Addressing the Policy-bias of Q-learning by Repeating
Updates:

Sherief Abdallah

the British University in Dubai, United Arab Emirates

University of Edinburgh, United Kingdom
shario@ieee.org

ABSTRACT

Q-learning is a very popular reinforcement learning algorithm be-
ing proven to converge to optimal policies in Markov decision pro-
cesses. However, Q-learning shows artifacts in non-stationary en-
vironments, e.g., the probability of playing the optimal action may
decrease if Q-values deviate significantly from the true values, a sit-
uation that may arise in the initial phase as well as after changes in
the environment.These artifacts were resolved in literature by the
variant Frequency Adjusted Q-learning (FAQL). However, FAQL
also suffered from practical concerns that limited the policy sub-
space for which the behavior was improved. Here, we introduce the
Repeated Update Q-learning (RUQL), a variant of Q-learning that
resolves the undesirable artifacts of Q-learning without the practi-
cal concerns of FAQL. We show (both theoretically and experimen-
tally) the similarities and differences between RUQL and FAQL
(the closest state-of-the-art). Experimental results verify the theo-
retical insights and show how RUQL outperforms FAQL and QL in
non-stationary environments.

Categories and Subject Descriptors

1.2.6 [Computing Methodologies]: Artificial Intelligence—Learn-
ing

Keywords

Q-learning, Non-stationary Environment, Dynamics

1. INTRODUCTION

Q-Learning is one of the most widely-used and widely-studied
learning algorithms due to its ease of implementation, intuitiveness,
and effectiveness over a wide-range of problems [7]. Although
Q-learning was originally designed for single-agent domains, Q-
learning was also used (with reasonable success) in multi-agent set-
tings [3]. Even the gradient-based multi-agent learning algorithms
still relied on Q-learning as an internal component to estimate the
values of different actions [1, 2, 9].

Despite the popularity of Q-learning, advances in the formal
analysis of Q-learning in strategic interactions have only been made

*The work reported in this paper was supported in part by Emirates
Foundation grant #2010/107 , Program: Science and Engineering
Research Grants and by the British University in Dubai

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 610, 2013, Saint Paul, Min-
nesota, USA.

Copyright (©) 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1045

Michael Kaisers
Maastricht University, Netherlands

Michael.Kaisers @ maastrichtuniversity.nl

recently [4, 8]. Theoretical analysis showed that Q-learning in
some cases exhibits behavior in the policy space that (temporarily)
decreased the probability of playing actions with higher expected
payoffs. This counter-intuitive behavior is the result of updating
only the selected action: highly promising actions are updated more
often and are thus adjusted towards the correct value more quickly.
For example, if all actions are optimistically overestimated then
the more promising action loses its competitive edge and is played
less rather than more. We refer to this artifact as the policy-bias of
Q-learning. This policy-bias may be insignificant for single-agent
learning, but it creates a cascading effect in multi-agent interac-
tions, where the behavior of one agent influences the learning of
other agents [4, 8]. In addition, in non-stationary environments this
updating scheme may take many iterations to update the estimators
of non-optimal actions to their true value. This delayed response to
changes in the environment results in an inertia effect whenever the
optimal action changes.

The policy-bias problem occurs because an agent can execute
and get feedback for only one action at any time step. If, hypo-
thetically, the reward information for all actions (at every state)
were available at every time step, then the update rule would be
applied to all actions and the mismatch between theoretical and
actual behavior would disappear. Recently, a simple yet effective
modification to the Q-learning update equation was proposed: the
Frequency-Adjusted Q-learning (FAQL) [4]. FAQL addressed the
policy-bias of Q-learning by normalizing the update value of an ac-
tion with respect to the probability of choosing that action. In other
words, the less frequently-selected an action is, the more boost
FAQL will give to the update of the action. The previously reported
results (which we reproduce here in Section 5 for benchmarking)
show more stable and consistent dynamics for FAQL when com-
pared to QL [4]. However, FAQL also suffered from practical con-
cerns that limited the policy subspace for which the behavior was
improved. FAQL is discussed in detail in Section 2.

The algorithm we propose here, RUQL, addresses both the bias
of Q-learning and the practical concerns faced by FAQL. RUQL
repeats the update of an action inversely proportional to the prob-
ability of choosing that action. For example, if an action is to be
chosen for execution only 10% of the time, then the update of that
action (when finally chosen) shall be repeated 1/0.1 or 10 times.
As a result, every action will, in expectation, be updated an equal
number of times. We show in Section 3 that RUQL has a nice
closed-form expression that removes the need to actually repeat
the updates. We show both theoretically and experimentally that
the dynamics of RUQL are consistent and very comparable to the
dynamics of FAQL (which are the idealized dynamics of QL). Fur-
thermore, our proposed algorithm outperforms both QL and FAQL
in non-stationary settings (over wide-range of parameter values).

In summary, the main contributions of this paper are:

e A new reinforcement learning algorithm, RUQL, which builds
on the Q-learning algorithm but does not suffer from the
policy-bias problem of QL nor does it suffer from the practi-
cal concerns of FAQL.

e A mathematical derivation of a closed-form expression for
RUQL that makes the RUQL algorithm computationally fea-
sible.

e Theoretical analysis that shows the similarities and differ-
ences between RUQL and the most-related state-of-the-art
algorithm (FAQL).

e Experimental analysis that confirms the theoretical analysis
and compares the performance of RUQL to QL and FAQL.

The following section presents necessary background about Q-
learning and the related algorithms. We then introduce the algo-
rithm, RUQL, followed by theoretical and experimental analysis.
Finally, a summary and a discussion of the contributions conclude
the article.

2. Q-LEARNING

Q-learning, as we mentioned earlier, is one of the most widely-
used learning algorithms [7]. The algorithm is simple and relies
primarily on the following update equation:

Q" (s,a) = Q'(s,a) + a (r +y mazQ'(s,a’) — Q'(s,a))
)]
The function Q" (s, a) represents the expected discounted reward
at time ¢ that the agent believes it would get if it executes action a
at state s (or intuitively, what the agent believes, at time ¢, to be the
worth of action a at state s). The parameters o and ~y are tunable
learning parameters (o is called the learning rate and -y is called
the discount factor). The variables and s’ refer to the immediate
reward and the next state (respectively) after executing action a at
state s. Algorithm 1 illustrates how the Q-learning update equation
is typically used in practice.

Algorithm 1: Q-learning Algorithm

1.1 begin
1.2 Initialize function @ arbitrarily.
1.3 Observe the current state s.
14 repeat
1.5 Compute the policy 7 (s, a) using Q(s, a).
1.6 Choose an action a according to agent policy 7 (s, a).
1.7 Execute action a and observe the resulting reward r
and the next state s’.
1.8 Update Q(s, a) using Equation 1.
1.9 Set s < 5.
1.10 until done
1.11 end

The function Q" in itself does not specify explicitly which action
should an agent choose in a given state. The policy of an agent,
m(s,a), is a function that specifies the probability of choosing ac-

tion a at state 5. A (naive) definition of 7 (s, a) = argmaz, Q" (s,a’)

can result in arbitrarily bad policy, because the optimal action may
(initially) have low value of (). Instead, several definitions of 7
were proposed that ensured all actions (including actions that may

1046

appear sub-optimal) are selected with non-zero probability. These
definitions of 7 are often called exploration strategies [7]. The two
most common exploration strategies are the e-greedy exploration
and the Boltzmann exploration. We use in our experiments the
Boltzmann exploration which defines the policy (s, a) as follows:

Ql(s,a)
t e 7
m(s,a) = IR

Za/ e T

where the tunable parameter 7 is called the temperature. Ideally,
an agent should update the value of each action at every state (i.e.
Q(s,a)Vs, a) at every time step. However, since an agent can only
execute one action at a time and the agent will only receive feed-
back (reward) for the action that was actually executed, this ideal
scenario can not be realized.! As a result, in Q-learning, the rate
of updating an action relies on the probability of choosing that ac-
tion. The theoretical analysis of this limitation showed mismatch
between the theoretical dynamics of Q-learning and the obtained
actual dynamics [4, 8].

The Frequency Adjusted Q-learning algorithm (FAQL) was re-
cently proposed to overcome this limitation by scaling the learn-
ing rate inversely proportional to the policy. More formally, FAQL
modified the Q-learning update rule to be [4]:

Q" '(s,a) = Q'(s,a)+
7Qt(sva))

This nice and simple modification to the Q-learning update rule
suffered from a practical concern: the update rate becomes un-
bounded (approaches co) as m(s,a) approaches zero. Therefore
a safe-guard condition had to be added [4]:

a(r+ymaz,Q'(s',a")

o
(s, a)

Q) = Qo)+ min(1, L

ymazy Q'(s',a') — Q'(s, a)) @)

where [is a tuning parameter that safeguards against the cases
where 7 (s, a) is close to zero. The resulting algorithm is similar to
Algorithm 1 but with Line 1.8 modified to use Equation 2 instead
of Equation 1.

While introducing parameter 5 does make FAQL practically im-
plementable, the introduction of [also results in two undesirable
properties. The first undesirable property is reducing the effective
learning rate (instead of « it is now «() and therefore reducing the
responsiveness of FAQL.? The second and more important unde-
sirable property is what we refer to as the S-limitation. Once the
probability of choosing an action, 7(s,a), goes below 3, FAQL
becomes identical to the original QL. In other words, FAQL suf-
fers from the same policy-bias problem when the policy 7 becomes
lower than S. This is problematic because the lower the probabil-
ity of choosing an action is, the more important it is to adjust the

Joe (r+

!One possible approximation to having this full reward information
is to keep track of the most recent reward received for every state-
action pair. A learning algorithm can then update the value of every
state-action pair at every time-step using the most recent reward.
This approximation, however, quickly becomes intractable as the
number of states and actions increase (since all state-action pairs
need to be updated at every time step, not just the pair that was
recently encountered).

*In our experiments we had to take the effective learning rate into
account when we compared FAQL to our algorithm RUQL, setting
QRUQL = AFAQLP.

learning rate (to account for the infrequency of choosing that ac-
tion). Our proposed algorithm RUQL does not suffer from these
limitations and we show in the experiments how this can improve
performance in non-stationary settings.

3. THE REPEATED-UPDATE Q-LEARNING,
RUQL
Our proposed algorithm is based on a simple intuitive and idea.
If an action is chosen with low probability 7 (s, a) then instead of
updating the corresponding action value Q(s, a) once, we repeat
the update (S) times. Algorithm 2 shows the naive implementa-

tion of this idea. Line 2.8 is the only difference between Algorithm
2 and 1.

Algorithm 2: RUQL (Impractical Implementation

2.1 begin
2.2 Initialize function () arbitrarily.
2.3 Observe the current state s.
24 repeat
2.5 Compute the policy 7 using Q).
2.6 Choose an action a according to agent policy 7.
2.7 Execute action a and observe the resulting reward r
and the next state s’
2.8 for L)J times do
2.9 \ Update Q(s, a) using Equation 1.
2.10 end
2.11 Set s + 5.
2.12 until done
2.13 end

This simple modification to the QL algorithm addresses the policy-
bias but has a serious drawback. As (s, a) gets lower the number
of repetitions increases and quickly becomes unbounded as (s, a)
approaches 0. Unlike FAQL, here the computation time (not the
value of the update) is what becomes unbounded as 7(s,a) ap-
proaches zero. In the remainder of this section we will derive a
closed-form expression for the RUQL algorithm. The closed-form
expression removes the need for actually repeating any update and
therefore makes RUQL computationally feasible.

First, we expand the recursion in the Q-learning equation accord-
ing to Steps 2.8-2.10 in Algorithm 2:

[1—alQ"(s,a) + alr + y mazy Q' (s',a)]
= (- a] (1~ a@\(s,0) + alr+
ymaza Q(s, a)]) +alr+~v
mazqy Q' (s',a’)]
= o) m e Qe (s,0) 4 (
alr +ymazy Q' (s, a))
+[1 = alafr + vy maz, Q"

Q"™ (s,a)

1 (S/’ al)]

.
+1—al L"<Sva>Joz[7" + 7 mazy

Q- Lrmay] (s, al)])

To simplify the above equation, we assume that the value maz,
Q'""(s',a’) is resolved once for |1/7(s,a)] > i > 1. In other

1047

words, we assume the maximum value at a given state, maz, Q(s, a’),
does not significantly change between repeated updates. Such an
assumption is reasonable with a sufficiently small learning rate o’
With this assumption we get:

1- a}LﬁJQt(s, a) + afr+
Q' (', amaz)] (14 (1 —)+
(1-a)’+..+(1- a)LﬁO
= [1- a}LﬁJQt(s,a) +alr+
[L—(1— o)t 7e]
] 1-(1-a)

o TBIQ! (s,0) + [1 -
(1) D | +9Q" (5, amar)]

Q™ (s,a) =

1Q" (', amax)

= [1-

We can also remove the floor notation for a better generalization,
and thus we end up with RUQL’s main update rule:

(1 — 7™ Q' (s,a) +
1= (1= @)D +7Q (s, amas)] 3)

This equation can then replace Lines 2.8-2.10 in Algorithm 2
to produce the efficient implementation of RUQL. The equation of
RUQL, as Section 5.1 verifies and the following section discusses,
changes the dynamics of learning by giving more weight to more
recent reward samples for actions with low probability of being
chosen.

Q" (s,a) =

4. THEORETICAL ANALYSIS

Before presenting the theoretical aspects of RUQL, it is worth-
while to first clarify, intuitively, why RUQL’s update rule makes
sense. If the probability of choosing an action a approaches 1 (the
action is selected almost always), then RUQL’s update equation re-
duces to the original Q-learning update equation (Equation 1). This
reduction makes sense because for an action that is selected all
the time, Q-learning update equation works perfectly fine. On the

other hand, if 7 (s, a) approaches 0, then the term (1 —) o ap-
proaches zero as well (because (1 — a) < 1). In this case RUQL’s
update equation reduces to r + YQ*(s’, @maz). In other words,
as 7(s,a) decreases, RUQL places more weight on the sample
obtained [+ YQ'(s’, Amaz)] rather than the current expectation
Q(s,a). Giving more weight to the sample makes sense, because
the smaller 7 (s, a) gets the more out-of-date Q(s, a) becomes (due
to the infrequent updates).

Both RUQL and FAQL provide an algorithmic implementation
to address the policy-bias of Q-learning. However, two algorithms
resolve this problem in different ways: FAQL normalized the learn-
ing rate of the Q-learning update while RUQL repeats Q-learning
update rule. In the remainder of this section we analyze the con-

3The assumption simplifies the update and the dynamics for the
case s’ = s and @’ = a (otherwise it does not make a difference).
If s = sand a’ = a, then Q(s’, a’) changes from a repeated up-
date to the next. In fact, without this assumption we also need to
consider the switch between the cases during the repeated updates.
For example, when an action that is being updated is not the best
action initially but becomes the best action during the repeated up-
dates.

nection between RUQL and FAQL (the closest state-of-the-art) to
highlight their similarities and differences.
Both FAQL and RUQL yield equivalent behavior in the limit of

an infinitesimal learning rate «w. Consider the term (1 — «) He) in
RUQL’s update equation. This term can be expanded using the Tay-
lor series expansion at « = 0 and we get 1 — ﬁ — O(a?). For
small values of v, the higher order terms are negligible and RUQL’s
update equation reduces to the ideal (without the safeguard) equa-
tion of FAQL.

The advantage of RUQL is that the update rule does not need the
additional [parameter and therefore RUQL does not suffer from
the two limitations that were described in Section 2 (particularly
the -limitation). FAQL on the other hand has the advantage that it
behaves in expectation according to the idealized dynamical model
of Q-learning (without the policy-bias), even for learning rates that
are not infinitesimal (as long as the probability of choosing an ac-
tion is larger than (). This is not the case for RUQL. However, the
deviations of RUQL are bounded by an O(a?) term, which for real-
istic small learning rates becomes negligible. More importantly, the
deviations of RUQL are independent of the policy, unlike FAQL.

S. EXPERIMENTAL ANALYSIS

Our experimental analysis consists of three parts. The first two
parts focus on verifying the theoretical arguments we have made in
the previous section using simple and small-scale domains (one or
two agents), while the the third part provides evaluation in a large-
scale domain. The first part (Section 5.1) aims at verifying the
equivalence of RUQL and FAQL for sufficiently small values of the
learning rate ov. The second part of the experiments (Section 5.2)
uses a variation of the multi-armed-bandit problem to expose the
effect of the S-limitation and how it separates RUQL from FAQL
(which in turn results in RUQL outperforming both FAQL and QL).
In the third part we evaluate the three algorithms using the social
learning domain with hundreds of agents. In all three scenarios
each agent learns () values for a single state (i.e. we do not consider
multi-state learning).

5.1 Prisoner’s Dilemma Game

This section compares the (experimental) dynamics of Q-learning,
FAQL, and RUQL in the Prisoner’s Dilemma game (PD). Figure 1
shows the dynamics of the three algorithms for three different ini-
tial value levels of Q. For all three algorithms the temperature (for
the Boltzmann exploration) was set to 0.1. The learning rate o was
set at 10~° for both Q-learning and RUQL, while for FAQL both
a and § were set to 1072, Table 1 shows the payoff values for the
PD game. The above setting was used before in the literature [4]
and we use the same setting here for benchmarking.

c d
c|55]06
d| 60| 1,1

Table 1: The prisoner’s dilemma game.

From Figure 1, we can see that the dynamics of Q-learning and
FAQL are consistent with the results reported before [4]. We can
also see that the dynamics of both FAQ and RUQL are very sim-
ilar and close to the expected (theoretical) Q-learning dynamics,
despite the conceptually different update equations. RUQL update
rule indeed change the dynamics of learning.

1048

5.2 Multi-Armed Bandit With Switching Means

In order to tease out the differences between RUQL and FAQL,
we propose a simple variation of the multi-armed bandit (MAB)
problem. The original MAB is a single-agent problem where each
agent can choose between two actions. Each action ¢ follows a nor-
mal distribution with a mean p; and standard deviation ¢;, where
w; € {0,1} and o; € {0,0.1,0.2,0.3,0.4}. The modification we
do here is switching the value of . for the two actions every dura-
tion D. In other words, having D = 10000 means that from time
0 to time 9999 o = 0 and @1 = 1 then from time 10000 to time
19999 pp = 1 and p; = 0 and so on.

This simple modified domain allows us to study two desired
properties of learning algorithms: responding (quickly) to genuine
change in the payoff mean of a particular action (e.g. when an
opponent changes its strategy) while resisting hasty response to
stochastic payoff samples (e.g if the mean is not changing but the
payoff has high variance).

For different values of D and o we collect the average payoff
over 100000 consecutive time steps, and then compute both the
mean and the standard deviation (of this average payoff) across 20
independent simulation runs. Table 2 summarizes the results of the
MAB domain (with switching 1) for QL, FAQL, and RUQL and
with the following settings. The temperature 7 is set to 0.2. The
learning rate o was set to 0.0004 for both QL and RUQL, while
it was set to 0.02 for FAQL (to account for the § = 0.02). The
discount factor y was set to 0.9.

We can observe how RUQL compromises some stochastic sta-
bility for adaptability. Even when there is no switching in u, the
average payoff for RUQL is 0.99 as opposed to the average payoff
of 1 that was attained by both QL and FFAQL. However, as the
switching of p takes place, the adaptability of RUQL results in
superior performance. For example, when the switching duration
D is set to 10000, both QL and FAQL can not achieve more than
0.5 average payoff, while RUQL achieves 0.8 average payoff that
slightly goes down with higher stochasticity (higher o). It is also
important to note the identical performance of FAQL to QL in this
setting. The reason is the S-limitation, which was described earlier
in Section 2.

Figure 2 illustrates dynamics in more detail by plotting the achieved
payoff for the three algorithms over time (averaged over 1000 con-
secutive time steps and across 20 independent runs). Notice here
that both QL and FAQL adapt so slowly to the switch in y that they
simply continue choosing the same action across the whole simu-
lation run. On the other hand, RUQL adapts quickly to the change
in f.

While the above settings of the learning rate (o« = 0.0004) and
the discount factor (y = 0.9) are typical, one has to wonder how
sensitive the algorithms (QL, FAQL, and RUQL) are for different
values of « and . Table 3 shows the average payoff for different
values of o and for different values of D.* The deviation o was set
to 0.4 and v = 0.9. The results for D = 0 were omitted because
the results were very similar across different v values (similar to
the first row of Table 2, but with RUQL slightly improving to reach
1). As we can see from the table, RUQL still achieves better perfor-
mance across different values of o (particularly for D = 10000),
but the gap in performance shrinks as « increases. Table 4 shows
the average payoff for different values of «y and for different values
of D. The deviation o was kept at 0.4 while a was set to 0.0004.5

“The values of « in the table refer to the values used with QL
and RUQL. For FAQL, and as we have mentioned before, we use
arAQL = o

>Note that araqr was set to 0.02.

H
o o
S ~
| N
o
o o
¥ ~
o o
S S

% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1 % 0.2 0.2 0.6 0.8 1
X X X
1 1 1
(a) Q-learning (b) FAQL (c) RUQL
1 1 1
0.8 / 0.8 0.8
0.6 0.6 0.6
yl yl y1
0.4 0.4 0.4
0.2 0.2 0.2
0~ 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
1 1 1
(d) Q-learning (e) FAQL (f) RUQL

=
[y

3
-

o o o o
[\ [N [e)} [ee]
3
-

o o o o
[\ [N [e)} [e¢]
%

-

o o o o
N = o [ee]

OO 0.2 0.4 0.6 0.8 1 OO 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

* * *

(g) Q-learning (h) FAQL (i) RUQL

=
o

Figure 1: The learning dynamics of Q-learning (left), FAQL (middle), and RUQL (right) for the PD game. Each figure plots the
probabilty of cooperating for Player 1 (x-axis) against the probability of cooperation for Player 2 (y-axis). The top row shows the
dynamics when the initial Q-values are around 0, the middle row shows the dynamics when the initial Q-values are around 2.5, and
the bottom row shows the dynamics when the initial Q-values are around 5. For all figures, the algorithms were allowed to run for
500,000 time steps.

1049

b 7 0 0.1 0.2 0.3 0.4
oo: QL 1+£107° 1+3%1077 1+6%1077 1+8%1077 1+107°
FAQL 14+2%107° 1+3%107* 14+6%107% 14+8%107% 141073
RUQL | 099+2%107%]099+2+10"% | 0994+2%1072 | 0.99+2%1072 | 0.99+3% 103
20000: QL | 0.6+2%10~% | 0.6+3+10°% | 06610 | 0.6 8101 0.6+£107°
FAQL 06+3%x107* | 06+3%10"* | 0.6+6+10"* | 0.6 £8x107* 0.6+1073
RUQL 0.89 £ 0.05 0.88 + 0.056 0.88 + 0.056 0.88 £ 0.056 0.87 +0.06
10000: QL | 0.5+2+10"F | 05+3%10"%F | 05+6%10" % | 0.5£8%10* 05+1073
FAQL 05+2%107* | 05+3%107% | 05+6%10"% | 0.5+8%107* 0.5+1073
RUQL 0.80 £ 0.056 0.79 £ 0.06 0.79 £ 0.06 0.79 £+ 0.06 0.78 4+ 0.07

Table 2: The mean payoff (and standard deviation) for the MAB-switch game, for different values of D and o and for the three algorithms QL,
FAQL, and RUQL. RUQL achieves superior performance when D < oo, with small deterioration as o increases. The first and second columns from

the left are consistent with the results reported earlier in the literature.

+QL
o |- - -FAQL
~——RUQL
0.
0.
0
3
8,0
0.

iteration 4

Figure 2: Average payoff of QL, FAQL, and RUQL for the MAB-
switch domain, with « = 0.0004,7 = 0.2,0 = 0.1,y = 0.9, and
D = 10000. RUQL adapts reasonably well with the switching of
while QL and FAQL have identical behavior due to the S-limitation.

Similar behavior can be observed: RUQL is superior for different
values of v but the gap shrinks as v decreases.

5.3 Social Learning

In this section we compare RUQL to QL and FAQL in a social
learning setting. Social learning studies how a group of agents in-
teract and learn from one another to reach a norm [5]. A norm or a
convention is an unwritten law that a society of agents agree on. In
a multi-agent setting, a convention may refer to a dominant coordi-
nation strategy, a common communication language, or the right of
way among a group of robots. Upon establishing a norm, the over-
head of coordination drops and the reliability of the multi-agent
system increases [6].The social learning process works as follows:
a pair of agents are selected randomly from the population to inter-
act with one another. The pair then learn from this interaction. The
process repeats until the population reach convergence. The co-
ordination game is the most widely used game for studying social
learning as it presents an agent population with two equally plau-
sible norms to choose from (i.e. two Nash equilibriums). Table 5
shows the coordination game that was used before as a benchmark

(5].

a b
a| 44 | -1-1
b | -1-1]| 44

Table 5: The coordination game.

Here we evaluate social learning in a population of 225 agents
playing the coordination game. Each agent was randomly initial-
ized to one of the two conventions (i.e. the Q for one action was
initialized to 1 while the Q of the other action was initialized to 0).
Table 6 shows the average payoff that is collected from time step
5000 to time step 20000. The average is computed over 20 inde-
pendent runs for different values of o and . The temperature 7
was set to 0.2. Again we see here how RUQL performs generally
better than QL and FAQL, but the gap in performance vanishes as
~ approaches 0 or « increases.

N v 0.9 0.6 0
0.0001: QL | 2.13£0.21 | 212 £0.22 | 2.27 £ 0.42
FAQL | 3.6740.31 | 3.754+0.24 | 3.78 £ 0.21
RUQL | 3.8040.19 | 3.80 £ 0.19 | 3.79 + 0.21
0.0009: QL | 2.61£0.79 | 3.81£04 110
FAQL | 3.7940.58 440 440
RUQL 440 440 440

Table 6: The mean payoff (and standard deviation) for the social
learning domain, for different values of o and ~ and for the three algo-
rithms QL, FAQL, and RUQL. RUQL achieves superior performance
but the gap with QL and FAQL shrinks as « increases or -y decreases.

6. CONCLUSIONS

We presented in this paper the Repeated Update Q-learning, a
novel extension to the Q-learning algorithm that addresses the prob-
lem of infrequent action updates in Q-learning. Unlike the closest
state-of-the-art algorithm, our algorithm behavior remains consis-
tent even for arbitrarily small policy. We show both theoretically
and experimentally that, despite the clear difference in the under-
lying update equation, our algorithm reduces to FAQL (the closest
state-of-the-art algorithm) for small . Furthermore, our algorithm
does not have the practical concerns of FAQL and we show ex-

1050

b @ 0.0004 0.0016 0.0064 0.0256
20000: QL | 0.6 £107° [0.56 £2% 10 ° [0.87£2%10° | 097+107°
FAQL 0.6+107% | 0.7+7%107% | 091 £3%1072 | 097+1073
RUQL | 0.8740.06 | 0.8740.04 0.93 +0.01 0.98+2%107°
10000: QL | 0.5+ 1073 05+1073 0.77£2%10 2| 094+10 3
FAQL 0.5+1073 0.5+ 0.01 0.85+7%1072 | 0.96 £2%1073
RUQL | 0.78 +0.07 0.79+0.1 0.91 +0.01 0.97+4x103

Table 3: The mean payoff (and standard deviation) for the MAB-switch game, for different values of D and « and for the three algorithms QL,
FAQL, and RUQL. RUQL achieves superior performance but the gap with QL and FAQL shrinks as « increases.

g
b 0.9 0.6 0

20000: QL | 0.6 £ 103 0.68+ 1073 0.85+ 1073
FAQL 0.64+1072 | 0.86+3%1073 | 0.91 £2% 1073
RUQL | 0.874+0.06 | 0.92+2%107% | 0.92+2% 1073

10000: QL | 0.5+1077 [0.58 £2% 10 ° | 0.72+10°
FAQL 0.5+107% | 0.78 +4% 1072 | 0.82+3% 1073
RUQL | 0.784+0.07 | 0.83+3%10"2 | 0.833%103

Table 4: The mean payoff (and standard deviation) for the MAB-switch game, for different values of D and ~ and for the three algorithms QL,
FAQL, and RUQL. RUQL achieves superior performance but the gap with QL and FAQL shrinks as « increases.

perimentally how this can result in superior performance in non-
stationary environments.

As we mentioned earlier, there is a class of multi-agent learn-
ing algorithms that attempt to learn the interaction policy explicitly
[2, 1, 9]. These algorithms use some variation of gradient ascent
optimization, where the policy gradient follows the action values.
Consequently, most of these algorithms still use Q-learning as an
internal component for estimating the values of different action.
One interesting future direction that we are pursuing is the effect
of replacing QL with RUQL as an internal component in gradient
learners. Preliminary results show considerable improvements in
the benchmark domains we have tried and more thorough analysis
is currently taking place.

7. REFERENCES

[1] S. Abdallah and V. Lesser. A multiagent reinforcement
learning algorithm with non-linear dynamics. Journal of
Artificial Intelligence Research, 33:521-549, 2008.

[2] M. Bowling. Convergence and no-regret in multiagent
learning. In Proceedings of the Annual Conference on
Advances in Neural Information Processing Systems, pages
209-216, 2005.

[3] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings of

1051

[4

[5

(6

[7

[8

[9

]

1

]

]
]

—

the National Conference on Artificial intelligence/Innovative
Applications of Artificial Intelligence, pages 746-752, 1998.
M. Kaisers and K. Tuyls. Frequency adjusted multi-agent
g-learning. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1 -
Volume 1, AAMAS 10, pages 309-316, Richland, SC, 2010.
International Foundation for Autonomous Agents and
Multiagent Systems.

S. Sen and S. Airiau. Emergence of norms through social
learning. In Proceedings of the international joint conference
on Artifical intelligence, IJCAI’07, pages 1507-1512, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.
T. Sugawara. Emergence and stability of social conventions in
conflict situations. In Proceedings of the international joint
conference on Artifical intelligence, pages 371-378, 2011.

R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1999.

M. Wunder, M. L. Littman, and M. Babes. Classes of
multiagent g-learning dynamics with e-greedy exploration. In
International Conference on Machine Learning(ICML), pages
1167-1174, 2010.

C. Zhang and V. Lesser. Multi-Agent Learning with Policy
Prediction. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, pages 927-934, Atlanta, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

