
GaTAC: A Scalable and Realistic Testbed for Multiagent
Decision Making (Demonstration)

Ekhlas Sonu and Prashant Doshi
Dept. of Computer Science

University of Georgia
Athens, GA,30602, USA

esonu@uga.edu, pdoshi@cs.uga.edu

ABSTRACT
In an attempt to bridge the gap between the theoretical advances
in multiagent decision making algorithms and their application in
real world scenario, we present the Georgia testbed for autonomous
control of vehicles (GaTAC). GaTAC provides a low-cost, open-
source and flexible environment for realistically simulating and eval-
uating policies generated by multi-agent decision making algorithms
in real world problem domains pertaining to control of autonomous
uninhabbited aerial vehicles (AUAVs). We describe GaTAC in de-
tail and shall demonstrate how GaTAC could be used to simulate
an example AUAV problem. We expect GaTAC to facilitate the de-
velopment and evaluation of scalable decision making algorithms
with results that have immediate practical implications.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation

Keywords
scalability, testbed, autonomous vehicles

1. INTRODUCTION
With advances in multi-agent sequential decision making algo-

rithms, there is a need to move beyond traditional toy problems to
scalable problems with real world implications that may be used to
evaluate performance of various decision making algorithms. We
think that desired problem domains should, (a) be scalable to natu-
rally allow for greater numbers of physical states, actions, observa-
tions, and agents while maintaining the plausibility of the problem;
(b) be flexible to accomodate different types of multi-agent settings
such as co-operative, competitive or mixed; (c) produce solutions
that are rich in structure and which have practical implications; and
(d) be realistic and have popular appeal. In this paper, we introduce
a problem domain that meets these criteria.

Unmanned agents such as uninhabited aerial vehicles (UAVs) are
used in fighting forest fires, law enforcement, and wartime recon-
naissance. They operate in environments characterized by multi-
ple parameters that affect their decisions, including other agents
with common or antagonistic preference. The task is further com-
plicated as the vehicles may possess noisy sensors and unreliable
actuators. In such complex and unreliable settings, an autonomous

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

UAV must choose navigational and surveillance actions that are ex-
pected to optimize its objective of say, timely reconnaissance of tar-
get while avoiding detection. UAV operation theaters may be pop-
ulated by a single reconnaissance target or a host of other agents
including UAVs working together as a team, or other hostile UAVs.
Depending on the type of the agents present in the environment, this
would involve application of decision-theoretic frameworks such as
interactive POMDPs [2] and decentralized POMDPs [1].

In order to facilitate application of multiagent decision making
to the problem domains pertaining to AUAVs and its evaluation,
we have developed the Georgia testbed for autonomous control
of vehicles (GaTAC). GaTAC is a computer simulation framework
for evaluating autonomous control of aerial robotic vehicles such
as UAVs. It provides a low-cost and open-source alternative to
highly complex and expensive simulation architecture. GaTAC
uses a free, open-source and multi-platform flight simulator soft-
ware called FlightGear. GaTAC deploys multiple instances of the
flight simulator on a networked cluster of computing platforms us-
ing a scalable architecture. It is flexible in allowing the interchange
of instances of manually controlled vehicles with autonomous ones.
It can be extended to include complex scenarios involving multiple
UAVs performing complex tasks.

In this paper we describe GaTAC in detail focusing on its ar-
chitecture and its components and provide an introduction to our
demonstration of its applicability on a simple example problem.

2. TESTBED FOR AUTONOMOUS
CONTROL

As we mentioned previously, the objective behind the develop-
ment of GaTAC is to provide a realistic and scalable testbed for al-
gorithms on multiagent decision making. GaTAC facilitates this by
providing an intuitive and easy to deploy architecture that makes
use of powerful, open-source software components. Successful
demonstrations of algorithms in GaTAC would not only represent
tangible gains but also have the potential for practical applications
toward designing autonomous UAVs. We think that multiagent de-
cision making could make significant contributions in this area.

2.1 Architecture
We show a simplified design of the GaTAC architecture in Fig. 1,

where a manually controlled UAV is interacting with an autonomous
one. Briefly, GaTAC employs multiple instances of an open-source
flight simulator possibly on different networked platforms that com-
municate with each other via external servers, and an autonomous
control module that interacts with the simulator instances using a
communication module. GaTAC can be deployed on most plat-
forms including Linux and Windows with moderate hardware re-
quirements, and the entire source code is available. GaTAC is im-
plemented using C++ programming language.

















































Figure 1: Design of GaTAC showing two networked instances
of a flight simulator (FlightGear with 3D scenery from Ter-
raGear), one autonomously and other manually controlled.
GaTAC is extensible and more instances may be added.

Each agent may be simulated on a separate instance of GaTAC
that may be running on different computing platforms connected
through the internet. GaTAC doesn’t apply any limit to the problem
size or the number of agents. We describe the individual compo-
nents of a GaTAC instance next.
2.1.1 Flight Simulator

We utilize FlightGear [3] as the flight simulator in GaTAC. Flight-
Gear flight simulator project is an open-source, multi-platform, hy-
perrealistic flight simulator with a goal to develop a low cost so-
phisticated flight simulator for use in academic and research envi-
ronments. The entire source code of FlightGear written in C++ is
available under GNU General Public License, allowing full exten-
sibility. It provides a flexible platform with options to choose from
multiple aircrafts, including UAVs (e.g., Predator), which could be
operated manually or guided automatically by external programs.
FlightGear uses a generic, six degrees-of-freedom flight dynamics
model for simulating the motion of aerial vehicles. It simulates
the effect of airflow on different part of the aircraft making it pos-
sible to perform the simulation based on geometry and mass in-
formation combined with more commonly available performance
numbers for an aircraft. FlightGear utilizes realistic 3-dimensional
scenery available from TerraGear, which virtually maps many parts
of the world including models of the sky.

FlightGear also provides multiple views of the flying aircraft, in-
cluding external views from different viewpoints and an internal
cockpit view which allows for a realistic flying experience. Fi-
nally, multiple instances of FlightGear may be run on different
hosts and are linked together through external servers located in
different countries. This multi-player mode allows for multiple air-
crafts to fly simultaneously and see each other if the aircrafts are in
visual range. This is a crucial functionality for its use in multiagent
systems research.
2.1.2 Communications Module

FlightGear allows remote control of the aircrafts through UDP
socket based communication channels. The communication mod-
ule in GaTAC (see Fig. 1) establishes UDP sockets that are used to
communicate with instances of FlightGear. Control data at a low
level is sent to FlightGear in order to remotely pilot the UAV. This
data includes values for more than 30 flight parameters including
the throttle, rudder, elevator and aileron settings. The communi-
cations module receives the aircraft’s flight dynamics in real time
from FlightGear. This includes data about the current latitude, lon-
gitude and altitude location of the aircraft, the values of the dif-
ferent flight surfaces, and current fuel level. During flight, the
communication module continuously sends and receives data from

the FlightGear instance at a pre-specified baud rate. GaTAC asso-
ciates a communication module with every instance of FlightGear
regardless of whether the corresponding aircraft is autonomously
or manually controlled. If the aircraft is manually controlled, the
communication module simply receives the flight dynamics of the
aircraft in order to remain informed about the state of that aircraft.
The communication module also provides a way for UAVs to com-
municate with each other. This may be useful in team settings with
communication.
2.1.3 Autonomous Control Module

In order to allow algorithmic control of the aircraft, GaTAC im-
plements an autonomous control module (see Fig. 1). This module
implements low-level control actions such as setting values of vari-
ous flight parameters including throttle, rudder, elevator and aileron
settings. Using these low level actions, we have constructed high-
level control actions such as takeoff, fly straight, change heading,
move to an adjacent grid, etc. We may utilize these actions to con-
struct a set of agent actions for any decision making problem. The
GaTAC library is extensible to include additional actions. Addi-
tionally, GaTAC allows users to define their own grids of any size.

Because we intend to utilize GaTAC with multiagent decision
making frameworks, it implements methods that read policy tree
files in different formats generated by various algorithms. We have
made effort to make GaTAC independent of any particular type of
decision-theoretic framework. It may be easily integrated with ex-
isting implementations by simply providing it with the behavioral
policies generated by the various algorithms for decision making.

3. DEMO
In demo, we show how GaTAC may be used to simulate and eval-

uate the policies obtained for a few example UAV reconnaissance
problem using various decision making algorithms. The evalua-
tion criteria may differ according to various problem. Some of the
evaluation criteria may be the number of successful achievement of
goal (number of successful reconnaissance), the cumulative reward
obtained, etc.

More information on GaTAC including the source code, a demo
video and an informative powerpoint presentation may be obtained
from the following link: http://thinc.cs.uga.edu/thinclabwiki/index.
php/GaTAC_:_Georgia_Testbed_for_Autonomous_Control_of_Vehicles

4. DISCUSSION
GaTAC provides a low cost, open source scalable platform for a

satisfactory simulatory experience of a problem domain that has
popular appeal, and is extensible. GaTAC represents a realistic
testbed for multiagent decision making research, and a first step
in our knowledge toward enabling decision-making algorithms to
cross over to domains of practical import. We hope that GaTAC
could be further improved with inputs from users.
Acknowledgement
This research is supported in part by AFOSR through grant no.
#FA9550-08-1-0429 and in part by a NSF CAREER award with
grant no. #IIS-0845036.

5. REFERENCES
[1] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.

The complexity of decentralized control of markov decision
processes. Mathematics of Operations Research,
27(4):819−840, 2002.

[2] P. Gmytrasiewicz and P. Doshi. A framework for sequential
planning in multiagent settings. Journal of Artificial
Intelligence Research. 24:49−79, 2005.

[3] A. R. Perry. The flightgear flight simulator. In UseLinux,
2004.


