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1. INTRODUCTION
Significant advances have been made in allowing agents to learn,

both autonomously and with human guidance. However, less atten-

tion has been paid to the question of how agents could best teach

each other. For instance, an existing robot in a factory should be

able to instruct a newly arriving robot, even if it is from a different

manufacturer, has a different knowledge representation, or is not

optimal itself.

This work investigates teaching methods in sequential decision

tasks. In particular, we consider a reinforcement learning student-

agent that must learn from 1) autonomous exploration of the en-

vironment and 2) the guidance of another teacher-agent. In order

to minimize inter-operability requirements, the teacher and student

are presumed not to know each others’ internal workings; teach-

ers can only help students by suggesting actions. Furthermore, the

teacher may have limited expertise in the student’s task and should

be careful not to over-advise the student. Our primary question:

how should the teacher decide when to give advice?

This teaching context is related to the more well-studied problem

of transfer learning [5], in which an agent uses knowledge from a

source task to aid its learning in a target task, but differs in that

we do not assume agents can directly access each others’ internal

knowledge. Another related area is learning from experts [1, 3],

where agents may imitate experts or ask for their advice. Our ap-

proach differs because control is given to the teacher, rather than

the student, and we focus on non-expert teachers. Our hope is that

this paper enables and inspires the agents community to develop

further methods by which agents can teach other agents.
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2. METHODS
Our methods build upon Probabilistic Policy Reuse [2] (PPR),

which allows an agent to learn a task faster by taking advantage of

an existing policy. The PPR method changes the action selection

step of model-free RL methods. With probability ψ, the agent ex-

ploits an old policy; the rest of the time, it uses normal ǫ-greedy

action selection. The value of ψ decays over time according to a

decay rate v so that the agent makes less use of old policies as it

improves its own. We use this method for teaching by letting ψ be

the teacher’s probability of giving advice.

However, for a teacher with limited expertise, PPR may not be

the optimal teaching algorithm. A PPR teacher provides action ad-

vice with a global probability ψ that is uniform across all states. If

the teacher is more confident in some states than others, it makes

more sense for advice probabilities to be higher in some states than

others. We therefore propose a new approach that uses confidence

measures to make advice probabilities state-specific.

2.1 Confidence Measure
In our proposed approach, agents need to be able to estimate

their confidence in a state. Because we assume limited expertise,

agents may not have much data to work with. To allow meaning-

ful estimates with limited data, we introduce a confidence measure

called update counting. The update-count of a state indicates how

many times a non-zero Q-value update has been made there. This

measure has a straightforward tabular implementation in discrete

settings, but it is also adaptable to continuous settings through tile

coding. Update-counts can be associated with tiles; the update-

count of a state is then the sum of the update-counts of its compo-

nent tiles.

2.2 Advice Probabilities
Because our proposed approach builds upon PPR, our teachers

compute a probability of giving advice in a state. We believe there

are several desirable properties for advice probabilities. First, they

should be higher in states where the teacher is more confident, so

that teachers give advice in proportion to their expertise. Second,

they should be capped at the ψ of the PPR algorithm, so that the

confidence-based teaching method integrates cleanly with the PPR

framework. Third, they should decay over time, so that teachers

gradually decrease their guidance as the student learns.

We now propose an algorithm that computes a probability of giv-

ing advice p(s) with the above properties. Let ct(s) and cs(s) rep-

resent the teacher and student confidences (i.e., update-counts) in

that state, respectively.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  20  40  60  80  100  120  140  160

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Confidence-based PPR
Direct Transfer

Figure 1: Q-learning agents in a maze

The confidence-based PPR algorithm computes:

p(s) =

{

0 if ct(s) < 1

min
(

1− cs(s)
ct(s)+d

, ψ
)

if ct(s) ≥ 1

The first condition states that a teacher should never give advice if it

has no knowledge about a state. The second dictates that the advice

probability p(s) depends on the relationship between the student’s

confidence and the teacher’s confidence. In states where the teacher

has higher confidence than the student, it gives advice with a higher

probability, up to a maximum of ψ. As the student’s confidence in

a state grows, the teacher gives advice with lower probability. As

the delay parameter d increases, teachers require students to reach

higher levels of confidence before they stop giving advice.

3. EVALUATION
To evaluate this novel teaching algorithm, we perform teaching

experiments in two domains. One is a discrete 20× 20 maze, fully

described in the earlier Ask-For-Help work [1], in which our teach-

ers learn via standard tabular Q-learning. The other is mountain car,

a benchmark continuous domain [4], in which our teachers learn via

Sarsa with tile coding.

To produce teachers with limited expertise, we do not allow them

to train until their policies converge. Instead, we train teachers for

only 20 episodes. Each teacher then gives advice to students using

regular PPR or confidence-based PPR. We average 100 teacher-

student pairs for each experiment. Lower bounds for students are

represented by independent agents, who learn without teachers.

Upper bounds are represented by direct-transfer agents, who copy

the teacher’s entire Q-function, which our students do not have ac-

cess to.

Figure 1 shows some results from the maze. The most effec-

tive parameter settings here are v = 0.99 and d = 0. As ex-

pected, students with teachers outperform students without teach-

ers. The two teaching algorithms perform comparably in this do-

main. Confidence-based PPR does not outperform regular PPR

because this domain lacks critical decision points, which means

teachers can be less discerning about giving advice. However, we

did find that it achieves comparable performance using two orders

of magnitude less advice.

Figure 2 shows some results from mountain car. The most effec-

tive parameter settings here are v = 0.99 and d = 100. Both teach-

ing methods again speed up learning, but in this domain confidence-
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Figure 2: Sarsa learning students in mountain car

based PPR outperforms regular PPR. Differences in the areas under

these learning curves are statistically significant at the 95% confi-

dence level.

There are several potential reasons that confidence-based PPR

outperforms regular PPR in this domain. Mountain car may have

some critical decision points, where the relative values of student

and teacher confidences can play important roles in advice deci-

sions. The tile coding in mountain car provides state-space gener-

alization, which can cause student confidence to grow quickly in

some sets of states. Using confidence-based PPR, teachers are able

to back off quickly in these states, while still giving advice in less

common states.

4. FUTURE WORK AND CONCLUSIONS
This paper contributes an initial study of algorithms that agents

can use to teach each other in sequential decision tasks. We assume

a broadly applicable setting, in which teachers and students interact

only through action advice and in which teachers can have limited

expertise.

There are many potential directions for future work in this area.

For instance, teachers could explicitly reason about the expense of

communication versus the expected gain, which would be appropri-

ate in domains where communication has a non-zero cost. There

could also be multiple teachers, with different areas of expertise,

who must coordinate with each other.
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