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ABSTRACT

Multiagent POMDPs provide a powerful framework for opti-
mal decision making under the assumption of instantaneous
communication. We focus on a delayed communication set-
ting (MPOMDP-DC), in which broadcast information is de-
layed by at most one time step. Such an assumption is in fact
more appropriate for applications in which response time is
critical. However, naive application of incremental pruning,
the core of many state-of-the-art POMDP techniques, is in-
tractable for MPOMDP-DCs. We overcome this problem
by introducing a tree-based pruning technique. Experiments
show that the method outperforms naive incremental prun-
ing by orders of magnitude, allowing for the solution of larger
problems.
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1. INTRODUCTION
Planning under uncertainty in multiagent systems can

be neatly formalized as a decentralized partially observable
Markov decision process (Dec-POMDP), but solving a Dec-
POMDP is a complex (NEXP-complete) task. Communi-
cation can mitigate some of these complexities; by allowing
agents to share their individual observations the problem re-
duces to a so-called multiagent POMDP (MPOMDP), a spe-
cial instance of the standard POMDP [3] which is ‘merely’
in PSPACE. However, this model requires the agents to per-
form full synchronization of their knowledge before selecting
a next action, which is inappropriate in domains in which
agents may need to act fast in response to their individual
observations.
In this paper we focus on a class of problems where agents

share their individual observations with a one step delay.
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That is, agents act using a one step delayed sharing pat-
tern, resulting in an MPOMDP with delayed communication
(MPOMDP-DC). Solutions for such settings are also useful
under longer delays [5]. Moreover, this class is particularly
interesting, because it avoids the delay in action selection
due to synchronization, while it is very similar to the stan-
dard POMDP. However, even though dynamic programming
algorithms date back to the seventies [2], computational dif-
ficulties have limited the model’s applicability.

The MPOMDP-DC value function is piecewise-linear and
convex over the joint belief space [2], which is a property
exploited by many regular POMDP solvers. However, in-
cremental pruning (IP) [1], that performs a key operation,
the so-called cross-sum, more efficiently, is not directly able
to achieve the same improvements under delayed communi-
cation. A problem is the need to loop over a number of de-
cision rules that is exponential both in the number of agents
and in the number of observations.

In this paper, we target this additional complexity by
proposing tree-based pruning with memoization, TBP-M,
a method that operates over a tree structure in order to
perform the cross-sum operation. Our experimental results
indicate that it successfully avoids duplicate work by caching
the result of computations at internal nodes and thus accel-
erates computation (at the cost of memory).

2. MODEL
An MPOMDP consists of the following componenents: a

finite set of n agents; a finite set of states S; a set A =
{a1, . . . ,a|A|} of joint actions a = 〈a1,...,an〉; a set O =

{o1, . . . , o|O|} of joint observations o = 〈o1,...,on〉; a transi-
tion and observation function that specify the probabilities
P a(s′|s) and Oa(o|s); a reward function that specifies the
reward Ra(s); and h is the (finite) horizon. An MPOMDP-
DC is an MPOMDP where communication is received with
a one-step delay. The joint policy π = (δ0,δ1, . . . ,δh−1) in
such settings is a sequence of joint decision rules that specify
an individual decision rule δt = 〈δt1, . . . ,δ

t
n〉 for each agent.

Each δti maps
〈

bt−1,at−1,oti
〉

-tuples to individual actions at
i.

The value of an MPOMDP-DC is a function of joint beliefs:

Q
t(b,a) = R

a
B(b) + max

β

∑

o

P
a(o|b)Qt+1(b′,β(o)), (1)

where β = 〈β1, . . . ,βn〉 is a decentralized control law which
the agents use to map individual observations to actions:
β(o) = 〈β1(o1), . . . ,βn(on)〉. That way we decompose δt

into a collection of β, one for each 〈b,a〉-pair.
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Figure 1: The computation tree of Vt
a.

3. TREE-BASED PRUNING
As for an (M)POMDP, we can represent (1) using vec-

tors [4]. However, in the MPOMDP-DC case not all combi-
nations of next-stage vectors are possible; the actions they
specify should be consistent with an admissible decentral-
ized control law β. We can define ‘back projected’ vectors
gaoa′ ∈ Gaoa′ (see [4]). From these we construct the parsi-
monious representation

Vt
a = Prune

⋃

β∈B

(

{Ra} ⊕ Gao1β(o1) ⊕ · · · ⊕ G
ao|O|β(o|O|)

)

(2)

where the cross-sum A⊕B = {a+ b | a ∈ A, b ∈ B}.
A naive way of performing incremental pruning (IP) [1]

is to perform IP for each β. Their number, however, is ex-
ponential both in the number of agents and in the number
of observations. Moreover, this method performs a lot of
duplicate work. E.g., there are many β that specify β(o1) =
ak, β(o2) = al, but for each of them Prune(Gao1ak ⊕Gao2al) is
recomputed. In order to overcome these drawbacks, we pro-
pose a different approach: for each β, we directly construct
construct the parsimonious representation via a computa-
tion tree.
In particular, it is possible to interpret β as a vector of

joint actions, 〈a(1) . . . a(|O|)〉, where a(j) denotes the joint
action selected for the j-th joint observation. This allows us
to decompose the union over β into dependent unions over
joint actions, resulting in the computation tree illustrated
in Fig. 1 for a fictitious 2-action (x and y) 2-observation (1
and 2) MPOMDP-DC. The root of the tree, Vt

a, is the result
of the computation. There are two 2 types of internal, or
operator, nodes: cross-sum and union. All the leafs are sets
of vectors. An operator node n takes as input the sets from
its children, and propagates the result up to its parent. The
j-th union node on a path from root to leaf performs the
union ∪a(j)

and thus has children corresponding to different

assignments of a joint action to oj (indicated by the gray
bands). It is important to realize that the options avail-
able for a(j) depend on the action choices

(

a(1), . . . ,a(j−1)

)

made higher up in the tree; given those earlier choices, some
a(j) may lead to conflicting individual actions for the same

Problem(h) TBP-M Naive IP TBP-noM

Dec-Tiger(5) 0.13 0.23 0.09
Dec-Tiger(15) 0.98 2.54 1.19
OneDoor(3) 53.64 304.72 56.53
GridSmall(2) 3.93 64.03 3.80
MG2x2(2) 171.07 382093.00 516.03
MG2x2(4) 1115.06 2813.10
D-T Creaks(2) 63.14 109.27 121.99
D-T Creaks(5) 286.53 8277.32 2046.73
Box Push.(2) 132.13 1832.98 1961.38

Table 1: Timing results (in s).

individual observation.
Now, to compute Vt

a we propose tree-based (incremental)
pruning (TBP): it expands the computation tree and, when
the results are being propagated to the top of the tree,
it prunes dominated vectors at each internal node. How-
ever, Fig. 1 shows another important issue: there are iden-
tical sub-trees in this computation tree, as indicated by the
dashed green ovals, which means that we would be doing
unnecessary work. We address this problem by memoiza-
tion, i.e., caching of intermediate results, and refer to the
resulting method as TBP-M.

Table 1 shows timing results for six benchmark prob-
lems, for a set of planning horizons (depending on the prob-
lem). We can see that for all domains TBP-M outperforms
Naive IP, often by an order of magnitude and up to 3 or-
ders of magnitude. We also compared against TBP-noM:
a strawman version of TBP-M that does not perform any
memoization and re-computes duplicate parts of the tree.
It allows us to see the effect of tree-based pruning, without
the extra speedups provided by memoization: memoization
significantly speeds up computations.

4. CONCLUSIONS
We addressed the problem of the additional complexity

that the MPOMDP-DC backup exhibits over the backup
for the MPOMDP. We showed that the DC backup opera-
tor can be represented as a computation tree and presented
TBP-M, a method to exploit this tree structure. An em-
pirical evaluation on a number of benchmark problems that
indicates that TBP-M can realize speedups of 3 orders of
magnitude over the naive IP baseline.
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