
Finding new consequences of an observation in a system
of agents

(Extended Abstract)

Gauvain Bourgne
NII

Tokyo, Japan
bourgne@nii.ac.jp

Katsumi Inoue
NII

Tokyo, Japan
ki@nii.ac.jp

Nicolas Maudet
LIP6, UPMC
Paris, France

nicolas.maudet@lip6.fr

ABSTRACT
When a new observation is added to an existing logical the-
ory, it is often necessary to compute new consequences of
this observation together with the theory. This paper inves-
tigates whether this reasoning task can be performed incre-
mentally in a distributed setting involving first-order the-
ories. We propose a complete asynchronous algorithm for
this non-trivial task, and illustrate it with a small example.
As some produced consequences may not be new, we also
propose a post-processing technique to remove them.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence —Multiagent systems

General Terms
Algorithms, Theory

Keywords
Distributed Consequence Finding, Incremental Consequence
Finding, Abduction

1. INTRODUCTION
This paper deals with the problem of finding all interesting

new consequences which can be derived from some observa-
tions, given a full clausal theory. A consequence is deemed
interesting if it respects a given language bias, and new if
it is a consequence of the observations taken together with
the theory but was not a consequence of the theory alone.
Consequence finding is a general reasoning problem which
lies at the heart of many AI applications. By focusing on
computation of new consequences, one can perform efficient
online computation of interesting consequences, an essential
feature in dynamic contexts. On top of it, some problems
specifically require to compute only new consequences, such
as abduction by the principle of inverse entailment. Indeed,
the set of abductive hypotheses is exactly the set of the
negation of new consequences of the negated observation wrt

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the background theory. The computation of new interesting
consequences is thus a very important challenge.

Of course, one can always compute new consequences by
computing all consequences of the theory with and without
the observations, and making the difference. But focusing
only on new consequences is much more efficient.This can
be especially interesting in contexts where information is
accessed progressively. The research question we address
here is the following: does it still hold in a distributed set-
ting? There exist methods for computing new consequences
in a distributed setting [1], but restricted to the proposi-
tional case. On the other hand, some recent work [2] allows
computation of all interesting consequences of a distributed
first-order theory, but it cannot focus on the new ones. We
propose here a method that can deal with first order clausal
theories while focusing on interesting new consequences.

2. FINDING NEW CONSEQUENCES
A clause is a disjunction of literals. A clause C sub-

sumes another clause D if there is a substitution θ such that
Cθ ⊆ D. A clausal theory is a set of clauses, interpreted con-
junctively. A consequence of Σ is a clause entailed by Σ. A
clause C belongs to a production field P = 〈L〉, where L is
a set of literals closed under instantiation, iff every literal in
C belongs to L. The set of all subsumption-minimal con-
sequences of a theory Σ belonging to a production field P
is called the characteristic clauses of Σ wrt P [3], and de-
noted by Carc(Σ,P). When some observations O are added
to a clausal theory Σ, further consequences are derived due
to this new information. Such new and interesting conse-
quences are called new characteristic clauses. It is formally
defined as the set of all subsumption-minimal consequences
of Σ∪O belonging to P that are not consequences of Σ, and
is denoted by Newcarc(Σ, C,P).

We now consider a system of nA agents I = {0, . . . , nA −
1}, each having a clausal theory Σi. Some of these agents
make new observations (or acquire new information), rep-
resented as a set of clauses Oi. The objective is to deter-
mine all the new consequences of those new observations
O =

⋃
i∈I

Oi wrt the whole theory Σ =
⋃

i∈I
Σi belonging

to the shared target production field P = 〈LP 〉, that is, to
compute Newcarc(

⋃
i∈I

Σi,
⋃

i∈I
Oi, 〈LP 〉). This specifies a

distributed new consequence finding problem. We empha-
size that agents do not share their theories, though for better
efficiency, they share their respective languages.

Example 1. Consider a system of 4 agents, whose knowl-
edge (theory and new observations) is defined as follows:



0: Σ0 = {f ∨ g, a ∨ g}, O0 = {e}.
1: Σ1 = {¬a ∨ b,¬g ∨ h}, O1 = ∅.
2: Σ2 = {¬b ∨ c ∨ d,¬d ∨ ¬e}, O2 = ∅.
3: Σ3 = {¬c ∨ ¬f}, O3 = ∅.

The target production field is P = 〈{h}〉 (i.e. LP = {h}).

3. DISTRIBUTED ALGORITHM
As in [4, 2], the main principle of our algorithm is to

compute locally all relevant new consequences (and only
those ones) and forward them to agents that can resolve
them. Relevant consequences are either (i)new character-
istics clauses of the problem, or (ii) bridge consequences,
that is, consequences that can be used by one or more other
agents to build such a new characteristic clause. In that
latter case, they necessarily contains literals that can be re-
solved by other agents. We thus define, for each agent i

the output language Li→ as the set of all literals that (i) i

might produce and (ii) can be resolved with a clause from
another agent. Likewise, the input language L→i of an agent
i is the set of all literals that (i) might be produced by an-
other agent and (ii) can be resolved by some clause in its
knowledge. Agents do not know each other theories, but
they know each other input languages. Agents can focus
their computations by using L→i and LP . Though a bridge
consequence C could have literals that are not in these pro-
duction fields, such literals can only appear if they were in a
received clause. We thus define the reduction of C wrt some
language L (reduc(C,L)) as the set of all literals that appear
in C, but do not appear in positive nor negative form in L.
To achieve better efficiency, we apply a prune function to the
received clauses, which checks them against Σi ∪ listCsqi,
removing any subsumed clause.

Algorithm 1 Asynchronous algorithm
Global variables of agent i:

Σi, Oi: initialized by problem, constant
firstRun ← true
listCsqi ← ∅

// Whenever agent i receive sentCl from an agent

Receive(sentCl)
if firstRun then sentCl ← sentCl ∪ Oi end if

firstRun ← false
// Computing new consequences

prune(sentCl)
pField ← 〈LP ∪ Li→ ∪ reduc(sentCl,Li→)〉
newCsqi ← newcarc(Σi ∪ listCsqi, sentCl, pField)
listCsqi ← listCsqi ∪ newCsqi
// Sending relevant new consequences to neighbours

for all agents j do

toSend[j]← ∅
for all c ∈ newCsqi do

if c contains literals from L→j then

toSend[j] ← toSend[j] ∪ {c}
end if

end for

if toSend[j] 6= ∅ then

send(j, toSend[j])
end if

end for

//Check new consequences as output

for all c ∈ newCsqi do

if belongs(c,LP ) then

Output c
end if

end for

End

Example 2. (ex. 1 ctd.) Figure 1 illustrates the unfold-
ing of the asynchronous algorithm. Each box represents
an agent applying the receive procedure. Arrows between
two boxes correspond to the communication of some clauses
(given as label) by the first agent to the second one. The pro-
cess is initiated by 0, who send e to 2 (as e is only in L→2).
Then 2 computes the new consequences of e wrt to Σ2 with

production field 〈{h,¬b,¬e, c}〉 getting ¬b ∨ c, which par-
tially belongs to L→1 (through ¬b) and L→3 (c). It is thus
sent to these two agents. Then 1 computesNewcarc(Σ1,¬b∨
c, 〈{h,¬a, b,¬g, c}〉), and gets ¬a∨¬c, which is sent to 0 and
3, and so on, until h is sent as output and other branches
are closed.

0

2

e

1 3
¬b ∨ c

0 3 1 0
¬a ∨ c ¬b ∨ ¬f

3 1 0 0 1
g ∨ c

¬a ∨ ¬f ¬a ∨ ¬f ¬b ∨ g

1 0 3 1 0
g ∨ ¬f

h ∨ c g ¬a ∨ h

0 0 Output

h ∨ ¬f h ∨ ¬f h

Figure 1: Asynchronous resolution of pb 1.

Termination is guaranteed for non-recursive theories. Oth-
erwise, we need to enforce termination by fixing a limit to
the number of resolve operations that can be applied to
get a consequence. This algorithm is complete for multi-
agent new consequence finding, meaning that it outputs all
new consequences of

⋃
i∈I

Oi wrt
⋃

i∈I
Σi and 〈LP 〉. It

also ensures that each output is indeed a consequence of⋃
i∈I

Oi ∪
⋃

i∈I
Σi. However, it might also be a consequence

of the theory alone (and thus not strictly a new conse-
quence). If our purpose is to incrementally compute all
characteristic clauses, this is not a problem at all, but in
some other cases, such as the computation of abductive hy-
pothesis, we should only output new characteristic clauses.
This can be ensured by computing, for each candidate conse-
quence C, NC = Newcarc(

⋃
i∈I

Σi,¬C, 〈∅〉). If NC = {∅},
C is not new, otherwise, it can be kept as a solution.

4. CONCLUSION
We proposed in this paper a complete asynchronous al-

gorithm to compute the new interesting consequences of
some observations with respect to a full clausal theory dis-
tributed among a set of agents. Termination is guaran-
teed in cases where the centralized case also terminates, and
soundness is ensured for incremental computations of con-
sequences. Moreover some post processing was proposed to
ensure soundness for computation of new consequences.

5. REFERENCES
[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset,

and L. Simon. Distributed reasoning in a peer-to-peer
setting: Application to the semantic web. JAIR,
25:269–314, 2006.

[2] G. Bourgne and K. Inoue. Partition-based consequence
finding. In Proc. of ICTAI’2011, pages 641–648, 2011.

[3] K. Inoue. Linear resolution for consequence finding.
Art. Intel., 56(301–353), 1992.

[4] S. McIlraith and E. Amir. Theorem proving with
structured theories. In Proc. of IJCAI’01, pages
624–634, 2001.


