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ABSTRACT 
In many applications, agents (whether human or computational) 
provide estimates that must be combined at a higher level. Recent 
research distinguishes two kinds of such estimates: interpreted and 
generated data. These two kinds of data require different kinds of 
aggregation processes, which behave differently from an infor-
mation geometric perspective: interpreted estimates require meth-
ods such as voting that can leave the convex hull of the individual 
estimates, while the optimal aggregation for generated estimates 
lies within the convex hull and thus is accessible by methods such 
as weighted averages. We motivate our analysis in the context of a 
crowdsourced forecasting application, demonstrate the central 
insights theoretically, and show how these insights manifest them-
selves in actual data.  

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent Systems 
H.3 [Information Storage and Retrieval]: Miscellaneous 
J.4 [Social and Behavioral Sciences]: Psychology 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Information fusion, agent characterization 

1. INTRODUCTION 
In many applications, agents (human, software, or hybrid) provide 
estimates that are combined in various ways to yield a common 
outcome. Examples include electronic markets, voting systems, 
product reviews, and crowdsourcing applications in general.  
Techniques to understand such estimates are of increasing interest 
at AAMAS. In 2012, for example, [1] developed metrics to char-
acterize the IQ of a crowd of humans. [13] studied ways to route a 
prediction task among human experts. [7] showed how human and 
machine reasoners could be combined in crowdsourcing. [8] de-
scribed how to incentivize people to provide truthful answers in 
crowdsourcing. Our research contributes to this growing area of 
interest to the AAMAS community. 

Agents can produce their estimates in various ways. Two main 
approaches have been distinguished [6]. An estimate is said to be 
“generated” if the agent samples it from a distribution, perhaps 
with the addition of idiosyncratic error. The classic example of a 
generated estimate is the report of temperature provided by a 
thermocouple. An estimate is said to be “interpreted” if the agent 
derives the estimate from (a subset of) attributes associated with 
the object or event on which an estimate is being solicited. A rule-
based agent would produce an interpreted signal, since it responds 
only to attributes of the problem represented on the left-hand side 
of its rules, and different estimates reflect agents with different 
sets of rules, attending to different attributes. One can imagine 
algorithms for both humans and computational agents that fall 
into either of these categories.  

Estimates might combine features of both kinds of process. Our 
results suggest statistical indicators that reflect whether estimates 
are mostly generated or mostly interpreted. For clarity, we focus 
on purely generated and purely interpreted estimates. 

The distributions of estimates that result from these two kinds of 
processes have very different statistical properties. This paper 
discusses a characterization that has not been observed previously. 
For simplicity, assume that the estimates being solicited are mul-
tinomial probability distributions. Each estimate is a point on the 
simplex of the appropriate dimension. For example, Figure 1 
shows three forecasts against a three-outcome question. The 
dashed line is the simplex, which in this case is the space of all 
triples (p1, p2, p3) such that pi ∈ [0, 1] and ∑pi = 1. a assigns 
100% to the first outcome and nothing to the other two. b assigns 
50% each to the first and third outcomes, and nothing to the se-
cond. c is the uniform forecast, assigning 33.3% to each outcome. 
These three forecasts define a convex hull, shown as a solid line. 

Our central result is that, under fairly benign constraints, the best 
aggregate summary of a set of generated estimates lies within the 
convex hull of the 
individual estimates, 
while the best aggre-
gate summary of a set 
of interpreted esti-
mates can leave the 
convex hull. The most 
common aggregation 
methods (such as a 
weighted average) are 
constrained to the 
convex hull, and so are 
suboptimal for inter-
preted estimates. 

 
Figure 1: Three forecasts on the tri-
nomial simplex. 
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Section 2 summarizes the specific application that motivates this 
research, and in which it is being applied. Section 3 demonstrates 
our central result, by example and proof, and provides technical 
qualification of our claim. Section 4 discusses the applicability of 
this result to real data (presumably interpreted) from our applica-
tion, and tests our conclusions against synthetic, generated data. 
Section 5 discusses directions for future research. Section 6 con-
cludes. 

2. APPLICATION CONTEXT 
This research, under the ongoing IARPA ACE program,1 is moti-
vated by the problem of how to aggregate forecasts about world 
events provided by multiple forecasters. Each forecaster reports 
her estimate of the relative probability of alternative outcomes for 
a number of questions about international affairs. Sample ques-
tions include: 

1. Will Bashar al-Assad remain President of Syria through 31 
January 2012? (a binomial question, with possible outcomes 
“Yes” and “No”) 

2. Will a run-off be required in the 2012 Russian presidential 
election? (a binomial question, with possible outcomes “Yes” 
and “No”) 

3. Who will be inaugurated as President of Russia in 2012? (a 
multinomial question, with possible outcomes “Putin,” 
“Medvedev,” and “Neither”)  

Our research focuses on how to aggregate multiple forecasts 
against such a question to increase the accuracy of the aggregate 
forecast over many such questions (over 150 so far).  
The most obvious way to combine estimates from different fore-
casters is to average them together. The process of giving each 
forecast equal weight is called an “Unweighted Linear Opinion 
Pool,” or ULinOP. In terms of the geometry of Figure 1, the 
ULinOP is the centroid of the forecasts, and necessarily falls with-
in their convex hull.  

The next level of refinement, and perhaps the most common in the 
forecasting community, is to apply a different weight to each 
forecast in seeking a more accurate aggregation. These weights 
are functions of various features, which may be features of the 
particular question, the particular forecaster, or the specific fore-
cast from the forecaster that is being weighted. As long as the 
weights are positive, weighted averages are also constrained to the 
convex hull of the forecasts. 
Another approach, and a motivator for this research, is to allow 
forecasts to vote for outcomes. Let i be the outcome favored by a 
given forecast. Then that forecast casts a vote for outcome i. The 
vote may be constant across all forecasts, or it may be a function 
of features. The accumulated votes for each outcome are then 
normalized by the total votes across all outcomes to yield the 
aggregated forecast. Unlike averages (whether weighted or not), 
this algorithm can yield an aggregate outside of the convex hull. 

We evaluate a forecast by its Brier score [3]. Let fai be a forecast 
from aggregation method a on outcome i of a given question, and 
let the actual outcome of the event among N possible outcomes be 
outcome j. The Brier score assigned to method a is  

Equation 1  𝑏𝑏! = 𝑓𝑓!" − 𝛿𝛿!!
!!

!!!  

where δij, the Kronecker delta, has value 1 if i = j and 0 otherwise. 
The Brier score lies between 0 and 2, and its value for a uniform 

                                                                    
1 http://www.iarpa.gov/solicitations_ace.html   

distribution, bu = (N – 1)/N, varies with N. We prefer to work with 
a normalized and centered inverse Brier score (“accuracy”), 

Equation 2  β! =
IF b! ≤ b! :

!!-­‐
!!
!

!!

ELSE: !!-­‐!
!!!-­‐!

   ∈ 0,1  

which assigns 1 to a perfect forecast, 0 to a complete miss, and 
takes the value 0.5 for a uniform distribution, independent of the 
number of possible outcomes.  

3. THEORY 
In this section, we give both simple examples and proofs distin-
guishing the aggregation process for interpreted and generated 
estimates. 

3.1 Interpreted Estimates 
Consider the following forecasting environment with interpreted 
signals. Assume there exists a dependent variable y	
  that equals the 
sum of 2N	
  + 1 independent attributes, 

Equation 3    y = x!!"!!
!!!  

Let each attribute xi ∈ {0, 1} with equal probability. Let the out-
come be good if y ≥ N + 1 and bad otherwise. Partition the 2N	
  + 1 
attributes into two sets S	
  and U, where those attributes in S	
  can be 
seen and those in U cannot be seen. Let M	
  =|U|. Assume that an 
agent j	
  sees some subset of attributes Kj  ⊂ S	
  and makes its predic-
tion based on the values of those attributes. 

In this section, we show that in some cases, the optimal aggregate 
prediction will not lie in the convex hull of the individual predic-
tion. This result may seem surprising, but recall [6] that interpret-
ed signals will be negatively correlated when there exists no over-
lap in the sets of attributes they include. That negative correlation 
will prove sufficiently large to drive the result.  

We first consider a simple example where N = 2, so that there 
exist five attributes, and the outcome is good if at least three at-
tributes are 1. Let 𝑆𝑆 = 𝑥𝑥!, 𝑥𝑥!, 𝑥𝑥! . Assume that 𝑥𝑥! = 𝑥𝑥! = 1 and 
𝑥𝑥! = 0. For the outcome to be bad, both attributes in U must be 0, 
an event with probability ½ * ½ = ¼, so the true probability of a 
good outcome is 1 – ¼ = ¾. Suppose that there exist three agents 
indexed by i and that agent i looks at attribute 𝑥𝑥!. Agents 1 and 2 
each predict a good outcome with the probability that at least two 
of the attributes that they cannot see are 1. The probability of any 
given configuration of the other four attributes is (1/2)4 = 1/16, 
and the number of configurations that would yield at least two 
additional 1’s is 4

2 + 4
3 + 4

4 = 11, so forecasters 1 and 2 
predict a good outcome with probability 11/16 < 3/4. Forecaster 3 
needs at least three of the four attributes that she cannot see to be 
1 to predict a good outcome, to which she assigns probability 
4
3 + 4

4 16 = 5/16 < 3/4. The optimal forecast of ¾ lies 

outside the convex hull of the predictions. If we extend the exam-
ple and consider a large number of forecasters, we still obtain that 
each forecaster will make a prediction of either 11/16 or 5/16, and 
the optimal prediction lies outside the convex hull.  

We now state some preliminary results for this base model. They 
almost surely extend to cover more general cases. 

For our first claim, we show that if forecasters look at single at-
tributes, then this result always holds. 
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Claim 1: Suppose that each forecaster randomly chooses a single 
attribute from S. Then the optimal prediction lies outside the con-
vex hull of the forecasts. 

Proof: Without loss of generality, assume that the probability that 
the outcome is good exceeds 50% given information about all 
attributes in S. It suffices to show that all forecasters predict good 
outcomes with less than the probability conditional on knowing 
the value of all attributes in S. Any forecaster who sees an attrib-
ute with a value 0 predicts a good outcome with probability less 
than one half (N+1 of the remaining 2N attributes would have to 
be 1), and trivially satisfies the condition. Next consider a fore-
caster who sees an attribute with value 1. That forecaster predicts 
a good outcome with probability equal to the probability that at 
least N other attributes have value 1: 

Equation 4  𝑃𝑃! =
2𝑁𝑁
𝑖𝑖

!
!

!!!!
!!!  

By assumption, at least one more attribute in S takes on value 1 
than takes on value 0, so the probability 𝑃𝑃! of a good outcome 
conditional on knowing the values in S is at least as large as when 
exactly one more attribute takes on value 1 than takes on value 0. 
That lower bound requires that at least half of the M = |U| unseen 
attributes take value 1. 

Equation 5  𝑃𝑃! ≥
𝑀𝑀
𝑖𝑖

!
!

!!
!!!!

 

Given M < 2N, 𝑃𝑃! > 𝑃𝑃!, and the result follows.2 
We can now state a corollary to this claim. 

Corollary 1: Suppose that each forecaster randomly chooses k 
attributes from S, and that S has at least k more attributes with 
value 1 than with value 0. Then the optimal prediction lies outside 
the convex hull of the forecasts. 
The proof follows identically to the previous case. 

Let's look more carefully at the restriction as it provides insights 
into both why the best aggregate forecast should leave the convex 
hull and why, when it doesn’t, the forecast should still be biased 
toward higher probabilities. Let D(S) equal the number of attrib-
utes in S with value 1 minus the number of attributes in S with 
value 0. We can now state the following claim. 

Claim 2: Let 𝑅𝑅 = 𝑀𝑀 + 1 − 𝐷𝐷 𝑠𝑠 /2. Conditional on S, the prob-
ability of a good outcome equals 

Equation 6  𝑃𝑃! =
𝑀𝑀
𝑖𝑖

!
!

!!
!!!  

Note that if D(S) > M, then the optimal forecast equals good with 
probability one. 
From this claim, one can show that even if the restriction on the 
number of attributes of value 1 in S does not hold, the optimal 
forecast might still lie outside the convex hull. Let S=11, with 
eight attributes of value 1 and three of value 0. Then D(S) =5. 
Assume that M = 6 so that D(S) < M and the chance of a good 
outcome is only 63/64.  

Suppose that individuals see k attributes in S. Suppose that k = 3. 
The most optimistic forecast will come from a forecaster who sees 
only attributes of value 1. Such a forecaster would predict a good 
outcome with a probability equal to the probability that at least six 

                                                                    
2 The last step in the proof follows from the fact that the probabil-

ity of exactly one half of the attributes taking value 1 decreases 
as the number of attributes increases. 

of the other fourteen attributes (five in S and six in U) would have 
value 1. This equals 

Equation 7  14
𝑖𝑖

!
!

!"!"
!!! = 0.788025 

which is less than 63/64 = 0.984375.  

3.2 Generated Estimates 
As a comparison, consider the corresponding problem for gener-
ated signals. Assume that there exists a variable y, 

Equation 8 y = x + θ 
where θ is a random variable with mean 0. Assume further that 
there exists a threshold T such that the outcome will be good if y > 
T and bad otherwise. Thus if T = x, the outcome will be good with 
probability 0.5. Assume that agent i gets a generated signal 𝑠𝑠! that 
equals x plus an identically distributed idiosyncratic error term 
with mean 0: 

Equation 9  𝑠𝑠! = 𝑥𝑥 + 𝜖𝜖! 
It follows that agent i predicts a good outcome with probability  

Equation 10  𝑃𝑃 𝑠𝑠! = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝜖𝜖! + 𝜃𝜃 > 𝑇𝑇  
The optimal aggregation of these predictions depends on assump-
tions on the distributions of 𝜖𝜖! and θ. Let's first assume that θ is 
uniformly distributed in [-a, a] and that a is sufficiently large 
given the 𝜖𝜖! that all forecasters predict probabilities in the open 
interval (0, 1). In other words, no forecaster knows the outcome 
with certainty. 

The true probability of a good outcome equals  

Equation 11  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝜃𝜃 > 𝑇𝑇 = 0.5 + !!!
!!

 

The best possible collective forecast 𝑃𝑃∗ would be to estimate x 
using the average of the 𝑠𝑠! 's. Denote this by 𝑠𝑠. 

Equation 12  𝑃𝑃∗ = 0.5 + !!!
!!

 

But note that  

Equation 13  !!!
!!

=
!!

!
!!!
!

!!

!!
= !

!
!!!!
!!

!
!!!  

Therefore, the best possible collective forecast equals the mean of 
the individual forecasts: 

Equation 14  𝑃𝑃∗ = !
!

𝑃𝑃 𝑠𝑠!!
!!!  

The fact that the optimal forecast is a simple average is an artifact 
of the uniform distribution. Consider the following counterexam-
ple with a non-uniform distribution. Suppose that θ has the densi-
ty function 𝑓𝑓 𝜃𝜃 = 1 𝜃𝜃! with θ ∈ [1, ∞]. Let T=4. Consider two 
forecasters with 𝑠𝑠! = 2 and 𝑠𝑠! = 0. 𝑃𝑃 𝑠𝑠! = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜃𝜃 > 2 = !

!
. 

𝑃𝑃 𝑠𝑠! = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜃𝜃 > 4 = !
!
. Based on these two signals, the best 

estimate for x will be 1, which gives a best collective forecast of 
1/3. However, a simple average of the two forecasts gives an es-
tate of 3/8. 

However, the optimal forecast still lies in the convex hull of the 
predictions. This will hold generally. Assuming generated signals 
of the form described above, the optimal collective forecast can be 
written as 𝑃𝑃∗ = 𝑃𝑃 𝑠𝑠 , the prediction that would be made if a sin-
gle forecaster saw the average signal. By construction this will lie 
in the convex hull. 
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The bottom line of this analysis is that, within the constraints of 
our examples and theorems, the best aggregation of generated 
estimates will lie within the convex hull of the individual esti-
mates, while the best aggregation of interpreted estimates may 
escape the hull, and in any case will be biased toward the edge of 
the hull. 

4. EMPIRICAL DATA 
In this section, we examine actual data from the project described 
in Section 2 in the light of the insights developed in Section 3. 
The forecasters are anonymous. All of them are human; it would 
be interesting to apply similar analysis to data produced by artifi-
cial agents. We first outline our data and describe our aggregation 
methods, then report analyses in the light of Section 3, and finally 
offer comparable results on synthetic data that is generated rather 
than interpreted. 

4.1 Data and Aggregation Methods 
Our data consists of forecasts produced by these agents in re-
sponse to 99 questions.3 We produced aggregations once a day for 
each question, using the most recent forecast reported by each 
forecaster by the time of the aggregation. Questions were open for 
a variety of durations, from 1 to 263 days, yielding 7038 aggrega-
tion events. The total number of forecasters involved was about 
165. Forecasters could respond repeatedly to a single question, 
and not every forecaster responded to every question. 

This paper focuses on two categories of aggregation: voting and 
averaging. There are others as well [5,9], but these two relate 
most directly to the insights of Section 3. 

In general, both voting and averaging can make use of scores 
assigned to individual forecasts, based on characteristics found to 
be associated with accurate and inaccurate forecasts. Such charac-
teristics include the certainty of the forecaster (reflected in the 
entropy of a forecast), the recency of the forecast relative to the 
life-time of the question thus far, the past accuracy of the fore-
caster, and demographic features such as whether the forecaster 
has experience in intelligence analysis. Our scores are non-
negative, computed as the product of factors each in [0, 1]. 

Let si be the score associated with the ith forecast be si. Let fij be 
the forecast from forecaster i on outcome j of the question.  
The averaging aggregate for outcome j is  

Equation 15  𝑓𝑓! =   
!!!!"!

!!!
 

For voting, let 𝐹𝐹! = 𝑖𝑖:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘 𝑓𝑓!" = 𝑗𝑗 , the set of forecasters 
who assign their largest probability to outcome j. Then the voting 
aggregate is4 

Equation 16  𝑓𝑓! =
!!!∈!!

!!!
 

The voting aggregate 𝑓𝑓!, unlike the averaging aggregate 𝑓𝑓!, can go 
outside the convex hull of the fij. It thus has the potential to be the 
more accurate aggregator on estimates that come from interpreta-
tion of internal models rather than sampling from distributions.  

Of course, the theoretical possibility that the optimal aggregate of 
interpreted estimates leaves their convex hull does not mean that 
any algorithm that leaves the convex hull is automatically a better 
                                                                    
3 Collected via our website at https://ace-informed.net  
4 For questions with more than two outcomes, alternative voting 

methods (Section 5) can yield different winners [2]. 

aggregator than one that cannot. In fact, as we will see, voting 
applied to generated data can yield an aggregate outside of the 
hull. However, the theoretical result does emphasize the im-
portance of aggregation methods that can leave the hull, and urges 
us to pay attention to this aspect of an aggregator’s behavior. 

With real data, even for interpreted estimates, we may not achieve 
an aggregation that leaves the hull, for at least three reasons. 

First, the population of agents may include both interpreting and 
generating agents. In an experiment fitting time series of forecasts 
to event-based domain models [10], some humans generated se-
ries of forecasts that were indistinguishable from random guesses, 
following the generated rather than the interpreted model. In such 
a composite population, the estimates for the generating agents 
will pull the ideal aggregate for their contributions toward the 
interior of their convex hull, making it more difficult for the over-
all aggregation to escape the hull. One would like to identify and 
eliminate the guessing agents, but at present the most robust sig-
natures we have for interpreted estimates are aggregate (discussed 
below), not individual. 

A second, related reason is that it is possible that a single agent’s 
estimation process may include both generative and interpretive 
processes, so that even at the individual level the distinction is not 
useful. The success of voting methods in our research suggests 
that our data are in fact interpreted estimates, but in general we 
should be prepared for contaminated signals. 

A third reason that an aggregation of interpreted estimates may 
not leave the hull is the existence of extreme forecasts. Empirical-
ly, we observe that as forecasts accumulate for a question, it be-
comes increasingly likely that one or another forecast will assign 
certainty to one or another outcome. It only takes a single fore-
caster committing to each outcome to saturate the simplex (ex-
panding the convex hull to cover the complete simplex), and any 
aggregation of necessity falls within, or at most on the edge, of the 
convex hull.  

4.2 Real Data 
With these caveats in mind, let’s examine some data from our 
experiments. 

Figure 2 compares the results of averaging and voting aggrega-
tion. To allow comparison with synthetic data, we use fixed scores 
(∀i: si = 1). This Figure follows these conventions: 

• Each mark is a single aggregation event. Blue (round) marks 
indicate that voting selects the correct outcome, and red 

 
Figure 2: Aggregation Events.—Large filled marks lie outside 
the convex hull. See text for details.  
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(square) marks, the incorrect outcome. Large filled marks are 
cases where voting leaves the convex hull 

• Each column contains the aggregation events belonging to a 
single question. Columns are ordered along the abscissa from 
lowest to highest accuracy (the average accuracy of all ag-
gregations belonging to a single question) of the voting ag-
gregation.  

• A mark’s ordinate is the difference between the entropies 
produced by voting and averaging aggregation. An aggre-
gate’s entropy measures how much it differentiates the vari-
ous outcomes. Negative values indicate that voting produced 
a more extreme estimate than averaging.  

Several features invite discussion. 

• Almost every mark falls below the equal-entropy line, indi-
cating that the voting aggregator is more extreme than the 
averaging aggregator. 

• Events where voting actually leaves the convex hull (the 
large marks) are quite rare (only 8 out of 7038 events). How-
ever, in none of these cases did voting select the wrong out-
come. Overall, the probability that an aggregation is in error 
is 0.26, so the probability of getting all eight out-of-hull fore-
casts correct strictly by chance is (1 – 0.26)8 = 0.1, not im-
possible but unlikely. In general, a voting aggregation that 
leaves the convex hull is correct, which suggests that our vot-
ing mechanism is indeed detecting the theoretical character-
istics of interpreted estimates discussed in Section 3. The 
higher entropy of these correct voting aggregations compared 
with averaging aggregations indicates that they are assigning 
a higher probability to the correct outcome, and thus provid-
ing a more accurate forecast. 

• Examination of the detailed data behind this plot confirms 
that these excursions from the convex hull occur early in a 
question’s lifetime (while the hull is still a strict subset of the 
simplex). All things being equal, early warnings are more 
valuable than later ones, and a voting aggregation that leaves 
the hull is a promising indication that the outcome it favors is 
in fact correct. 

• We might hope that a large difference between voting and 
averaging would be a signature that voting is correct. Up to a 
point, this observation is correct. As one moves across Figure 
2 from right to left (toward decreasing accuracy), the ampli-
tude of the maximum difference decreases. However, frus-

tratingly, it increases again for the questions on which voting 
gives the worst outcome. Figure 3 highlights this effect by 
plotting moving averages of 5 of the lower quartiles of each 
column in Figure 2. This same bimodality appears in other 
aggregation methods as well. We discuss its significance in 
Section 4.3. 

Another way to look at this data is to ask when voting and averag-
ing select qualitatively different outcomes. Figure 4 contains the 
same aggregation events as Figure 2, plotted against the same 
axes. However, this time the large filled marks are cases in which 
voting and averaging select different outcomes, which happens in 
12% of our aggregations. When the two approaches differ qualita-
tively, the difference between their entropies is usually small, 
suggesting that the forecasts themselves offer little discriminating 
information.  

When the approaches disagree, neither has an advantage: in one 
half of the cases of disagreement, voting gives the correct answer, 
and in the other half, averaging wins. (The preponderance of large 
red squares over large blue circles in Figure 4 is an artifact of the 
order in which marks are printed.) If one is interested only in se-
lecting the most likely outcome, rather than obtaining the most 
accurate quantitative estimate of the probability assigned to that 
outcome, the venerable weighted average is quite serviceable.  

4.3 Synthetic Generated Data 
The central thesis of this paper is that interpreted data (such as one 
might expect from forecasters thinking about complex problems) 
requires different aggregation procedures than generated data. The 
observations in the previous section will be more meaningful if 
we compare them with the behavior of our aggregation methods 
on generated data. 

To allow such a comparison, we construct a synthetic data set 
with gross characteristics similar to those of our real data. We 
begin with a set of 85 binary questions with 2347 aggregation 
events.  

For each aggregation event on those questions, we extract from 
the real data the number of forecasters, and the mean and variance 
of their forecasts. We then average the means and variances of all 
aggregations for a single question to obtain an overall mean and 
variance, and use those values to fit a Beta distribution represent-
ing the question.  

Each agent simulating a forecaster queries the Beta distribution 
(simulating Equation 8), and adds a uniform random error in [-ε, 
ε], where ε ∈ [0, 0.5] is a characteristic of the agent (according to 
Equation 9). If the sum exceeds [0, 1], it is trimmed to this range. 

 
Figure 3: Trends in Entropy Difference.--Moving averages of 5 
of the lower quartile of the entropy difference for each accuracy 
level. 

 
Figure 4: Aggregation Events.—Large filled marks indicate 
disagreement between voting and averaging. 
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Each agent only responds once to each question, on the same sim-
ulated date on which the real forecaster first responded. The 
growth in the number of forecasts for a given question over time 
is the same as in the real data.  
Contrast this algorithm with what we hypothesize is happening in 
the real data. Analysis of forecasters using other tools [9,11] sug-
gests that they have idiosyncratic internal models [10] that are 
modulated by external events that they observe in the real world. 
Different internal models focus a forecaster’s attention on differ-
ent real-world events, fitting the general schema of Section 3.1. 
By contrast, our simulated forecasters all attend to the same data, 
a common Beta distribution. Their forecasts differ only on the 
deviation from the mean of the distribution inherent in the sam-
pling, and their idiosyncratic error in [-ε, ε]. 
In terms of the analysis of Section 3.2, the best aggregated answer 
for a question would be the mean of the Beta distribution. Howev-
er, for consistency with the analysis of our real data, we present 
the results in the same way, scoring success not by a theoretical 
“best achievable estimate,” but by outcome of our questions in the 
real world. 

As noted previously, voting has the potential to generate a result 
outside of the convex hull of the forecasts regardless of the pro-
cess by which the forecasts are created. Figure 5 is the synthetic 
counterpart to Figure 2, and shows six cases where voting gener-
ates an out-of-hull aggregation. This time, one of them (16.7%) is 
incorrect, a larger percentage than the overall error rate (10%). 
With due caution because of the small numbers involved, the out-
of-hull aggregations generated by voting with real data offers 
have a higher probability of being correct than the overall popula-
tion of aggregations, while out-of-hull aggregations from voting 
on generated data have a higher probability of being wrong than 
the overall set of aggregations. 

Another suggestive difference between Figure 2 and Figure 5 is 
the absence in generated data of the high entropy differences for 
low-accuracy aggregations seen with interpreted data. This differ-
ence can be traced directly to the difference between generated 
and interpreted data. Examination of low-accuracy aggregations 
with high entropy differences show that they all concern questions 
of the same type. Questions can broadly be divided into “by-date” 
questions (“Will event X happen by date Y?”) and “on-date” 
questions (“Will proposition X be true on date Y?”). In the exam-
ple questions in Section 2, question 1 is a by-date question, while 
the other two are on-date questions (the dates implicitly being the 
date of the Russian election for question 2 and inauguration day 
for question 3). One can also describe a by-date question as a 

“status quo” question, since it is asking whether the status quo 
will persist through the specified date, or whether something will 
change before then. A distinctive feature of by-date questions is 
that the question can be resolved before its expiration date by an 
event in the world. In our real data, low-accuracy aggregations 
with high entropy differences are all by-date questions that ex-
pired early (that is, in which the status quo was not preserved). 
Only forecasters whose mental models lead them to attend to pre-
cursors of the actual event that closes a by-date question early will 
give the correct forecast, while others will see no reason to update 
their initial forecasts. Voting aggregation amplifies this diver-
gence, leading to high entropy low-accuracy aggregation events. 
The lack of such events with generated data is consistent with the 
lack of an underlying model.  

Figure 6 is the generated data counterpart to Figure 4. As with 
interpreted data, so with generated data, when voting and averag-
ing reach different conclusions, the entropy of their distributions 
are almost identical. Again, neither approach offers a preponder-
ance of correct answers. 

5. FUTURE WORK 
Our results suggest a number of lines of further work. 

For questions with more than two outcomes, alternative voting 
methods can yield different winners [2]. Our voting method is a 
version of Condorcet voting: each agent indicates only its most 
favored outcome, discarding information about preferences 
among other outcomes. One could construct an analog to Borda 
voting, in which an agent’s vote is distributed across its outcomes, 
discounted for the rank of each outcome. For example (and other 
formulations are possible), assume a question has M outcomes, 
indexed by j. Each agent i assigns a rank rij to each outcome, as-
signing rank M - 1 to its favored outcome, M – 2 to the next, and 
so forth, down to 0 for the least favored. It then votes 

Equation 17  𝑤𝑤!" =
!!"!!

! !!! /!
 

for each outcome. Note that 𝑤𝑤!"!   =   𝑤𝑤!. Then Equation 16 be-
comes 

Equation 18  𝑓𝑓! =
!!"!

!!!
 

where we no longer require the restriction to Fj. Because most of 
the questions in this report (and all of our synthetic data) are bina-
ry, the two voting approaches yield the same result, but Borda 
voting may offer useful benefits for multinomial questions. 

For simplicity, and because of the data at our disposal, we have 
focused on aggregating estimates that consist of points in a multi-

 
Figure 5: Synthetic Generated Data.—Large filled marks indi-
cate out-of-hull aggregations 

 
Figure 6: Synthetic Generated Data.—Large filled marks indi-
cate disagreement between voting and averaging. 
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nomial simplex. Estimates come in other forms as well, including 
votes (which may be considered probabilistic estimates at the 
corners of the simplex), rankings, and bids in a market. It seems 
reasonable to expect that estimates expressed in these forms will 
also differ in appropriate aggregation methods, given appropriate 
analogies to the notions of “simplex” and “convex hull.”  
In particular, in some tasks, agents are asked to provide qualitative 
estimates. Such data could be either generated (if agents sample a 
multinomial distribution and report only the label of the winning 
outcome) or interpreted. In either case, a labeled estimate can be 
considered a quantitative one that assigns unit probability to one 
outcome, and then averaging gives the same result as voting. The 
agent, by reporting only its most favored outcome, has effectively 
cast a vote. In such cases, we can estimate whether agents are 
using the same underlying model or not by statistical measures 
involving either estimates from the same agents on different prob-
lems, or multiple forecasts by two agents on the same problem 
[12]. These methods lie beyond the scope of the current paper. 

We have noted that the distinction between generated and inter-
preted estimates is sometimes fuzzy. By definition, aggregation is 
required just because we have multiple sources of estimates, and 
they may not all use the same reasoning mechanisms. In addition, 
one can imagine ways in which a single agent’s reasoning may 
combine elements of interpretation and generation. For example, 
it is plausible that limbic responses such as emotion may have a 
large generated component, and if a problem evokes an emotional 
as well as a rational response from an agent, the two kinds of sig-
nals could be mixed. Aggregation research will be advanced if we 
can detect the nature of the process leading to an individual esti-
mate, rather than just characterize the predominant underlying 
process based on the accuracy of various aggregations.  

The notion of a “convex hull” in a probabilistic space is itself 
more nuanced than we have so far suggested. Briefly, there are 
infinitely many well-defined geometries that one can apply to a 
probabilistic space, none intrinsically more natural than any other. 
The geodesics defined by these geometries, and thus the convex 
hulls that they define given a set of points, differ from one anoth-
er. Our results are appropriate to one such geometry, and it is an 
open question whether working in a different geometry would 
yield insightful or useful results. 

To make this issue more precise, let’s begin with the notion of a 
“well-defined geometry.” A probability distribution 𝑝𝑝! 𝑥𝑥 , over, 
for example, a real variable 𝑥𝑥, can be represented in terms of a 
different variable y related to x by an invertible, differentiable 
function y(x): 𝑝𝑝! 𝑦𝑦 = 𝑝𝑝! 𝑥𝑥 / 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  by introducing the Jacobi-
an factor 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  to compensate for the stretching and shrinking 
performed by the transformation. (For a discrete distribution, the 

analogous argument involves meaninglessly splitting one categor-
ical outcome into two or more, spreading the density formerly in 
the old category across the new categories arbitrarily.) Any such 
change of variables changes the representation of the distribution 
but not the distribution itself, so for a relationship between distri-
butions to be well defined, it must be invariant with respect to 
such transformations. This turns out to be a rather stringent condi-
tion, allowing essentially just a 1-parameter family of geometries 
[4]. These geometries are characterized by the information diver-
gence formula [14]: 

Equation 19  𝐷𝐷! 𝑃𝑃, 𝑄𝑄 = !!   !!
!!!

!!!
!

! !!!
 

where δ is the parameter identifying the geometry. Well-known 
examples of this function are the Hellinger divergence (for δ = 
0.5) and the Kullback-Liebler divergence (or relative entropy, for 
δ = 1). Certain second derivatives of the divergence define a met-
ric, the Fisher information matrix, that does not depend on δ, and 
certain third derivatives define connections, which do differ in the 
different geometries. The metric defines distance between infini-
tesimally separated distributions, and the connection defines par-
allel transport: how to carry a vector from one point on the mani-
fold to another. In particular, the connection tells how to move a 
vector parallel to itself, which defines straightness. It turns out 
that in the δ-geometry, the points x on a straight line (geodesic) 
between distributions p and q satisfy 𝑥𝑥! = 𝑎𝑎𝑝𝑝! +   1 − 𝑎𝑎 𝑞𝑞! for 
a in [0, 1]. 

While the form of Dδ(P, Q) is privileged in its invariance to trans-
formations of the domain of a distribution, there is no “correct” 
value of δ. All of our results are stated for the geometry of δ = 1. 
However, as Figure 7 illustrates for the case of the trinomial sim-
plex, the area of the simplex that is included in the convex hull of 
a set of points can vary, increasing as δ exceeds 1 and shrinking as 
it becomes less than 1. (The one case where this ambiguity is not 
present is in binary problems, which fortunately are extremely 
common.) Generalizing our claims to address the full family of δ-
geometries is an important area of future work. 

6. CONCLUSION 
Agents reason in different ways in reaching estimates. The statis-
tical properties of those estimates vary systematically with differ-
ent kinds of reasoning, and these differences have implications for 
the best ways to aggregate them. Roughly, estimates resulting 
from an agent’s sampling an underlying distribution are best ag-
gregated by methods, such as weighted averages, that remain 
within the convex hull of the individual estimates, while estimates 
resulting from agents’ interpretation of individual models are best 
aggregated by methods such as voting or latent variable graphical 
models that can move outside the convex hull. Weighted averages 

 
Figure 7: Variation of convex hull with δ 
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are widely used in practice, but handicapped by being constrained 
to the hull. Our results commend the decision of [1] to use voting 
to aggregate human data. 

To focus the discussion, we have distinguished between purely 
generated and purely interpreted estimates. As we note, mixtures 
can occur, either because our population includes both interpret-
ing and generating agents, or because individual agents combine 
generative and interpretive processes. In addition, in some cases 
we may not know what kind of process generates the estimates. 
Our results are potentially valuable in estimating the internal rea-
soning methods of collections of unknown agents. We have de-
scribed two signatures of agents that are sources of interpreted 
rather than generated signals. For such agents, voting aggregation 
systematically gives more accurate results than averaging aggre-
gation, and (for appropriate kinds of questions) low-accuracy 
questions can exhibit high differences between the entropies of 
voting and averaging aggregation. 
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