
Dynamic change impact analysis for maintaining and
evolving agent systems

(Extended Abstract)
Hoa Khanh Dam and Aditya Ghose

School of Computer Science and Software Engineering
University of Wollongong

New South Wales 2522, Australia
{hoa,aditya}@uow.edu.au

ABSTRACT
In contrast to an increasing number of agent-based applica-
tions in various domains, there has been very little work on
maintenance and evolution of agent systems. This paper ad-
dresses this gap with a focus on change impact analysis, i.e.
estimating the potential effects of changes before they are
made as an agent system evolves. We propose a technique
for performing impact analysis in an agent system using dy-
namic information about agent behaviour. Our approach
builds a representation of an agent’s behaviour by analyzing
its execution traces which consist of goals and plans, and
uses this representation to estimate impacts.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Design

Keywords
change impact analysis, multi-agent systems

1. INTRODUCTION
Complex agent-based applications will evolve and will need

to be maintained throughout their life, which would require
substantial costs. The focus of this paper is on change im-
pact analysis of agent systems – predicting the potential
consequences of a proposed change. Change impact analy-
sis [1] usually starts with the software maintainer examin-
ing the change request and determining the entities initially
affected by the change (i.e. the primary changes). The soft-
ware maintainer then determines other entities in the sys-
tem that have potential dependency relationships with the
initial ones, and forms a set of impacts. Those impacted
components also relate to other entities and thus the impact
analysis continues this process until a complete impact set
is obtained. Change impact analysis plays a major part in

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

planning and establishing the feasibility of a change in terms
of predicting the cost and complexity of the change (be-
fore implementing it). This help reduce the risks associated
with making changes that have unintended, expensive, or
even disastrous effects on an existing system. Furthermore,
change impact analysis can be used to predict or identify
parts of a system that will need to be retested (i.e. regres-
sion testing) as a result of changes.

Although notions and ideas from a large body of work
addressing change impact analysis for classical software sys-
tems (e.g. [1]) can be adapted, agent systems with their dis-
tinct characteristics and architectures introduce new prob-
lems in software maintenance. For instance, while object-
oriented software deals with classes, methods and fields, a
typical agent-based software, e.g. the Belief-Desire-Intention
(BDI) [4] agents, consists of agents, plans, events/goals and
beliefs.

A recent effort [2] has proposed a change impact analysis
technique specifically for agent systems. It is however based
on static analysis of agent source code, which can safely es-
timate the impact of changes, but its conservative principle
leads to a large impact set which may contain many unnec-
essary entities. This is because static analysis considers all
possible behaviours of a software system while only a subset
of such behaviours may be executed in practice.

Therefore, this paper takes a dynamic approach to change
impact analysis for agent systems: we propose an impact
analysis technique using dynamic information about agent
behaviour. Our dynamic impact analysis technique focuses
specifically on agent systems, in particular the well-known
and widely-used BDI agents. We identify the essential infor-
mation needed to perform dynamic impact analysis on a BDI
agent system. Such dynamic information is collected from
execution data for a specific set of agent executions (e.g. ex-
ecutions based on an operational profile or executions of test
suites) which contains two key aspects determining the be-
haviour of a BDI agent system: the goals an agent pursued
and the plans it deployed to achieve those goals. We further
define a technique to analyse that information to determine
when a plan or goal is changed, what other plans and goals
are potentially impacted by the change.

2. DYNAMIC IMPACT ANALYSIS
The hierarchical structure of BDI plans which determine

the run-time behaviour of a BDI agent can be viewed as a
goal-plan tree where each goal has children representing the



relevant plans for achieving it, and each plan has children
representing the subgoals (including primitive actions) that
it has. This goal-plan tree can be seen as an “and/or” tree:
each goal is achieved by a successful execution of one of its
plan (“or”), and the success of each plan relies on all of its
sub-goals being resolved (“and”). Figure 1 shows an example
of such an goal-plan tree. Goal G can be realised by either
plan P1 or P2. Plan P1 has two subgoals G1 and G2 in
which G1 can be achieved by one of plans P3, P4 and P5,
and G2 can be achieved by plan P6. Plan P2 has only one
subgoal G3, which can be realised by either plan P7 or P8.

P1

G

P2

P3 P4 P5 P6 P8P7

G1 G2 G3

Figure 1: A goal-plan tree for agent A

As an example, suppose we have a single execution trace
t , shown by a string of letters in figure 2, for an agent A
whose a goal-plan tree appears in figure 1. Note that Gp

denotes goal G being posted, whereas Gs indicates goal G
being successfully achieved. Similarly, Pe denotes plan P be-
ginning execution and Ps indicates a successful completion
of plan P. As can be seen, the execution trace in figure 2
demonstrates that after goal G is posted, plan P1 executes,
goal G1 is posted, plan P3 executes and successfully com-
pletes, goal G1 is successfully resolved, goal G2 is posted,
plan P6 executes and successfully completes, goal G2 is suc-
cessfully resolved, plan P1 successfully completes, and goal
G is successfully achieved.

Gp P1e G1p P3e P3s G1s G2p P6e P6s G2s P1s Gs

Figure 2: A typical execution trace t for an agent A

Assume that we propose to change plan P6 in the above
example, an impact analysis technique needs to determine
the other plans and/or goals that are potentially affected by
the change (i.e. the impact set). The static analysis tech-
nique proposed in [2] computes the impact set by consider-
ing static (direct and indirect) dependencies between P6 and
other goals or plans in the agent system. It works under the
assumption that a change in P6 has potential impact on any
node reachable from P6 in the goal-plan tree for agent A.
Therefore, an impact set of plan P6 returned by the static
technique in [2] contains all entities in the goal-plan tree in
figure 1. This would result in highly inaccurate impact set,
as evidenced by the experimental result (i.e. precision of ap-
proximately 0.3–0.4). We will now show that our dynamic
analysis technique which relies on information from execu-
tion traces can predict impact sets that are more accurate
than those computed by static analysis.

Our dynamic analysis technique relies on execution traces
such as the one in figure 2 rather static goal-plan trees.
Given a set of changes, we adapt the PathImpact tech-

nique [3] to perform forward and backward walks of a trace
to identify the impact set of the changes. The forward
walk determines all plans executed and all goals posted after
the changed goal/plan, whereas the backward walk identi-
fies plans/goals into which the execution can return. More
specifically, for each changed entity E (which can be either a
plan or goal) and each occurrence of Ee (if E is a plan) or Ep

(if E is a goal), we will do the following. Note that we will
illustrate our technique using an example of trace t in figure
2 and a change set {P6} (i.e. only plan P6 is modified).

• In the forward walk, we start from the entity imme-
diately following Ee (if E is a plan) or Ep (if E is a
goal), add every plan executed or goal posted into the
impact set (i.e. every entity F such that the trace con-
tain an entry Fe or Fp after the occurrence of Ee or
Ep), and count the number of unmatched successes. In
our example, in the forward walk we start at P6s and
add nothing to the impact set since there is no plan
executed or goal posted after P6. We however count 3
unmatched successes (i.e. G2s , P1s , and Gs)

• In the backward walk, we begin from the entity imme-
diately preceding Ee (if E is a plan) or Ep (if E is a
goal), and add into the impact set as many unmatched
plans or goals as the number of unmatched successes
counted in the forward walk. In our example, we add
G2, P1, and G to the impact set.

• Add E to the impact set if it is not already there.
Therefore, the impact set in our example would be
{P6, G2, P1, G}.

The above trace is an example of a typical, successful exe-
cution. An agent’s execution may however contain paralleli-
sation (e.g. achieving two goals concurrently), interruption
(e.g. suspending an executing plan to deal with higher pri-
ority events), and failures handling (e.g. trying alternative
plans in pursuing a goal). We can apply the same tech-
nique described earlier to determine impact sets from traces
derived from those agent behaviours. In practice, there are
usually multiple execution traces of an agent system. In this
case, we process each single trace and compute the union of
the impact sets returned by each execution traces.

3. REFERENCES
[1] R. Arnold and S. Bohner. Software Change Impact

Analysis. IEEE Computer Society Press, 1996.

[2] H. K. Dam and A. Ghose. Automated change impact
analysis for agent systems. In Proceedings of the 27th
IEEE International Conference on Software
Maintenance, ICSM ’11, pages 33–42, Washington, DC,
USA, 2011. IEEE.

[3] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE ’03: Proceedings of
the 25th International Conference on Software
Engineering, pages 308–318, Washington, DC, USA,
2003. IEEE Computer Society.

[4] A. S. Rao and M. P. Georgeff. BDI agents: From theory
to practice. In V. R. Lesser and L. Gasser, editors,
Proceedings of the First International Conference on
Multiagent Systems, June 12-14, 1995, San Francisco,
California, USA, pages 312–319. The MIT Press, 1995.


