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In this work we study the learning dynamics for agents playing
games on networks. We propose a model of network formation
in repeated games where players strategically adopt actions and
connections simultaneously using a reinforcement learning scheme
which is called Boltzmann-Q-learning. This adaptation scheme in
the continuous time limit has a proven relation to the evolutionary
game theory through replicator dynamics.

We assume that the agents adapt to their environment through
a simple reinforcement mechanism. Among different reinforce-
ment schemes, here we focus on (stateless) Q-learning. Within
this scheme, the agents’ strategies are parameterized through so
called Q–functions that characterize relative utility of a particular
strategy. After each round of game, the Q functions are updated
according to the following rule:

Qixy(t+ 1) = Qixy(t) + α[Rix,y −Qixy(t)] (1)

where Rix,y is the expected reward of agent x for playing action
i with agent y, and α is a parameter that determines the learning
rate (which can be set to α = 1 without a loss of generality). .
Here we focus on Boltzmann action selection mechanism, where
the probability xi of selecting the action i is given by
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where the temperature T > 0 controls exploration/exploitation
tradeoff: for T → 0 the agent always acts greedily and chooses
the strategy corresponding to the maximumQ–value (exploitation),
whereas for T → ∞ the agents’ strategy choices are completely
random (exploration).

In the continuos time limit, one obtains the following dynamics
describing the evolution of agent x probability choosing action i
and play with agent y, with respect to time:
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First, we consider the dynamics of Q–learning in two–player
two–action games with Boltzmann exploration mechanism. For
any non–zero exploration rate the dynamics is dissipative, which
guarantees that agent strategies converge to rest points that are gen-
erally different from the game’s Nash Equlibria (NE). We provide
a comprehensive characterization of the the rest point structure for
different games, and examine the sensitivity of this structure with
respect to the noise due to exploration. Our results indicate that for
a class of games with multiple NE the asymptotic behavior of learn-

ing dynamics can undergo drastic changes at a critical exploration
rate.

We demonstrated that, depending on the game, the rest point
structure of the learning dynamics is different. Namely, for games
with a single NE (either pure or mixed) there is a single globally
stable rest point for any positive exploration rate. Furthermore, we
examined the impact of exploration (noise) on the asymptotic be-
havior, and showed that in games with multiple NE the rest point
structure undergoes a bifurcation so that above a critical exploration
rate only one globally stable solution persists.

We suggest that the latter observation can be useful for vali-
dating various hypotheses about possible learning mechanisms in
experiments. Indeed, most empirical studies so far has been lim-
ited to games with a single equilibrium, such as matching pen-
nies, where the dynamics is rather insensitive to the exploration
rate. We believe that for different games (such as coordination or
chicken game), the fine–grained nature of the rest point structure,
and specifically, its sensitivity to the exploration rate, can provide
much richer information about learning mechanisms employed by
the agents.

In the next step we investigate the learning dynamics of agents on
network. We now make the assumption that the agents’ strategies
can be factorized as follows:
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Here cxy is the probability that the agent x will initiate a game
with the agent y, whereas pix is the probability that he will choose
action i. Thus, the assumption behind this factorization is that the
probability that the agent will perform action i does not depend on
whom the game is played against. Substituting 4 in 3 yields
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Next, we take a summation of both sides in Equation 5, once over
y and then over i, and make use of the normalization conditions in



Eq. 4 to obtain the following system:
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Equations 6 and 7 are the replicator equations that describe the
collective and mutual evolution of the agents’ strategies and the
network structure, by taking into account explicit coupling between
the strategies and link weights.

We now consider general two actions games in the case when
there is no exploration, T = 0. We assume that the reward matrix
is the same for all pairs (x, y), Axy = A,

A =

(
a11 a12
a21 a22

)
(8)

Let pα, α ∈ {x, y, . . . , }, denote the probability for agent α to play
action 1. For agent x the expected reward of choosing action one is
denoted by r1x and the expected reward of choosing playmate y by
rxy and the average expected reward by Rx

r1x =
∑
ỹ
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rxy = cyx(apxpy + bpx + dpy + a22) (10)
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In the last equation we have defined the following parameters,

a = a11 − a21 − a12 + a22 (12)
b = a12 − a22 (13)
d = a21 − a22 (14)

For T = 0, the learning dynamics attains the following form:
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These equations have a simple intuitive meaning. Indeed, Equa-
tion 15 asserts that the probability for agent x to play action 1 in-
creases at a rate that is equal to the expected payoff for playing
action 1 relative to the overall payoff Rx. Similarly, Equation 16
reads that the probability for agent x to play with agent y increases
at a rate equal to the expected payoff for playing with y relative to
the payoff averaged over all the other agents (and strategies).

We should note that generally, the replicator dynamics (and Nash
equilibria) in matrix games are invariant with respect to adding any
column vector to the payoff matrix. However, this invariance does
not hold in the present networked game. The reason for this is the
following: if an agent does not have any incoming links (i.e., no
other agent plays with him/her), then he always gets a zero reward.
Thus, the zero reward of an isolated agent serves as a reference
point. This poses a certain problem. For instance, consider the
game of Prisoner’s Dilemma where the payoff for mutual defection
is P : In general, the outcome of the game should not depend on P
as long as the structural properties of the payoff matrix is the same.
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Figure 1: The graphical illustration of motifs structure.

However, in our case the situation is different. Indeed, if P < 0,
an agent might decide to avoid the game by isolating himself (i.e.,
linking to agents that do not reciprocate), whereas for P > 0 the
agent might be better of participating in a game.

To resolve this issue, we assume that every time a partner of
agent x refuses to play, x receives a negative payoff −cp < 0,
which can be viewed as a cost of isolation. It can be shown that
the introduction of this cost merely means adding a constant to the
reward matrix in the replicator learning dynamics (see Section.??).
The adjusted reward matrix elements aij are:

aij = bij + cp (17)

where B is the game reward matrix and similar for all agents.
We then proceed to a comprehensive analysis for 3-player two-

action games which is the minimum system size where structural
dynamics is important. In particular, we provide a complete charac-
terization of Nash equilibria in such games, and examine the local
stability of the rest-points of the learning dynamics. Our results in-
dicate that at zero temperature the dynamics reaches different con-
figurations based on the cost of isolation. By tuning the cost, the
stability of the fixed points changes abruptly at critical values of
cost of isolation. In the stable configurations agents must choose
actions deterministically. In other words, although Coordination
and Chicken games allow mixed-strategy Nash equilibria, these
equilibria are not stable, and cannot be achieved dynamically via
learning.

In addition to the three agent system, we also examined the be-
havior of the co-evolving system for larger number of agents. Ex-
cept several specific cases, obtaining analytical results in this case
is extremely difficult, and one has to generally resort to numerical
integrations and/or simulations.

We observed in those numerical simulations that there is a re-
ciprocating connection between couple of players with only one
central player. In other words the network structure of the learning
dynamic consists of star motifs. The star graph Sn , is a tree on
n nodes with one node having vertex degree n − 1 and the other
n− 1 has vertex degree 1 as it is shown in Figure 1.

As for future work, we intend to go beyond the three–agent sys-
tems at T = 0 and examine larger systems for any T > 0. We also
plan to examine large systems asymptotic behavior for full spec-
trum of exploration rate T and isolation cost cp values.


