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ABSTRACT
The prior literature on strategic reasoning by humans of the sort,
what do you think that I think that you think, is that humans gener-
ally do not reason beyond a single level. However, recent evidence
suggests that if the games are made competitive and therefore rep-
resentationally simpler, humans generally exhibited behavior that
was more consistent with deeper levels of recursive reasoning. We
seek to computationally model behavioral data that is consistent
with deep recursive reasoning in competitive games. We use gen-
erative, process models built from agent frameworks that simulate
the observed data well and also exhibit psychological intuition.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Experimentation, Performance
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1. INTRODUCTION
We model human judgment and behavioral data, reported by

Goodie et al. [4], that is consistent withthree levels of recursive
reasoning in the context of fixed-sum games. In doing so, we inves-
tigate principled modeling of behavioral data consistent with levels
rarely observed before. A previous model utilized underweighted
belief learning, parameterized byγ, and a quantal response choice
model [5] for the subject agent, parameterized byλ, within the
framework of interactive partially observable Markov decision pro-
cess (I-POMDP) [3]. We extend this model to make it applicable to
games evaluating up to level 3 reasoning. Although it employs an
empirically supported choice model for the subject agent, it does
not ascribe plausible choice models to the opponent who in the ex-
periments is also projected as being human. We hypothesize that
an informed choice model for the opponent supports more nuanced
explanations for observed opponent actions leading to improved
performance. Hence, our second candidate model generalizes the
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previous by intuitively utilizing a quantal response choice model
for selecting the opponent’s actions at level 2. Finally, our third can-
didate model deviates from using I-POMDPs by utilizing weighted
fictitious play [1], which predominantly relies on the past pattern
of the opponent’s observed actions to form a judgment about what
the opponent will do next. This model differs from the previous
two in that it does not seek to ascertain the mental models of the
opponent but instead bases itself on the observed frequency of em-
pirical play. The strictly competitive nature of the game discour-
ages the influence of essentially cooperative social constructs such
as positive reciprocity and altruism, otherwise observed in strate-
gic games. While other processes such as inequality aversion may
apply, an analysis of the data reveals that it did not play a role here.

2. COMPUTATIONAL MODELING
In order to computationally model the data, a multiagent deci-

sion making framework that integrates recursive reasoning in the
decision process is needed. A finitely-nested I-POMDPi,l [3] for
agenti with a strategy levell represents a choice which meets the
requirements of explicit consideration of recursive beliefs and de-
cision making based on such beliefs.

Because the opponent is thought to be human and guided by pay-
offs, we focus on intentional models only. Given that expectations
about the opponent’s action by the participants showed consistency
with the opponent types used in the experimentation, intuitively,
model set,Θj = {θj,0, θj,1, θj,2}, whereθj,0 is the level 0 (my-
opic) model of the opponent,θj,1 is the level 1 (predictive) model
andθj,2 is the level 2 (super-predictive) model. Parameters of these
models are analogous to the I-POMDP for agenti.

We observed that some of the participants learn about the oppo-
nent model as they continue to play. However, in general, the rate
of learning is slow. This is indicative of the cognitive phenomenon
that the participants could be underweighting the evidence that they
observe. We may model this by augmenting normative Bayesian
learning in the following way:

b′i,l(s, θj,l−1|oi; γ) = α bi,l(s, θj,l−1)



P

aj

Oi(oi|ai, aj , s
′)

×Pr(aj |θj,l−1)

ffγ

(1)
whereα is the normalization factor, states corresponds to A ands′

to B, actionai is to move, and ifγ < 1, then the evidenceoi ∈ Ωi

is underweighted while updating the belief overj’s models. Fur-
thermore, we observed significant rationality errors in the partici-
pants’ decision making. We utilize thequantal response model [5]
to simulate human non-normative choice. This model is based on



the finding that rather than always choosing the optimal action which
maximizes the expected utility, individuals are known to select ac-
tions proportionally to their utilities. The quantal response model
assigns a probability of choosing an action as a sigmoidal function
of how close to optimal is the action. Previously, Doshi et al. [2]
augmented I-POMDPs with both these models in order to simulate
human recursive reasoning up to level two. As they continue to ap-
ply to our data, we extend the I-POMDP model to the longer games
and label it as I-POMDPγ,λ

i,3 .
The methodology for the experiments reveals that the partici-

pants are deceived into thinking that the opponent is human.There-
fore, participants may justify unexpected actions of the opponent
as errors in their decision making rather than due to their level of
reasoning. Hence, we generalize the previous model by attributing
quantal response choice to opponent’s action selection as well. Let
λ1 be the quantal response parameter for the participant andλ2 be
the parameter for the opponent’s action. Then,

Q(a∗

i ; γ, λ1, λ2) =
eλ1·U(b′i,3,a∗

i ;γ,λ2)

P

ai∈Ai

e
λ1·U(b′

i,3
,ai;γ,λ2)

(2)

parameters,λ1, λ2 ∈ [−∞,∞]; a∗

i is the participant’s action and
Q(a∗

i ) is the probability assigned by the model.U(b′i,3, ai; γ, λ2)
is the utility for i on performing action,ai, given its updated belief,
b′i,3, with λ2 parameterizingj’s action probabilities,Pr(aj |θj,l−1),
present in Eq. 1 and in computation of the utility. We label this
model as I-POMDPγ,λ1,λ2

i,3 .
A different reason for participant behavior that relies more heav-

ily on past patterns of observed actions of the opponent, instead
of ascertaining the mental models of the opponent as in the previ-
ous I-POMDP based models, is applicable. A well-known learning
model in this regard is weighted (generalized) fictitious play [1].
Let Ei(aj) be the observed frequency of opponent’s action,aj ∈
Aj . We update this as:

E
t
i (aj ; φ) = I(aj , oi) + φ E

t−1
i (aj) t = 1, 2, . . . (3)

where parameter,φ ∈ [0, 1], is the weight put on the past obser-
vations;I(aj , oi) is an indicator function that is 1 whenj’s action
in consideration is identical to the currently observedj’s action,
oi, and 0 otherwise. Due to the presence of rationality errors in the
data, we combine the belief update of Eq. 3 with quantal response.
We label this model as wFPφ,λ

i .

3. EVALUATION
To learnλ2 in I-POMDPγ,λ1,λ2

i,3 , we use the expectations data
of the “catch” games only. These are games in which no matter
the type of the opponent, the rational action for the opponent is
to move. Hence, expectations of opponent staying by the partici-
pants in the catch trials would signal non-normative action being
attributed. This also permits learning a singleλ2 value across the
three opponent types. However, this is not the case for the other pa-
rameters: for different opponent types, the learning rate is different.
Also, we observed that the rationality errors differ considerably be-
tween the participant groups experiencing different opponent types.
Therefore, we learn parameters,γ and λ1 given the value ofλ2

(andλ in I-POMDPγ,λ
i,3 ), separately from each group’s diagnostic

games. Analogously, we learnφ andλ for wFPφ,λ
i from the diag-

nostic games as well. We report the learned parameters in Table 1.
We utilize the learned values in Table 1 to parameterize the un-

derweighting and quantal responses within the I-POMDP based
models and fictitious play. We cross-validated the models on the

model param. myopic pred super-pred

I-POMDPγ,λ1,λ2

i,3

λ2 1.959
γ 0.164 0.049 0.221
λ1 3.259 3.906 3.768

I-POMDPγ,λ
i,3

γ 0.232 0.079 0.357
λ 2.985 3.826 3.667

wFPφ,λ
i

φ 0.999 0.999 0.150
λ 2.127 3.107 3.165

Table 1: Average group-level parameter values learned from the train-
ing folds of the experiment data for the three candidate models.

Mean Squared Error (MSE)
Opponent type Achievement score Prediction score

myopic super-pred myopic super-pred
Random 0.0041 0.4502 0.0035 0.3807

I-POMDPγ,λ1,λ2

i,3 0.0014 0.0009 0.0020 0.0010

I-POMDPγ,λ
i,3 0.0025 0.0008 0.0016 0.0014

wFPφ,λ
i 0.0123 0.0082 0.0103 0.0120

Table 2: MSE of the predictions by the different models.

test folds. Using a participant’s actions in the first 5 trials, we ini-
tialized the prior belief distribution over the opponent types. We
measure the goodness of the fit by computing the mean squared er-
ror (MSE) of the prediction by the models, and compare it to those
of a random model (null hypothesis) for significance. We show
the MSE in the achievement and prediction scores, as defined in
Goodie et al. [4], based on the models in Table 2.

Notice from Table 2 that both I-POMDP based models have
MSEs that are significantly lower than the random model. The dif-
ference in MSE of the achievement score for the myopic group be-
tween the two is significant (Student’s paired t-test:p = .015). How-
ever, other MSE differences between the two models are insignif-
icant and do not distinguish one model over the other across the
scores and groups. Although attributing non-normative action se-
lection to the opponent did not result in significantly more accurate
expectations for any group, we think that it allowed the model to
generate actions for agenti that fit the data better by supporting an
additional account ofj’s (surprising) myopic behavior. Of course,
this positive result should be placed in the context of increased
expense of learning an additional parameter,λ2. Large MSE of
wFPφ,λ

i reflects its weak simulation performance although it does
improve on the par set by random for the super-predictive group.
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