
Synergy Graphs for Configuring Robot Team Members

Somchaya Liemhetcharat
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

som@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
veloso@cs.cmu.edu

ABSTRACT
Robots are becoming increasingly modular in their design,
allowing different configurations of hardware and software,
e.g., different wheels, sensors, and algorithms. We are in-
terested in forming a multi-robot team by configuring each
robot (i.e., selecting the different modules) to best fit a task.
This general problem is applicable to many domains, such as
manufacturing in high-mix low-volume scenarios. In this pa-
per, we formally define the Synergy Graph for Configurable
Robots (SGraCR) model, where each robot module is mod-
eled as a vertex in a graph, and we define how to compute
the synergy of modules within a single robot, as well as be-
tween robots, using the structure of the graph. We define
the synergy of a multi-robot team comprised of such config-
urable robots, and contribute a team formation algorithm
that searches a SGraCR to approximate the optimal team.
In addition, we contribute a learning algorithm that learns
a SGraCR from a small set of training data containing the
performance of teams. We evaluate our SGraCR model and
algorithm in extensive experiments, both in simulation and
with real robots, and compare with competing algorithms.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Capability; synergy; team formation; heterogeneous; modu-
lar; robots

1. INTRODUCTION
Multi-robot teams are commonly considered for perform-

ing complex tasks, and research has focused on the problem
of task allocation and team formation, where the goal is to
select the best subset of robots to perform a task. As robots
have become more advanced and modular in their design, it
is now feasible to consider what modules to include in the
robots of a team. For example, when composing a multi-
robot team, a robot that has a LIDAR is considered against

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

a robot that is physically identical, except that it does not
have the LIDAR but has a camera instead. We are inter-
ested in such a problem domain, where robots are composed
of modules, and the goal is to configure each robot (i.e., se-
lect which modules to use) in the multi-robot team.

This robot configuration problem is general and applicable
to many robot domains. For example, in manufacturing with
high-mix low-volume scenarios, the manufacturing job floor
has many robotic modules (such as drilling stations, milling
stations, robotic arms, and mobile platforms that transport
items). Each configuration forms a robot with certain ca-
pabilities, e.g., a mobile platform with an arm can lift and
transport items. Given a new task, the goal is to select the
appropriate modules that is feasible to complete the task in
the shortest time. In addition, since new tasks may arrive
while the selected modules are performing the task, there is
also a need to keep the opportunity cost of using the mod-
ules below a certain threshold. Another example of the robot
configuration problem is in mapping, where the robot mod-
ules are LIDARs, cameras, and motors. The interactions
among modules are initially unknown: e.g., while faster mo-
tors are generally beneficial, it depends on other modules:
a robot with cameras might have motion blur moving too
quickly, decreasing performance. The goal would be forming
a team that completes the mapping quickly, but stays below
a maximum dollar cost of the modules.

Prior research in team formation and task allocation, that
we elaborate in the related work section, focuses on robots
with pre-defined modules and capabilities. We are interested
in modeling the capabilities of the robotic modules, how well
different modules work when placed into a single robot, and
the interactions of multiple modular robots in a team.

We formally define the Synergy Graph for Configurable
Robots (SGraCR) model, where each module is a vertex
in a connected weighted graph, and the distances between
vertices are related to how compatible they are. We de-
fine intra-robot synergy, that is the performance of modules
within a robot, and inter-robot synergy, that is the per-
formance of modules across robots. Using intra and inter
synergy, we define the synergy of a multi-robot team com-
posed of such configurable robots. We recently introduced
the Synergy Graph model, where each agent is a vertex in
a graph [5]. SGraCR models each module separately, and is
more expressive with a lower number of vertices.

We contribute a team formation algorithm, that selects
modules and composes them into robots of a multi-robot
team and approximates the optimal team for the task. We
contribute a learning algorithm, that learns a SGraCR using

111

a small set of training examples, by learning both the struc-
ture of the SGraCR structure and modules’ capabilities.

We extensively evaluate our model and algorithms in a
series of experiments. We first show that our learning and
team formation algorithm performs well when learning data
derived from a hidden SGraCR model. Next, we use our
SGraCR model to learn data from simulated robots in a
manufacturing scenario, and show that it outperforms com-
peting algorithms. Finally, we show that our model and
algorithms find effective teams in a real robot experiment.

2. RELATED WORK
Multi-robot task allocation (MRTA) is well-studied and

market-based techniques are frequently used, where robots
form bids on tasks, and tasks are awarded to the lowest
bidder [4]. Robots can be modeled as lists of services or re-
sources, and tasks are lists of required services/resources [8].
The main difference between services and resources is that
each robot can only provide one service at a time, while all
resources can be devoted to a task. Robots can also be mod-
eled as schemas, where a schema is an operation with pre-
defined inputs and outputs [9]. IQ-ASyMTRe forms coali-
tions of robots to solve multiple tasks by searching through
executable robot schemas that complete a task [9]. While
modeling robots as services, resources and schemas is simi-
lar to our approach of modules, a key difference in our work
is that we do not assume that robots are predefined with
their modules. Instead, we are interested in modular, con-
figurable robots where module selection is done in order to
configure effective robots for the team, and we compare our
model and algorithms with IQ-ASyMTRe.

In agent-based task allocation, agents are similarly mod-
eled as lists of resources, and social network graphs have
been considered to model possible multi-agent teams [3]. We
are interested in using task-based graphs for robot team for-
mation, where edges indicate task-based relationships among
robots instead of social ones. We recently introduced the
Synergy Graph model, where agents are modeled as vertices
in a connected unweighted graph, and a larger distance be-
tween agents in the graph indicates lower compatibility in
a team [5]. In this work, we model each robot module as a
separate vertex, and have edges with two weights to differen-
tiate between compatibility of modules within a robot, and
across different robots. Such a representation allows for a
larger space of robot types to be modeled with a lower num-
ber of vertices, i.e., the number of vertices increases linearly
compared to exponentially in the Synergy Graph model. We
also compare our SGraCR model with the Synergy Graph.

Coalition formation involves the partitioning of a set of
agents into disjoint subsets in order to maximize a value
function. Typically, each coalition (i.e., subset of agents) is
given an independent value, and the value of a partition is
the sum of values of coalitions [7]. Recently, externalities in
coalitions have been considered, where the value of a coali-
tion depends on how other agents outside the coalition are
grouped, e.g., with positive and negative externalities [6], or
with mixed externalities [1]. We are interested in forming a
single multi-robot team, and not the partition of robots into
multiple teams. Also, we model the performance of a team
based on which robots are configured to be in the team, and
not due to external factors.

In ad hoc domains, the capabilities of robots and their
performance as a team is initially unknown. Research in
the ad hoc domain has focused on a single robot, e.g., how

an ad hoc robot adjusts its behavior in a pursuit-evasion
scenario [2]. We are interested in learning the capabilities
of ad hoc robots, and do so by learning how well different
robot modules work together in a multi-robot team.

3. DEFINING THE PROBLEM
In this section, we formally define the problem and give an

overview of our solution. While we use a motivating manu-
facturing scenario to aid in the description of the problem,
it is general and applicable to many other robotic domains.

3.1 Motivating Scenario
High-mix low-volume manufacturing is an emerging trend,

where manufacturing plants have to manufacture a large va-
riety of products, each with a low volume. This is in stark
contrast to the typical manufacturing line that produces a
large volume of a single product. In order to handle high-
mix low-volume orders, manufacturing floors have to be re-
configurable and cater to each order. Each manufacturing
station is viewed as a robot, and the entire manufacturing
plant is a multi-robot system. Manufacturing stations in-
clude the typical drilling and milling, and also mobile robots
that transport items. Each manufacturing robot is a configu-
ration comprising one or more modules, e.g., a drilling robot
comprises a drilling machine, and a mobile robot comprises
motors and sensors. New types of robots can be configured,
such as a robot that drills as it transports items.

Given a manufacturing task, the manufacturing plant has
to select and configure manufacturing robots that will com-
plete the task. The goal is to complete the task as quickly
as possible, while limiting the cost of production. Robot
modules have a fixed dollar cost that is borne by the man-
ufacturing plant, and by assigning manufacturing modules
to robots, the modules cannot be used for other orders and
opportunity cost is lost. Hence, the multi-robot team that is
formed is capped at a maximum level of cost decided by the
plant, which is a function of the dollar cost and opportunity
cost. In addition, the task has a pre-defined sequence of ac-
tions (e.g., drilling followed by milling followed by polishing),
and the multi-robot team has to be capable of completing
the task. In particular, random combinations of modules
may not be able to perform the task (e.g., selecting a robot
team that does not include any drilling machines).

3.2 Formal Problem Definition
Let M = M1 ∪ . . . ∪MN be the set of all modules, where

each Mn ∈ M is a set of modules of type n ∈ [1, . . . , N].
In the manufacturing scenario, M1 would contain possible
drilling modules, such that M1 = {drill0, . . . , drill3} where
the subscript refers to the number of drilling machines. M2

would contain motors of different maximum speeds for a
mobile robot, i.e., M2 = {none, slow, medium, fast}.

Let R = (m1, . . . ,mN) be a robot, where each mn ∈ Mn,
and let R be the set of all possible robots. Thus, each robot
is a configuration/selection of modules of every type. In the
manufacturing example, R0 = (drill2, none) is a stationary
drilling robot with two drilling machines, while a mobile
transportation robot is R1 = (drill0,medium). A robot
that can drill and transport items is R2 = (drill1, slow).

Let T : R→ Z+
0 be a team of robots, where T (R) returns

the number of robots that use the modules selected in R.
Let T be the set of all possible teams. Let F : T → {0, 1}
be the feasibility function, where F (T) = 1 iff the team
T is feasible to complete the task, and 0 otherwise. The

112

feasibility function F is domain-dependent and we assume
that it is given as part of the problem definition.

Let costM : M → R+
0 be the module cost function, and

let costR : R → R+
0 be the robot cost function, where

costR(R) =
∑N
i=1 costM(mi). Similarly, let the cost func-

tion of robot teams be costT : T → R+
0 , where costT (T) =∑

R∈R T (R) · costR(R). As such, the cost of a robot is the
sum of costs of its modules, and the cost of a robot team is
the sum of costs of the robots in it. The module cost function
is domain-dependent and part of the problem definition. In
the manufacturing domain, the module cost function costM
would be a function of the dollar cost of the module and the
opportunity cost of using the module for the task.

Let V (T) be the value attained by the robot team T ∈ T .
As we are interested in robots acting in a dynamic world,
V (T) is non-deterministic and multiple observations of V (T)
return different values. In the manufacturing example, V (T)
would be related to the time required for the team T to
complete the manufacturing task and the cost of the team,
e.g., a task that completes earlier with a lower cost team
attains a higher value; the non-determinism would be related
to potential failures in the manufacturing modules. The
value function V is initially unknown and we seek to model
it in order to form an effective multi-robot team.

The goal is to form a multi-robot team that attains the
highest value subject to a maximum cost cmax while be-
ing feasible. However, since V is non-deterministic, we de-
fine the goal as forming the δ-optimal team T ∗δ , such that
P (V (T ∗δ) ≥ v) = δ, costT (T ∗δ) ≤ cmax, and F (T ∗δ) = 1.
For other T ∈ T , P (V (T) ≥ v) ≤ δ if costT (T) ≤ cmax

and F (T) = 1. Thus, the δ-optimal team is a feasible team
that attains a value of at least v with probability δ and a
cost threshold of cmax, while any other feasible team does so
with probability at most δ. If δ = 0.5, then the δ-optimal
team corresponds to the team that attains the highest mean
value. We assume that the values cmax and δ are given and
domain-specific, as are F and costM as mentioned earlier.

3.3 Overview of Approach and Contributions
We recently introduced the Synergy Graph model [5], that

models and learns the synergy of multi-agent teams through
observations of their performance. In this paper, we intro-
duce a new model that handles configuring robots by treat-
ing every robot not as an atomic (indivisible) entity but as
a combination of modules:

• We formally define the Synergy Graph for Configurable
Robots (SGraCR) model, and how to compute the
value of a multi-robot team;

• We contribute our team formation algorithm, that uses
a SGraCR to approximate the δ-optimal team;

• We contribute our learning algorithm, that learns a
SGraCR using only limited observations of possible
robot teams;

• We demonstrate the efficacy of the SGraCR model and
our algorithms in extensive experiments involving sim-
ulated and real robots.

4. MODELING MULTI-ROBOT SYNERGY
In the Synergy Graph model, agents are treated as atomic

(indivisible) entities, and the agents’ capabilities are mod-
eled as Normally-distributed variables [5]. Fig. 1 shows an
example of a Synergy Graph with 6 agents. Each agent is

a vertex in a connected unweighted graph, and the distance
between the agents in the graph is inversely related to their
compatibility to work together in a team. The capabilities
of agents are represented as Normally-distributed variables.

a2

a5

a3

a6

a1

a4

C1 ∼ N (µ1, σ
2
1)

C2 ∼ N (µ2, σ
2
2)
C3 ∼ N (µ3, σ

2
3)

C4 ∼ N (µ4, σ
2
4) C6 ∼ N (µ6, σ

2
6)

C5 ∼ N (µ5, σ
2
5)

Figure 1: A Synergy Graph with 6 agents.

We introduce the Synergy Graph for Configurable Robots
(SGraCR) model, that is specialized to model configurable
modular robots performing multi-robot tasks. We first de-
scribe each component of our model, and give the formal
definition at the end of this section.

4.1 Modular Representation of Robots
While treating agents as atomic entities allows an abstrac-

tion to capture humans and robots, we are interested in us-
ing the Synergy Graph for teams of robots. Robots are com-
prised of a configuration of various hardware and software
modules. For example, a mobile exploring robot comprises
hardware such as the motors, LIDAR, and other sensors,
and software such as the SLAM algorithm.

Instead of treating agents/robots as indivisible entities (as
done in the Synergy Graph model), we model each module
as a separate vertex in a graph, which offers a large benefit
in scalability. From the problem definition, there are N
types of modules M1, . . . ,MN , and a robot is composed of
one of each type of module. In our SGraCR model, there
are

∑N
n=1 |Mn| vertices; the Synergy Graph model would

have
∏N
n=1 |Mn| vertices. For example, suppose there are

3 different types of motors, 2 different LIDARs, 3 cameras,
and 2 SLAM algorithms. By modeling each module as a
vertex, our SGraCR would contain 3+2+3+2 = 10 vertices.
A Synergy Graph models each possible type of agent/robot
separately with 3×2×3×2 = 36 vertices. Thus, the number
of vertices increases linearly in SGraCR with the number of
modules, while the Synergy Graph increases exponentially.

4.2 Synergy of Modules
We are interested in modeling the task-based performance

of multi-robot teams, where each robot is composed of dif-
ferent modules. We build upon the Synergy Graph model,
where the synergy of a multi-agent team is a combination
of individual agent capabilities and their compatibility in
the team [5]. Since the SGraCR models robots as compos-
ite modules, we need to differentiate between two types of
synergy: intra-robot synergy and inter-robot synergy.

Intra-robot synergy models how the configuration of mod-
ules that compose a single robot affects how well the robot
performs at the task. For example, a robot with faster mo-
tors performs the task quickly and attains a high perfor-
mance. Comparatively, a robot with slightly slower motors
but a more accurate vision system may be able to perform
the task more accurately with even higher performance.

Inter-robot synergy models how different combinations of
robots affect the overall task performance. Since the task
requires multiple robots, different choices of robots in the

113

team will critically affect the task performance. For exam-
ple, in a foraging task, a team consisting of a single robot
with accurate vision and multiple fast-moving robots that
retrieve the objects may perform better than a team with
multiple robots with accurate vision but move more slowly.

Similar to the Synergy Graph model, we use Normally-
distributed variables to represent the capability of each mod-
ule. These variables represent the contribution of task per-
formance from the module, subject to the synergy from intra
and inter-robot relationships. We use Normally-distributed
variables as performance is non-deterministic, and a random
variable captures this variability; further, Normal distribu-
tions are commonly used and have many favorable charac-
teristics that we use, such as having an equal mean and
mode, and symmetric deviations. We use the distance be-
tween vertices in the graph to represent how well modules
work together, as in the Synergy Graph model. However,
there are two main differences in the SGraCR model. First,
the SGraCR model uses weighted edges, while the Synergy
Graph uses an unweighted graph; weighted edges allow for
a larger representational space. Second, we distinguish be-
tween intra and inter-robot synergy by assigning two weights
to each edge in the graph, which implies that the underly-
ing structure of the graph (i.e., whether edges exist between
vertices) are common between intra and inter-robot synergy,
even though the weights may differ. Such a representation
offers a more elegant structure (a single graph structure with
multiple weights) compared to two independent graphs. Fur-
ther, we believe that it is justified as there is a correlation be-
tween intra and inter-robot synergy — a module that works
well for a robot will also benefit a multi-robot team.

In addition to the weighted graph structure, the SGraCR
model has an additional edge associated with each vertex,
that models the inter-robot synergy between the same mod-
ule on different robots, e.g., the task performance of two
robots that both have the same type of motors. An intra-
robot weight in this case is not needed, since each individual
robot cannot select multiple copies of the same module type.

4.3 The SGraCR Model
We have described the components of the SGraCR model

above, and now we formally define it:

Definition 1. The Synergy Graph for Configurable
Robots model is a tuple {G,C}, where:

• G = (V,E) is a connected graph;

• Each m ∈M is represented by a vertex vm ∈ V ;

• e = (vm, vm′ , wintra, winter) ∈ E is an edge with two
integer weights. wintra and winter are the intra and
inter-robot weights respectively (edge weights between
modules on the same/different robot);

• em = (vm, vm, winter) ∈ E is a self-looping edge with a
single inter-robot weight;

• C =
{
C1, . . . , C|M|

}
is a set of module capabilities,

where Cm ∼ N (µm, σ
2
m) is the capability of a robotic

module m ∈M.

We assume that module capabilities are independent, as
dependencies and synergies among modules are captured by
the SGraCR graph structure. Fig. 2 shows an example of
a SGraCR with 6 vertices, where there are two types of
modules with 3 options each. Compared to a Synergy Graph
that models 6 agents with 6 vertices (Fig. 1), 3 × 3 = 9
different types of robots are represented with the SGraCR.

v2

v5

v3v1

v4

C1 ∼ N (µ1, σ
2
1)

C2 ∼ N (µ2, σ
2
2)
C3 ∼ N (µ3, σ

2
3)

C4 ∼ N (µ4, σ
2
4)

C5 ∼ N (µ5, σ
2
5)

v6

2, 3

C6 ∼ N (µ6, σ
2
6)

2

1, 5

3, 1 2, 2

5, 2

3

1
5

4

1

Figure 2: A SGraCR with 6 vertices, modeling two types
of modules (shown in different shades). The edges with two
weights indicate the intra and inter-robot weights respec-
tively, and the self-looping edges have inter-robot weights.

Definition 2. The intra-robot synergy Sintra(R) of a
robot R = (m1, . . . ,mN) is:

Sintra(R) =
∑

mi,mj∈R

φ(dintra(vmi , vmj))(Cmi + Cmj) (1)

where Cmi and Cmj are the capabilities of modules mi and
mj respectively, dintra(vmi , vmj) is the shortest distance be-
tween vertices vmi and vmj in the SGraCR using the intra-

weights wintra of the edges, and φ : Z+ → R+ is a compati-
bility function, which we describe below.

Definition 3. The inter-robot synergy Sinter(R,R
′) of

two robots R = (m1, . . . ,mN) and R′ = (m′1, . . . ,m
′
N) is:

Sinter(R,R
′) =

∑
mi∈R,m′

j∈R
′

φ(dinter(vmi , vm′
j
))(Cmi + Cm′

j
)

(2)

where Cmi and Cm′
j

are the capabilities of modules mi and

m′j respectively, dinter(vmi , vm′
j
) is the shortest distance be-

tween vertices vmi and vm′
j

in the SGraCR using the inter-

robot weights winter of the edges. In particular, if vmi = vm′
j

then the self-looping edge is used to determine dinter.
The compatibility function φ : Z+ → R+ converts dis-

tances in the SGraCR graph to real numbers reflecting the
compatibility among robot modules. φ is monotonically
non-increasing, so larger distances correspond to equal or
lower compatibility. In this way, modules that are more
compatible are closer together in the SGraCR graph. We
assume that φ is domain-specific and given. Some examples
of φ are φfraction(d) = 1

d
, and φdecay(d) = exp(− d ln 2

h
).

Definition 4. The synergy S(T) of a multi-robot team
T : R → Z+

0 is:

S(T) =
1

|T |
∑
R∈R

T (R) · Sintra(R) (3)

+
1(|T |
2

) ∑
R,R′∈R

T (R) · T (R′) · Sinter(R,R
′)

where |T | =
∑
R∈R T (R).

Thus, the synergy of a multi-robot team is the sum of the
average intra-robot synergy of each robot and the average
inter-robot synergy of every pair of robots.

The intra and inter-robot synergy equations are modified
from the pairwise synergy function of the Synergy Graph
model [5], using the intra and inter-robot weights in the
SGraCR model. The synergy function is also adapted from
the Synergy Graph model, but takes into account the new
definitions of intra-robot and inter-robot synergy.

114

5. LEARNING THE SGRACR FROM DATA
In the previous section, we formally defined the SGraCR

model and the synergy equations. To be able to use the
SGraCR model on an actual multi-robot problem, we need
to learn a SGraCR from data. In this section, we contribute
our learning algorithm, that learns a SGraCR using only
data of the performance of multi-robot teams.

A team T : R → Z+
0 comprises multiple robots R ∈ R,

and V (T) is an observation of the team T ’s value at the task.
We are given a set of training dataDtrain that contains tuples
of teams and their observed values, i.e., (T, V (T)) ∈ Dtrain.
The goal is to find the SGraCR that fits the training data
with the highest log-likelihood. The amount of training
data we use to learn a SGraCR is much less than that of a
Synergy Graph. The Synergy Graph learning algorithm re-
quires multiple observations of all pairs and triples of agents,
i.e., O(n3) where n is the number of agents. In contrast, the
SGraCR learning algorithm only requires a single observa-
tion per team, and less than O(|T |) observations, where |T |
is the number of possible teams.

Algorithm 1 shows our learning algorithm. The space of
all possible SGraCR structures are exponential in the num-
ber of modules, and so it is intractable to completely explore
the space. We use simulated annealing to iterate through
possible SGraCR structures, and learn the capabilities of
the modules using the training data. Simulated annealing
serves as an approximation technique for us, and we believe
other approximation techniques will perform similarly.

Algorithm 1 Learn SGraCR from training data

LearnSGraCR(M, Dtrain)

1: G← RandomSGraCRStructure(M)
2: C ← EstimateCapabilities(G,Dtrain)
3: S ← {G,C}
4: l← LogLikelihood(S,Dtrain)
5: for k = 1 to kmax do
6: G′ ← NeighborSGraCRStructure(G)
7: C′ ← EstimateCapabilities(G′, Dtrain)
8: S′ ← {G′, C′}
9: l′ ← LogLikelihood(S′, Dtrain)

10: if P(l, l′, Temp(k, kmax)) > random() then
11: S ← S′

12: l← l′

13: return S

The structure of Algorithm 1 is similar to the Synergy
Graph learning algorithm [5]; the key difference lies in these
three functions used to learn the SGraCR. The function
RandomSGraCRStructure that generates a random SGraCR
graph structure; NeighborSGraCRStructure that generates
a neighbor SGraCR structure based on the current structure;
and EstimateCapabilities that estimates the modules’ ca-
pabilities using the training data and a SGraCR structure.

The first function, RandomSGraCRStructure, generates a
random SGraCR graph structure based on the set of mod-
ules M, by creating |M| vertices, and randomly adding
edges between pairs of vertices such that the overall graph is
connected. The weights of the edges (both intra-robot and
inter-robot) are randomly generated to be an integer in the
range [wmin, wmax]. Having a fixed range of edge weights al-
lows the learning algorithm to effectively explore the space
of possible SGraCR structures.

To generate neighbor SGraCR structures, the function
NeighborSGraCRStructure takes the current structure and
modifies it with one of four actions:

1. add a random edge between two vertices;

2. remove a random non-looping edge that does not dis-
connect the graph;

3. increase one weight of an existing edge;

4. decrease one weight of an existing edge.
Fig. 3 shows the four actions on an example SGraCR graph
structure. The four actions change the shortest distance
between modules, and hence affect the synergy equations,
while ensuring that the SGraCR graph remains connected.
The edge weights that are generated or changed respect the
integer range [wmin, wmax]. Through the four actions, the
space of possible SGraCR graph structures is explored.

v2

v4

v1

v3

4, 13

3, 5

3, 76

2

1

2, 8

v2

v4

v1

v3

4, 13

3, 5

3, 76

2

1

2, 8

v2

v4

v1

v3

4, 13

3, 76

2

1

2, 8

v2

v4

v1

v3

4, 13

3, 5

3, 76

3

1

2, 8

Add edge Remove edge

Increase edge weight

5, 9

v2

v4

v1

v3

4, 13

3, 5

3, 66

2

1

2, 8

Decrease edge weight

Original SGraCR graph structure

Figure 3: An example SGraCR graph structure, and the
four actions used to generate neighbor SGraCR structures.

The first two functions only generate the SGraCR graph
structure and not the module capabilities. The last func-
tion, EstimateCapabilities, estimates the capabilities of
the modules using the SGraCR structure and the training
data. With the existing SGraCR structure, the synergy for-
mula S (Eqn. 3) is used to form an equation, where only
the Normally-distributed capability variables are unknown.
For example, suppose the training data contains (T, V (T)),
where T consists of a single robot R = (m1,m2). Then,
S(T) = Sintra(R) = φ(dintra(vm1 , vm2))(Cm1 + Cm2). Since
the SGraCR structure is known, dintra is computed and fed
into the compatibility function φ (that is also known). Thus,
the only unknowns in S(T) are Cm1 and Cm2 . Since Cm1

and Cm2 are independent Normally-distributed variables,
the log-likelihood of V (T) given S(T) can be written out
with unknowns µ1, µ2, σ

2
1 , σ

2
2 that correspond to the means

and variances of Cm1 and Cm2 respectively.
Each training data is converted into a log-likelihood ex-

pression where the means and variances of module capabili-
ties are unknowns. The capabilities are then found by using
a non-linear solver to maximize the log-likelihood expres-
sions. Overall, SGraCR structures are altered and capabil-
ities learned, in order to create a candidate SGraCR that
is compared to the current best-guess. Through simulated
annealing, the algorithm converges on an approximation of
the optimal SGraCR that maximizes the log-likelihood.

115

6. FORMING THE MULTI-ROBOT TEAM
We have formally defined the SGraCR model and con-

tributed our learning algorithm. In this section, we intro-
duce our team formation algorithm that finds the δ-optimal
team. The δ-optimal team T ∗δ must be feasible (F (T ∗δ) = 1),
within the cost threshold (costT (T ∗δ) ≤ cmax), and attain a
value of at least v with probability δ.

The feasibility function F , cost function, cost threshold
cmax and probability δ are domain-specific and given, but
the value v is not. Further, the synergy function defined
in Eqn. 3 returns a Normally-distributed variable. Thus,
we need to convert a Normally-distributed variable into a
single value. To do so, we use the V function of the Synergy
Graph model [5], that we rename to Evaluate in this paper,
that takes as input a random Normally-distributed variable
X ∼ N (µX , σ

2
X) and a risk-factor ρ:

Evaluate(X, ρ) = µX + σX · Φ−1(ρ) (4)

In particular, Evaluate(X, 1 − δ) returns a value v such
that P (X ≥ v) = δ. Further, with two variables X1 and X2,
and Evaluate(X1, 1− δ) = v1, Evaluate(X2, 1− δ) = v2, if
v1 ≥ v2 then P (X2 ≥ v1) ≤ δ.

Thus, finding the δ-optimal team is equivalent to finding
the team T ∗ that maximizes Evaluate(S(T ∗), 1 − δ). To
do so, we use simulated annealing to explore the space of
possible multi-robot teams. Algorithm 2 shows the team
formation algorithm. The inputs to the algorithm are: S,
the SGraCR model; F , the feasibility function; cost, the cost
function; and cmax, the maximum cost of the team.

Algorithm 2 Find the δ-optimal team

FindOptimalTeam(S, F, cost, cmax, δ)

1: T ∗ ← GenerateRandomTeam(S, cost, cmax)
2: v∗ ← Evaluate(S(T ∗), 1− δ)
3: for k = 1 to kmax do
4: T ← RandomNeighbor(T ∗, S, cost, cmax)
5: v ← Evaluate(S(T), 1− δ)
6: if P(v∗, v, Temp(k, kmax)) > random() then
7: T ∗ ← T
8: v∗ ← v
9: return T ∗

RandomNeighbor generates neighbor candidates from the
existing team with three possible actions:

1. a random robot Rexisting is removed;

2. a random robot Rnew is created;

3. a module on an existing robot Rexisting is changed.

Actions 1 and 2 (removing and creating robots) involve
changing the function T ∗ : R → Z+

0 slightly. Action 1 picks
a random robot Rexisting ∈ R such that T ∗(Rexisting) > 0

and returns the team T (R) =

{
T ∗(R)− 1 if R = Rexisting

T ∗(R) otherwise
.

Similarly, Action 2 randomly selects a robot Rnew ∈ R
and increases the number of that robot in the team by 1,

i.e., T (R) =

{
T ∗(R) + 1 if R = Rnew

T ∗(R) otherwise
.

Action 3 first picks a random robot Rexisting ∈ R such
that T ∗(Rexisting) > 0. Suppose Rexisting = (m1, . . . ,mN).
Action 3 then picks a random number n ∈ [1, N] and changes
module Mn in the robot to be m′n 6= mn. Hence, the new

robot Rnew = (m1, . . . ,mn−1,m
′
n,mn+1, . . . ,mN); Rnew

differs from Rexisting by only one module.
These 3 actions generate candidate teams that effectively

explore the space of all teams, but the teams may not be fea-
sible and/or be over the cost threshold. Thus, if F (T) = 0
or cost(T) > cmax, the actions are repeated until a suitable
team is generated. The difficulty of generating a feasible
team within the cost threshold is domain-dependent since
it depends on F , cost, and cmax. Once a neighbor team is
formed, its synergy is computed and converted into a real
number by Evaluate. The new team’s value is then com-
pared to the existing and accepted subject to the tempera-
ture schedule of the simulated annealing algorithm.

Thus, after all kmax iterations of simulated annealing is
complete, the best team found, T ∗, is returned, and is ap-
proximately equal to the δ-optimal team T ∗δ .

7. EXPERIMENTS AND RESULTS
In the previous sections, we introduced the Synergy Graph

for Configurable Robots (SGraCR) model, and contributed
algorithms for learning the model and forming the team. In
this section, we describe extensive experiments that demon-
strate the efficacy of our model and algorithms. First, we
show that our algorithms perform well with synthetic data
derived from a hidden SGraCR model. Next, we demon-
strate the efficacy of our SGraCR model and algorithms on
a simulated manufacturing scenario. Finally, we apply our
model and algorithms on a real robot scenario, and show
that it is capable of selecting modules to form an effective
multi-robot team. While we use a manufacturing scenario
in our experiments, the SGraCR model and algorithms are
applicable to a wide range of multi-robot domains.

To evaluate the SGraCR model and algorithms, we com-
pared our performance to two benchmarks. First, we used
the Synergy Graph model to learn from the training data
and form a multi-robot team [5]. Since the Synergy Graph
models each robot separately, the size of the Synergy Graph
was much larger than that of the SGraCR. Also, we eval-
uated the performance of the IQ-ASyMTRe algorithm [9].
The ASyMTRe algorithm is well-known to form multi-robot
teams in tightly-coupled scenarios, where robots are mod-
eled as collections of schemas (similar to our modules, al-
though we do not consider the inputs and outputs). We
used a least-squares solver that analyzed the training data
and assigned costs to each module, and used their cost func-
tion to rank possible multi-robot teams.

For each set of experiments, we scored the teams found by
SGraCR, Synergy Graph, and IQ-ASyMTRe as the number
of standard deviations away from the mean of all possible
teams. So, if the mean and variance of the values of all
possible teams are µ and σ2 respectively, and the team found
had a value v, then the score was v−µ

σ
.

7.1 Experimental Setup
In all three sets of experiments, we used the same problem

domain — manufacturing. The task involved transporting
some items from location L0 to perform drilling (at loca-
tion L1) and then milling (at location L2) and finally deliv-
ered to a destination location L3. The manufacturing floor
had pre-existing drilling and milling stations at fixed loca-
tions (L1 and L2 respectively), and the goal was to form a
multi-robot team that would move all the items through the
manufacturing plan. All the robots would be mobile, and

116

had varying behaviors. Robots could also be configured to
perform drilling or milling, which would allow the items to
be transported past locations. For example, if a robot could
drill, then it could transport items from L0 directly to L2 for
milling, bypassing L1 since the robot performs the drilling.

We defined 3 types of modules: M1,M2,M3. M1 = {slow,
medium, fast} are the motors, M2 = {1, 2, 3, 4} are the car-
rying capacities, and M3 = {B0,1, B0,2, B1,2, B1,3, B2,3} en-
capsulate both the software programmed into the robots and
drilling/milling capabilities. A behavior Bi,i+1 implies that
the robot only transports items from Li to Li+1. A behavior
Bi,i+2 implies that the robot also performs drilling/milling,
e.g., B1,3 means that a robot transports drilled items from
L1 to location L3 and performs milling on the item.

The feasibility function F returns 1 iff the team of robots
are able to drill, mill and transport all items to L3. For
all our experiments below, we set δ = 0.5, so the goal
was to find the team that attains the highest mean value.
Faster motor speeds, higher carrying capacities, and adding
drilling/milling functionality had higher costs. The cost
threshold cmax was set such that the maximum number of
robots was five for the synthetic and simulation experiments,
and three for the real robot experiments.

In each trial, we generated a set of training data. The
learning algorithm uses the training data to learn a SGraCR
model, and the team formation algorithm uses the learned
SGraCR to find the team that approximates the δ-optimal
team. A similar approach was used to learn a Synergy Graph
and form a team, and for IQ-ASyMTRe the training data
set was used to estimate the module costs.

7.2 Synthetic Data
In our first set of experiments, we used synthetic data

derived from a hidden SGraCR model. Using the exper-
imental domain described above, we generated a hidden
SGraCR model with 12 vertices and randomly generated
the module capabilities. The hidden model was used to cre-
ate 100 training data (T, V (T)) ∈ Dtrain, where the value
V (T) = Evaluate(S(T), 1 − δ) of the hidden model. The
training data was used to learn a new SGraCR model. Fi-
nally, our team formation algorithm was run on the learned
SGraCR model, and its value calculated using the hidden
model, i.e., if the algorithm selected team T , then V (T) =
Evaluate(S(T), 1 − δ) of the hidden model. This process
is very similar to the experiments on the Synergy Graph
model [5], and we wanted to compare our new SGraCR
model with the Synergy Graph model using this benchmark.

We performed 20 trials, where a different hidden SGraCR
model was generated each time. The second column of Ta-
ble 1 shows the results of our trials with synthetic data.
SGraCR vastly outperformed the Synergy Graph model and
IQ-ASyMTRe. We believe that this is largely because the
data was derived from a hidden SGraCR model. The low
performance of the Synergy Graph compared to SGraCR
shows that SGraCR is a more expressive model; otherwise,
the Synergy Graph would have a similar score to SCraCR.

7.3 Simulated Robots
In our second set of experiments, we created a 2D simula-

tor, where mobile robots moved to transport items from one
location to another. The value of a team was the negative of
the number of timesteps taken to transport 100 items from
L0 to L3, i.e., if a team T took x timesteps then V (T) = −x.

We ran the simulator on all 6056 possible teams to calcu-
late their value, and ran 20 trials. In each trial, 100 data
points of the 6056 was used for training, so only a small
subset of possible teams was visible by the learning algo-
rithm to learn a SGraCR. The team formation algorithm
then searched the learned SGraCR to approximate the δ-
optimal team. The third column of Table 1 shows the re-
sults of the simulated experiments. SGraCR and Synergy
Graph both perform very well, finding teams with scores
of 1.33, which indicates that the simulated domain can be
sufficiently modeled with the Synergy Graph. However, al-
though the Synergy Graph model has a similar performance,
it contains 60 vertices compared to SGraCR’s 12, showing
that the Synergy Graph model does not scale as well as the
SGraCR model to more complex scenarios involving modu-
lar robots. Thus, the SGraCR model is well-suited for con-
figurable robots in multi-robot teams.

7.4 Real Robot Experiments
In our final set of experiments, we used Lego NXT robots

in a pseudo-manufacturing setting. We chose the Lego plat-
form as the hardware is modular and configurable to fit any
task. We designed the robot task such that it involved ma-
nipulation and movement, which are essential components
of many robot domains. Since we only used the time of task
completion to train the SGraCR model, the approach in our
experiments would be identical if any other robot platform
or task was used. Fig. 4a shows the layout of our robot ex-
periments, and Fig. 4b shows a NXT robot approaching L1,
with some of its components labeled. Each robot was pro-
grammed to follow a white line from station to station, and
pass transparent cups to each other. The drilling/milling op-
erations were not actually performed but assumed to take
place either at the stations or by the robot transporting it.

(a) (b)

Figure 4: a) The layout of the real robot experiments in-
volving NXT robots transporting items from L0 to L3. b)
A NXT robot as it approaches L1.

Due to the limited carrying capacity of the NXT robots,
we set the carrying capacity modules M2 = {1}. Also, we
had the physical limitation of 3 NXT robots, so teams had
a maximum size of 3. As such, |T | = 45. In each trial, the
robots moved 3 items from the start location L0 to the end
L3, handing 1 item to each other at each station. The value
of a team was the negative of the cost and the time taken,
i.e., a team T with cost c and took x seconds to transport all
3 items had a score of V (T) = −c−x. We reduced the value
of a team by its cost for two reasons: to show the efficacy of
the SGraCR model over different value functions (compared
to the previous subsections), and to better reflect that the
cost of a team has an effect in a manufacturing scenario.

117

Approach
Score

Synthetic Data Simulation Real Robots
SGraCR 1.77± 1.64 1.33± 0.52 0.86± 0.46

Synergy Graph 0.56± 1.45 1.33± 0.29 0.37± 0.82
IQ-ASyMTRe 0.93± 1.99 0.41± 0.54 0.59± 0.23

Table 1: Experimental results of SGraCR and two compet-
ing approaches using synthetic data derived from a hidden
SGraCR model, simulated robots in a manufacturing sce-
nario, and robot experiments using Lego NXT robots.

Similar to the above sets of experiments, we used a subset
of the data collected to learn a SGraCR. We then formed
a multi-robot team using the learned SGraCR. In these ex-
periments, |Dtrain| = 20, which is less than half of |T |. The
SGraCR and Synergy Graph models have 9 and 15 vertices
respectively, and so we chose a training size of 20 to pro-
vide enough information to solve for the unknowns. We
ran 100 trials, where each trial used a different subset of
20 training data. The last column of Table 1 shows the re-
sults of our robot experiments. SGraCR outperforms the
Synergy Graph and IQ-ASyMTRe approaches, demonstrat-
ing that SGraCR captures interactions that are unmodeled
by the Synergy Graph model and IQ-ASyMTRe. We per-
formed a one-tailed paired T-test on the results, and found
that SGraCR has a statistical significance of p = 3.7× 10−7

against the Synergy Graph model, and a statistical signifi-
cance of p = 8.0 × 10−9 against IQ-ASyMTRe. Thus, the
SGraCR model is robust and well-equipped to be applied to
robot domains involving configurable multi-robot teams.

8. CONCLUSIONS
We formally introduced the Synergy Graph for Config-

urable Robots (SGraCR) model, where each robot module
is a vertex in a weighted connected graph, and distances
between vertices in the graph are inversely related to how
well modules work together. Edges have intra and inter-
robot weights, to distinguish between the distance of mod-
ules within a single robot and modules across robots. We
defined intra and inter-robot synergy, and the synergy of a
multi-robot team composed of modules. We assume no prior
knowledge of the capabilities of the robots and modules, and
contribute a learning algorithm that learns a SGraCR using
a small set of training data. We also defined the notion of
a δ-optimal team, and contributed a team formation algo-
rithm that approximates it, using the learned SGraCR.

We performed extensive experiments in simulation and
on real robots to demonstrate the efficacy of our model and
algorithms. First, we showed that the learning and team
formation algorithms perform well when using data derived
from a hidden SGraCR. Next, we used a simulated manufac-
turing scenario and showed that our model is applicable to
this domain. The multi-robot team formed by module selec-
tion outperforms the IQ-ASyMTre algorithm and performs
similarly to the Synergy Graph model, although SGraCR
uses less vertices and scales better as the number of mod-
ules increases. Lastly, we used real robots in a manufactur-
ing scenario, and showed that SGraCR forms an effective
multi-robot team that outperforms the other approaches.

While our experiments used a manufacturing scenario,
the SGraCR model is applicable to many general robot do-
mains. As robots are increasingly modular and reconfig-

urable, many multi-robot problems require the composing
of teams by selecting modules to best fit the task. In ad-
dition, since SGraCR models each module and its capabili-
ties, the capability of robots (combinations of modules) that
have not been seen during training can be inferred from the
model, and the performance of novel multi-robot team com-
binations deduced. Our learning algorithm does not require
prior knowledge of the capabilities of the modules, so our
approach is also applicable to ad hoc domains, where robots
and/or modules have not worked together.

Acknowledgments
The authors thank Marcos Maximo for his work with the
NXTs. This work was partially supported by the Air Force
Research Laboratory under grant no. FA87501020165, by
the Office of Naval Research under grant number N00014-
09-1-1031, and the Agency for Science, Technology, and Re-
search (A*STAR), Singapore. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of any sponsoring institu-
tion, the U.S. government or any other entity.

9. REFERENCES
[1] B. Banerjee and L. Kraemer. Coalition Structure

Generation in Multi-Agent Systems with Mixed
Externalities. In Proceedings of the International
Conference on Autonomous Agents and Multiagent
Systems, pages 175–182, 2010.

[2] S. Barrett, P. Stone, and S. Kraus. Empirical
Evaluation of Ad Hoc Teamwork in the Pursuit
Domain. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems, pages
567–574, 2011.

[3] M. de Weerdt, Y. Zhang, and T. Klos. Distributed Task
Allocation in Social Networks. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems, pages 500–507, 2007.

[4] M. B. Dias and A. Stentz. Multi-Robot Exploration
Controlled By A Market Economy. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2714–2720, 2002.

[5] S. Liemhetcharat and M. Veloso. Modeling and
Learning Synergy for Team Formation with
Heterogeneous Agents. In Proc. Int. Conf. Autonomous
Agents Multiagent Systems, pages 365–374, 2012.

[6] T. Rahwan, T. Michalak, N. Jennings, M. Wooldridge,
and P. McBurney. Coalition Formation with Spatial
and Temporal Constraints. In Proceedings of the
International Joint Conference on Artificial
Intelligence, pages 257–263, 2009.

[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohme. Coalition Structure Generation with
Worst Case Guarantees. Journal of Artificial
Intelligence, 111:209–238, 1999.

[8] T. Service and J. Adams. Constant factor
approximation algorithms for coalition structure
generation. Journal of Autonomous Agents and
Multi-Agent Systems, 23:1–17, 2011.

[9] Y. Zhang and L. Parker. Task allocation with
executable coalitions in multirobot tasks. In Proc.
IEEE Int. Conf. Robotics Automation, 2012.

118

