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ABSTRACT
In recent papers, Obraztsova et al. initiated the study of
the computational complexity of voting manipulation un-
der randomized tie-breaking [3, 2]. The authors provided
a polynomial-time algorithm for the problem of finding an
optimal vote for the manipulator (a vote maximizing the ma-
nipulator’s expected utility) under the Maximin voting rule,
for the case where the manipulator’s utilities of the can-
didates are given by the vector (1, 0, . . . , 0). On the other
hand, they showed that this problem is NP-hard for the case
where the utilities are (1, . . . , 1, 0).

This paper continues that line of research. We prove that
when the manipulator’s utilities of the candidates are given
by the vector (1, . . . , 1, 0, . . . , 0), with k 1’s and (m− k) 0’s,
then the problem of finding an optimal vote for the manipu-
lator is fixed-parameter tractable when parameterized by k.
Also, by exploring the properties of the graph built by the
algorithm, we prove that when a certain sub-graph of this
graph contains a 2-cycle, then the solution returned by the
algorithm is optimal.
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1. INTRODUCTION
Social choice theory provides tools for formalizing pref-

erence aggregation among agents, using a wide variety of
voting rules. The work of Gibbard and Satterthwaite [1, 4]
showed, however, that with any reasonable voting rule, there
would always be the possibility of a situation where agents
were better off voting strategically, reporting untrue prefer-
ences to the voting mechanism in an attempt to manipulate

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the outcome. One of the popular techniques to overcome
the susceptibility to manipulation uses computational com-
plexity. Manipulation is always potentially useful, but in
practice it might be exponentially difficult to find a useful
manipulation (in the worst case). Complexity could poten-
tially serve as a useful defense, as it does in cryptography.

Most recently, attention has been turned to the question
of ties and tie-breaking rules; in a recent paper, Obraztsova
et al. proposed an algorithm for finding an optimal vote un-
der the Maximin voting rule when randomized tie-breaking
is used, for a particular special case of manipulator utili-
ties [3]. This work was extended later by a subset of the
same authors [2], where they showed that for another spe-
cial case of manipulator utilities, finding a “good enough”
manipulation under Maximin is NP-complete. The bottom
line of these papers is that “ties matter”, i.e., the way in
which ties are broken influences fundamental characteristics
of voting rules, in particular their computationally feasible
susceptibility to manipulation. The current paper continues
this line of research, by more fully characterizing the nature
of manipulation in the Maximin voting rule for more general
settings of manipulator utilities.

2. PRELIMINARIES
Voting An election is given by a set C = {c1, . . . , cm} of

candidates (also called alternatives), and a set V = {v1, . . . , vn}
of voters. The voters submit linear orders, Ri, over the can-
didates. We will sometimes use �i instead of Ri, for read-
ability. If ck �i cj , we say that i prefers ck to cj . We denote
by L(C) the set of all linear orders over C. A list of n lin-
ear orders R = (R1, . . . , Rn) ∈ L(C)n is called a preference
profile.

A voting correspondence is a mapping F : L(C)n → 2C

which for every profile of the votes R determines a non-
empty set of winners S ⊆ C. If |F(R)| = 1, F is called a
voting rule. In order to transform a voting correspondence
into a voting rule, we need a tie-breaking rule. Formally, a
tie-breaking rule is a mapping T which, given a non-empty
set of tied candidates S, returns the winning candidate c ∈
S. In this work, we use the randomized tie-breaking rule,
i.e., the rule where ties are broken uniformly at random.

In this paper we consider the Maximin voting rule (or,
more precisely, voting correspondence). The maximin score
of a candidate c ∈ C is defined as the number of voters who
prefer c to c’s toughest opponent, i.e., mind∈C\{c} |{i | c �i

d}|. The candidates with maximum score win.
Manipulation: Given a preference profileR = (R1, . . . , Rn)



over a set of candidates C, for any preference order L ∈ L(C)
we denote by (R−i, L) the profile (R1, . . . , Ri−1, L,Ri+1, . . . , Rn).
In order to model the manipulation with randomized tie-
breaking, we follow [3] and [2], and assume that the ma-
nipulator has non-negative utilities over the set of candi-
dates, u(c) for every c ∈ C. We assume that the utilities are
consistent with the manipulator’s preference order �i, i.e.,
u(a) ≥ u(b) if and only if a �i b. In this work, we deal with
the case where for all c ∈ C, u(c) ∈ {0, 1}. Now, if a voting
correspondence F outputs a set S ⊆ C, the manipulator’s
expected utility is û(S) = 1

|S|
∑

c∈S u(c). L is said to be vi’s

optimal vote if for all linear orders L′ ∈ L(C) it holds that
û(F(R−i, L)) ≥ û(F(R−i, L

′)).

3. RESULTS

3.1 Parameterized Complexity Result
The next theorem continues the line of research started by

Obraztsova et al. [3, 2], providing the parameterized com-
plexity of manipulation when the manipulator utilities are
given by the vector (1, . . . , 1, 0, . . . , 0) with k 1’s.

Theorem 1. Let 1 ≤ k ≤ m−1. Suppose that the utilities
of the manipulator are as follows: u(ci) = 1 for 1 ≤ i ≤ k,
u(ci) = 0 for k + 1 ≤ i ≤ m, where the order ci on the
alternatives is the preference order of the manipulator. Then
the problem of finding an optimal manipulation is in FPT
(fixed-parameter tractable), when parameterized by k. More
specifically, there exists an algorithm for finding an optimal
manipulation in O(k!k2 + (n + m)m2) time.

Proof. We consider an election E = (C, V ) where C =
{c1, . . . , cm}, V = {v1, . . . , vn}, and vn is the manipula-
tor. We denote for a candidate ci ∈ C by s(ci) the Maxi-
min score of ci in the election E′ = (C, V ′), where V ′ =
{v1, . . . , vn−1}. Let s = maxci∈C{s(ci)}. Suppose that
the utilities of the manipulator are as defined above. Let
C1 = {c1, . . . , ck} be the set of candidates having utility 1,
and C0 = C \ C1 be the set of candidates with utility 0.
Let X = argmaxci∈C1

{s(ci)}. Since the manipulator can
only increase the score of any candidate by 1 or by 0, if
for x ∈ X, s(x) < s − 1 then, clearly, for any vote of the
manipulator his utility will be 0. So let us assume that for
x ∈ X, s− 1 ≤ s(x) ≤ s. Following Obraztsova et al. [3], we
define a directed graph G with a vertex set C, where there
is an edge from ci to cj when there are exactly s(cj) voters
in V ′ that rank cj above ci. We color the vertices of G as
follows. Let x ∈ X be any candidate. All the candidates
c ∈ C \X with the score s(c) = s(x) + 1 will be purple; all
the candidates c ∈ C \X with the score s(c) = s(x) will be
red; and all the rest of the candidates will be green. Note
that by construction, all the candidates in X are green.

In order to find an optimal vote of the manipulator, we
will use the recursive procedure A(H) described in [3], where
H is an input colored directed graph, with one small mod-
ification: in step 2, if H contains any of the vertices of X,
we add them (in some arbitrary order) to the top of the list
L built by the procedure and remove them from H. We call
this modified procedure A′(H).

In our algorithm, we first call A′(G). This way, if the
expected utility of an optimal vote is greater than 0, we
get an ordering L in which the number of candidates with
utility 0 having the highest scores is minimal (the proof of

this is the same as the original proof). Also, L contains
all the candidates of X in the |X| top positions. In the
next step, we go over all the |X|! ≤ k! permutations of the
candidates in X and check in which permutation the number
of candidates of X whose score grows by 1 is maximal. Then
we return this permutation combined with L. Note that
the permutation of the candidates in X does not affect the
scores of the other candidates (what really matters here is
that all the candidates in X are ranked above all the other
candidates). So by changing the permutation from what
was calculated by A′, we do not hurt the optimality of the
solution computed by A′.

One can verify that the running time of this algorithm is
O(k!k2 + (n + m)m2), and so, the problem is in FPT.

Corollary 2. When the number of 1’s in the manip-
ulator’s utility vector, k = O( logm

log logm
+ logn

log logn
) then the

algorithm for finding an optimal manipulation runs in poly-
nomial time.

Proof. When k = O( logm
log logm

+ logn
log logn

), k! = O(m+n),
and the result follows.

3.2 Characterization Result
Here we state that the graph G of the election as defined

above has some special property, which sometimes may help
in computing the maximum expected utility of the manipu-
lator.

Theorem 3. Suppose that the utilities and the set of can-
didates X are as defined above. Let G be the graph of the
election as defined above, and let H = (X,E) be the sub-
graph of G induced by the vertices of X. If there exist two
vertices x, y ∈ X such that (x, y) ∈ E and (y, x) ∈ E then H
is complete, i.e., for all a, b ∈ X, (a, b) ∈ E and (b, a) ∈ E.

Corollary 4. If the conditions of Theorem 3 hold, we
can compute an optimal vote of the manipulator in polyno-
mial time.
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