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ABSTRACT

This paper introduces a teacher-student framework for reinforce-

ment learning. In this framework, a teacher agent instructs a stu-

dent agent by suggesting actions the student should take as it learns.

However, the teacher may only give such advice a limited number

of times. We present several novel algorithms that teachers can

use to budget their advice effectively, and we evaluate them in two

experimental domains: Mountain Car and Pac-Man. Our results

show that the same amount of advice, given at different moments,

can have different effects on student learning, and that teachers can

significantly affect student learning even when students use differ-

ent learning methods and state representations.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents

General Terms

Algorithms, Experimentation

Keywords

Reinforcement Learning; Agent Teaching; Advice Taking

1. INTRODUCTION
Using reinforcement learning (RL), agents can autonomously

learn to master sequential-decision tasks. In these tasks, an agent

must develop a control policy for taking actions in an environment.

RL agents have traditionally been trained and used in isolation, but

research is beginning to produce ways for them to interact produc-

tively with other agents and with humans.

This work focuses on how an RL agent could serve as a teacher

for a task it has mastered. We begin with another RL agent in the

role of the student, but we prefer teaching approaches that could

potentially be used with human students as well. This limits us to

human-understandable teaching methods, prevents teachers from

assuming any access to a student’s internal workings, and prevents

students from simply starting with the teacher’s knowledge. Fur-

thermore, it requires teachers to be able to instruct students that

may learn and perceive their environment differently.

As a motivating example for RL agents as teachers, consider the

fast-growing industry of computer games. One measure of a suc-
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cessful game is how many humans learn to play it. Modern games

often have built-in training sessions to help them; currently, this is

additional content created by game developers. Instead, perhaps

RL agents could learn to play these games autonomously and then

teach human players. This could reduce the amount of developer

time required to produce training content.

There are many possible ways to help agents learn [1, 13], but

few are also applicable to human students. One that is applicable is

action advice: as the student practices, the teacher suggests actions

to take. We advocate this method because it requires minimal sim-

ilarity between teachers and students — only a common action set.

The agents may use different learning algorithms, and they may

have different ways of representing the state of their environment.

This is particularly important in light of the long-term goal of hav-

ing human students, but it is also important to enable agents with

different implementations (e.g., created by different companies) to

teach each other without significant re-engineering.

Another assumption we make for this type of teaching is that

teachers cannot give unlimited quantities of advice. Our primary

reason for this restriction is that human students would have limited

patience and attention. However, it is also true that some domains

limit communication between agents. Furthermore, a teacher that

over-advises a student could actually hinder its learning, if the dif-

ferences between them are large enough.

This paper studies how an RL agent can best teach another RL

agent using a limited amount of advice. The teacher observes the

student and can give advice a fixed number of times, but cannot

observe or change anything internal to the student. We propose a

set of teaching algorithms: early advising, importance advising,

mistake correcting, and predictive advising. We evaluate these

algorithms experimentally in two domains: Mountain Car and Pac-

Man. The results show that the same amount of advice, given at dif-

ferent moments, can have different effects on student learning, and

that teachers can significantly affect student learning even when

students use different learning methods and state representations.

2. REINFORCEMENT LEARNING
In reinforcement learning, an agent learns through trial and error

to perform a task in an environment. As the agent takes actions,

it receives feedback in the form of real-valued rewards. RL algo-

rithms use this information to gradually improve an agent’s control

policy in order to maximize its total long-term expected reward.

At each step, the agent observes the state s of its environment.

Using its policy π, it selects and performs an action a, which alters

the environment state to s′. The agent observes this new state as

well as a reward r, and it uses this information to update its policy.

This cycle repeats throughout the learning process, which is often

broken into a sequence of independent episodes.
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A common way to represent a policy is with a Q-functionQ(s, a),
which estimates the total reward an agent will earn starting by tak-

ing action a in state s. Given an accurate Q-function, the agent can

maximize its rewards by choosing the action with the maximum

Q-value in each state. Learning a policy therefore means updat-

ing the Q-function to make it more accurate. Even in the early

stages of learning, the agent chooses actions with maximum Q-

values most of the time, but to account for potential inaccuracies in

the Q-function, it must perform occasional exploratory actions. A

common strategy is ǫ-greedy exploration, where with a small prob-

ability ǫ, the agent chooses a random action.

In an environment with a reasonably small number of states, the

Q-function can simply be a table of values with one entry for each

state-action pair. Basic RL algorithms make updates to individ-

ual Q-value entries in this table. However, in some larger envi-

ronments, states cannot be enumerated and need to be described by

features {f1, f2, ...}. The Q-function is then an approximation, and

a common form is a linear function Q(s, a) =
∑

i
wifi. Learning

a policy then means updating the weights {w1, w2, ...}.
For the experiments in this paper, we use Q(λ) and Sarsa(λ)

with linear Q-function approximation [12]. These are well-known

RL algorithms that can incorporate advice with minimal modifica-

tion. Since they already allow for off-policy exploratory actions,

they can simply treat advice like a particularly lucky form of ex-

ploration. These algorithms have four parameters: the exploration

rate ǫ, the learning rate α, the eligibility-trace parameter λ, and the

discount factor γ. We report their values in each task for repro-

duceability but we omit a detailed discussion of them.

The weights {w1, w2, ...} need to be given initial values. The

usual choices are optimistic, so that weights are adjusted down-

wards over time, or pessimistic, so they are adjusted upwards. We

find that this choice is important in the context of teaching with ad-

vice. With optimistic initialization, agents focus their attention on

unexplored actions, which means that they delay repeating advised

actions. With pessimistic initialization, agents have no such habit

and can benefit much more from advice. The experiments in this

paper therefore use pessimistic initialization.

3. TEACHING ON A BUDGET
Suppose that an RL agent has learned an effective policy π for a

task. Using this fixed policy, it will teach another RL agent that is

beginning to learn the same task. As the student learns, the teacher

will observe each state s the student encounters and each action a

the student takes. In n of these states, the teacher may advise the

student to take the “correct” action π(s).
How should the teacher spend its advice most effectively? The-

oretically calculating this value is unlikely to be possible except in

the simplest of RL problems. We instead take an experimental ap-

proach to this question, proposing and testing several algorithms

for deciding when to give advice.

3.1 Early Advising
Students should benefit more from advice early on, when they

know very little. Our first approach simply has the teacher give

advice in the first n states the student encounters. This approach,

which we call early advising, serves as our baseline.

procedure EARLYADVISING(π, n)

for each student state s do

if n > 0 then

n← n− 1
Advise π(s)

3.2 Importance Advising
When all states in a task are equally important, early advising

should be an effective strategy. However, we hypothesize that in

some tasks, some states are more important than others, and saving

advice for more important states would be a more effective strategy.

Consider that games often have calmer and tenser moments. In

certain situations, the right move can win the game or the wrong

move can lose it; in others, any move is acceptable and none are

disastrous. This is an intuitive definition of state importance, which

we will soon quantify with a function I(s).
A teacher that is conscious of state importance could give ad-

vice only when it reaches some threshold t. We call this approach

importance advising.

procedure IMPORTANCEADVISING(π, n, t)

for each student state s do

if n > 0 and I(s) ≥ t then

n← n− 1
Advise π(s)

When t is 0, this becomes equivalent to early advising, assuming

importance values are non-negative.

Because our teachers are RL agents with Q-functions, they have

a natural way to calculate I(s). Recall that a Q-value Q(s, a) is an

estimate of the rewards ultimately achievable by taking action a in

state s. If the Q-values for all the actions in s are the same, then it

does not matter which one is taken, and s is unimportant. However,

if some actions in s have larger Q-values than others, then it does

matter, and s has some importance. For this paper, we therefore

define state importance as:

I(s) = max
a

Q(s, a)−min
a

Q(s, a)

This measure was introduced by Clouse [3] in his work on ap-

prenticeship learning, but it was used there to approximate a learner’s

confidence in a state. Here, we compute I(s) with the teacher’s

fully-learned Q-function rather than the student’s partially-learned

one, and in this context it is a better indicator of state importance

than agent confidence.

3.3 Mistake Correcting
Even if a teacher saves its advice for important states, it may

end up wasting some advice in states where the student had already

intended to take the correct action. Advice can only have an effect

when used in states where the student makes mistakes. If teachers

could restrict their advice to these states, they should be able to

improve upon both of the above methods.

However, one of our key assumptions in this work is that teach-

ers have no direct access to student knowledge. To make it possi-

ble for teachers to spend advice exclusively on mistakes, students

would need to announce their intended actions in advance and give

teachers an opportunity to correct them. This introduces additional

communication into the framework that may not be convenient in

all situations, but the approach serves as a useful upper bound. We

call this approach mistake correcting.

procedure MISTAKECORRECTING(π, n, t)

for each student state s do

Observe student’s announced action a

if n > 0 and I(s) ≥ t and a 6= π(s) then

n← n− 1
Advise π(s)

When t is 0, this approach ignores state importance and corrects

all mistakes.
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3.4 Predictive Advising
Although teachers cannot directly access student knowledge, they

may be able to infer students’ policies from their behavior. A

teacher observes the states a student encounters and the actions it

takes. Using these observations as training data, the teacher can

train a classifier to predict student actions, and use these predic-

tions in place of student announcements. We call this approach

predictive advising.

procedure PREDICTIVEADVISING(π, n, t)

for each student state s do

Predict student’s intended action a

if n > 0 and I(s) ≥ t and a 6= π(s) then

n← n− 1
Advise π(s)

This approach approximates mistake correcting, but has the ad-

vantage of not requiring additional communication from the stu-

dent. If a teacher’s action predictor performs perfectly, predictive

advising becomes equivalent to mistake correcting. When it makes

inaccurate predictions, the teacher sometimes wastes advice, mak-

ing predictive advising more like importance advising. Inaccurate

predictions can also make the teacher miss opportunities to give

useful advice. Although other such opportunities may arise later,

the delay of useful advice could make predictive advising perform

worse than importance advising.

Many algorithms for supervised learning could potentially be ap-

plied to this classification task. In this paper we use a Support

Vector Machine, as implemented in the SVM-Light software pack-

age [4]. The details of the SVMs depend upon the teacher’s state

representation and are discussed in the sections describing our ex-

perimental domains, but in general, the SVMs map state features

(as the teacher sees them) to student actions.

Each student state-action pair generates one training example.

The teacher trains a new SVM after each episode using training ex-

amples from the previous episode. Average SVM training times are

approximately one second. This is an inconspicuous delay between

episodes, but it could be disruptive during episodes, which is why

we do not update the SVMs more often.

Note that this classification task is inherently challenging for sev-

eral reasons. First, students are constantly learning and will likely

produce inconsistent training data because their behavior is non-

stationary. Second, students sometimes take random exploration

steps, which means the data will be noisy. Third, the student’s state

representation can be different from the teacher’s, which means the

hypothesis space of the classifier may not even contain the student’s

policy. Despite these challenges, our results will show that useful

prediction is achievable in some scenarios.

4. EXPERIMENTAL DOMAINS
We evaluate these four teaching algorithms in two experimental

domains. Mountain Car is a well-understood benchmark domain

and Pac-Man is a complex stochastic game.

4.1 Mountain Car
In the Mountain Car task [10], the agent is a car in the two-

dimensional environment pictured in Figure 1 (left). There are

three actions the agent can take: accelerate in the +x direction,

accelerate in the −x direction, or do not accelerate at all. The ef-

fects of these actions are determined by a simple physics simula-

tion. The car begins each episode with zero velocity at the bottom

of the mountain, and the episode ends when it reaches the goal at

the top, or after 500 steps. The car’s motor is underpowered so that
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Figure 1: Left: the Mountain Car slope, where x is the car’s

location. Right: the Pac-Man maze.

it can only reach the top by oscillating back and forth to build mo-

mentum. The learner receives a -1 reward at every step until the

episode ends.

States in this domain are points in a space of two dimensions:

the car’s position x and velocity v. This continuous space is usu-

ally discretized with tile coding [12]. A k× k grid is laid across it,

and each square tile in the grid produces a feature whose value is

1 if (x, v) falls within that tile and 0 otherwise. There are m such

tilings, each offset by a different amount, so the state representation

consists of mk2 tile features. To perform linear Q-function approx-

imation with tile coding, each action associates a different weight

with each tile. A Q-value Q(s, a) is the sum of action a’s weights

for the m active tiles in state s.

To perform experiments in which the student and teacher use

different state representations, we vary k and m. We select two tile

codings in which both Q(λ) and Sarsa(λ) succeed: one coarser with

k = 8,m = 16 and one finer with k = 16,m = 8. Both allow

agents to achieve an average reward of roughly -150, but the first

setting reaches this asymptotic performance in about 100 episodes,

while the second takes about 300 episodes.

Mountain car is not a task in which single moves can “win” or

“lose” an episode, but its states do have a range of importance.

Figure 2 (left) shows how I(s) varies in a typical episode experi-

enced by a coarse-coding Sarsa(λ) teacher. Each teacher has its

own range for I(s), but the oscillating pattern of rising importance

occurs for all teachers. This indicates that importance-based advis-

ing may be applicable in this domain.

Action prediction in Mountain Car is a straightforward mapping

of a state (mk2 tile features) to one of the three actions. This is done

with a multi-class version of SVM-Light using a linear kernel. We

keep most of the SVM-Light parameters at their default values, but

the margin/error tradeoff C is tuned to 10000 by having teachers

predict their own actions.

These tuning experiments also provide an indication of how well

teachers should be able to predict student actions in this domain.

Unfortunately, at best, the prediction accuracy is roughly 50%. While

this is better than random guessing (33%), we do not expect predic-

tive advising to approximate mistake correcting under these condi-

tions. The reason for this low accuracy is likely that the number of

features (1024-2048) is large compared to the number of training

examples (150-500). Providing more training data would normally

improve performance, but not necessarily when the data is non-

stationary, as student behavior is. This tension between the need

for more data and the need for recent data makes action prediction

difficult in this domain.

4.2 Pac-Man
Pac-Man is a 1980s arcade game in which the player navigates

a maze like the one in Figure 1 (right), trying to earn points by
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touching edible items and trying to avoid being caught by the four

ghosts. We use an implementation of the game provided by the Ms

Pac-Man vs. Ghosts League [9], which conducts annual competi-

tions. Ghosts in this implementation chase the player 80% of the

time and move randomly the other 20%.

Pac-Man episodes all occur in the same maze. The agent has

four actions — move up, down, left, and right — but in most states

only some of these actions are available. Four moves are required

to travel between the small dots on the grid, which represent food

pellets and are worth 10 points each. The larger dots are power

pellets, which are worth 50 points each, and also cause the ghosts

to become edible for a short time, during which they slow down

and turn to fleeing instead of chasing. Eating a ghost is worth 200

points and causes the ghost to respawn in the lair at the center of

the maze. The episode ends if any ghost catches Pac-Man, or after

2000 steps.

This domain is discrete but has a very large state space. There

are 1293 distinct locations in the maze, and a complete state con-

sists of the locations of Pac-Man, the ghosts, the food pellets, and

the power pills, along with each ghost’s previous move and whether

or not it is edible. The combinatorial explosion of possible states

makes it essential to approach this domain through high-level fea-

ture construction and Q-function approximation.

Useful high-level features tend to describe distances between

Pac-Man and other objects of interest. Action-specific features are

more useful than global features. For example, a global feature

might be “the distance from Pac-Man to the nearest food pellet.”

Making this feature specific to action a, it becomes “the distance

from Pac-Man to the nearest food pellet after Pac-Man executes a.”

When using action-specific features, a feature set is really a set of

functions {f1(s, a), f2(s, a), ...}. All actions share one Q-function,

which associates a weight with each feature. A Q-value isQ(s, a) =
w0 +

∑
i
wifi(s, a). To achieve gradient-descent convergence, it

is important to have the extra bias weight w0 and also to normalize

the features to the range [0, 1].
We create agents with different state representations in this do-

main by defining two distinct feature sets. One feature set consists

of 16 features that count objects at a range of distances from Pac-

Man. The other consists of 7 heavily-engineered distance-related

features. These features are not fully documented here for space

reasons, but their implementation is available upon request.

A perfect score in an episode would be 5600 points, but this is

quite difficult to achieve (for both humans and agents). An agent

executing random actions earns an average of 250 points. The

16-feature set allows an agent to reach an average of 2600 points

per episode, successfully eating most of the pellets and the occa-

sional edible ghost. The 7-feature set allows an agent to learn to

catch more edible ghosts and achieve a per-episode average of 3800

points. We therefore refer to the 16-feature set as “low-asymptote”

and the 7-feature set as “high-asymptote.”

In Pac-Man, some moves can lose the game or achieve large re-

wards, while others are largely trivial. Figure 2 (right) shows how

I(s) varies in a typical episode experienced by a high-asymptote

Sarsa(λ) teacher. The periodic peaks indicate that importance-

based advising should be applicable in this domain.

Action prediction must work differently in Pac-Man than in Moun-

tain Car because all Pac-Man states are not represented the same

way. Different subsets of actions are available in different states

and the features are action-specific, so not all states have the same

number of features. This rules out the simple approach of mapping

from features to actions. Instead, we approach action prediction in

Pac-Man as a ranking problem, which can be solved using another

version of SVM-Light.
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Figure 2: Trained agents in Mountain Car (left) and Pac-Man

(right) measuring state importance during a typical episode

Consider a teacher using the 7-feature set, observing a state s in

which the actions up, down, and left are available, and in which

the student chooses to move up. The corresponding training exam-

ple generated for the ranking SVM would be structured like this:

2 f1(s, up), f2(s, up), ..., f7(s, up)
1 f1(s, down), f2(s, down), ..., f7(s, down)
1 f1(s, left), f2(s, left), ..., f7(s, left)

In this example, each action is represented by one line of fea-

tures. The numbers in the left column specify pairwise ranking con-

straints between actions. Since up has a higher number than down

and left, the SVM applies the constraints Q(s, up) > Q(s, down)
and Q(s, up) > Q(s, left). Since down and left have the same

numbers, no constraints are generated between them. This reflects

the teacher’s knowledge, which is only that the student chose up

over the other actions.

The output of the ranking SVM, when queried on a state s, is a

set of real numbers, one for each action available in s. The pre-

dicted student action in s is the one with the highest number. We

again keep most of the SVM-Light parameters at their default val-

ues, except for the margin/error tradeoff C, which is tuned to 1000.

Prediction accuracy in these tuning experiments was consistently

in the 80-90% range. A likely factor in this result is the small ratio

of features to training examples. We expect predictive advising to

be more effective in this domain, relative to Mountain Car.

5. TEACHING RESULTS
This section demonstrates improvements in student learning via

teaching in the Mountain Car and Pac-Man tasks. First, agents are

trained independently with all combinations of learning algorithms

and state representations. For each combination, we select the best-

performing agent to be a teacher. These teachers then give advice

to students of several combinations.

To smooth the natural variance in student performance, each

learning curve averages at least 30 independent trials of student

learning. While training, an agent pauses every few episodes to

perform at least 30 evaluation episodes and record its average per-

formance. No learning, exploration, or teaching takes place during

evaluation episodes. This way the learning curves only reflect stu-

dent knowledge, not teacher knowledge.

One learning curve is better than another if it has a steeper slope

or a higher asymptote. Agents that use different learning algo-

rithms, state representations, or parameter settings can differ in

both of these ways. Our experiments focus on the impact of teach-

ing when these other factors are fixed.

We do not expect teaching to change the asymptotic performance

of students, but we do look for it to improve their learning speed. To

measure learning speed in a holistic way, we compute areas under

learning curves. Curves are compared using t-tests on their areas

with α = 0.05. When we report that the difference between two

curves is significant, it means we have at least 95% confidence that

one curve has larger area.
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With the exception of early advising, all of our teaching ap-

proaches have a parameter t, the threshold above which a state

is considered important. To explore how t affects performance,

we try 10 values for each teacher, uniformly distributed across that

teacher’s I(s) range. For each teacher-student pair, we report the

most effective value for t.

5.1 Pac-Man
Pac-Man teachers are given an advice budget of n = 1000,

which is roughly half the number of steps in a single well-played

episode. The RL parameters that agents use are ǫ = 0.05, α =
0.001, γ = 0.999, and λ = 0.9.

First, we present experiments where the teacher and student use

the same algorithm and feature set (see Figure 3). On the left of

this figure, both agents use Sarsa(λ) and the low-asymptote 16-

feature set; t = 50. Differences between curves are significant for

all pairs except mistake correcting and predictive advising. On the

right, both agents use Sarsa(λ) and the high-asymptote 7-feature

set; t = 200. Differences between curves are significant for all

pairs except early advising and independent learning.

Although these teachers are giving advice in only a small frac-

tion of the training steps, some of them have significant effects on

student learning. Advice has a higher overall impact on students

with the 16-feature set because these students have a simpler pol-

icy to learn. Early advising provides a large benefit with the 16-

feature students, but not with the 7-feature ones. Importance advis-

ing is slightly but consistently better than early advising, and the

best t thresholds are above 0, which confirms that saving advice

for important states can be effective. Mistake correcting consis-

tently outperforms importance advising, which confirms that sav-

ing advice for mistakes is also effective. Predictive advising also

outperforms importance advising, and for the 16-feature students it

even matches mistake correcting. These results suggest that mis-

take correcting is the best choice if it is feasible, and if not, predic-

tive advising is the best alternative.

The good performance of predictive advising on the left of Fig-

ure 3 is not due to perfect action prediction. In fact, prediction

accuracy is lower on the left (79%) than on the right (86%). But

prediction errors are less costly when teaching low-asymptote stu-

dents because they benefit more from any advice schedule. For

the same student, increased prediction accuracy corresponds to bet-

ter performance with predictive advising. However, the impacts of

wasted and delayed advice are not the same for all students.

Our next experiments investigate the effects of having the teacher

and student use different learning algorithms. This factor would

be irrelevant if all algorithms converged to the same optimal pol-

icy, but in practice this is not the case. Q(λ) and Sarsa(λ) produce

asymptotic policies for Pac-Man whose performances differ by ap-

proximately 200 points. They also learn at different speeds; for the

sake of variety, we exaggerate this difference by using λ = 0.7 in

Q(λ) to slow it further.

In Figure 4, on the left, a Q(λ) teacher advises a Sarsa(λ) stu-

dent; t = 20 and prediction accuracy is 80%. Differences between

curves are significant for all pairs except early advising and impor-

tance advising. On the right, the algorithms are reversed, t = 100,

and prediction accuracy is 81%. Differences between curves are

significant for all pairs except mistake correcting and predictive ad-

vising. All of these agents use the 16-feature set.

Although these students use different algorithms and progress

at different rates than their teachers, the differences do not appear

to hinder teaching. Advice has a higher overall impact on students

that use Sarsa(λ), probably because advice is treated as exploration,

and Sarsa(λ) takes exploration into account more than Q(λ) does.

These results suggest that the learning algorithm of the student has

more impact on the effectiveness of teaching than the learning algo-

rithm of the teacher does. While some students may respond better

to advice than others, teachers can effectively advise students that

learn differently.

Finally, we present experiments where the teacher and student

use different feature sets. We expect this to be the most challenging

type of difference because it causes large differences in the asymp-

totic performance of teachers and students. It is not obvious that

advice will be helpful across this divide, and there is even the risk

that it might be harmful.

In Figure 5, on the left, a high-asymptote 7-feature teacher ad-

vises a low-asymptote 16-feature student; t = 100. Differences

between curves are significant for all pairs. On the right, the feature

sets are reversed and t = 250. Mistake correcting and predictive

advising are significantly different from each other and the rest, but

the other three approaches are statistically equivalent. All of these

agents use Sarsa(λ).

Although these teachers perceive their environment differently

than their students, some of them still provide significant bene-

fits on student learning. These effects are not always as strong as

when teachers and students used the same state representation, but

some of them remain quite useful. Unsurprisingly, high-asymptote

teachers have larger effects on low-asymptote students than vice

versa. But low-asymptote teachers do have positive impacts on

high-asymptote students (with mistake correcting and predictive

advising), and these students then go on to outperform their teach-

ers, as they should given their higher inherent capability. None of

these teachers have negative impacts on students.

The high-asymptote agents have substantial difficulty predict-

ing the actions of the low-asymptote agents (accuracy 61%). This

causes predictive advising to perform slightly below importance

advising on the left of Figure 5. There is no such difficulty in the re-

verse scenario (accuracy 86%). Prediction accuracy across feature

sets is likely to depend on the specifics of the features. However,

these results suggest that teachers can effectively advise students

that perceive the world differently.

The rate at which teachers spend their advice is partly controlled

by the importance threshold t. When teaching 16-feature students,

the best teachers give most of their advice within the first 10 episodes

of student training, because the low-asymptote students benefit most

from advice very early in their learning. When 16-feature teachers

advise 7-feature students, they also do best to spend their advice

quickly, before the high-asymptote students surpass them. How-

ever, when 7-feature teachers advise 7-feature students, they can

perform better by giving less frequent advice over longer periods.

The best settings of importance advising, mistake correcting and

predictive advising spread their advice over 20, 100 and 60 episodes

respectively.

5.2 Mountain Car
Mountain Car is easier to learn independently, and has weaker

state-importance contrasts and action prediction compared to Pac-

Man. Because of these factors, we expect our teaching methods to

have less variation and less overall impact in this domain. In par-

ticular, although we include predictive advising, we do not expect

it to be a close approximation of mistake correcting.

Mountain Car teachers are given an advice budget of n = 100,

which again is less than the number of steps in a well-played episode.

The RL parameters are ǫ = 0.05, α = 0.08, γ = 1.0, and λ = 0.9.

First, we present experiments where the teacher and student use

the same algorithm and tile coding (see Figure 6). On the left of

this figure, both agents use Sarsa(λ) and the finer coding; t = 175
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Figure 3: Pac-Man teaching with similar students and teachers using Sarsa. Left: low-asymptote feature set. Right: high-asymptote

feature set.
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Figure 4: Pac-Man teaching with different learning algorithms using the low-asymptote feature set. Left: Q-Learning teacher and

Sarsa student. Right: Sarsa teacher and Q-Learning student.
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Figure 5: Pac-Man teaching with different feature sets using Sarsa. Left: high-asymptote teacher with low-asymptote student. Right:

low-asymptote teacher with high-asymptote student.
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Figure 6: Mountain Car teaching with similar students and teachers. Left: fine coding with Sarsa. Right: coarse coding with

Q-Learning.
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Figure 7: Mountain Car teaching with different tile codings using Sarsa. Left: coarse-coding teachers with fine-coding students.

Right: fine-coding teachers with coarse-coding students.

and prediction accuracy is 45%. Differences between curves are

significant for all pairs except predictive advising and early advis-

ing. On the right, both agents use Q(λ) and the coarser coding;

t = 180 and prediction accuracy is 52%. Mistake correcting and

importance advising are significantly different from the rest, but the

other three approaches are not statistically different.

Although these teachers are giving small amounts of advice, some

of them do improve student learning. Mistake correcting and im-

portance advising tend to have small advantages over the other

teaching algorithms. This indicates that saving advice for impor-

tant states and for mistakes are still useful heuristics in this domain.

Predictive advising, as expected, no longer dominates importance

advising.

As in Pac-Man, Sarsa(λ) students benefit more from advice than

Q(λ) students. Fine-coding students also benefit more from advice

than coarse-coding students; they have a larger space to explore,

and advice helps them discover important areas more quickly. Both

of these effects make the impact of teaching higher on the left of

Figure 6 than on the right, but they are observable separately in

other experiments that we omit due to space constraints. Similarly

omitted are experiments showing that as in Pac-Man, it is not harm-

ful for teachers and students to use different learning algorithms.

In our final experiments, the teacher and student use different

tile codings. We expect this difference to be less challenging than

the difference between state representations in Pac-Man, because

two reasonable tile codings are more similar than two reasonable

feature sets.

In Figure 7, on the left, a coarse-coding teacher advises a fine-

coding student; t = 120 and prediction accuracy is 59%. Dif-

ferences between curves are significant for all pairs except predic-

tive advising and early advising. On the right, the tile codings are

reversed, t = 175, and prediction accuracy is 44%. Differences

between curves are significant for all pairs except importance ad-

vising and predictive advising. All of these agents use Sarsa(λ).

Although these teachers represent states differently than their

students do, teaching is just as effective as when they use the same

tile coding. The relative performance of the teaching algorithms

follows the same pattern. Overall, these results indicate that our

algorithms can allow teachers to effectively advise students with

different tile codings.

As in Pac-Man, the importance threshold t controls how quickly

teachers spend their advice. The best teachers for coarse-coding

students give their advice more quickly (within about 10 episodes)

than the best teachers for fine-coding students (within about 20
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episodes), because the former learn more quickly than the latter

and get more benefit from earlier advice.

5.3 Results Summary
Our experimental results lead us to the following conclusions

about teaching with an advice budget.

1. Student learning can be improved with a small advice budget.

2. Advice can have greater impact when it is spent on more

important states.

3. Advice can have greater impact when it is spent on mistakes.

4. When teachers can successfully predict student mistakes, they

can spend their advice budget more effectively.

5. Teaching can improve student learning even when agents have

different learning algorithms or state representations.

6. Students can benefit from advice even from teachers with less

inherent ability, and then go on to outperform their teachers.

6. RELATED WORK
There are several types of related work in the area of helping

agents to learn. Some of this work involves teaching in non-RL

settings, such as classification [2], or involves collaborative teams

of RL agents [11]. These areas of research address the same high-

level goal of productive agent interaction, but their problem settings

are somewhat different.

In the field of transfer learning in RL [13], an agent uses knowl-

edge from a source task to aid its learning in a target task. How-

ever, agents performing transfer often have direct access to source-

task knowledge. In contrast, our work assumes student agents have

strict limits on access to teacher knowledge.

More closely related work has one RL agent teach another with-

out a direct knowledge transfer. For example, in experience re-

play [5], a student trains on the recorded experiences of a teacher.

This requires the student to have an identical state representation,

which is a limitation our methods avoid. Other examples include

imitation learning [8], in which a student learns by observing a

teacher, apprentice learning [3], in which a student asks a teacher

for advice whenever its confidence in a state is low, and advice ex-

change [7], in which peers ask for advice from each other based

on heuristics of self-confidence and trust. Our work diverges from

these by having an expert teacher decide when to give advice, and

by focusing on the effective use of small advice amounts.

Finally, humans are sometimes employed to teach agents. Learn-

ing from Demonstration [1] includes a broad category of work that

focuses on agents learning to mimic a human demonstrator. There

has also been work on allowing humans to communicate rules ex-

pressing their knowledge of a domain [6]. Research in these areas

tends to focus on compensating for human error, which is not an

important issue in our work with agent teachers.

7. CONCLUSIONS
As more problems become solvable by agent-based methods, it

is important for agents to be able to work together, even if they

are implemented differently. It is also important for agents and

humans to be able to interact productively despite their substantial

differences. RL agents are good at learning control policies for

specific tasks, and it would be useful for them to be able to serve as

teachers for those tasks.

This paper poses the problem of having trained RL agents serve

as teachers in ways that are effective for many types of students. We

present teaching algorithms that use small amounts of action advice

to speed up student learning, even when students learn and repre-

sent states differently. Our experimental results show that signifi-

cant benefits, as measured by areas under student learning curves,

are achievable with these algorithms.

There are many potential directions for future work. For exam-

ple, action prediction might be improved by using an efficient in-

cremental classifier. The concept of state importance could also

use further exploration: perhaps there exist better domain-specific

ways to measure state importance, or effective strategies for auto-

matically selecting and adjusting importance thresholds.

Larger steps in future work could extend the problem to include

multiple teachers and/or students. It would also be useful to ex-

amine agents with broader ranges of learning algorithms, including

human students. Domains like Pac-Man would be particularly suit-

able for these kinds of experiments. We hope that this study will

provide a foundation for additional work in this area.
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