other bidders’ valuations. This extends
and generalizes Riley and Samuelson’s analysis of optimal 1-item
auctions [13] to CAs.

2. RELATED RESEARCH
This section reviews in more detail well-known classes of auc-

tions related to this paper.

2.1 The VCG mechanism and reserve prices
The most famous mechanism in CAs is the Vickrey-Clarke-Groves

mechanism (VCG) [17, 2, 4], where the welfare maximizing allo-
cation is chosen and each bidder i pays the sum of the others’ val-
uations had i not participated minus the sum of the others’ actual
valuations. It is not hard to see that the VCG can yield revenue
arbitrarily far from optimal:

EXAMPLE 2.1. This can be seen even in one-item one-bidder
setting where the bidder’s valuation for the item is uniform on
[0,1]. The second-price auction (aka Vickrey auction) would give
the item to the bidder and obtain 0 revenue since there is no compe-
tition. The optimal auction (aka Myerson auction) would offer the
item at price of 0.5 and obtain expected revenue of 1

2
×0.5 = 0.25.

The VCG can be complemented with reserve prices to increase
revenue. There are several definitions of reserve prices in CAs.
We consider one that is most commonly seen: the seller pretends
to have some reserve valuations for the different bundles, and the
VCG with reserve prices is simply to apply the VCG on the set of
all agents including the seller.

2.2 λ-auction
Another well-known technique to increase revenue in CAs is via

bundling of items [12]. One notable example of bundling in CAs
is the λ-auction [6]. It is the VCG, but with a fake bidder who
does not receive any items, but has valuations towards allocations
(instead of bundles).

In this paper, we consider one special subset of λ-auctions where
the fake bidder is only interested in the allocations where the entire
set of items is allocated to (any) one bidder. The resulting auction
works as if it gave a discount for the bidders who are interested in
the whole bundle. This auction is called a mixed-bundling auction
(MBA). Mixed-bundling auctions can also be complemented with
reserve prices, which are defined by further including the seller into
consideration. This class is called mixed-bundling auction with re-
serve prices (MBARP). We will give a formal definition later in
Section 4.

Jehiel et. al. used certain local arguments to show that some
mixed bundling auction must yield higher revenue than any pure-
bundling auction (where the only valid allocations are those that
give the whole bundle to one agent) and any welfare-maximization
auction [6]. We operate in a different direction, by directly cal-
culating the closed-form expression of the expected revenue and
obtaining the optimal revenue within MBARPs. As we shall see,
our analysis and evaluations confirm the arguments of Jehiel et. al.

2.3 Myerson’s auction, affine maximizer auc-
tions (AMAs), and virtual valuations com-
binatorial auctions (VVCAs)

The third intuition to improve revenue in CAs is via virtual val-
uation [11]. The idea is to transform bidder’s valuation by some
function and then cast the welfare maximization on the virtual val-
uations; each bidder pays the lowest valuations he could have re-
ported and still won his current bundle. In principle, the function
can be anything, as long as it preserves the IC constraint. For exam-
ple, for Bayes-Nash IC, Myerson’s virtual transformation is defined
as ṽi = v − 1−Fi(vi)

F ′i (vi)
, where vi is agent i’s valuation and Fi is the

cumulative distribution function of vi.
However, for dominant-strategy IC, it turns out that affine trans-

formations of the valuation are the only ones that satisfy the IC con-
straint for an unrestricted valuation space [14]. Affine maximizer
auctions (AMAs) apply some affine transformation to get the vir-
tual valuations, and then use the VCG on those virtual valuations
(a fake bidder with valuations for the allocations is also included
in the bidder set). Formally, the allocation rule in an AMA is to
maximize

∑n
i=0 µivi(a)+λ(a), where µ’s are constants and λ(a)

are the fake bidder’s valuation for allocation a. Clearly, λ-auctions
are AMAs where the affine transformation is the identity function
f(v) = v, i.e., µi = 1 for all i.

Virtual valuations combinatorial auctions (VVCAs) [8, 9, 15] are
AMAs with the restriction λ(a) =

∑
i λi(ai), where λi(ai) only

depends on what bidder i receives.
In summary, MBARPs are a subset of VVCAs and of λ-auctions,

which, in turn, are subsets of AMAs.

2.4 Approximation results
An optimal auction may involve reserve pricing, bundling, and

virtual valuations. How much revenue can one obtain with auctions
that are simpler in form? This question motivated a recent line of
research that focuses on designing simple auctions that yield rev-
enue within a factor of optimal. Likhodedov and Sandholm [9, 15]
give a logarithmic approximation of optimal multi-item auctions
with a variation of the VCG, for two classes of settings: (1) ad-
ditive valuations (where each bidder’s valuation for a bundle is the
sum of his valuations for the items in the bundle), and (2) unlimited
supply (such as in digital music stores).

Recall that, in symmetric settings (settings where valuation dis-
tributions are identical across bidders), Myerson’s auction coin-
cides with a Vickrey auction [17] with the so-called monopoly re-
serve (i.e., a reserve valuation at which Myerson’s virtual valua-
tion function equals 0). Hartline and Roughgarden show that in
the asymmetric single-parameter environment, the optimal auction,
which is Myerson’s auction, can be 2-approximated by a Vickrey
auction with monopoly reserve prices [5]. Tang and Sandholm [16]
study Levin’s setting for complements [7] and prove that optimal
revenue can be 2-approximated by using monopoly reserve price
to curtail the allocation set, followed by welfare-maximizing allo-
cation and Levin’s payment rule. They also show that the optimal
revenue can be 6-approximated even if the “reserve pricing" is re-
quired to be symmetric across bidders. Chawla et. al. prove sev-
eral constant bounds of approximating optimal auctions in multi-
dimensional type space (even though the optimal auction is un-
known) using sequential posted prices [1].

3. THE SETTING
We consider a setting with one seller who has two indivisible

distinguishable items for sale. There are a set N = {1, 2, . . . , n}
of bidders. Each bidder i ∈ N has a valuation vi1 for the first item,



vi2 for the second item, and valuation vi1+vi2 for the bundle of both
items. The seller has zero valuation for any bundle. (However, she
can pretend she has reserve valuations to obtain a higher revenue.)

An allocation is denoted by a vector ~xi = (xi1, x
i
2) for each

bidder i, where xij ∈ {0, 1} is the amount of item j allocated to i.
The payment from bidder i to the seller is denoted by pi. Given a
~xi and pi, bidder i’s utility function is

ui(~x
i, pi) = vi1x

i
1 + vi2x

i
2 − pi

This means that the bidders have quasi-linear, additive utility func-
tions and no externalities.

As usual, each vib is treated by all but i as a random variable
distributed on [0, 1] according to a cumulative distribution function
F i
b , which admits a non-negative and bounded density function f i

b .
We assume that F i

b = F j
b for all i, j ∈ N and all the v′s are

independent. Our approach also applies to settings where vi1 and
vi2 are dependent and F i

b 6= F j
b . That is, vi1 and vi2 are distributed

according to some joint cumulative distribution F i(vi1, v
i
2). We

make these assumptions only for the ease of presentation. We also
use the standard information model where each bidder i knows his
own type vi = (vi1, v

i
2) but others do not. The distribution over

types is common knowledge.
By the revelation principle, it suffices to consider the set of direct-

revelation auctions, which begin by soliciting a type from each bid-
der and then specify an allocation and payment for each bidder.
We shall consider the direct-revelation auctions that are dominant-
strategy IC and ex-post IR. A mechanism is (weakly) dominant-
strategy IC if misreporting one’s type cannot yield a higher utility
for the bidder, no matter what other bidders report. A mechanism
is ex-post IR if participation yields a non-negative utility, no matter
what other bidders report.

4. MIXED-BUNDLING AUCTION WITH
RESERVE PRICES

In this section, we describe the mixed-bundling auction with re-
serve prices (MBARP). As mentioned, it is a subclass of AMA, λ-
auction and VVCA. One remarkable feature of MBARP is that its
expected revenue can be written in closed form as a function of its
parameters, and we can optimize its revenue over the parameters.

Treat the seller as a special bidder, indexed 0, with reserve value
a for item 1, b for item 2, and a + b for both. Define another fake
bidder, indexed n+1, who is never allocated any item, but has value
c if some bidder i ∈ N is allocated both items. MBARP is VCG
executed on this extended set of agents N = {0, 1, . . . , n+ 1}.

DEFINITION 4.1. Given a type profile~v = (~v1, . . . , ~vn), MBARP
is defined by its allocation rule ~x = (~x1, . . . , ~xn) and payment rule
~p = (p1, . . . , pn).

• The allocation rule ~x is,

~x(~v) = arg max~x = {
n∑

j=0

(vj1x
j
1 + vj2x

j
2) + vn+1(~x)}.

By definition, vn+1(~x) = c if xi1 = xi2 = 1 for some 1 ≤
i ≤ n and vn+1(~x) = 0 otherwise.

• The payment rule ~p is,

pi(~v) = − (

n∑
j 6=i

(vj1x
j
1 + vj2x

j
2) + vn+1(~x))

+

n∑
j 6=i

(vj1x̃
j
1 + vj2x̃

j
2) + vn+1(~̃x),

where ~̃x(~v) = ~x−i(~v−i). In other words, ~̃x is the welfare-
maximizing allocation without the participation of i.

LEMMA 4.1.

1. MBARP is dominant-strategy IC and ex post IR.

2. A bidder with the lowest type (that is, vi1 = vi2 = 0) gets 0
utility.

3. Given the allocation rule of MBARP, this particular payment
rule, ~p, yields the highest revenue among all the payment
rules that satisfy 1 and 2.

Proof: The proof of 1 and 2 mirror those of the VCG. The proof of
3 follows from [6, Lemma 1].

5. OPTIMAL PARAMETERS FOR THIS AUC-
TION CLASS

In this section, we develop a systematic approach to calculating
the revenue of MBARP. This approach is general and can be applied
to other strategy-proof two-item auctions.

In what follows, we first analyze the case with two bidders and
then reduce those with more than two bidders to the two-bidder
case.

5.1 Two-bidder setting
Suppose there are two bidder, i and j. Given the values of a,

b, and c, as well as j’s report (vj1, v
j
2), we compute the formula

for i’s expected payment. For this purpose, let us first look at i’s
allocation space. The definition of MBARP (the allocation rule and
the payment rule) implies that i’s allocation space must be of the
shape in Figure 1. Formally:

Figure 1: Bidder i’s allocation space.

LEMMA 5.1.

• The allocation space of bidder i is of exactly the shape as
in Figure 1, i.e., lines are either vertical, horizontal or of -1
slope, with x, y, z being undecided variables.

• Bidder i gets item 1 for the price of x when his type is in
Zone 1, gets item 2 for the price of y when his type is in Zone
2 and gets both items for the price of z when his type is in
Zone 3.



• The expected payment of i is

R(x, y, z) = x ·
∫
(vi

1,v
i
2)∈1

f i
1(v

i
1)f

i
2(v

i
2)dv

i
1dv

i
2

+ y ·
∫
(vi

1,v
i
2)∈2

f i
1(v

i
1)f

i
2(v

i
2)dv

i
1dv

i
2

+ z ·
∫
(vi

1,v
i
2)∈3

f i
1(v

i
1)f

i
2(v

i
2)dv

i
1dv

i
2.

Proof: The first two claims follow from an exhaustive case analysis
immediately following this lemma. Given the first two claims, the
third one is straightforward.

5.1.1 First part of the analysis: a ≥ c and b ≥ c
In this section we consider those parameter values that satisfy

a ≥ c and b ≥ c. We will consider the other parameter values in
the next section.

We now determine the values of x, y, and z case by case.
Case 1. vj1 ≥ a, vj2 ≥ b. By the allocation rule of MBARP,

bidder i gets the bundle iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + vj2 ≤ v
i
1 + vi2 + c and

vi2 + vj1 ≤ v
i
1 + vi2 + c.

The first equation ensures that bidder j does not get the bundle and
the second (third) is to ensure that bidder i does not end up with
item 1(2) only. These constraints give Zone 3 in Figure 2. By the

Figure 2: Case 1.

definition of MBARP, bidder i pays z = vj1 + vj2 in this region.
Similarly, bidder i gets item 1 only iff

vi1 + vj2 ≥ v
j
1 + vj2 + c and

vi1 + vj2 > vi1 + vi2 + c.

The first equation ensures that bidder j does not get the bundle and
the second ensures that i does not get the bundle. These constraints
give Zone 1 in Figure 2. Bidder i pays x = vj1 + c.

Similarly, we can derive Zone 2 and y = vj2 + c.
To sum up, the allocation space of bidder i in this case is given

by Figure 2. We have x = vj1 + c, y = vj2 + c and z = vj1 + vj2.
Case 2. vj1 < a, vj2 < b.

Figure 3: Case 2a.

• Subcase a. vj1 + vj2 + c ≥ a + b. By the allocation rule of
MBARP, bidder i gets the bundle iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + b ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = vj1 + vj2.

Bidder i gets item 1 only iff

vi1 + b ≥ vj1 + vj2 + c and

vi1 + b > vi1 + vi2 + c.

Thus, x = vj1 + vj2 + c − b. Symmetrically, we have y =

vj1 + vj2 + c− a.

To sum up, the allocation space is given in Figure 3. We have
x = vj1 + v

j
2 + c− b, y = vj1 + v

j
2 + c−a and z = vj1 + v

j
2.

• Subcase b. vj1 + vj2 + c < a+ b. Bidder i gets the bundle iff

vi1 + vi2 + c ≥ a+ b and

vi1 + b ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = a+ b− c.
Bidder i gets item 1 only iff

vi1 + b ≥ a+ b and

vi1 + b > vi1 + vi2 + c.

Thus, x = a. Symmetrically, y = b. The allocation space is
given in Figure 4.

We have x = a, y = b and z = a+ b− c.

Case 3. vj1 < a, vj2 ≥ b.

• Subcase a. vj1 + vj2 + c ≥ a+ vj2. Bidder i gets the bundle
iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + vj2 ≤ v
i
1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.



Figure 4: Case 2b.

Thus, z = vj1 + vj2.

Similarly, x = vj1 + c and y = vj1 + vj2 + c− a.

The allocation space is given in Figure 5.

Figure 5: Case 3a.

We have x = vj1 + c, y = vj1 + vj2 + c− a and z = vj1 + vj2.

• Subcase b. vj1 + vj2 + c < a+ vj2. Bidder i gets the bundle
iff

vi1 + vi2 + c ≥ a+ vj2 and

vi1 + vj2 ≤ v
i
1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = a+ vj2 − c.

Similarly, x = a and y = vj2.

The allocation space is given in Figure 6.

We have x = a, y = vj2 and z = a+ vj2 − c.

Case 4. vj1 ≥ a, v
j
2 < b. This case is symmetric to Case 3.

• Subcase a. vj1 + vj2 + c ≥ b + vj1. We have y = vj2 + c,
x = vj1 + vj2 + c− b and z = vj1 + vj2.

Figure 6: Case 3b.

• Subcase b. vj1 + vj2 + c < b + vj1. We have y = b, x = vj1
and z = b+ vj1 − c.

The above case-by-case analysis forms a complete partition of
bidder j’s type space, as shown in Figure 7, with Case 1 corre-
sponding to Zone P1, Case 2, Subcase a corresponding to Zone
P2a, and so on.

Figure 7: Partition of bidder j’s type space.

We are now ready to give a closed form expression for bidder i’s
expected payment ri0(a, b, c).

ri0(a, b, c) =∫
(v

j
1,v

j
2)∈P1

f j
1 (v

j
1)f

j
2 (v

j
2)R(v

j
1 + c, vj2 + c, vj1 + vj2)dv

j
1dv

j
2

+

∫
(v

j
1,v

j
2)∈P2a

f j
1 (v

j
1)f

j
2 (v

j
2)R(v

j
1 + vj2 + c− b,

vj1 + vj2 + c− a, vj1 + vj2)dv
j
1dv

j
2

+ . . .

+

∫
(v

j
1,v

j
2)∈P4b

f j
1 (v

j
1)f

j
2 (v

j
2)R(v

j
1, b, b+ vj1 − c)dv

j
1dv

j
2.

In the symmetric setting (where f i = f j), bidder j’s expected
payment also equals ri0(a, b, c). This leads to the following theo-
rem.



THEOREM 1. For a ≥ c, b ≥ c,

• The expected revenue of MBARB is 2ri0(a, b, c);

• The optimal parameters a, b, c are given by1

∂ri0(a, b, c)

∂a
=
∂ri0(a, b, c)

∂b
=
∂ri0(a, b, c)

∂c
= 0.

In the asymmetric 2-bidder setting, rj0(a, b, c) can be obtained
by swapping the role of i and j in ri0(a, b, c). Then the expected
revenue of MBARP is ri0(a, b, c) + rj0(a, b, c).

5.1.2 The remaining parts of the analysis:
(a < c, b ≥ c) or (a ≥ c, b < c) or (a < c, b < c)

Now let us reexamine Figure 7. The existence ofP3b relies on the
fact that a−c ≥ 0. The underlying explanation is that when a < c,
the condition of Case 3, Subcase b, which is vj1 + vj2 + c < a+ vj2,
never holds. In other words, the condition of Case 3, Subcase a
holds trivially. This reasoning leads to the reduction of Figure 7
into Figure 8 when a < c and b ≥ c.

Figure 8: Partition of bidder j’s type space when a < c and
b ≥ c.

The corresponding x’s y’s and z’s in each case are still the same
as those when a ≥ c and b ≥ c, except that Case 3b does not exist.
We denote the expected revenue from i in this case by ri1(a, b, c).

For the same reason, we can get revenue ri2(a, b, c) when a ≥ c
and b < c.

When a < c and b < c, we need to further distinguish two
subcases: a+b−c ≥ 0 and a+b−c < 0, since when a+b−c < 0,
P2b also diminishes.

We denote the revenues for the two subcases above by ri3(a, b, c)
and ri4(a, b, c).

So, the maximal revenue is given by maxk=0,...,4{rik(a, b, c)}.
This completes the analysis of the two-bidder case.

5.2 More than two bidders
The allocation space grows rapidly as the number of bidders

increases. The case-by-case enumeration becomes unmanageable
even with 3 bidders. However, by applying order statistics, we are
able to calculate bidder i’s expected revenue, by treating all the
1In general, the revenue expression is not necessarily convex and
the equations have multiple roots. Therefore, it is necessary to eval-
uate at each root as well as boundaries to determine the optimal
set of parameters. These can be easily done in Mathematica 7, as
shown in our simulation in Section 6.

other bidders simply as one bidder whose valuation for items is
distributed according to the (N − 1)th-order statistic of the valu-
ations from these bidders. In other words, what really matters to
bidder i is the greatest valuation of the remaining bidders on each
bundle.

In what follows, we shall consider the symmetric setting only.
That is, bidders’ values are drawn from the same distributions:
F1(v1) for the first item and F2(v2) for the second item. We de-
note by F k

1 (v
k
1 ) the (k)th (with (N−1)th being the greatest) order

statistic of N − 1 i.i.d variables drawn from F1(v1). Analogously,
we denote by F k

2 (v
k
2 ) the (k)th order statistic of N − 1 i.i.d vari-

ables drawn from F2(v2). We denote by F k
sum(vksum) the (k)th

order statistic of N − 1 i.i.d variables which are sums of N − 1
pairs of variables, one drawn fromF1(v1) and the other drawn from
F2(v2).

Fixing realized valuations vN−1
1 and vN−1

1 , and treating them as
valuations of a fake bidder j for the two items respectively, we have
two cases to consider:

• Case 1. vN−1
1 and vN−1

2 are realized by the same actual bid-
der. This happens with probability p1 = 1

N−1
since all the

bidders are symmetric. In this case, we can completely re-
duce the analysis to our previous 2-bidder case, with vj1 =

vN−1
1 and vj2 = vN−1

2 . We denote the expected revenue
from bidder i for this realization byRi

1(a, b, c)|(vN−1
1 , vN−1

2 ).

• Case 2. vN−1
1 and vN−1

2 are realized by different actual bid-
ders. This happens with probability p2 = N−2

N−1
. There are

two subcases.

– Subcase 1. vN−1
sum + c ≤ vN−1

1 + vN−1
2 . This happens

with probability p21 = FN−1
sum (vN−1

1 + vN−1
2 − c).

We can reduce the analysis to the 2-bidder case, with
a slight modification where the bundling parameter c
for bidder j is 0 if he gets both items and bidder i
remains unchanged. We can still go though a simi-
lar case-by-case analysis of bidder i’s expected revenue
since Lemma 5.1 still holds. (For example, (x, y, z) in
Case 1 should now be changed to (vN−1

1 , vN−1
2 , vN−1

1 +
vN−1
1 −c). Similarly, one can derive x’s, y’s, and z’s in

other cases.) We denote the expected revenue from bid-
der i for this part by Ri

21(a, b, c)|(vN−1
1 , vN−1

2 ). This
is an expectation over vN−1

sum as well as over i’s own
valuations.

– Subcase 2. vN−1
sum + c > vN−1

1 + vN−1
2 but vN−1

sum <
vN−1
1 + vN−1

2 . This happens with probability p22 =
FN−1
sum (vN−1

1 + vN−1
2 )− FN−1

sum (vN−1
1 + vN−1

2 − c).
This case means that to get the bundle, i must have a
valuation no less than vN−1

sum + c (instead of vN−1
1 +

vN−1
2 ). This reduces the analysis to a 2-bidder auction

where the seller’s valuations are given by (a, b,max{a+
b, vN−1

sum + c}). The analysis is also similar to that in
Section 5. Denote the expected revenue from bidder i
for this part by Ri

22(a, b, c)|(vN−1
1 , vN−1

2 ).

Therefore, the expected revenue from bidder i is∫
(vN−1

1 ,vN−1
2 )

fN−1
1 (vN−1

1 )fN−1
2 (vN−1

2 )

(p1R
i
1(a, b, c)|(vN−1

1 , vN−1
2 )+

p2R
i
21(a, b, c)|(vN−1

1 , vN−1
2 )+

p2R
i
22(a, b, c)|(vN−1

1 , vN−1
2 ))dvN−1

1 dvN−1
2 .



To evaluate the integration above (like in the two-bidder case),
we partition j’s valuation space and integrate each part separately,
since Ri

1(a, b, c), R
i
21(a, b, c) and Ri

22(a, b, c) take different form
for different (vN−1

1 , vN−1
2 ). However, each case above (Case 1,

Case 2a, and Case 2b) will give us a different partition. Thus, we
actually partition j’s valuation space into the coarsest common re-
finement of all the partitions generated by the cases above.

The optimal auction parameters a, b, and c then follow from the
same first-order conditions as given in Theorem 1.

6. COMPARISON OF AUCTIONS
This section compares the revenues of various auction classes in

three different settings, all of which have two bidders and symmet-
ric valuations:

Setting 1: f1(v1) = f2(v2) = 1 on [0,1].
Setting 2: f1(v1) = 2v1, f2(v2) = 1 on [0,1].
Setting 3: f1(v1) = 2− 2v1, f2(v2) = 1 on [0,1].
While our analysis carries over for all (a, b, c), we restricted our-

selves to 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 in this section. This is without
loss of generality as shown in Section 7.

Auction Optimal a, b, c Revenue

r0 0.577, 0.577, 0.265 0.871

r1 0.561, 0.791, 0.561 0.848

r2 0.791, 0.561, 0.561 0.848

r3 0.770, 0.770, 0.770 0.843

r4 0.257, 0.257, 1.063 0.833

VCG 0.000, 0.000, 0.000 0.667

Separate Myerson auctions 0.500, 0.500, 0.000 0.833

Pure-bundling Myerson rBundle = 0.816 0.839

Mixed-bundling auction 0.000, 0.000, 0.333 0.786

AMA* N/A 0.860

VVCA* N/A 0.838

Table 1: Expected revenues in Setting 1.

For Setting 1, the expected revenues are listed in Table 1. r0 to r4
have the same meaning as in Section 5: they are the revenues of the
different cases of MBARP, and the first case (ro, which corresponds
to a ≥ c, b ≥ c) yields the highest revenue in this setting. The VCG
mechanism is an instance of MBARP with a = b = c = 0. The
8th row, separate Myerson auctions, denotes the auction where two
items are sold sequentially through optimal single-item auctions
(Myerson auctions). The 9th row, pure-bundling Myerson auction,
denotes the optimal auction that sells both items to one agent. The
10th and 11th row, AMA* and VVCA*, denote approximated re-
sults returned by experiments [15], because there is no known an-
alytical way to optimize the parameters of AMA and VVCA. All
other revenue numbers in this section are calculated analytically
(by Mathematica 7.0) and are thus (rounded) exact solutions.

We have the following conclusions:

• MBARP yields the highest revenue, even compared to ex-
perimentally “optimized" parameter settings for its supersets:
AMA and VVCA.

• The reserve prices a and b play more important roles than
the bundling parameter c: separate Myerson auctions yield
revenue 0.833 while the mixed-bundling auction without re-
serve prices yields only 0.786.

• Separate Myerson auctions are inferior to the pure-bundling
Myerson auction in this setting. (In fact, this is the case for all
the three settings.) This is analogous to a milestone result by
Palfrey [12] from the bundling literature stating that the pure-
bundling Vickrey auction yields more revenue than separate
Vickrey auctions in the two-bidder, N-object setting. This re-
sult also suggests an interesting general question: Does Pal-
frey’s theorem hold for Myerson auctions as well?

For Settings 2 and 3, the expected revenues are listed in Ta-
bles 2 and 3, respectively. Again, MBARP outperforms the other
auctions. Optimal expected revenues for VVCA and AMA are un-
known.

Auction a,b,c Revenue

MBARP(r0) 0.641, 0.581, 0.225 1.037

VCG 0.000, 0.000, 0.000 0.867

Separate Myerson auctions 0.577, 0.500, 0.000 1.001

Pure-bundling Myerson rBundle = 0.908 1.002

Table 2: Expected revenues in Setting 2.

Auction a,b,c Revenue

MBARP(r0) 0.415, 0.575, 0.266 0.709

VCG 0.000, 0.000, 0.000 0.533

Separate Myerson auctions 0.333, 0.500, 0.000 0.672

Pure-bundling Myerson rBundle = 0.694 0.688

Table 3: Expected revenues in Setting 3.

7. DISCUSSION
In this section we discuss three additional issues.

7.1 Better starting point for automated mech-
anism design

Sandholm et al. show that, by starting from the VCG and then us-
ing hill-climbing algorithms to search through the parameter spaces
of AMA or VVCA, the auction ends up with high-revenue (locally
optimal) parameters [15, 8, 9]. Using that approach, as shown
in Section 6, they obtained expected revenue 0.860 for AMA and
0.838 for VVCA in Setting 1. An easy way to improve their results
is to start from the optimal MBARP instead of VCG, since opti-
mal MBARP is also an instance of VVCA and AMA, and yields
higher revenue than VCG. In fact, we implement one of the algo-
rithms named BLAMA from [15] and improve the optimal revenue
in Setting 1 to 0.872.

7.2 What if a < 0 or a > 1?
Although our theoretical analysis applies for all tuples of (a, b, c),

our Mathematica program (Section 6) was based on the assumption



that a and b are both within [0,1]. We now show that our assump-
tion is without loss of generality. First, consider a < 0. This case
is equivalent to the one where a = 0. (Going through the case-
by-case analysis, we have only Case 1 and Case 4 left, and both of
those cases yield x’s, y’s and z’s that do not depend on a.) Intu-
itively, this means there is no reserve price on item 1.

Now consider a > 1. This case is equivalent to the one where
we have revised auction parameters a′ and c′ as follows: a′ = 1
and c′ = c − (a − 1). (Going through the case-by-case analysis,
we have only Case 2 and Case 3, and both cases yield x’s, y’s and
z’s that either do not depend on a, or depend only on c−a, or have
x > 1. Each of these three cases will remain the same after we
switch to a′ and c′.) This means that no bidder can win exactly one
item.

7.3 Simple versus optimal mechanisms
A direction that might further improve revenue is to introduce

asymmetry into the allocation rule, as Myerson did in the optimal
one-item auction [11]. However, there are two concerns. First,
we depart from Myerson’s framework in the sense that we stick to
the paradigm of dominant-strategy IC, while Myerson relaxed it to
Bayes-Nash IC.

The second concern is related to the simplicity of the auction.
This is part of the reason that Riley and Samuelson [13] restrict
themselves on symmetric one-item auctions. (Fortunately, they
ended up with Myerson’s auction in symmetric settings. By anal-
ogy, this suggests that the optimal two-item additive-valuations auc-
tions might lie within the MBARP family.) This is also the major
motivation why revenue lower bounds from VCG-like mechanisms
have been studied [5, 16].

Because we have a closed-form expression for revenue, we can
explicitly trade off revenue for simplicity. For instance, for Set-
ting 1 we may like the simplicity of the MBARP with (a, b, c) =
(0.6, 0.6, 0.3). We can calculate that the revenue for this configura-
tion is 0.8696, which is very close to the optimal MBARP. That set
of parameters are also noted by Jehiel et. al. [6]. Another nice set
of parameters is (a, b, c) = ( 1

2
, 1
2
, 1
4
), and it yields revenue 0.8609.

8. CONCLUSIONS AND FUTURE WORK
Revenue-maximizing multi-item auctions are perhaps the most

important open topic in auction design and mechanism design at
large. It is open even in the 2-item additive case. We studied a
class of two-item auctions called mixed-bundling auctions with re-
serve prices (MBARP). The idea is that the allocation rule is biased
towards the bids for the whole bundle to increase the probability of
selling the bundle together. It also includes reserve pricing to fur-
ther increase revenue. In fact, it is general enough to include auc-
tions such as the VCG and separate Myerson auctions. A remark-
able feature of MBARPs is that the expected revenue can be rep-
resented in a simple closed-form expression, and can be optimized
easily. We gave a system of equations of the optimal parameters
in general and solved it for some canonical settings. The optimal
MBARP yields significantly higher revenue than the known auc-
tion classes with closed-form revenue expressions. Furthermore,
its revenue even exceeds the optimal empirical results returned by
sampling and approximation on much broader classes, where the
truly optimal expected revenues are difficult to obtain.

There are several directions for future research. We considered
the case where the bidders’ valuations are additive. It is not hard
to see that, with appropriate rotations of the lines in Lemma 5.1,
our current approach carries over to calculating the expected rev-
enue when bidders’ valuations for the bundle are linear combi-
nation of their valuations for the items in that bundle (formally,

λ1v
i
1 + λ2v

i
1 + λ3, where λ1, λ2, λ3 are constants). Perhaps our

approach can be generalized even further.
Second, can the bundling parameter, c, be optimized separate

from the reserve prices a and b?
Third, can we extend this approach to more than two items? For

example, when there are 3 items, we need at least 4 bundling pa-
rameters: 3 for each pair of items and 1 for the whole bundle. Does
there exist a simple derivation from the optimal 2-item parameters
to the optimal 3-item parameter? More generally, can we reduce
the analysis of three items to that of two items?

Future work also includes introducing asymmetry into the allo-
cations rule. This might increase revenue even when bidders’ val-
uations are symmetrical. Or, does the revenue-maximizing mecha-
nism lie within the MBARP family?
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