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ABSTRACT
The resource allocation problem deals with distributing a number
of indivisible, nonshareable resources among a set of agents so as
to optimizing social welfare. Assuming all agents to have additive
utility functions and focusing on two particular measures of social
welfare, envy-ratio and average-Nash product, we investigate the
two resulting optimization problems. We give the first hardness of
approximation result for a factor better than 3/2 for the problem of
minimum envy-ratio, and we design an FPTAS for the case when
the number of agents is fixed. For the special case when the number
of agents and the number of resources are equal, we show that the
problem is even solvable in polynomial time. Next, we propose
the first approximation algorithm for maximizing the average-Nash
product in the general case, and we prove that this problem admits
a PTAS if all agents’ utility functions are the same. Finally, we
study the problem of how hard it is to design a truthful mechanism
for these two optimization problems.
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1. INTRODUCTION
A key task in multiagent resource allocation (MARA, for short)

is to fairly distribute a given set of resources among a set of agents
so as to optimizing social welfare. The survey by Chevaleyre et
al. [3] provides many applications of this problem, ranging from
computer science to economics and politics. In the standard model
of MARA, we are given a set of agents and a list of indivisible, non-
shareable resources. Every agent has individual preferences over
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the bundles of resources, which can be different from each other.
The goal is to assign all resources to the agents (where each re-
source can be assigned to only one agent) so as to optimizing social
welfare, which can be described by means of a social welfare func-
tion (SWF, for short). The most common SWFs, which have been
studied intensely, include the utilitarian SWF, the egalitarian SWF
(a.k.a. Rawls’s SWF), and the Nash (product) SWF. Informally put,
while utilitarian and Nash SWF are the (average) sum and the (av-
erage) product, respectively, of the agents’ individual utilities, the
egalitarian SWF gives the utility of an individual that is worst off
in a given allocation. In this paper, we will focus on the (average)
Nash SWF, which can be seen as a compromise between the (av-
erage) utilitarian and egalitarian SWFs. Indeed, with the utilitarian
SWF it shares the monotonicity property, as in the mean increas-
ing any agent’s utility leads to an increase of the (average) Nash
SWF. Moreover, the (average) Nash SWF provides a measure of
fairness similarly to the egalitarian SWF, since the (average) Nash
SWF increases when the differences between the agents’ utilities
decrease. This type of SWF is viewed as a useful measure of social
welfare in economics, especially in ranking income distribution,
which emphasizes the differences among the income gaps between
the people in a country (see, e.g., [5, 2, 9]). Some other advantages
of using this type of SWF are given by Moulin [6].

In some situations we wish to find an allocation that is envy-free,
i.e., no agent evaluates another agent’s bundle to be more valuable
than her own. This is another useful criterion of fairness. Unfor-
tunately, since all resources are indivisible and nonshareable and
must be assigned completely to the agents, envy-free allocations
do not always exist. For example, for an instance with two agents
and only one resource that has positive utility for both agents, it is
impossible to ensure envy-freeness: Whoever comes away empty-
handed will be envious. A natural way to overcome this obstacle
is to find allocations in which envy is as small as possible. Lipton
et al. [4] suggested two minimization problems, one to minimize
(total) envy and the other to minimize the envy-ratio. The second
problem is more interesting and will be studied in this paper.

It is known that almost all social welfare optimization problems
in MARA are NP-hard (see, e.g., [8, 4]). This motivates to study
(in)approximability of these optimization problems.

2. PRELIMINARIES

Basics of Multiagent Resource Allocation
A MARA-setting is a triple M = (A,R,U), where A = {a1, . . . ,an}
is the set of agents, R = {r1, . . . ,rm} is the set of indivisible and
nonshareable resources, and every agent ai is assumed to have an
additive utility function ui ∈U over the bundles of resources. For-
mally, each function ui is a mapping from the power set of resources
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2R to R+, the set of nonnegative real numbers, such that for any
bundle of resources T ⊆ R, ui(T ) = ∑r j∈T ui(r j). We also assume
that the empty bundle has always value zero for all agents. An
allocation of resources to the agents is represented by a function
X : A→ 2R such that X(ai) is the bundle assigned to agent ai,
and we require X(ai)∩X(a j) = /0 for all distinct ai,a j ∈ A, and⋃

ai∈A X(ai) = R. That is, each resource is assigned to at most one
agent and all resources must be assigned completely to all agents.

DEFINITION 1. For a MARA setting (A,R,U) and an alloca-
tion X : A→ 2R, define the

1. envy-ratio of X as swev(X)= max
1≤i, j≤n

{
1,

ui(X(a j))

ui(X(ai))

}
,

2. total-Nash (product) of X as swN(X)=
n

∏
i=1

ui(X(ai)),

3. average-Nash (product) of X as swN(X)=

(
n

∏
i=1

ui(X(ai))

)1/n

.

We model the two optimization problems as follows.

MIN-ENVY-RATIO

Input: A MARA setting M = (A,R,U).
Task: Find an allocation X that minimizes swev(X).

MAX-AVERAGE-NASH

Input: A MARA setting M = (A,R,U).
Task: Find an allocation X that maximizes swN(X).

Some Notions of Approximation Theory
DEFINITION 2. 1. A ρ-approximation algorithm for an op-

timization problem is a polynomial-time algorithm that gives
a feasible solution whose value is guaranteed to be within
a factor of ρ of the optimum. The approximation factor ρ

(a.k.a. the performance guarantee) of a ρ-approximation al-
gorithm may depend on the input size; ρ < 1 for maximiza-
tion problems and ρ > 1 for minimization problems.

2. An optimization problem L has a polynomial-time approx-
imation scheme (PTAS) if for each ε , 0 < ε < 1, there is
a ρ-approximation algorithm for L, where ρ = 1− ε if L
is a maximization problem, and ρ = 1 + ε if L is a mini-
mization problem. A fully polynomial-time approximation
scheme (FPTAS) is a PTAS whose running time is bounded
by a polynomial of the input size and of 1/ε.

3. RESULTS
By using a reduction from the well-known NP-complete prob-

lem EXACT-COVER-BY-3-SETS, we obtain the following inap-
proximability results:

THEOREM 3. MIN-ENVY-RATIO is NP-hard to approximate
within a factor better than 3/2, even when the utility functions are
restricted to the domain {0,1,3}.

THEOREM 4. MAX-AVERAGE-NASH cannot have a PTAS, un-
less P = NP.

Turning now to approximability, whenever the number of agents
is fixed, we can design an FPTAS for our two problems based on
dynamic programming.

THEOREM 5. MIN-ENVY-RATIO and MAX-AVERAGE-NASH
admit an FPTAS for any fixed number of agents.

In particular, if there are as many agents as resources, we can
solving the problems efficiently by transferring them into a problem
of finding a maximum matching on a weighted bipartite graph.

THEOREM 6. MIN-ENVY-RATIO and MAX-AVERAGE-NASH
can be solved in polynomial time when the number of agents and
the number of resources are the same.

Also by a matching technique, we provide a simple approxima-
tion algorithm for the problem of maximizing (total) average Nash
social welfare.

LEMMA 7. MAX-AVERAGE-NASH and MAX-TOTAL-NASH
can be approximated to a factor of 1/(m−n+1) and of 1/(m−n+1)n,
respectively.

Theorem 8 is inspired by Lipton [4] and Alon et al. [1].

THEOREM 8. MAX-AVERAGE-NASH has a PTAS for the case
that all agents have the same utility for each of the resources.

Regarding truthful mechanism design (see [7] for more details),
we have the following results.

THEOREM 9. There does not exist any truthful mechanism that
computes an optimal allocation for MAX-TOTAL-NASH or for
MAX-AVERAGE-NASH.

THEOREM 10. Let 0 < ε < 1. There is no truthful mechanism
that can yield an ε-approximation for MAX-TOTAL-NASH or for
MAX-AVERAGE-NASH.

THEOREM 11. No truthful mechanism for MIN-ENVY-RATIO
can have an approximation factor of 2− ε for each fixed ε > 0.
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