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1. INTRODUCTION
Many message passing algorithms on graphical models in-

clude maximization operations on sums of local node func-
tion and message values from neighbors. In recent work by
McAuly et al, faster maximization computation was achieved
in a static environment by offline presorting of the values of
local functions. However, this efficiency is only guaranteed in
special cases when constraint nodes receive messages involv-
ing fewer variables than the local function. In this paper, we
generalize the approach to be applicable to more general set-
tings where offline presorting of constraint functions is not
realistic and messages may involve as many variables as the
constraint function. We further improve the approach in two
ways, first by creating different value sets with sum values
from the previous cycle and the changes in message values
from the current cycle, and second by conditionally apply-
ing the technique based on a correlation measure. These new
approaches with no preprocesing step obtain the expected
computational complexity with an exponent of 1.5 of the
possible values per node except the initial cycle which re-
quires 2. We demonstrate the effectiveness of this approach
in a distributed optimization problem involving the coordi-
nation and scheduling of radars.

2. FAST BELIEF PROPAGATION
The Fast Belief Propagation (FBP) [4] scheme was de-

veloped for a (undirected) graphical model, where the max-
imum a posteriori inference is done by finding the values
of variables that maximize the sum of the node and edge
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potentials. In a pairwise graphical model, computing a mes-
sage mA→B between two neighboring cliques A = (i, j) and
B = (i,k) is equivalent in complexity to solving

mA→B(yi) = Ψi(yi) + max
yj

[Ψj(yj)︸ ︷︷ ︸
va

+Φi,j(yi, yj)︸ ︷︷ ︸
vb

], (1)

where Ψi(yi) is the sum of Φ(yi|xi) and any first-order mes-
sages over yi, that is, the sum of the values only related to
yi given the observation xi (similarly for Ψj(yj)).

Let the list of values of va be LA and that of vb be LB .
Assuming the list LB , which is of length N , contains the
values of vb already sorted offline for each value of yi, and
assuming the length of the list of LA is much smaller than
N where sorting of LA is much smaller than O(N), we can
use the FBP technique to find the maximum sum of LA

and LB with expected time complexity O(
√
N) given binary

constraints and order statistics independence of variables.

3. FAST BELIEF PROPAGATION ON GEN-
ERAL GRAPHS

We relax the assumption that the constraint function is
given offline by partially sorting the value list online which
contains constraint function values for every variables’ con-
figuration. Also, the guarantee of FBP on performing in
O(

√
N) is restricted to pairwise factor graphs using two lists

and we maintain the benefit of O(
√
N) on n-ary factors by

introducing the message list that we construct by merging
incoming messages. Additionally we relax the assumption
that there are fewer variables associated with messages than
the number of variables in a constraint function by partially
generating the message list, i.e. the same number of sorted
items in value lists.

G-FBP: Algorithm for applying FBP with partial lists
We have modified the FBP technique, which we call G-FBP,
so that it can be applied to partially sorted lists where the
ranks of some items in unsorted part are not known. Once
the bounding items, which has higher ranks than the item
with maximum value are found, unmatched items are com-
puted directly from constraint function and received mes-
sages. Let the number of sorted items K

√
N with list of

length N ,

Theorem 1. The expected time complexity of O(
√
N) holds

with partial lists when (1− K√
N
)K

√
N < K√

N
.



Message-Passing with G-FBP technique
The technique works with any message-passing based opti-
mization algorithm.

1. [Value List Construction] In cycle 1,
1.1 work as in the original message passing algorithm

which computes all possible variable nodes’ value
configuration x and store the values F (x).

1.2 Send messages for all xi of neighbor i.
1.3 For the lists created in step 1.1, select the top

K
√
N values from each list and order the items

and save this as vb(xi).
2. [Message List Construction] Sort the received messages

from each neighbor. Combine theK
√
N items by adding

the sorted messages from the largest items.
3. [Finding Maximum] Find maximum using value list vb

and message list va for all xi for all neighbors i using
G-FBP technique

4. send the messages using the computed maximum value.
5. repeat step 2-4.

4. INDEPENDENCE ASSUMPTION AND COR-
RELATION MEASURE

With two negatively correlated lists, it is likely that the G-
FBP scheme fails to find the maximum item within limited
number of items therefore increasing the time complexity
of the algorithm. The correlation of two lists are domain-
dependent [4] and, from our observations, it also varies for
each constraint function and received messages on each cy-
cle. We extend G-FBP technique to ensure the independence
of two lists.

Correlation Measure
We modify the Spearman’s rank correlation measure [5] to
measure correlation among two partially sorted lists and
conditionally apply G-FBP technique. Let x and y be two
sorted lists where xi and yi are the ranks of the items with
index i. m is the median rank. We use correlation measure:

ρ′ =

∑
i(rxi)(ryi)√∑
i r

2
xi

∑
i r

2
yi

(2)

where rk =

{
(N−K

√
N)

K
√

N
(ki −mk), if ki in sorted lists

( (K
√
N+1+2K

√
N)

2
−mk), if ki is not found

and mk = K
√
N +1/2, imaginary median, as we consider

the imaginary length of list 2K
√
N .

GSC-FBP: Improving the Rank of Items in the list
We create two lists, sum list Lsum , the value of sum for
variables’ configuration in the previous round, and change
list Lchanges, the difference between previous and current
round messages as the following equation 3 and replace value
list and message list. As the algorithm proceeds, the list
Lchange becomes closer to the uniform distribution which
makes it independent of Lsum. Let rm→n be the message
from function node m to variable node n.

rm→n(xn)
= maxxm\n(Σn′∈N(m)\n( qn′→m(xn′ )︸ ︷︷ ︸

data dependent

+ fm(xm)︸ ︷︷ ︸
data independent

))

= maxxm\n(Σn′∈N(m)\n(q
′
n′→m(xn′ )− qn′→m(xn′ )︸ ︷︷ ︸

changes

+ fprevioussum
m (xm) + qn′→m(xn′︸ ︷︷ ︸

sum

)))

(3)
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(b) Time Trend Per Cycle
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Figure 1: (a) Computation Time Ratio against Max-

Sum. (d) The Probability of Failing to Find the Maxi-

mum Item in Sorted Parts. With: G-FBP using correla-

tion. Without: G-FBP not using correlation.

Round 4 5 6 7

G-FBP 0.0793 0.2612 0.2607 0.3543
GSC-FBP 0.0500 0.0450 0.0730 0.0208

Table 1: Relative position of Bounding Items

5. EXPERIMENTS
We compared the performance with the Max-Sum approx-

imate distributed constraint algorithm [1] on the domain
of real-time adaptive NetRad system [3]. See [2], for more
details on the formulation of the distributed constraint op-
timization problem for this problem. We use an abstract
simulator that involved 48 radars with a scenario of 96 phe-
nomena with random locations, size, and type(density 2 con-
straint graphs).
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