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ABSTRACT
Social commitments provide a powerful representation for
modeling multi-agent interactions without relinquishing part
of agents autonomy and flexibility. However, distinguishing
between different but related types of conditional commit-
ments, a natural frame of social commitments, is not con-
sidered yet. In this paper, we define a new logical language,
CTLcc, which extends CTL with modalities to represent con-
ditional commitments and their fulfillments using the for-
malism of interpreted systems. Such a language excludes
the paradox that plagues the semantics of fulfilling commit-
ments in the literature. We present a set of rules to reason
about conditional commitments and their fulfillments.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Temporal Logic

General Terms
Design; Languages
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1. INTERPRETED SYSTEMS AND CTLCC

Assuming the formalism of interpreted systems [3] com-
prises of a set A = {1, . . . , n} of n agents. Each agent i
is associated with countable sets Li and Acti of local states
and actions. The local protocol Pi : Li → 2Acti is a function
giving the set of enabled actions that may be performed by i
in a given state. Let g = (l1, . . . , ln) be a global state, the set
of all global states G = L1×. . .×Ln is the Cartesian product
of all local states of n agents. We use li(g) to represent the
local state of i in the global state g. The global (resp. local)
evolution function is defined as follows: τ : G × ACT → G
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(resp. τi : Li ×Acti → Li), where ACT = Act1 × . . .×Actn
and each component a ∈ ACT is a “joint action” [3].

We advocate the extended version of the interpreted sys-
tem formalism introduced in [1, 2] to account for agent com-
munication. In [1, 2], the authors associated with each i ∈ A
a countable set V ari of at most n−1 local Boolean variables
to represent communication channels through which mes-
sages are sent and received. The value of a variable x in V ari
at local state li(g) is denoted by lxi (g). If li(g) = li(g

′), then
lxi (g) = lxi (g

′) for all x∈V ari. The idea is that a communi-
cation channel between i and j does exist iff V ari∩V arj ̸= ∅.
For x∈ V ari ∩V arj , lxi (g) = lxj (g

′) means the values of x in
li(g) for i and in lj(g

′) for j are the same. As commitments
are established through communication among agents, we
call them communicative conditional commitments.

Definition 1. A model of communicative conditional com-
mitments generated from interpreted systems is a tuple M
= (S,Rt, {∼i→j | (i, j) ∈ A2}, I,V) where S ⊆ L1× . . .×Ln

is a set of global states; Rt ⊆ S × S is a transition rela-
tion defined by (s, s′) ∈ Rt iff there exists a joint action
(a1, . . . , an) ∈ACT s.t. τ(s, a1, . . . , an) = s′; for each pair
(i, j) ∈ A2, ∼i→j⊆ S × S is a serial accessibility relation
defined by s ∼i→j s

′ iff 1) li(s) = li(s
′); 2) (s, s′) ∈ Rt;

3) V ari ∩ V arj ̸= ∅ and ∀x ∈ V ari ∩ V arj we have lxi (s) =
lxj (s

′); and 4) ∀y ∈ V arj−V ari we have lyj (s) = lyj (s
′); I ⊆ S

is a set of initial global states; and V : PV → 2S, where PV
is a set of atomic propositions, is a valuation function.

Definition 2. The syntax of CTLcc, an extension of CTL
with modalities for communicative conditional commitments
and their fulfillments, is defined as follows:

φ ::= p | ¬φ | φ∨φ | E⃝φ | E2φ | E(φ U φ) | CC | Fu(CC)
CC ::= CCw

i→j(ψ,φ) | CCs
i→j(ψ,φ)

where p ∈ PV and E is the existential quantifier on paths.
⃝, 2, and U are CTL path connectives standing for “next”,
“globally”, and “until” respectively. CC and Fu stand for con-
ditional commitments and their fulfillments respectively.

A weak (strong) conditional commitment CCw
i→j (ψ,φ) (CC

s
i→j

(ψ,φ)) is read as“agent i weakly (strongly) commits towards
agent j that φ when the condition ψ holds”. The main dif-
ference between our two types of conditional commitments
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(weak and strong) is that weak conditional commitments can
be established even if the condition will never be satisfied,
while strong conditional commitments are only established
when there is a possibility to satisfy their conditions. Con-
cretely, only weak commitments are considered in the lit-
erature to model commitment protocols. Fu(CCw

i→j(ψ,φ))
(resp. Fu(CCs

i→j(ψ,φ))) is read as “the weak (resp. strong)
commitment CCw

i→j(ψ,φ) (resp. CC
s
i→j(ψ,φ))) is fulfilled”.

Excluding the commitments and their fulfillments, the se-
mantics of CTLcc state formulae is defined in the model M
as usual (semantics of CTL). The state formula CCw

i→j(ψ,φ)
is satisfied in the model M at s iff the content φ holds in
every state satisfying ψ and accessible via ∼i→j . This would
be formalized as follows:

(M, s) |= CCw
i→j(ψ,φ) iff ∀s′ ∈ S : s ∼i→j s

′and s′ ∈ JψK,
we have (M, s′) |= φ

where JψK denotes the set of states satisfying the formula
ψ, i.e., JψK = {s ∈ S | (M, s) |= ψ}. The semantics of
the strong commitment CCs(ψ,φ) is similar, but we add
condition 1 to ensure that there is at least one accessible
state satisfying the condition ψ. Formally:

(M, s) |= CCs
i→j(ψ,φ) iff 1) ∃s′∈S : s∼i→j s

′and s′ ∈ JψK;
and 2) ∀s′∈ S :s ∼i→j s

′ and s′ ∈ JψK, we have (M, s′) |= φ

The state formula Fu(CCw
i→j(ψ,φ)) is satisfied in the

model M at s iff s satisfies the content φ and the nega-
tion of the weak commitment CCw

i→j(ψ,φ) and there exists
a state s′ satisfying the weak commitment from which s is
“seen” via ∼i→j . Formally:

(M, s) |= Fu(CCw
i→j(ψ,φ)) iff ∃s′ ∈S : s′∼i→j s and

(M, s′) |= CCw
i→j(ψ,φ) and (M, s) |= φ ∧ ¬CCw

i→j(ψ,φ)

The semantics of the strong fulfillment Fu(CCs(ψ,φ)) is
similar, but the focus is on checking the satisfiability of the
condition ψ. This would be formalized as follows:

(M, s) |= Fu(CCs
i→j(ψ,φ)) iff ∃s′ ∈S : s′∼i→j s and

(M, s′) |= CCs
i→j(ψ,φ) and (M, s) |= ψ ∧ ¬CCs

i→j(ψ,φ)

Our semantics solves the fulfillment paradox in [1, 2] where
the state labelled by the fulfillment is also labelled by the
commitment that is then marked unresolved. As condi-
tional commitment is a first class citizen in our approach,
propositional commitment Ci→j(φ) can be abbreviated as:

Ci→j(φ) , CCξ
i→j(⊤, φ) where ξ ∈ {w, s} and ⊤ , (p∨¬p).

2. REASONING RULES
We consider here several reasoning rules that are sup-

ported in our logic. The proofs are straightforward from
the proposed semantics. Similar rules were first presented
by Singh [4]. The idea is to: 1) capture the semantic charac-
teristics of commitments and their fulfillments; and 2) show
how two types of commitments and their fulfillments are re-
lated to each other. When the debtor i and creditor j are
understood from the context, we simply write CCξ(ψ,φ)

instead of CCξ
i→j(ψ,φ) and C(φ) instead of Ci→j(φ).

R1. Fulfillment Necessity. Fu(CCξ(ψ,φ)) ⊃ φ
Meaning: when a commitment is fulfilled, its content holds.

R2. Fulfillment. Fu(CCξ(ψ,φ)) ⊃ ¬CCξ(ψ,φ)
Meaning: the commitment is discharged and no longer active
once it is fulfilled.

R3. Partially Detach.CCξ(ψ1∧ψ2, φ)∧A⃝ψ1 ⊃ CCξ(ψ2, φ)
Meaning: when part of the condition (i.e., ψ1) of a commit-

ment holds next, the commitment with the remainder of the
condition (i.e., ψ2) and the same content comes into being.

As special case of R3, we obtain the following rule (R4):
CCξ(ψ,φ)∧A⃝ψ ⊃ C(φ), i.e., detaching into propositional
commitment in one shot.

R5. L-Disjoin. CCξ(ψ1, φ)∧CCξ(ψ2, φ) ⊃ CCξ(ψ1∨ψ2, φ)
Meaning: if i commits that φ if ψ1 and commits that the
same content holds if ψ2, then i commits that φ if ψ1 or ψ2.

R6. R-Conjion. CCξ(ψ,φ1)∧CCξ(ψ,φ2) ⊃ CCξ(ψ,φ1∧φ2)
Meaning: when ψ holds, an agent i would become committed
to bring about φ1 and φ2 if i double commits to bring about
φ1 if ψ and to bring about φ2 if the same condition holds.

R7. Consistency (Strong Commitment). ¬CCs(ψ,⊥) where

⊥ is abbreviated as ⊥ , ¬⊤
Meaning: an agent cannot strongly commit to false.

The following rule holds: CCw(⊥,⊥), or in general
CCw(⊥, φ) as there is no accessible state that satisfies ⊥.
For weak commitments, the following holds:

R8. Consistency (Weak Commitment).A⃝ψ ⊃ ¬CCw(ψ,⊥)

R9. Consistency (Fulfilment). ¬Fu(CCξ(ψ,⊥))
Meaning: A commitment to false cannot be fulfilled.

R10. Strong Consistency. CCs(ψ,φ) ⊃ ¬CCs(ψ,¬φ)
Meaning: when a strong commitment holds, then there is
no possibility for committing to the negation of its content
subject to the same condition.

This rule is not valid in the case of weak commitments
since CCw(⊥, φ) holds. Thus, for weak commitments, it is
easy to prove the following:

R11. Weak Consistency. A⃝ψ∧CCw(ψ,φ) ⊃ ¬CCw(ψ,¬φ)
R12. Chain. (CCξ(ψ1, φ1) ∧ (φ1 ⊃ ψ2) ∧ CCξ(ψ2, φ2)) ⊃
CCξ(ψ1, φ2)
Meaning: commitments are close under implication.

R13. Weaken. CCξ(ψ,φ1 ∧ φ2) ⊃ CCξ(ψ,φ1)
Meaning: if i commits to a conjunction subject to a condi-
tion, i is also committed to each part of the conjunction.

R14. Nonexistence. A⃝ (ψ ∧ ¬φ) ⊃ ¬CCξ(ψ,φ)
Meaning: if the condition is brought about but the content
does not hold, then the commitment does not hold too.

To conclude, Singh [4] introduced constraints that cor-
respond to these rules in the sense of Benthem’s correspon-
dence theory and proved that any logic generated by subsets
of those rules is sound and complete w.r.t. models that sat-
isfy those constraints. Soundness and completeness of our
logic follow then from this result w.r.t. the same models.
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