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ABSTRACT
We propose a fully distributed approach to endow robots in
a swarm with awareness of their relative position with re-
spect to the rest of the swarm. Such spatial awareness can
be used to support spatially differentiated task allocation or
for pattern formation. The approach we propose only relies
on local communications and is based on a combination of
distributed consensus and load balancing. We test the effec-
tiveness of our algorithm in extensive simulation tests and
we also validate it in experiments with real robots.

Categories and Subject Descriptors
I.2.9 [Robotics]; I.2 [Distributed Artificial Intelligence]:
Coherence and coordination; C.2 [Computer Communi-
cation Networks]: Distributed applications

General Terms
Algorithms

Keywords
Swarm robotics, geometric bisectioning, spatial aggregation

1. INTRODUCTION
The aim of this work is to endow robots in a swarm with

awareness of their relative position with respect to the rest
of the swarm. Such spatial awareness can be used to support
spatially differentiated task allocation (e.g., split the swarm
in different, spatially close, groups, and let each group en-
gage in a different task, such as exploring different regions
of an environment), or for pattern formation, among oth-
ers. The task we focus on is to assign the robots of the
swarm to two different classes, C0 and C1, in such a way
that the two classes are spatially segregated: the robots in
class C0 are found on one side of the swarm, and the robots
in class C1 on the other side of the swarm. The problem
that we are solving can be formally described as follows.
Let G(V,E) be a Euclidean graph where the node set V
represents geometric entities, such as robots, positioned in
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Figure 1: Examples of different ways to realize a
geometric partitioning in two classes (indicated by
the black and white squares) given a communication
range (indicated by the grey disk in (a)).

the plan. Nodes are able to communicate with each other
over a wireless medium. Two nodes i and j are connected by
a link (i, j) ∈ E if: (i) their Euclidean distance is less than or
equal to the maximum communication range Rmax (range-
constrained connectivity), and (ii) no major occlusions are
present between the two nodes (line-of-sight communication
constraint). Each node only knows about its neighbors, no
other network information is assumed. The objective is to
find, adopting a fully decentralized approach, a geometric
partitioning of the graph in k classes, where each class con-
tains (approximately or precisely) the same number nk of
nodes, and the nodes in each partition are geometrically
close to each other. We focus on the case k = 2. Figure 1
illustrates different partitionings in two classes. We aim to
obtain partitionings like in (a) and (b).

To solve this problem, we look for an algorithm that is
robust, scalable, efficient, works in a decentralized way, and
has limited requirements in terms of available sensor or actu-
ators. We rule out the use of global positioning information
(not always available, especially in indoor environments) as
well as the use of physical mobility (not always possible,
slow, and energy-greedy). Instead, we propose an algorithm
which uses only local communication. The robots/nodes
only need to be able to identify their neighbors and com-
municate with them. Only a relatively low channel band-
width is required to let the algorithm working effectively.
We consider the general case of robots/nodes equipped with
a wireless communication interface. The algorithm combines
elements from different approaches to similar problems: al-
gorithms for solving minimum bisection problems [1]; algo-
rithms for swarm robotics aggregation [3], and distributed
algorithms for consensus load balancing [2].



2. ALGORITHM OVERVIEW
The degree of membership of a robot i to one of the two

classes C0 and C1 is represented by using load variables
ui ∈ [0, 1]. ui = 1 means full membership of i to class C1,
ui = 0 means membership to class C0, while intermediate
values indicate different degrees of membership to C0 and
C1. At the start, each robot i decides with a probability of
0.5 whether it is loaded or not, and sets accordingly a vari-
able ui. Each robot i also keeps a value vi ∈ [0, 1], which
is an estimate of how loaded on average the robots in its
neighborhood are. After the initialization, the robots start
to communicate locally, with two goals: to update the esti-
mate vi, and to let loads travel through the swarm, until they
stop at different robots. Local values of vj variables decide
when to leave, where to go, and where to stop. Load trav-
eling across the robot network goes in a number of phases.
Each phase aims, in different ways, to eventually create a
single connected cluster of robots of class C1 which is spa-
tially well separated from the cluster of unloaded robots (i.e.,
of class C0), as illustrated in Figure 1 (a) and (b).

In phase 0, following the first creation or the reception
of a load, the load leaves robot i if i’s neighborhood stays
unloaded for a certain amount of time (i.e, vi is less than a
threshold vmin). Phase 1 is a steepest ascent with respect
to current load distribution: the load is iteratively sent to
the neighbor j with the highest vj , until the local maximum
is reached. Phase 2 is a steepest descent: the load moves
to a local minimum of vj , meaning that it looks for an area
which is unloaded. Phase 3 is again a steepest ascent: the
load greedily looks for a new loaded area, possibly with a
higher value of vj than that of phase 1. Phase 4 is a slowest
descent: the load moves from robot to robot to decreasing
values of ui, until it reaches an unloaded robot (uj = 0),
where it moves back to phase 0. The idea is that the slow
descent will make the loads rather go towards areas where
there are only a few unloaded nodes, so that the load goes
to fill small empty pockets. If no unloaded robot is found
before reaching a local minimum, the load takes a random
step, and returns to phase 1: start all over again. Once the
load has reached phase 0 at a robot i, it sets the local value
ui to 1. If more loads cluster around robot i, the local value
vi will grow, keeping the load stationary at robot i. In this
way, vi ≥ vmin, preventing the load to leave i and letting
the cluster grow further. Eventually, loads stop moving,
converging in two spatially separated clusters.

3. EXPERIMENTAL RESULTS
We ran simulation tests considering as reference robot the

foot-bot, developed during the Swarmanoid project (http:
//www.swarmanoid.org). For the work presented here, the
relevant on-board device is the infrared-based range-and-
bearing that provides line-of-sight communication. It sends
messages of 10 bytes at a rate of 10 messages per sec.

Each simulation test (50 trials per test) runs for 1200 time
steps = 2 minutes. We measure two things: linear separabil-
ity and imbalance. Linear separability is evaluated by fitting
a line to the space in which the robots are placed, in such a
way that the loaded robots are found on one side of the line
and the unloaded ones on the other side. Results for linear
separability range from 0 (optimal) to 0.5 (worst). The im-
balance evaluates whether the two classes are of the same
size. We report the number of robots in the smallest of the
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Figure 2: Experiments with varying number of
robots maintaining constant the area.
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Figure 3: Experiments with varying communication
range maintaining fixed to 50 the number of robots.

two classes, divided by the total number of robots in the
swarm. The optimal value is 0.5, the worst possible is 0.

In a first series of tests, we vary the number of robots in
the swarm, from 10 up to 60. The communication range of
the robots is limited to 1 m. The results in Figure 2 show
that the algorithm works quite well in separability, and is
robust with respect to the number of robots, although for
the smallest swarms, results become a bit less good because
of less connectivity and too few loads around.

In a second series of tests, we vary the communication
range, from 0.25 up to 4.5 m, fixing the the number of robots
to 50. The results in Figure 3 show that the algorithm works
badly at short communication ranges, due to the fact that
the communication network gets disconnected. For medium
and high communication ranges, the results are very good.

We also ran a limited set of experiments using a small
swarm of 15 foot-bots deployed in different initial configura-
tions. Sample videos are available here: http://www.idsia.

ch/~gianni/SwarmRobotics/GeometricSplitting.html.
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