Planning in the Logics of Communication and Change
(Extended Abstract)

Pere Pardo
Institut d’Investigacio en Intel-ligencia Artificial
Campus de la UAB s/n, E-08193
Bellaterra, Spain

pardo@iiia.csic.es

ABSTRACT

We adapt backward planning to Logics of Communication
and Change (LCC), that model how do actions, announce-
ments and sensing change facts and agents’ beliefs. An LCC
planner takes into account the epistemic effects of planned
actions upon other agents, if their beliefs are relevant to
her goals. Our results include: a characterization of frame
axioms as theorems in *-free LCC, and soundness and com-
pleteness results for deterministic planning and strong plan-
ning in the non-deterministic case.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents

General Terms
Algorithms, Theory

Keywords

Dynamic Epistemic Logic, Planning, Communication

1. INTRODUCTION

In the present contribution, we adapt backward planning
techniques to the Logics of Communication and Change
(LCC). An LCC reasoning agent (who can foresee the pos-
sible epistemic effects of her actions and communications)
is endowed with planning abilities to achieve some goals by
means of LCC action models. This greatly expands on the
social complexity of multi-agent planning scenarios.

EXAMPLE 1.1. Agent a is having a party, and would like
her friend b to assist without their friend c. If b is secretive,
a private announcement to b will suffice. However, suppose
that b tells everything to c. Yet, if a knows that c only as-
sists to parties with beer, while b’s interests also include jazz
music (the party will include both), a solution may consist
in informing b only about jazz.

EXAMPLE 1.2. Agent a just bet agent b 10 coins that the
next coin toss will land heads (h); a can sense and even flip

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.

Copyright (©) 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Mehrnoosh Sadrzadeh
Oxford University
Dept. of Computer Science, Wolfson Building
Parks Rd, Oxford OX13QD, UK
mehrnoosh.sadrzadeh@cs.ox.ac.uk

the coin without b ever suspecting it. A successful plan seems
to be: toss the coin; if sense that h, then announce it to b;
otherwise flip the coin and announce h.

Related Work: [1] studies forward planning in LCC [2],
under a semantic approach. Because of the large number
of LCC actions available (one announcement per formula)
forward planning faces the state-explosion problem. Thus,
(deduction-based) backward planning seems appropriate.

2. LCC AND FRAME AXIOMS.

DEFINITION 2.1. The language Lppr of *-free PDL, for
a given sets of atoms p € Var and agents a € Ag is:
@ = Var|—p[ei Apa|[me
T u= al?p|mi;me|m U
with the usual abbreviations for L,V, < and ().

For LCC, we read an atomic program [a] as a believes that,
composition “;” is nested belief, and U defines group belief.

LCC extends Lppr with modalities for pointed action
models [U,e]. An action model is U = (E, R, pre, post), with
an action e € E being defined by a precondition pre(e), a
LCC-formula, and a postcondition post(e), a substitution
o : p — @ expressing that after executing e, the truth-value
of p becomes that of ¢ (before the execution). In the present
paper, though, we limit to the case o(p) € {T,p, L}, stud-
ied in [3]. The accessibility relations eR(a)f denote actions f
that cannot be distinguished from e by a. The skip action is
given by the identity substitution. A truthful (resp. lying)
communication of p by agent a to a set of (credulous) agents
B C Ag, denoted p!% (resp. pt%) has pre(p!s) = p (resp.
pre(pf) = —p).

We further extend the language of LCC with composition
® and choice U for action models.

PROPOSITION 2.2. The azioms of LCC [2] plus the next
two azioms are a complete axiomatization of LCC+ {®, U}.
[UYeUuelp <+

U Uexelp <+

[U,elp A [U,€]p
[U,€][U, €]

Frame axioms describe the conditions for a formula ¢ to
be preserved after executing e. The presence of ontic actions
makes LCC frame axioms FA(e, ¢) non-trivial, see Figure 1.
The naive form cannot address the cases p V q or [a]p.

PROPOSITION 2.3. The frame axioms FA(e, @) as in Fig.
1 (Right) can be inductively defined, and are valid in LCC:
if cond(FA(e, ¢)) holds, then |= ant(FA(e, ¢)) — [U, e]ep.

if }E U el if cond(FA(e, p))
then = ¢ — [U,€e]p | then = ant(FA(e, p)) —

[U,elp

Figure 1: Frame axiom for e, ¢: (Left) Naive form.
(Right) Correct form.

3. DETERMINISTIC PLANNING.

A planning domain is defined by a set A C E of available
actions, and a pair (T, G), where T, G C Lppr describe the
initial state and goals. Deterministic actions are just some
subset A C E in LCC + {®}. Given e € A, its effects are

X(e) = {1 € LrpL := pre(e) — [U, ey }.

DEFINITION 3.1. Given a planning domain (T, G), actions
A, and a program 7, we say 7 is a solution for (T,G) in A

iff (DEANT = (0T, and (2)FANT — [7]\G.

A solution must (1) be executable in T', and (2) lead to G. To
solve a planning domain (7, G), we adopt the Breadth First
Search (BFS) for incremental backward planning: starting
with the empty plan for G, at each step 7 = (Ko, .. ., ki) We
add a step mr+1 = (Ko, - -, Kk, Kk+1), delete the open goals
of 7, enforced by k41, and add as new open goals pre(kg+1).
This step x can be an action step e € A, or a proof step A.
Proof steps split complex goals, e.g. ¢ A1, into simpler goals
©,1 each of which can directly be enforced by some action
e € A. This is done by means of a planned LCC-proof A =
(¢, 0, ..., A1), where pre(A) = {p, 1} denotes the (non-
tautological) premisses of A and X(A) = @A its conclusion.
Action steps must respect the frame axioms FA(e, ¢) for each
goals ¢ in 7 unaddressed by m,41. That is, for ex41 to refine
7, into a plan k41, the condition cond(FA(ex+1,¢)) must
be true, and ant(FA(ex+1, ¢)) must be added as an open goal
of mk4+1. Finally, the set of open goals of 7,1 must also be
consistent. Similar conditions apply to proof steps A, to
make mr11 a plan. Note the plan m = (eo, Ao, ..., An,en)
translates into logical form [U,e,],..., [U,eo], with action
steps in inverse order, and where proof steps are omitted
(LCC will enforce them anyway).

THEOREM 3.2. Let (eq,...,en) be an output of the BFS
algorithm for (T,G) in A. Then [U,e,]...[U,e0] is a so-
lution for (T,G). Conversely, suppose some deterministic
solution [U,e,]...[U,eo] exists for (T,G) in A. Then the
BFS algorithm terminates with a solution for (T,G) in A.

Planning in others’ shoes For multi-agent scenarios, we
can define an algorithm that computes the reactions to one’s
plan by other planner agents. Then, a plan is called stable if
these reactions do not lead to a state where G is not satisfied.

EXAMPLE 3.3. (Cont’d) Recall Example 1.1. b’s goals are
(beer V jazz) — @party(b) as well as {[bly — [c]l¥}perppL;
and ¢ has goal beer — @party(b). It can be seen that the
naive solution beer!y is not stable: agents’ reactions lead to
the output (beer!? ® beer!? ® go.party(b) ® go.party(c)), which
makes —Q@party(c) false. In contrast, jazzly is stable: the
output is ((jazz!} ® jazz!® ® go.party(b)).

4. NON-DETERMINISTIC PLANNING

For planning involving actions with disjunctive effects ¢1V
2, one first stipulates actions e; with ¢; € X(e;). While
e1 Uey € A is available, individual actions e; are not: e; €
E\ A

A plan is now a 4-tuple: plan = (sequence of actions, open
goals, initial state, original goals). We reduce the problem
of building a non-deterministic plan into that of solving a
sequence of deterministic planning problems. To do so, we
define a plan set IT as a sequence of plans IT = (¢, 7T§,, .
enumerated by sequences £ € {0} U {1,2}<“ and ordered
lexicographically, e.g. § <jex 1 <jex 11 <jex 12 <jex 2. This
ordering represents the order in which plans are solved. See
Figure 2 for an illustration of the algorithm in Example
1.2. Non-deterministic planning is done by a series of BF'S
searches.

[b]h [b]h_ [b]h
alh ah i\ h
| 7 7t | ywsty | [fip(n)
[a]h ah N ' [ah -k
h?, n | N/ —h?,
h —h h .----2h h —h
| toss(h) |toss(ﬂh)| l«tbss(h) |toss(ﬂ\h)l\ | toss(h) |toss(—|h)|
(‘Iu have(coin)
\\ w2 A get(coin)
(7]

Figure 2: Refining 7¢ with toss(h) Utoss(—h) splits 7¢ into
three deterministic plan search problems 7¢, ¢!, 7¢2.

To make sure that a plan 7 with e; Ues is logically accept-
able, a reset action p might be needed to harmonize effects:
e1 U (e2 ® p). These p do not contribute to the success of .

THEOREM 4.1. Let 7 be an output of the BFS for (T,G).
Then w is a solution for (T,G) in A. Conversely, if a non-
deterministic solution exists, then the BFS output for (T, Q)
in A is a solution.

Conclusions and Future Work

We studied backward deterministic and strong planning for
LCC logics. Several directions seem interesting: belief re-
vision, the % operator for strong cyclic planning and decid-
ability /complexity issues, among others.
Acknowledgements: This work has been funded by projects
AT (CSD 2007-022); LoMoReVI (FFI2008-03126-E/FILO
FP006); ARINF (TIN2009-14704-C03-03); and the GenCat
2009-SGR-1434 and EPSRC grant EP/J002607/1.

5. REFERENCES

[1] T. Bolander and M. Birkegaard Andersen Epistemic
planning for single- and multi-agent systems Journal
of Applied Non-Classical Logics, (in press)

[2] J. van Benthem, J. van Eijck and B. Kooi Logics of
Communication and Change Information and
Computation, vol 204 pp. 1620-1662 (2006)

[3] H. van Ditmarsch, B. Kooi Semantic results for ontic
and epistemic change, in Bonanno, van der Hoek and
Wooldridge (eds.), LOFT 7, pp. 87117 (2008)

