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ABSTRACT
We present a methodology for the automatic verification of
multi-agent systems against temporal-epistemic specifications
derived from higher-level languages defined over convergent
equational theories. We introduce a modality called rewrit-
ing knowledge that operates on local equalities. We discuss
the conditions under which its interpretation can be ap-
proximated by a second modality that we introduce called
empirical knowledge. Empirical knowledge is computationally
attractive from a verification perspective. We report on an im-
plementation of a technique to verify this modality with the
open source model checker mcmas. We evaluate the approach
by verifying multi-agent models of electronic voting protocols
automatically extracted from high-level descriptions.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification

General Terms
Security, Verification

Keywords
Epistemic Logic, Equational Rewriting, Model Checking

1. INTRODUCTION
Over the past decade there has been increased interest in

developing methodologies for the verification of multi-agent
systems (MAS). An approach that has been shown effective
is that of symbolic model checking [15, 18] for MAS specified
in semantics for temporal-epistemic logic [12]. This has been
effectively used in a number of practical applications, includ-
ing autonomous underwater vehicles [11] and cryptographic
protocols [23].

A clear advantage of MAS-based approaches using temporal-
epistemic logic is the intuitiveness of the resulting specifi-
cations to be checked. Concepts emerging from the MAS
community are now being exported to other close disciplines
that increasingly see the benefit of using powerful, expressive
languages.

One of these areas is security. It has long been recognised [5]
that cryptographic protocols can benefit from specifications
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in which knowledge-based concepts feature prominently. Con-
cepts such as anonymity, privacy and non-repudiation can
be both naturally and powerfully expressed in epistemic lan-
guages. Influential works in the area include the formulation
of secrecy by Halpern et al. [14], advances on algorithmic
knowledge [20] and the epistemic modelling of unlinkabil-
ity [23]. These have found applications in MAS in a variety
of ways, including attack detectability [4].

Still, fundamental problems remain. Firstly, the indistin-
guishability relations to be used when interpreting the knowl-
edge modalities need to account for the cryptographic primi-
tives used in the messages exchanged. For instance, the set of
indistinguishable states should be computed by taking into
account the agent’s ability to decipher a given message. While
some approaches (e.g., [7]) support cryptographic primitives
such as encryption and decryption, existing approaches fall
short of addressing the more general classes including digital
signatures and bit-commitments. Yet, these primitives are
prominent in several classes of protocols, e.g., e-voting or
zero-knowledge.

Secondly, little or no support for cryptography-inspired
modalities is currently provided in existing tools. An exten-
sion to mcmas [15] that caters for explicit knowledge exists [16],
but we are unaware of any model checker supporting epis-
temic modalities for cryptographic concepts, or, indeed, other
application-driven epistemic modality of use in many MAS
settings. In fact, recent approaches [4] have been restricted
to protocols in which receivers can decode all messages down
to their atomic constituents immediately upon their receipt.
This assumption is not natural in many settings including
e-voting, where principals are often only able to decipher
messages only at the end of a run.

In this paper we develop an approach aimed at overcom-
ing these limitations. Specifically, in Section 2 we define a
novel epistemic modality that is interpreted with respect to
a general equational theory defining the system. This differs
from the standard approach in which the agents’ knowledge
is interpreted on the equality of the local states. The high
computational cost of deducing equivalence under equational
theories has been previously discussed [8]. Thus, in Section 3,
we put forward a computationally efficient approximation.
Section 4 discusses the implementation of this revised modal-
ity on top of the model checker mcmas. In Section 5 we evalu-
ate the techniques presented by verifying e-voting protocols
modelled as MAS as per the formalism developed in Section 2.
We discuss the results and conclude in Section 6.



2. A TEMPORAL-EPISTEMIC LOGIC FOR
SECURITY PROTOCOLS

In this section we introduce a MAS-based semantics for
an epistemic logic under convergent equational theories.

2.1 Preliminaries
We assume familiarity with the concepts presented in this

subsection; the following is intended to fix the notation only.
Interpreted Systems. The interpreted systems (IS) formal-

ism [19] is a MAS-based semantics for temporal-epistemic
logic (CTLK) [12]. We assume a set Ag = {1, . . . , n} of agents
and an Environment denoted by Env. An agent i is described
by a set Li of possible local states, a set Acti of local actions,
a local protocol function Pi : Li → 2Acti and a local evolution
function ti : Li ×Act1 × . . .×Actn ×ActEnv → Li. An IS
is defined by the set G ⊆

Q
1≤i≤n Li × LE of global states,

the set Act = Act1 × . . . × Actn × ActEnv of joint actions,
the joint protocol P = (P1, . . . , Pn, PEnv) and the global
evolution function t = (t1, . . . , tn, tEnv). For a global state
g ∈ G and a joint action a ∈ Act, we use gi and ai to denote
the local state and the local action of agent i, respectively.
For more details on interpreted systems, we refer the reader
to [12].

Equational Theories [10]. For ease of reference, consider
the following equational theory aimed at checking whether
one integer is smaller or equal to another.

An Equational Theory (Σ1, E1) for Illustrative Purposes.

Signature Σ1:
Sorts: S = {nat, bool}; Variables: Xnat = {x, y};
Function Symbols: Σλ,bool = {true, false};
Σ[(nat,nat),bool] = {≤}; Σ[bool,bool] = {¬}
Σ[λ,nat] = {0}; Σ[nat,nat] = {succ}
Σ[ω,s] = ∅, otherwise (i.e., for other ω ∈ S∗, s ∈ S);

The set E1 of Σ1-Equations :
((¬true) = false);
((¬false) = true);
(≤(0, x) = true);
(≤(succ(x), 0) = false);
(≤(succ(x), succ(y)) =≤(x, y));

Let S be a non-empty set of sorts (i.e., simple types such as
nat and bool in the example above). Let Σ = {Σ(ω,s)|ω ∈ S∗,
s ∈ S} be an S-sorted signature, i.e., a collection of functional
symbols of type [ω, s]. Generally, σ ∈ Σ(ω,s) denotes a function
symbol (e.g., ¬,≤, succ in the example above). LetX be an S-
sorted set of variables (e.g., x and y above), where Xs are the
variables of sort s (e.g.,Xnat is still {x, y} above). Let TΣ,X be
the S-sorted set of terms overX and Σ (e.g., succ(x) is a term
over signature Σ1 in the example above), and TΣ be the set
of ground terms, i.e., terms without variables. An equational
theory is a tuple (Σ, E), where Σ is a signature and E is a
set of Σ-equations. The notation t = t′ or t→E t

′ denotes
a Σ-equation, i.e., a pair (t, t′) of terms equal under E.

The semantics for equational theories can be given through
the S-sorted Σ-algebra A = (A,ΣA) [10], where the set
A = (As | s ∈ S) is an indexed set of values (i.e., the sort nat
above is mapped under A onto the set Anat of concrete values,
e.g., natural numbers). For each sort s, the set As is called the
support-set for s. The set ΣA is a set of functions fA from Aω
to As corresponding to function symbols f in Σ, f ∈ Σ(ω,s),
ω ∈ S∗, s ∈ S (e.g., the symbol succ corresponds to a con-
crete successor function operating on natural numbers). The
indexed set δ = (δs | s ∈ S) of maps is an assignment of

X into the algebra A; the tuple δ=[x1/v1 , . . . , xn/vn ] rep-
resents an assignment where the variable xi is set to the
value vi, for i ∈ {1, . . . , n}. Moreover, the notation δ[x/v]
represents the assignment obtained from δ when δs(x) is
replaced by the value v, for some x ∈ Xs, v ∈ As, s ∈ S.

The relation →∗E is the transitive closure of →E ∪ =. Let
t ∈ TΣ,X . The normal term of t (denoted by t↓E ) is the unique
term t′ ∈ TΣ,Y such that t →∗E t′, where Y ⊆ X. Finally,
recall that an equational theory E is convergent if the algebra
of its semantics can be mechanised into a rewriting system
→E which is convergent (i.e., confluent and terminating [2]).
A theory is subterm convergent if all the subterm in the left-
hand side of the rewriting rule also appear on the right-hand
side of it. For more details on equational theories, we refer
to [10].

Protocols. Security protocols often rely on primitives such
as encryption and hashing to establish some security prop-
erty, e.g., authentication. These primitives can be formally
described by equational theories. Consider the simple proto-
col below constructed on the theory (Σ1, E1).

A Communication Protocol Pr1.

1. A→ B : n

2. B→ A : m

3. A→ B : ≤(n,m)

The protocol Pr1 describes a set of send-receive rules of
the two roles: the A-role and the B-role. An agent assuming
the A-role initiates the protocol by sending the term n to its
B-role partner agent. This receiver replies with the term m.
The initiator terminates the protocol with the acknowledge-
ment ≤(n,m), where ≤ is a publicly known function symbol.
This symbol is described by the equational theory (Σ1, E1)
aforementioned. The protocol Pr1 is purposely simple to
exemplify the material that follows.

High-level security languages such as Common Authen-
tication Protocol Specification Language (CAPSL) [9] pro-
vide precise descriptions of security protocols, including the
underlying equational theory formalising the effects of the
protocol-primitives executed by each role (i.e., in our presen-
tation, by some agent assuming that role). We assume that
all protocols referred to henceforth are specified in CAPSL.

2.2 Protocol Model
In this subsection we put forward a technique for producing

a fully instantiated interpreted system that models a finite
number of protocol sessions running concurrently. The aim
of this construction is to obtain interpreted systems in which
the epistemic relation for each agent is an equivalence relation
under the underlying equational theory of the protocol.

Consider a generic security protocol Pr that is specified
by an equational theory (Σ, E). Its execution generates an
instantiation of the protocol. To model this, let a Σ-algebra
A, together with a finite set ∆ of assignments of variables X
in A, be the interpretation of the protocol’s theory (Σ, E).
Importantly, assume that the rewriting sequence t→E∗ t↓E
mechanising the term algebra TΣ,X is somehow provided
for each t ∈ TΣ,X , e.g., by using a rewriting engine or a
CAPSL compiler [9] a priori. Since the normal terms are at
hand, to obtain the equivalence between states we will not
need to express the message-deducibility relation beforehand,
as required in other approaches [8]. Also, we only consider
a bounded number of protocol instantiations. By doing so



we obtain decidable state-equivalence modulo convergent
equational theories.

On the algebra A, let the set TΣ,X |Pr denote the terms used
only in the actual description of the protocol Pr. When Pr
is implicit, we simply write simply TΣ,X to mean TΣ,X |Pr . In
doing so, we underline the protocol-terms (i.e., messages and
their subparts) and, later, their values. Thus, for the protocol
Pr1, the set TΣ1,X |Pr1 of terms is {A,B, n,m,≤(n,m)}. To
highlight variables describing a role of the protocol (i.e.,
variables A and B in Pr1), we introduce an additional sort
called role. Variables of sort role (i.e., Xrole) range over
support set Arole. This is taken to be a set of strings, for
example {alice, bob, greg, . . .}.

Protocol Roles to Agents.
An entire protocol-role (e.g., a sender) is described by a
variable of sort role together with all the terms and actions
that inherently characterise it.

Assume a particular assignment δ ∈ ∆. An assignment
δ (homomorphically) instantiates all the terms in TΣ,X |Pr .
As such, an assignment symbolically corresponds to a protocol
session (e.g., a session of Pr1 is given by δ = [n/3,m/2, A/alice,
Bbob]). However, to model the development of the protocol
execution more clearly, we will use the projection of each such
assignment δ ∈ ∆ per each role. Note that when the sender A
starts the protocol Pr1, it does not possess any value for the
variable m or for the term ≤(n,m) (as it will only receive m
after the protocol starts, from some interlocutor of B-role).
To formalise this, we will say that a variable is free in or
bound to a role (see formalisation below).

Variables in a Role. A variable x is bound to a role R,
written x ∈ BR, if the (CAPSL) protocol description stipu-
lates the variable x as private to the role R. Otherwise, a
variable y is free in a role R, written y ∈ FR. The extension
to non-atomic terms is as usual: if t ∈ TΣ,X′ and X ′∩FR 6= ∅
then t ∈ FR, otherwise t ∈ BR.

In the Pr1 protocol the variable n is bound to the role of A,
while the variable m is free in the role of A. Therefore, the
term ≤(m,n) is free in the role of A.

To denote the initial ignorance of some concrete values
within a role, we will use designated values, called null values,
in the assignment of the variables and terms which are free
in a role. To denote these null values, we use (⊥s | s ∈ S),
an S-sorted set of constant function symbols. When the sort
s is implicit, we simply write ⊥ instead of ⊥s. All constant
function symbols over ω ∈ S∗ in which at least one component
is ⊥ are denoted by ⊥ω, i.e., if n has value ⊥nat within ≤
(m,n), then the whole value of ≤ (m,n) is also ⊥, specifically
⊥[(nat,nat),bool]. Bound variables are assigned to concrete, non-
null values, chosen arbitrarily over the a given range, e.g.,
integers, etc. Let the universal algebra A be the denotational
interpretation of the theory (Σ, E). To be able to define
operations on null values, we naturally extend the denotation
A to A⊥, which has As⊥=As ∪ {⊥s} as support-sets and
it operates over As like A and it returns ⊥ whenever it
operates over ⊥, for any s ∈ S.

Initial Instantiation of Roles. Let δ ∈ ∆ be an assign-
ment. The initial R-role instantiation δ|R is the projection of
the assignment δ on a role R, extended to A⊥ to enforce the
assignment of all terms in the R-role to values, including null
values: δ|R = (t/δ(t), t

′/⊥s | t ∈ (BR)s, t
′ ∈ (FR)s, s ∈ S).

For the protocol Pr1, let δ = [n/3,m/2, A/alice, Bbob] be
an assignment. Then, by the definition above, the initial role
instantiations are as follows:
δ|A=[n/3,m/⊥, A/alice, B/bob,≤(n,m)/⊥],
δ|B=[n/⊥,m/2, A/alice, B/bob,≤(n,m)/⊥].

For each role R, we map each initial instantiation δ|R
of the R-role into an agent agδR. This gives the set Ag =
∪
δ∈∆

∪
R∈Xrole

{agδR} of agents.

An IS Protocol Semantics.
In the following let the agent agδR represent an arbitrary R-
role under the assignment δ of a Pr protocol. In particular,
let agδA correspond to the A-role under δ|A, for an assignment
δ = [n/3,m/2, A/alice, B/bob] of the protocol Pr1. We now
present the formal description of the agent agδR.

We consider several concurrent instantiations of each role
by different agents. So, a free term (⊥) representing the
role of the sender can later be instantiated to potentially
different values, depending on the value received from other
agents. A receipt may trigger the instantiations of other local
terms as prescribed by the equational theory of the protocol.
For instance, in Pr1 with δ = [n/3,m/2, A/alice, B/bob] an
A-role participant may receive the value 2 for m from a
B-role agent. Following this, the A-role agent will “apply”
the equational theory E1 to rewrite the term ≤(m,n) to
≤(3, 2), ≤(2, 1), ≤(1, 0) and, finally, to .F.1. To permit this,
the term ≤(m,n) of sort Bool, which is free in the role of
A, should range over (Anat × Anat) ∪ Abool⊥ = (N × N) ∪
{.T., .F.}⊥. However, the term n should efficiently range only
over Anat=N for this agent, since n is bound to the A-role
and its initial value cannot be changed. These value-range
restrictions optimise the size of the fully instantiated model.
The following definition formalises this by giving the possible
values of a portion of a message held by an agent during the
run.

Range of a Term for an Agent. The range RangeR(t)
of a term t ∈ TΣ,X |Pr for an agδR agent is as follows:
RangeR(t)=8>>>>><>>>>>:

As t ∈ (BR)s ∩Xs (1)
As⊥ if t ∈ (FR)s ∩Xs (2)
(As1 × . . .×Asn ) ∪As if t ∈ (BR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si (3)
(As1 × . . .×Asn ) ∪As⊥ if t ∈ (FR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si (4)

Stores and Views for an Agent. A store for an agent agδR
is a relation (t :: RangeR(t) | t ∈ TΣ,X |Pr ) between terms
and their respective ranges for the agent agδR.

An initial view for an agent agδR encodes an a initial R-role
instantiation δ. A non-initial view for agδR encodes an actual
assignment δ[y/v], for some y ∈ (FR)s, v ∈ As (i.e., v 6= ⊥s).

The store of agδA in a model for Pr1 is as follows:
storeagδ

A
= (A ::String,B ::String, n ::N,m ::N⊥,
≤(n,m)::(N× N) ∪ {.T., .F.}⊥).

A possible non-initial view for agδA in a model for Pr1 is:
viewagδ

A
= (A 7→ alice,B 7→ bob, n 7→ 3,m 7→ 2,

≤(n,m) 7→ ⊥).
The non-initial view viewagδ

A
shows that agδA has updated

the value for m in its view from the initially held ⊥ to the
received value 2. In the above, agδA has not yet “calculated”
the value of ≤(n,m), i.e., ≤(n,m) is still ⊥ in viewagδ

A
.

1.T. and .F. are the concrete values for true and false.



To complete the description of instantiated protocol roles,
we introduce the set of adjacent terms Adj. These terms are
unrelated to the equational theory E, but are induced by the
(CAPSL) protocol description (e.g., flag variables to denote
protocol steps, stages of rewriting, etc.).

Local States of Agents. An (initial) local state is an (ini-
tial) view together with certain protocol-driven adjacent
terms and their assigned values. The set LagδR

is the set

of all possible local states of agδR.

Let step ∈ Adj be an adjacent atomic term of sort nat (i.e.,
denoting protocol steps). Then, let RangeR(step) = N and
step 7→ 1 in an initial setup, for any role R. An initial state i l
and local state l of agent agδA in a model for Pr1 are as follows:
i l = (step 7→ 1, A 7→ alice,B 7→ bob, n 7→ 3,m 7→ ⊥N,

≤(n,m) 7→ ⊥{.T.,.F.});
l = (step 7→ 5, A 7→ alice,B 7→ bob, n 7→ 3,m 7→ 2,

≤(n,m) 7→ .F.).
Let l ∈ Lagδ

R
, t ∈ TΣ,X and x ∈ RangeR(t). In the follow-

ing, we use the following notations:
l .view denotes the view encoded inside the local state l
l .t denotes that the local state l stores a value for the term t
l |t=x denotes the fact that l.t=x
l |δ denotes that l|t=x and δ=[t/x] for all t in the domain of δ
l [t/x ] denotes the fact that l.t is set to x

In the following, let i denote the map agδR of an initiator

role R and i′ denote the map agδ
′

R′ of a receiver role R′.

Local Actions and Protocol of Agents. Let step ∈ Adj,
j ∈ {1, 2, 3}, nrj ∈ RangeR(step) and t, x, i′, l be as above.
The set LActi= {send(t, x, i′), receive(t, x), rewrite, empty}
is the set of possible local actions of agent i. The local proto-
col Pi of agent i is as follows: Pi(l|step=nr1, l.t=x, l.R′=i′.R′)=
{send(t, x, i′)}, Pi(l|step=nr2)= {receive(t, x)},
Pi(l|step=nr3)= {rewrite}.

When a particular protocol is given, the parameters of the
actions are restricted to proper subsets of TΣ,X , e.g., t ranges
over certain terms in receive(t, x) for i.

The Environment Agent. We assume that the environment
agent Env records all communication. Therefore, the local
states of the Env agent are given by maps of the form (t ::
∪

R∈role
RangeR(t) :: Ag :: Ag | t ∈ TΣ,X). This gives the set

LEnv of possible local states of the Environment agent. The
environment has only one possible action denoted by listen,
which is enabled by its protocol at every local state.

Global States and Joint Actions. Let i ∈ Ag = {1, . . . , n},
li ∈ LActi, lEnv ∈ LEnv, ai ∈ Acti and aEnv ∈ ActEnv. A
global state g is a tuple (l1, . . . , ln, lEnv). The set G of global
states is the set of all possible states g as above. A joint
action a is a tuple (a1, . . . , an, aEnv). The set Act of joint
actions is the set of all possible joint actions a as above.

Agents’ Local Evolution Function. Let i denote the agδR
agent, i′ denote the agδ

′

R′ agent as above, let l ∈ Li be a
local state of agent i and a ∈ Act be a joint action. The
local evolution function Ei of agent i is defined below. In
this definition, the preconditions for enabling a state-update
upon receipt express the following: 1) the action receive of
agent i is synchronised with the action send of agent i′ and
with the action listen of the Env agent; 2) agent i is in the
step nr where it awaits message t; 3) the purported sender is

the agent of the R′-role2 (i.e., i.R′ = i′.R′ ); 4) the values xj
of certain subterms tj in the received term t are consistent
with agent i’s view, i.e., l|tj=xj . These conditions are inspired
by the matching-receive semantics [3, 21].8>>>>>>>>>>><>>>>>>>>>>>:

l[step/nr+1] if l|t=x,step=nr,R′=i′.R′ , for
ai=send(t, x, i′),aEnv= listen,
a′i = receive(t, x)

l[step/nr+1, t/x] if l|tj=xj ,step=nr,R′=i′.R′ , for
ai=receive(t, x),aEnv= listen,
a′i=send(t, x, i), tj ∈ Sub(t)

l[step/nr+1, t/t
′] if l|step=nr+1, for ai=rewrite,

aEnv= listen,
a′i=empty, t ∈ TΣ,X , t

′ = t↓E

To illustrate further, let i = agδA in the Pr1 protocol and,
by Ei, let the action receive(m, 2) be performed at the local
state l|step=1 of agent i. The implicit rewriting-driven state-
update is: ≤

`
3, 2
´
→≤

`
succ(2), succ(1)

´
→≤

`
2, 1
´
→

≤
`
succ(1), succ(0)

´
→≤

`
1, 0
´
→ .F.. For protocols where the

intermediate rewriting is not of interest, we collapse such a
state-update sequence in one update, i.e., the sequence
l[step/3,≤(n,m)/(2,1)], l[step/4,≤(n,m)/(1,0)] and
l[step/5,≤ (n,m)/.F.] is reduced to l[step/3,≤ (n,m)/.F.].
The above presentation of the local evolution function Ei
formalises such optimisations.

The Global Evolution Function. The global evolution
function t : G×Act→ G is such that t(g, a) = g′ if acti ∈
Pi(gi), Ei(gi, a) = g′i, for all i ∈ Ag ∪ {Env}, for g, g′ ∈ G
and a ∈ Act.

A path is a sequence of global states described by the global
evolution function. Paths naturally define the set of reachable
states. Henceforth, G refers to the set of reachable states.

Equational Interpreted System for Pr. An equational
interpreted system for Pr, denoted by ΥEIS , is a tuple I=
(G,Act, P, t, I0, V ), where the components Act and t are as
previously defined, I0 ⊂ G is a set of initial global states,
P = (Pi | i ∈ Ag ∪ {Env}), and V : G× PV → {true, false}
is a valuation function for the propositions PV of a logic
language.

Local Satisfaction of Equational Equalities of Terms.
The local state l ∈ Li satisfies t =E t′, written l|=(t =E t′), if
l|t=t′ , for t→E∗ t

′ with t′ = t↓E , t ∈ TΣ,X |Pr (i.e., t /∈ Adj).

By the definition above, a local state l satisfies the equality
t =E t′ of terms modulo E if the term t has been rewritten
to the normal term t′ in local state l of ΥEIS .

Equational Indistinguishability. Two local states l ∈ Li
and l′ ∈ Li are i-indistinguishable modulo E, written l ≈Ei l′,
if it is the case that l|=(t =E t

′) if and only if l′|=(t =E t
′),

for all t ∈ TΣ,X |Pr, i.e., t /∈ Adj. Two reachable global
states g, g′ ∈ G are i-indistinguishable modulo E, written
g ∼Ei g′, if gi ≈Ei g′i. The relation ∼Ei ⊆ G×G is the quotient-
indistinguishability relation.

By the definition above, two local states are indistinguish-
able modulo E if they satisfy the same equalities of terms
modulo E.

2If protocols use anonymous channels, then this condition is
dropped.



As an example, let i be agδA in the ΥE1
IS for the pro-

tocol Pr1. As none of the following states of agδA satisfy
≤ (m,n) = E1 .F., it holds that l1|step=2,≤(n,m)=(3,2) ≈E1

i

l2|step=3,≤(n,m)=(2,1) ≈E1
i l3|step=4,≤(n,m)=(1,0). However, the

state l|step/5,≤(n,m)/.F. does satisfy ≤(m,n)=E1 .F.

Equational Multi-agent System Model for Pr. Let I
be an equational interpreted system for a protocol Pr speci-
fied by a convergent equational theory (Σ, E). The equational
multi-agent system model for Pr ME

IS = (G, (∼Ei )i∈Ag, V ) is
the model generated by the equational interpreted system
model I. In ME

IS the relation ∼Ei is as described above, G is
the set of reachable states generated by I, and V is the set
of atomic proposition in I.

We use the notation I both for the equational interpreted
system for Pr and the equational multi-agent system model
for Pr; the context will disambiguate. In our implementation,
we optimise the formalism above when generating the ΥEIS ;
this is not discussed here.

2.3 The Epistemic Logic CTLKR
Let I be the equational multi-agent system model ME

IS of
Pr, p ∈ PV and i ∈ Ag ∪ {Env}. The specification language
CTLKR, used to express the system requirements is defined
by the following BNF:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Riϕ | AXϕ | AGϕ | A(ϕUϕ).
The operator Ki denotes the knowledge modality (Kiϕ

reads “agent i knows the fact ϕ”) while the operator Ri is the
rewriting-knowledge modality (Riϕ reads “agent i knows the
fact ϕ modulo the equational theory (Σ, E)”). The semantics
for CTL on ME

IS is as on standard interpreted systems [12].
The interpretation of the knowledge modalities is as follows:

(I, g)|=Kiϕ if (for all g′ ∈ G)(gi = g′i implies (I, g′)|=ϕ)
(I, g)|=Riϕ if (for all g′ ∈ G)(g ∼Ei g′ implies (I, g′)|=ϕ).

The logic CTLKR extends the commonly used logic CTLK
by means of the rewriting epistemic modality R.

3. AN APPROXIMATION FOR AUTOMATIC
VERIFICATION

We wish to use the logic CTLKR as a specification lan-
guage for model checking security protocols encoded in the
MAS-based formalism presented in the previous section. This
would enable us to surpass the significant limitations of the
state-of-the-art as discussed in the introduction. However,
locally parametrised properties of type t =E t′ make the
computation of the indistinguishability relation particularly
costly, thereby increasing the verification time. To circumvent
this, we approximate the R modality and interpret it over an
abstraction of ΥEIS through the use of local predicates. In the
following we will show that important classes of protocols
are amenable to analysis through this approximation.

3.1 Empirical Interpreted Systems
An S-sorted logical signature contains logic symbols of type

[ω], for ω ∈ S∗. Informally, a (standard) signature specifies
symbols related to algebraic operators, e.g., decrypt, whereas
a logical signature specifies symbols related to facts, e.g.,
isDecrypted.

Logically Extended Signatures. A logically extended sig-
nature is given by a tuple (Σ,ΣL), where Σ is an S-sorted
signature and ΣL is an S-sorted logical signature.

The tuple (Σ,ΣL, E) is the logically extended equational the-
ory corresponding to the equational theory (Σ, E). A logically
extended equational theory can describe more properties of
a protocol than the underlying equational theory alone.

The set TΣ,ΣL,X of logical terms is defined on logically
extended signatures (Σ,ΣL) in the same way the set TΣ,X

of terms is defined on the signature Σ.
The denotation of logically extended signatures is given

through a logical extension of the algebra A⊥. In this exten-
sion the interpretation i pA⊥(δ) of a logical term p ∈ TΣ,ΣL,X

under assignments δ ∈ ∆ is a predicate pA⊥ evaluated over
{true, false}. When A⊥ is implicit, we simply write i p(δ)
instead of i pA⊥(δ).

Let j be an arbitrary agent in an IS formalisation.

Logical Terms and Experiments of Agents. A fixed set
Inj ⊆ TΣ,ΣL,X denotes the set of logical terms of agent j.
The set InExj = {i p(δ) | p ∈ Inj} of predicates contains
the local experiments for agent j. An InExj set is denoted as
a local experiment-set. The Ag-indexed set InEx = (InExj |
j ∈ Ag) is the experiment-set.

Logical terms are symbols that enrich the agents’ stores
with “meta-data” representing facts not explicitly included in
the protocol. Experiments are predicates that are evaluated
on the views or the local states of agents, i.e., interpreting this
meta-data. Thus, evaluating these predicates will account for
a special kind of knowledge accrued by the agents.

Below we illustrate these notions, with intuitive predicates
and symbols: e.g., i diffOne(n,m)(δ) is true if “the absolute
difference between δ(n) and δ(m) is 1”.

Possible Experiments For Agent agδA in Pr1. The sets In of
logical terms and their respective experiment-sets InEx are
as follows:
• In1i = {smaller(n,m)}; InEx1i=i smaller(n,m)(δ);
• In2i = {diffOne(n,m)}; InEx2i=i diffOne(n,m)(δ).

Similarly to [17], we introduce an indistinguishability rela-
tion defined over local predicates, i.e., here on local experi-
ments of agents.

Local Empirical Indistinguishability. Two local states
l, l′ ∈ Lj are indistinguishable modulo InExj , or l ≈InExj l′,
if i p(δ) = i p(δ′) for all p ∈ Inj , where δ, δ′ ∈ ∆ respectively
describe l and l′, i.e., l|δ and l′|δ′ . Two global states g, g′ ∈ G
are indistinguishable modulo InExj , written g ∼InExj g′, if
gj ≈InExj g′j . The relation ∼InExj⊆ G×G is the empirical
indistinguishability relation.

Then, two local states l and l′ are indistinguishable through
experiments if these are evaluated identically at l and at l′,
as exemplified below.

Empirical Indistinguishability in a Model for Pr1. Let i be
the agent agδA in a model for Pr1 and two local states of agδA
respectively described by δ[n/9,m/8] and δ[n/9,m/5], i.e.,
lagA |δ[n/9,m/8] and l′agA |δ[n/9,m/5]. Let InEx1i and InEx2i
be the experiment-sets above. Then,
• i smaller(n,m)(δ[n/9,m/8])=false and
i smaller(n,m)(δ[n/9,m/5])=false;
• i diffOne(n,m)(δ[n/9,m/8])=true and
i diffOne(n,m)(δ[n/9,m/5])=false.

Therefore, l ≈InEx1i l′ holds, but l ≈InEx2i l′ does not
hold, i.e., l 6≈InEx2i l′.

Therefore, we have just augmented the ΥEIS formalisation
of protocol executions with local experiments. The resulting
models are formally defined below.



Empirical Equational Interpreted System. Let Pr be
a protocol specified by (Σ,ΣL, E) and I be the equational
interpreted system ΥEIS for Pr. An empirical equational in-
terpreted system is the tuple I′=(I, InEx), where InEx =
(InExj | j ∈ Ag ∪ {Env}).

3.2 Extended Protocol Logic
We use Pi as the empirical knowledge modality (Piϕ reads

“agent i empirically knows the fact ϕ”). On an empirical equa-
tional multi-agent system model I′ = (I, InEx), consider
the language L′ = CTLKR ∪ Pi, for i ∈ Ag ∪ Env.

The language CTLKR is interpreted on I′ as on I. Let
g ∈ G be an arbitrary reachable state of I′. The interpreta-
tion of the empirical knowledge modality is as follows:

(I′, g)|=Piϕ if
(for all g′ ∈ G)(g ∼InExi g′ implies (I′, g′)|=ϕ).

The empirical knowledge of an agent refers to the infor-
mation obtained only by theoretically enquiring the agent’s
local predicates, i.e., its experiments.

3.3 Experiments Sets of Convergent Equational
Theories

In this section we explicitly link the convergence of the
underlying equational theory to the experiments of the agents.
Once again, we assume that the normal terms of the theory
are encoded in the model, i.e., by using a rewriting system,
and that the number of protocol instantiations considered is
bounded.

Let Pr be a protocol specified by a convergent equational
theory (Σ, E), I be the equational interpreted system for Pr
and j denote the agδR agent as before. Let ΣL be a logical
signature containing the (special) logical symbols pred ∈ ΣL
of type ω, for all ω ∈ S∗. Let t be an arbitrary term of type
ω, i.e., t∈TΣ,X .

Predicates for Terms. A logical term pred(t) ∈ TΣ,ΣL,X is
a logical term for t ∈ TΣ,X . The interpretation i predE(t)(δ)
of a predicate for t in E is always true, i.e., i predE(t)(δ) =
true, for all δ∈∆.

By the definition above, a predicate i predE(t) for a term
t ∈ TΣ,X is true under all assignments δ ∈ ∆ for t. Since
δ is in ∆, i.e., δ is not an role instantiation, it means that
δ(t) 6= ⊥. In the next definition we use predicates for terms
to express special experiments, which simulate the recording
of the normal terms.

Local Experiments of Convergent Theories.
InEj = ∪

t∈TΣ,X
{pred(t′) | t′ = t ↓E} is the set of logical

terms for the convergent theory E of agent j. InExEj =

{i predE(t)(δ) | pr(t)∈InEj } is set of local experiments of the
convergent theory E for agent j.

Importantly, one can automatically produce the exact set
of experiments of a convergent theory E for a protocol Pr by
using the CAPSL description of the protocol, the finite set
of instantiations given and the normal terms implied by E.

Empirical Equational IS for Convergent Theories.
Let InExEj be the local experiments for the convergent the-

ory E of agent j and InExE=(InExEj | j ∈ Ag). An empir-

ical equational interpreted system Υ IE
IS for the convergent

theory E is given by the tuple I′=(I, InExE).

The unwinding of Υ IE
IS follows as in previous definitions.

By the above, the system Υ IE
IS is a special empirical system,

i.e., agents “track” normal terms under E. We now prove that
in these systems the Pi modality coincides with Ri.

Theorem 3.1. Let Pr be a protocol specified by a conver-
gent theory (Σ, E) and I be an M IE

IS model for E. Then, I|=ϕ
if and only if I|=ϕ, for any ϕ ∈ L, where ϕ ∈ L′ is obtained
from ϕ by uniformly substituting Rj for Pj, for any j ∈ Ag.

Proof (sketch). We only need to prove that I|=Rjψ iff I|=Pjψ,
for some arbitrary ψ ∈ L and an agent j=agαR under an ini-
tial R-role instantiation α.

Thus, I|=Rjψ
def. of |=L⇔ (for all g′ ∈ G)(g ∼Ej g′ implies

(I, g′)|=ψ)
def. of≈E , |= eq⇔ (for all g′ ∈ G) (for all t ∈ TΣ,X , t

′ =
t↓E) ((gj |t=t′ iff g′j |t=t′) implies (I, g′)|=ψ) (1). Let δ, δ′ be
assignments extending the initial R-role instantiation α and
w.l.o.g. denote the local states in (1) as gj |δ, g′j |δ′ (2). Then,

InEj =
S

t∈TΣ,X

{pred(t↓E)}, InExEj =∪t∈TΣ,X{i pred(t↓E)(δ)

=true} (3). By the definition of ≈InEx
E
j , (2) and (3), the

following holds in (1): gj ≈InEx
E
j g′j (4). From (1) with the

above and (4), it follows that:
def. of |=L′⇔ (I, g)|=Pjψ.

4. MODEL CHECKING KNOWLEDGE OF
PROTOCOL PARTICIPANTS

In this section we present a procedure for model checking
empirical knowledge that allows for the specification and ver-
ification of standard interpreted systems equipped with local
experiment-sets, i.e., not only for the equationally-driven Υ IE

IS .

Algorithm 1 Satp(ϕ : Formula, j : Agent) : Set of
States
1: X ← J¬ϕK
2: Y ← X
3: while X 6= ∅ do
4: g ← X.pop()

5: φg ← true
6: for exp ∈ InExj do
7: if g ∈ JexpK then
8: φg ← φg ∧ exp
9: else

10: φg ← φg ∧ ¬exp
11: end if
12: end for
13: Y ← Y ∪ JφgK
14: X.remove(JφgK)
15: end while
16: return ¬Y

The approach for calculating the set JPjϕK, i.e., the set of
states that satisfy the formula Pjϕ, is shown in Algorithm 1.
Lines 8 and 10 construct the formula φg representing the
conjunction of the evaluation of experiments for the agent j
at the current state g. The set Y is constructed iteratively
from each g ∈ J¬ϕK (the set X). At Line 13, JφgK contains
the set of states that are empirically indistinguishable from
the state g (i.e., JφgK = {g′ ∈ G | g′ ∼InExj g}). To calculate
Y = {g ∈ G | (∃g′ ∈ G)(g′ ∼InExj g) ∧ (g |= ¬ϕ)} efficiently,
we remove JφgK from X (Line 14) as these states have an
identical experiment-set evaluation. At Line 15, Y contains



Table 1: E-Voting Specifications in CTLKR

VP AG(votes(i, v)→ AG
V
v′ 6=v

Qat(votes(i, v′)))

VVU AG(votes(i, v)→
V
i′ 6=i

V
v′ 6=v

[votes(i′, v′)→ AGQat(votes(i, v′) ∧ votes(i′, v))])

RF
for v ∈ RangeV (vote) \ {vr},

AG(votes(ir, vr) ∧ votes(i, v)→
V

i′ /∈{i,ir}

V
v′

[votes(i′, v′)→ AGQat(votes(i, vr) ∧ votes(i′, v) ∧ votes(ir, v
′))])

CR
for v ∈ RangeV (vote) \ {vc},

AG(votes(ic, vc) ∧ votes(i, v)→
V

i′ /∈{i,ic}

V
v′

[votes(i′, v′)→ AGQat(votes(i, vc) ∧ votes(i′, v) ∧ votes(ic, v
′))])

the reachable states that either directly refute ϕ, or are empir-
ically indistinguishable from a state that does. Therefore we
obtain that Y = JPj(¬ϕ)K, where Pj(¬ϕ) ≡ ¬Pj(¬ϕ) is the
dual of Pj(ϕ). Finally, at Line 16, the algorithm calculates
¬Y , i.e., the set difference between the set of global states G
and Y . So, it returns JPj(ϕ)K.

Proposition 4.1. Algorithm 1 calculates the set of states
JPjϕK.

Implementation. We have implemented Algorithm 1 as
an experimental extension of the model checker mcmas [15].
This extension, titled mcmas-e, is available from [1]. ISPL,
The input-language of mcmas, was extended to allow for the
definition of experiments at the agent level, as well as to
support the specification of empirical knowledge formulae.

5. VERIFYING E-VOTING PROTOCOLS
The applicability of previous research [3] in this line has

been limited to protocols for which the specifications can
be expressed by using standard notions of knowledge; this
included authentication and key-establishment. We herein
analyse e-voting protocols, which were out of the scope of [3].

To illustrate that the models and knowledge modalities
introduced so far surpass this limit, we analyse more sophis-
ticated e-voting protocols than previously possible with our
extension of mcmas.

E-Voting in the Υ IE
IS Formalism. Assume a Υ IE

IS model
and the propositions votes(j) and votes(j, x), representing
that an honest agent j has voted and that agent j has voted x,
respectively. Let i, i′ be two different agents. We consider only
fair paths representing voting sessions in which eventually
both agent i and agent i′ vote and that the voting is not
unanimous.

The specifications for e-voting requirements we consider,
i.e., vote privacy (VP), voter-vote unlinkability (VVU), receipt-
freeness (RF) and coercion-resistance (CR), are formalised
in Table 1. We use the notation Qjϕ to represent ¬Rj¬ϕ,
for any agent j.

VP stipulates that whenever agent i has voted v, there
does not exist a point where the attacker at can be sure
that it was i who voted v. Similarly, VVU expresses that
the attacker at will always consider it possible that agents i
and i′ have swapped votes. RF states that, whenever agent
i counterbalances the vote of the receipt-providing agent
ir, the attacker at is not at any point able to link any of
the voters to their respective votes. CR is similar to RF,
but it is analysed on a stronger threat-model. The formulae
VVU, RF and CR are inspired by the specifications of total
role-interchangeability [23], whereas VP is inspired by the
specifications of anonymity in [14] and their extensions to
privacy in [23].

We verify these specifications against the FOO’92 e-voting
protocol [13]. We formalise the execution of a finite number
of concurrent sessions as three, specialised Υ IE

IS systems. The
first model, M1, is a Υ IE

IS model with an added Attacker
agent (at) representing a passive intruder. This model sat-
isfies the vote-privacy property. A receipt-providing agent
ir and a stronger Attacker are modelled in M2, which spe-
cialisesM1 and supports receipt-freeness. To model coercion,
the formalisation M3 extends M2, with a further enhanced
Attacker and a coercible agent ic.

Experiments. The high-level description of the FOO’92
protocol was initially provided in CAPSL [9]. This encoding
was then passed to an ISPL translator [1]. The translator is
an extension of the PD2IS toolkit [3] where the instantiated,
⊥-enhanced normal terms are inserted into the ISPL models.
In this way we can automatically generate the M1, M2

and M3 formalisations of FOO’92, as well as the e-voting
requirements in ISPL. The generated ISPL files are in the
region of 8000 lines and take approximately 15 seconds to
build. mcmas-e was then used to verify these models. The
machine employed was an Intel Core 2 Duo processor 3.00
GHz with a 6144 KiB cache running the 32-bit Linux kernel
2.6.32.10. The averaged results obtained across two runs of
mcmas-e are summarised in Table 2.

Table 2:Averaged Experiments on FOO’92.
Form. Mem. (KiB) Time (s) States

M1 VP/VVU 176032 66441 6.69 · 1011

M2 (weakened) RF 175496 66168 6.69 · 1011

M3 VP/VVU 181926 70401 6.69 · 1011

The leftmost column shows the class of model considered.
The Memory and Time columns respectively show the aver-
age memory usage and the average CPU time in each run.
States reports the number of reachable states in each model.

Discussion of Results. The Formulae column reports
the strongest e-voting specification that was found to hold
on the model (strength grows from VP, VVU, RF to CR);
vote privacy (VP and VVU) were found to hold on all three
classes of models considered. On modelsM2 andM3 a path
was found where eventually the intruder is able to link the
receipt-providing agent and its vote, i.e., receipt-freeness (RF)
was refuted. Our findings are in-line with known results (i.e.,
vote-privacy holding for FOO’92). An alternative approach
based on applied-pi [8] exhibits similar results. The models
verified are of large sizes and are not optimised for e-voting,
consequently our verification times are seen as favourable.
The complete set of ISPL models and specifications verified
are available from [1].

6. CONCLUSIONS AND RELATED WORK
In this paper we have introduced an approach to model

checking MAS-based models of security protocols, using spec-



ifications expressed in a specialised temporal-epistemic logic.
This work surpasses the current state-of-the-art of temporal-
epistemic verification of protocols specified as MAS in two
ways. Firstly, it advances a formalism integrating equational
theories with epistemic logic. This allows for the modelling
of several cryptographic primitives of interest. Secondly, we
present an automatic methodology for the verification multi-
agent systems-based models against relevant specifications
through an open-source dedicated model checker. We em-
phasise nonetheless that the methodology presented is not
directly optimised for e-voting primitives; in fact, it aims at
a generic MAS-based verification method.

The empirical indistinguishability relation introduced is
related to that of explicit knowledge [17], although in that
line no support for cryptographic primitives was available.
In [20] agents are empowered with deduction algorithms for
generating new local knowledge, but the technical details
are different and no automatic technique is discussed. In a
theoretical setting of cryptographic modelling, [22] studied the
decidability of model checking with respect to an epistemic
extension of ATL∗; given the specification language, it is clear
that the protocol model, the operators and the semantics
in [22] differ from those we present.

Semi-decidable tools have been used to show static equiva-
lence of applied-pi frames modulo certain convergent equa-
tional theories [6, 8]. Such approaches could be applied to
verify symbolically an infinite number of e-voting sessions.
However, they focus mainly on the problem of deciding static
equivalence in process calculi (thus a comparison on protocol
verification cannot be drawn). Comparatively, we assume
a bounded number of fully instantiated protocol sessions
where the normal terms of the theory are encoded in the
model. Thus, we attain a decidable and fully automatic
method of MAS-based protocol verification. In the context of
bounded size modelling, the epistemic modalities and indis-
tinguishability relations we have introduced can be correlated
to process equivalence [6, 8] and, respectively, static frame-
indistinguishability in applied-pi calculus.

Our specifications of e-voting requirements follow the for-
mulations of anonymity in [14, 23] and are model-independent
(unlike those in [8], where e-voting specifications are expressed
as reachability or process equivalence properties in a model-
dependent manner).
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