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ABSTRACT 

We address the problem of suboptimal behavior caused by short 

horizons during online POMDP planning.  Our solution extends 

potential-based reward shaping from the related field of rein-

forcement learning to online POMDP planning in order to im-

prove planning without increasing the planning horizon. In our 

extension, information about the quality of belief states is added 

to the function optimized by the agent during planning.  This in-

formation provides hints of where the agent might find high future 

rewards, and thus achieve greater cumulative rewards.  

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 

– intelligent agents, multiagent systems 

General Terms 
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1. INTRODUCTION 
Partially observable Markov decision processes (POMDPs) [5] 

are a popular approach to agent reasoning and planning. In com-

plex environments (e.g., with large belief state spaces) where the 

agent needs to adapt its behavior to its unpredictable experiences, 

online planning approaches [7] are advantageous. In online plan-

ning, an agent interleaves planning and execution while it oper-

ates, focusing only on belief states the agent actually holds (as 

opposed to pre-computed belief states in offline approaches).   

To plan fast enough to operate in real-time, online planning is 

generally restricted to limited horizon depths. However, this can 

result in myopic, suboptimal behavior since the agent might not 

consider important decisions that could lead to large rewards a 

little farther in the future.  That is, short horizon planning can 

result in underestimating action sequences that earn greater future 

rewards and overestimating sequences that earn large immediate 

rewards but lead to smaller cumulative rewards in the future. 

Previous solutions [7] to this limited horizon problem for online 

planning include (1) Monte Carlo methods (e.g., [3]), which focus 

planning on the most likely beliefs based on environment dynam-

ics modeled by the POMDP, and (2) heuristic search methods 

(e.g., [10]), which focus planning on the “best” belief states, such 

as those returning the highest guaranteed reward.  Compared to 

planning for all possible belief states, both of these solutions  

enable deeper planning in the same amount of time spent since 

they limit the belief states considered, but they unfortunately ne-

glect possible belief states and can lead to the same under- or 

over-estimation problems of planning with limited horizons. 

To improve online planning, we propose a new solution enabling 

the agent to implicitly look farther forward (1) without increasing 

the short horizon, and (2) without sacrificing coverage by neglect-

ing possible belief states.  Specifically, we propose the first exten-

sion of potential-based reward shaping (PBRS) [2, 4, 6] from 

the related field of reinforcement learning (RL) to online POMDP 

planning (also providing provable performance guarantees for 

including belief-based POMDP rewards [1]).  Recently, PBRS 

was demonstrated [9] to be useful in planning with the simpler, 

fully observable MDP.  However, extending PBRS to POMDPs is 

non-trivial (and possibly richer) due to partial observability. 

2. POTENTIAL-BASED PLANNING 
In RL, PBRS [2, 4, 6] is a method of modifying the agent’s re-

ward function in order to address the exploration-exploitation 

problem: determining how to better maximize long term rewards, 

given uncertain knowledge of future rewards.  PBRS accomplish-

es this by embedding a priori information in a potential function 

mapping states to potential and providing the agent with addition-

al rewards based on the difference in potential of the initial and 

final state in a transition. This encourages exploration of high 

potential states and, through the structure of shaping (c.f., Eqs. 3-

4), is guaranteed [2, 4, 6] to still optimize the agent’s original 

reward function. 

To extend PBRS to online POMDP planning, we first note that in 

this setting, the agent makes decisions based on its uncertain be-

lief state   (instead of individual state s), which represents the 

agent’s probabilistic beliefs over which possible environment 

state is the correct one.  Therefore, we define our potential func-

tion      over belief states.  Given this change, such a potential 

function can measure several different types of information about 

the agent’s beliefs.  First, the function could retain information 

about individual states (as in RL) and simply measure the ex-

pected potential given its uncertainty: 

                                    ∑               (1) 

Second, the potential function could provide measures independ-

ent from the potential of any particular state.  For example, the 

potential function could measure the certainty in the agent’s be-

lief, indicating how well the agent has handled partial observabil-

ity before acting on its beliefs [1]: 

                           | |  ∑                   (2) 

Finally, the potential function can also represent a preference 

ordering over beliefs, encouraging the agent to reach some belief 

states before others (e.g., for long-term goal directed behavior). 

To include   in POMDP planning, we shape the agent’s rewards: 
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                                                    (3) 

       where                                  (4) 

Here, the reward    earned at time   is shaped by adding the dif-

ference in potential in changing the agent’s belief from    to     .   

The forward-looking term          enables the agent to consider 

potentially high rewards beyond the reward at time   (and thus 

eventually beyond the planning horizon).  Thus, PBRS can lead to 

policies that better maximize the agent’s long-term cumulative 

rewards given a fixed, small planning horizon without sacrificing 

belief states during planning (only modifying which are reached 

during execution).  Furthermore, based on the inclusion of the 

discount factor   in Eq. 4 (which is the same   used to calculate 

cumulative rewards during POMDP planning [5]), it can be shown 

(similar to the proofs for PBRS in RL, e.g. [2, 4]) that optimizing 

the shaped reward also optimizes the agent’s original reward func-

tion.  Finally, it can also be shown (using Theorem 3.1 in [1]) that 

as long as the potential function is convex, the agent’s shaped 

rewards remain convex and thus can still be solved by a wide 

range of POMDP planners relying on convexity for optimization. 

3. EMPIRICAL RESULTS 
To demonstrate the benefits of using PBRS with online planning, 

we present an empirical study with a classic POMDP benchmark 

problem: RockSample [8].  Here, an agent is placed in a     

grid from which it must check   rocks of unknown quality and 

sample only good rocks, then exit the grid.  The agent is given a 

reward of +10 (-10) for sampling a good (bad) rock and +10 for 

exiting.  We adopt the commonly used     and    , (e.g., [7, 

10]), and perform online planning for the complete plan tree up to 

policy horizons           both without shaping (Original) and 

with different potential functions:  

(1) TopBelief, a measure of belief certainty similar to Eq. 2 but 

exploiting the factored state space: 

                                                    (5) 

(2) ClosestDistance, measuring domain dependent knowledge 

that belief states closer to uncertain rocks achieve greater accura-

cy and thus most immediate belief improvement: 

           {
 

 

  
                                 

                                                                         
   (6) 

where   is the Euclidian distance to the closest rock whose quality 

the agent is uncertain about, and  

(3) NoExit, prioritizing more certain beliefs about rocks before 

exiting to avoid neglected sampling due to myopic planning: 

            {
                                          
                                                                        

   (7) 

Fig. 1 presents the cumulative (unshaped) rewards earned by the 

agent both with and without PBRS.  First, using PBRS (regardless 

of potential function) better maximized the original reward func-

tion than planning without PBRS (Original) for the shortest hori-

zons (   ) and never performed significantly worse.  Further-

more, one potential function (NoExit) achieved much greater 

performance than without PBRS.  Specifically, this potential func-

tion prioritized belief states in order to avoid myopically exiting 

the grid before forming certain beliefs about all rocks.  Without 

belief prioritization, the short horizons caused the agent to other-

wise take the known, certain +10 reward for exiting the grid 

whenever possible, achieving less cumulative reward than instead 

sampling additional rocks.  Overall, we conclude that PBRS is 

beneficial to improving online POMDP planning with short hori-

zons, especially given an appropriate potential function. 

 
Figure 1: Cumulative Rewards in RockSample 

4. CONCLUSIONS 
In conclusion, we described the first extension of PBRS to online 

POMDP planning in order to improve short horizon planning.  We 

suggested several types of information that can be embedded in 

potential functions hinting of high future rewards and empirically 

demonstrated that PBRS improved cumulative (unshaped) rew-

ards.   In the future, we intend to (1) publish our theoretical results 

guaranteeing PBRS provides an opportunity to better maximize 

cumulative rewards, whilst still optimizing the original reward 

function, (2) establish how to select potential functions based on 

environment characteristics (including dynamic functions [4]), 

and (3) apply our results to RL (e.g., partially observable settings).  
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