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ABSTRACT
In recent years, effective sponsored search auctions (SSAs)
have been designed to incentivize advertisers (advs) to bid
their truthful valuations and, at the same time, to assure
both the advs and the auctioneer a non–negative utility.
Nonetheless, when the click–through–rates (CTRs) of the
advs are unknown to the auction, these mechanisms must
be paired with a learning algorithm for the estimation of
the CTRs. This introduces the critical problem of designing
a learning mechanism able to estimate the CTRs as the same
time as implementing a truthful mechanism with a revenue
loss as small as possible. In this paper, we extend previous
results [2, 3] to the general case of multi–slot auctions with
position– and ad–dependent externalities with particular at-
tention on the dependency of the regret on the number of
slots K and the number of advertisements n.
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1. NOTATION AND BACKGROUND
We consider a standard model of SSAs. We denote by

N = {1, . . . , n} the set of ads. Each ad i is characterized
by a quality ρi, defined as the probability that i is clicked
once observed by the user, and by a value vi ∈ [0, V ], that
the adv receives once i is clicked (the value is zero if not
clicked). While qualities ρi are common knowledge, values
vi are private information of the advs. We denote by K =
{1, . . . , K} with K < n the set of available slot. An ad–slot
allocation rule α is a full bijective mapping from n ads to n
slots such that α(i) = k if ad i ∈ N is displayed at slot k.
For all the non–allocated ads, α(i) takes an arbitrary value
from K+1 to n so as to preserve the bijectivity of α. We also
define the inverse slot–ad allocation rule β = α−1 such that
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β(k) = i if slot k displays ad i (i.e., α(i) = k). We denote
by A and B the set of all the possible ad–slot and slot–
ad mappings respectively. Finally, we define A−i = {α ∈
A, α(i) = n} as the set of allocations where ad i is never
displayed. We adopt the cascade model [1, 5] to describe the
user’s behavior. The discount factor γk(i) is the probability
that a user, observing ad i in the slot k − 1, will observe
the ad in the next slot (γ1 is set to 1 by definition). The
cumulative discount factors Γk(β), i.e., the probability with
which a user observes the ad displayed at slot k given a slot–
ad allocation β, is defined as Γk(β) =

Qk
l=2 γl(β(l − 1)) for

2 ≤ k ≤ K. With abuse of notation, we use interchangeably
Γk(β) and Γk(α). Given an allocation rule α, Γα(i)(α)ρi is
the click through rate (CTR), representing the probability
of ad i to be clicked. Finally, we define the social welfare of
an allocation α as the cumulative advs’ expected values

SW(α) = SW(β) =

n
X

i=1

Γα(i)(α)ρivi =

n
X

k=1

Γk(β)ρβ(k)vβ(k).

At each round, advs submit bids and the auction defines
an allocation rule α and payments pi. The Vickrey–Clark–
Groves mechanism (VCG) satisfies a number of interesting
properties, notably the incentive compatibility (IC) (i.e., no
adv can increase its utility by misreporting its true value
and v̂i = vi), and it allocates ads according to the efficient
allocation α∗ = arg maxα∈A SW(α), and payments are set
to 0 if the ad is not clicked and to

p̃i =
SW(α∗

−i) − SW−i(α
∗)

Γα(i)(α)ρi
, (1)

if the ad is clicked, so that E[p̃i] = pi = SW(α∗
−i)−SW−i(α

∗).
In many practical problems, the qualities ρi are not known

in advance and must be estimated at the same time as the
auction is deployed. This introduces a tradeoff between ex-
ploring different possible allocations so as to collect infor-
mation about the quality of the advs and exploiting the es-
timated qualities so as to implement a truthful high–revenue
auction. Let A be an IC mechanism run over T rounds. At
each round t, A defines an allocation α̂t and prescribes an
expected payment pit for each ad i. The objective of A is
to obtain a revenue as close as possible to a VCG mecha-
nism. More precisely, we measure the performance of A as
its cumulative regret over T rounds:

RT (A) = T
n
X

i=1

pi −
T
X

t=1

n
X

i=1

pit. (2)

The mechanism A is a no–regret mechanism if its per–round
regret decreases to 0 as T increases, i.e., limT→∞ RT /T = 0.



2. REGRET BOUNDS
Similar to [3], we define an exploration–exploitation al-

gorithm to approximate the VCG, which we refer to as A–
VCG. The algorithm estimates the quality of each adv dur-
ing a pure exploration phase of length τ when all the pay-
ments are set to 0. Then, quality estimates are used to set up
a VCG for all the remaining T−τ rounds. At each round, we
can collect K samples (click or not–click events), one from
each slot. Let αt (for t ≤ τ ) be an arbitrary explorative al-
location rule independent from the bids. It is easy to define
a sequence of explorative allocations {αt}

τ
t=1 such that the

number of samples collected for each ad i is Si = ⌊Kτ/n⌋.
We denote by ci

αt(i)
(t) ∈ {0, 1} the click–event at time t for

ad i when displayed at slot αt(i). Depending on the slot we
have different CTRs, thus we reweigh each sample by the
cumulative discount factor of the slot and we compute the
estimated quality ρ̂i as

ρ̂i =
1

Si

Si
X

s=1

ci
αt(i)

(t)

Γαt(i)(αt)
. (3)

Depending on the specific user–model of the auction, we can
build a high–probability confidence interval on |ρi − ρ̂i| of
size

ηp :=

v

u

u

t

 

K
X

k=1

1

Γ2
k

!

n

2K2τ
log

n

δ
; ηpa :=

1

Γmin

r

n

2Kτ
log

n

δ
,

with Γmin = minα,k Γk(α), for pos– and pos/ad–dependent
externalities respectively. After the exploration phase we
define an upper–bound on the quality as ρ̂+

i = ρ̂i +η. Given

ρ̂+
i , we compute the estimated social welfare as dSW(α) =
Pn

i=1 Γα(i)(α)ρ̂+
i vi. The corresponding efficient allocation is

denoted by α̂ = arg maxα∈A
dSW(α). Once the exploration

phase is over, if ad i ∈ N is clicked, then the adv is charged

p̃i =
dSW(α̂∗

−i) −dSW−i(α̂
∗)

Γα̂(i)ρ̂
+
i

(4)

which corresponds to an expected payment p̂i = p̃iΓα̂(i)ρi.
Position–dependent externalities. In case of pos–

dependent externalities, the discount coefficients reduce to
Γk(α) = Γk, thus simplifying the computation of both the
optimal allocation and the payments. In this case, A–VCG
achieves the following regret performance.

Theorem 1. In a SSA auction with pos–dependent exter-
nalities, by optimizing the parameters τ and δ, the A–VCG
is always truthful and it achieves a regret

RT ≤ 181/3V T 2/3Γ
−2/3
min K2/3n1/3(log (n2KT ))1/3. (5)

where Γmin = mink Γk ≥ 0.

Remark 1 (Bound). Up to numerical constants and logarith-

mic factors, the previous bound is RT ≤ Õ(T 2/3K2/3n1/3).
We first notice that the A–VCG is a zero–regret algorithm
since its per–round regret (RT /T ) decreases to 0 as T−1/3,
thus implying that it asymptotically achieves the same per-
formance as the VCG. Furthermore, the dependence of the
regret on n is sub–linear (n1/3) and this allows to increase
the number of advs without significantly worsening the re-
gret. Finally, according to the bound (5) the regret has

a sublinear dependency Õ(K2/3) on the number of slots,
meaning that whenever one slot is added to the auction, the

performance does not significantly worsen. By analyzing the
difference between the payments of the VCG and A–VCG,
we notice that during the exploration phase the regret is
O(τK) (e.g., if all K slots are clicked at each explorative
round), while during the exploitation phase the estimation
errors sum over all the K slots, thus suggesting a linear de-
pendency on K for this phase as well. Nonetheless, as K
increases, the number of samples available per each ad in-
creases as τK/n, thus improving the accuracy of the quality

estimates by Õ(K−1/2). As a result, as K increases, the
exploration phase can be shortened (the optimal τ actually

decreases as K−1/3), thus reducing the regret during the
exploration, and still have accurate enough estimations to
control the regret of the exploitation phase.

Pos/ad–dependent externalities. In this case the learn-
ing problem is more complicated, and the regret is:

Theorem 2. In a SSA auction with pos/ad–dependent
externalities, by optimizing the parameters τ and δ, the A–
VCG is always truthful and it achieves a regret

RT ≤ 61/3 V

ρmin
T 2/3Γ

−2/3
min K2/3n(log (KT ))1/3. (6)

Remark 1 (Differences with the previous bound). Up to
constants and logarithmic factors, the previous bound is
RT ≤ Õ(T 2/3K2/3n). We first notice that moving from
pos– to pos/ad–dependent externalities does not change the
dependency of the regret on the number of rounds T . The
main difference is in the dependency on n and on the small-
est quality ρmin. While the regret still scales as K2/3, it
has now a much worse dependency on the number of ads
(from n1/3 to n). We believe that it is mostly due to an
intrinsic difficulty of the position/ad–dependent externali-
ties. The intuition is that now in the computation of the
payment for each ad i, the errors in the quality estimates
cumulate through the slots (unlike the pos–dependent case
where they are scaled by Γk−Γk+1). Nonetheless, this cumu-
lated error should impact only on a portion of the ads (i.e.,
those which are actually impressed according to the optimal
and the estimated optimal allocations). Thus we conjecture
that this additional n term is indeed a rough upper–bound
on the number of slots K and that we could obtain a regret
Õ(T 2/3K4/3n1/3), where the dependency on the number of
slots becomes super–linear. A more detailed discussion on
this conjecture and on the dependency on ρmin can be found
in the extended version of this paper [4].
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