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1. ABSTRACT
In this paper we present a reinforcement learning technique based

on Learning Automata (LA), more specific Continuous Action Re-
inforcement Learning Automaton (CARLA), introduced by Howell
et. al. in [2]. LA are policy iterators, which have shown good con-
vergence results in discrete action games with independent learn-
ers. The approach presented in this paper allows LA to deal with
continuous action spaces.

Recently, Rodríguez et al. [3] performed an analysis of the CARLA
algorithm. The result of this analysis was an improvement of the
CARLA method in terms of computation effort and local conver-
gence properties. The improved automaton performs very well in
single agent problems, but still has suboptimal performance with
respect to global convergence in multi-agent settings.

The CARLA algorithm has successfully been applied to control
problems [2, 1]. However in real world applications systems can
be coupled and each subsystem is to be controlled by an individual
controller. The interaction of these controllers can be considered as
a common interest game. The interacting dynamics will have the
learners converging to a suboptimal solution if the subsystems are
controlled ignoring the existence of each other. In such a situation
a better exploration of the joint-action space is required.
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Figure 1: A two players game with three local optima. The contours repre-
sents combination of actions with the same reward.

Exploring Selfish Reinforcement Learning (ESRL), introduced
by [4], is an exploration method for independent LA playing a re-
peated discrete action game guaranteing convergence to the optimal
Nash equilibrium. The supporting idea of this method is that a set
of independent LA will converge to one of the Nash equilibria of
the game, but not necessarily one from the Pareto front. ESRL
proposes that once the agents converge to a Nash equilibrium, at
least two learners should delete the selected action from their ac-
tion spaces and restart learning. This allows the agents to find all
dominant equilibria and agree on the best one. As the more inter-
esting Nash equilibria are often also stronger attractors, the agents
can quite efficiently reach Pareto optimal Nash equilibria.

This paper introduces Exploring Selfish Continuous Action Re-
inforcement Learning Automaton (ESCARLA), an extension of the
ESRL method to continuous action games.

The supporting idea of ESRL is to exclude actions after every
exploration phase. The problem with applying this approach in
continuous action games, is that it makes no sense for the agents to
delete a single action. Instead, a vicinity around the action should
be identified and excluded. Now the agent must estimate when it
crosses the boundary of the basin of attraction of the local attractor.

In order to solve this problem we propose to use the absolute



Figure 2: Relation between covariance and exploration.

value of the covariance between the actions and rewards as a met-
ric. Figure 1 shows the contour representation of a 2-players game
example. There are three attractors in this example. The two lo-
cal maxima located in the top left and bottom right corners have
larger basins of attraction while the global maximum at the cen-
ter has a narrower basin of attraction. Figure 2 shows the relation
between the exploration and the covariance between actions and
rewards from a single agent point of view. The first row shows
a global view of the exploration. Three time intervals are shown.
The first interval is the start of learning process (time-steps from 0
to 1000). The second interval is when the learners are reducing the
global exploration (time-steps from 2000 to 3000). Notice this is
a good time for deciding on which neighborhood to exclude. The
last interval selected is when agents have converged to the local at-
tractor (time-steps from 9000 to 10000). The second row shows
the local information that the independent agents can access. The
same time-steps are represented on each column but in this case we
are plotting the selected actions on the horizontal axis and the cor-
responding reward on the vertical axis. The bottom row shows the
absolute value of the covariance between actions and rewards over
the whole learning process. Additionally, in order to have a better
idea of how this covariance is evolving, the solid curve represents
its average. The time-steps corresponding to the three moments in-
troduced above are shaded in gray. This covariance reaches a low
value at the beginning of learning since lots of explorations are per-
formed by both agents. When the agents are exploring within the
basin of attraction of a local attractor then the noise in the rewards
observed by each agent is minimal so the covariance reaches its
maximum. As agents converge to a locally superior strategy, less
exploration is performed so therefore the covariance value drops
down to zero. The safe region to exclude after the agent’s actions
have converged to the local optimum, can therefore be estimated at
the moment when the absolute value of the covariance reaches its
maximum value.

A good way of estimating this region is using the percentiles of
the probability density function of the actions. For a given confi-
dence value c we can define a region as shown in expression (1)
where percentile(p, f ) represents the value where the probability
density function f accumulates the probability p.
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The proposal here is to let the agents start learning until they all
converge. Then each agent should delete the region defined by (1)
from its action space. Deleting the action range implies modifying

Figure 3: Mapping process. Actions from the non-deleted {[0,0.4] , [0.7,1]}
range will be mapped into the original action space
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the action space so we need to map the new one into a compact set
again as shown in Figure 3. Then all agents must restart the learning
process to converge to another attractor. After enough exploration
the agents should compare all the results and pick up the strategy
that gave them the highest score. In engineering applications we
may either know the total amount of maxima of the problem or the
desired performance. In such applications the agents could under-
stand by enough exploration by finding all different maxima of the
problem or by achieving the desired performance. Please note that
we are assuming a common interest game, so therefore the agents
can agree on a best combination of actions. The general algorithm
is given next.

ESCARLA algorithm
r ep ea t

e x p l o r e
s y n c h r o n i z e

u n t i l enough e x p l o r a t i o n
s e l e c t b e s t s t r a t e g y

Exploration phase
i n i t i a l i z e p a r a m e t e r s
r ep ea t

sample a c t i o n
u p d a t e s t r a t e g y
i f maximum c o v a r i a n c e
then mark i n t e r v a l

u n t i l c o n v e r g e n c e

Synchronization phase
e x c l u d e marked i n t e r v a l
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