
Agent Deliberation via Forward and Backward chaining in
Linear Logic

(Extended Abstract)
Luke Trodd, James Harland, John Thangarajah
School of CS & IT, RMIT University, Melbourne, Australia

{luke.trodd, james.harland, john.thangarajah}@rmit.edu.au

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial Intelli-
gence—intelligent agents, languages and structures

General Terms
Languages, Design

Keywords
BDI Deliberation cycle, linear logic, forward chaining, Lygon

Agent solutions to programming problems are often based on
the Belief-Desire-Intention (BDI) paradigm [12]. Beliefs represent
what the agent believes to be the current state of the world. Desires
specify the proactive behaviour of the agent, in that the agent works
to make these true. Often desires can be mutually exclusive or con-
tradictory, requiring the agent to select from among them, and so
BDI implementations often use goals, which can be thought of as
desires with some restrictions on them (such as requiring goals to
be consistent, feasible and not yet achieved). There can be several
types of goals, including achievement goals, whcih are dropped
once they have been achieved, and maintenance goals, which are
continually monitored, even when currenlty true. Intentions are
plans of action that the agent has committed to to achieve its cur-
rent goals. Often there are many ways to achieve a set of goals
that the agent is working on, implying the need for a mechanism to
choose between them.

Implementations of BDI systems are usually based around an
observe-think-act cycle, in which an agent will observe the current
environment, which may have changed since the last observation,
determine which goals it should be pursuing and what plans should
be used to achieve them, and choose a particular action to perform.
Note that while the number of actions performed in the act phase is
not specified, it is intended to be relatively small, so that the agent
will be able to detect changes in the environment (which is only
done in the observe phase) and respond to them within an appropri-
ate amount of time. Hence a fundamental feature of BDI systems is
the manner in which they provide both proactive (or goal-directed)
and reactive behaviour.

In this paper, we consider how we may adapt existing logical in-
ference techniques to implement a BDI architecture. Using logic as
a basis for the architecture will mean that we can develop methods
for formal analysis of agent systems via logical inference, as well

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

as being able to exploit existing automated reasoning technologies
to develop applications. In particular, we will investigate the use
of linear logic [4] for such systems. Linear logic has the poten-
tial to offer many advantages in the agent context over other logics
due to its resource-oriented nature. Linear logic is able to specify
actions cleanly and intuitively [9], can effectively express resource
oriented problems and has a native notion of concurrency appro-
priate for agent architectures. Linear logic has also been recently
applied to agent negotiation [11], and adaptive narratives [1]. This
suggests that there is significant potential for the development of
BDI agents based on linear logic, for which there are existing logic
programming languages such as Lygon [5].

Our BDI agent architecture is based on Lygon technology. This
means that we proceed in a bottom-up manner, commencing with
what can be readily implemented in Lygon, identifying where ex-
tensions are needed, adding these to Lygon and eventually devel-
oping a BDI deliberation cycle. This has been implemented and
applied to various problems (including the gold mining problem
used in the CLIMA agent programming contest1). Our focus is
hence not so much on the design of (yet another) agent program-
ming language, nor on the formal analysis of such a language, but
on the similarities and differences between what is provided in lin-
ear logic programming languages such as Lygon and what is re-
quired by a BDI agent architecture. Once this is done, we intend
to use our implementation experience to develop both appropriate
language features and a formal analysis of their properties.

We have developed and implemented a forward-chaining infer-
ence mechanism to complement Lygon’s existing backward-chaining,
in order to provide a natural mechanism for reactive behaviour.
This combination turns out to be a simple but effective technique
for proactive checking of maintenance goals [3] in a generic man-
ner. We have implemented these techniques in Lygon and have
developed and tested a number of applications.

The requirement for an agent to use a combination of both proac-
tive and reactive behaviour corresponds in automated reasoning to a
combination of both backward-chaining and forward-chaining in-
ference [6, 2, 8]. Backward-chaining involves reasoning backwards
from a goal towards known truths, whereas forward-chaining in-
volves using what is known to be true to infer new results. Har-
land and Winikoff [7] have proposed a BDI system based on linear
logic, in which the proactive behaviour of the agent is provided by
backward-chaining methods and the reactive behaviour of the agent
is provided by forward-chaining methods. In terms of the BDI
cycle, this means that the think phase would be implemented by
backward-chaining techniques and the act and observe phases by
forward-chaining ones. Backward-chaining methods have been the
basis of logic programming languages based on linear logic, such

1http://centria.di.fct.unl.pt/~clima



as Lygon [5]. Forward-chaining methods have also been used[6],
and techniques to combine both methods into one system have also
been studied [2, 8]. However, there has been comparatively little
work on applying such methods in linear logic to agent systems. In
addition, the work of Harland and Winikoff was purely a design;
no precise execution method was given and no implementation was
developed.

Our first step is to extend Lygon with abductive capabilities, so
that the result of a computation is not just an answer, but is a set of
actions to be performed (possibly empty, corresponding to a “yes”)
in order to make the goal true. The abducibles, i.e. the results of
the abduction process, are constrained here to be actions.

We write actions and plans as rules in Lygon, and use backward-
chaining together with abduction to determine a set of actions that
will achieve the goal. A subtlety here that may not be immediately
apparent is that there is a need to specify sequences of goals, i.e.
goals and actions that must be performed in a particular order. For
example, a robot vacuum cleaner that needs to move to a particu-
lar room before cleaning it will require the move action to be done
before the cleaning one, as a post-condition of the move action is a
pre-condition of the next action. Moreover, it is common for plans
to require that a particular set of actions be performed in a spe-
cific order, sometimes intermixed with subgoals. This means that
to implement a BDI-style system, we need to be able to specify a
sequential order in which actions, plans and goals are to be exe-
cuted or achieved. This is nothing more or less than a reflection
of the fact that the actions required to achieve a particular goal are
usually constrained to work in a particular sequence.

Unfortunately there is no (simple) way to use existing Lygon
connectives to do this. One possibility is to use *, which does
something related, but as discussed by Winikoff [13], this does not
work, as * can only distribute existing resources. Given a goal
G1 ∗G2 any new information generated in the solution of G1 (and
in particular the postconditions of an executed action) cannot be
passed onto G2. Using G1#G2 does allow this, but does not re-
strict the computation of G1 to be performed before G2 (and in fact
allows both goals to be pursued concurrently). Another possibility
is to use the “continuation-passing style” mechanism proposed by
Winikoff, which adds a continuation argument to each rule, and
splits each rule into a number of rules. However, this is unwieldy,
and the number of rules can potentially grow very large and hence
difficult to maintain, especially due to the recursive nesting of rules
that is required.

Hence we introduce a new connective >> (read ‘then’), in order
to succinctly state what is required. Intuitively, an agent wanting to
sequentially achieve goals G1 and G2 will first perform actions to
achieve G1, and, having noted the updates to the world that these
actions have made, make plans for achieving G2 from that updated
world. Hence a program and goal P,G1 >> G2 results in the pro-
gram and goal P1, G2 where P1 is the result of actions A1 which
convert P to P1 and for which P1 ` G1.

The >> mechanism makes it straightforward to specify agent
behaviours. It also seems intuitively simple, although it in some
ways combines both forward- and backward-chaining. Consider
a program P0 and the goal G1 >> G2 >> . . . >> Gn. This
asks the agent system to find, if possible, actions A1, A2 . . . An

such that Pi−1
Ai7−→ Pi (i.e. the actions Ai will convert Pi−1 to

Pi) and Pi ` Gi. If at any point, such an Ai cannot be found,
backtracking occurs to see if some alternatives can be found for
earlier goals (meaning that there can be many such Ai for each
Gi). In other words, solving for each goal Gi results in a backward-
chaining computation to find Ai, and the results of each action are
propagated forwards to the next goal.

The mechanisms that have been discussed in this paper have been
implemented in an extended version of Lygon. Our extensions to
Lygon have added around 1100 lines (of sparsely arranged and duly
commented code) to the original Lygon interpreter of 720 lines.

We believe that our experiments show that this approach has
been an effective way to develop BDI agents. One of the more
pleasing artefacts of the implemented agent extensions was the rel-
atively straightforward means by which proactive constraints could
be implemented. Proactive constraints provide an extremely pow-
erful mechanism for arbitrarily restricting agent behaviours in an
intuitive way. The constraint mechanism effectively implements
many of the ideals proposed by Duff at al. [3] for proactive main-
tenance goals in an agent context.

For future work, the precise relationship between the >> opera-
tor and the increasingly sophisticated proof-theoretic combinations
of backward- and forward-chaining [2, 8] requires further investi-
gation. The definition of the >> operator itself is in some sense
orthogonal to the issues of backward- and forward-chaining, but
the way in which it is used in agent programs seems to imply that
further analysis will be rewarding. Given that G1 >> G2 spec-
ifies a particular order in which G1 and G2 must be used, non-
commutative versions of linear logic may be an appropriate starting
point [10]. The key technical issue is finding an appropriate inter-
action between the non-commutative connective >> and the other
commutative connectives, as distinct from having only commuta-
tive or non-commutative properties alone.

Another aspect of future work is to incorporate maintenance goals
into the planning mechanism. This would mean that the generation
of actions would also include the possibility to generate actions
designed to restore maintenance goals after a predicated violation.
Hence rather than just avoid situations where violations occur, the
agent can take actions to recover from violations.

1. REFERENCES
[1] A.-G. Bosser, M. Cavazza, and R. Champagnat. Linear logic for

non-linear storytelling. In ECAI, Lisbon, August 2010.
[2] K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization

of forward and backward chaining in the inverse method. Journal of
Automated Reasoning, 40:133–177, March 2008.

[3] S. Duff, J. Harland, and J. Thangarajah. On proactivity and
maintenance goals. In AAMAS, pages 1033–1040, Hakodate, 2006.

[4] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50(1):1–102, 1987.

[5] J. Harland, D. Pym, and M. Winikoff. Programming in lygon: An
overview. In AMAST, pages 391–405, Munich, July 1996.

[6] J. Harland, D. Pym, and M. Winikoff. Forward and backward
chaining in linear logic. In CADE-17 Workshop on Proof-Search in
Type-Theoretic Systems, Pittsburgh, June 2000.

[7] J. Harland and M. Winikoff. Agents via mixed-mode computation in
linear logic. Annals of Mathematics and Artificial Intelligence,
42(1):167–196, 2004.

[8] C. Liang and D. Miller. Focusing and polarization in linear,
intuitionistic, and classical logic. Theoretical Computer Science,
410(46):4747–4768, 2009.

[9] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear
logic i: Actions as proofs. Theoretical Computer Science,
113(2):349–370, 1993.

[10] J. Polakow. Linear logic programming with an ordered context. In
Principles and Practice of Declarative Programming, Montreal,
September 2000.

[11] D. Porello and U. Endriss. Modelling multilateral negotiation in
linear logic. In ECAI, page 939, Lisbon, August 2010.

[12] A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In KR, pages 439–449, 1992.

[13] M. Winikoff. Logic Programming With Linear Logic. PhD Thesis,
University of Melbourne, 1997.


