
JIAC V — A MAS Framework for Industrial Applications

(Extended Abstract)
Marco Lützenberger Tobias Küster Thomas Konnerth Alexander Thiele Nils Masuch

Axel Heßler Jan Keiser Michael Burkhardt Silvan Kaiser Sahin Albayrak
DAI-Labor, Technische Universität Berlin

Ernst-Reuter-Platz 7
10587 Berlin, Germany

firstname.lastname@dai-labor.de

ABSTRACT
Agent-oriented research and technologies have produced a
number of relevant and valuable results. However, industrial
stakeholders are still reluctant to adopt agent technologies
for their products. Modern industrial projects put a set of
requirements on software frameworks, which are often ne-
glected by contemporary agent frameworks. In an attempt
to close this gap, we present the JIAC V agent framework.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Distributed Artificial
Intelligence—Multiagent systems

Keywords
agent framework; mas development; industrial adoption

1. THE JIAC V FRAMEWORK
The 5th version of the Java Intelligent Agent Component-

ware, or JIAC, is a multiagent system development frame-
work and runtime environment, that has been applied in a
number of research- and industrial projects [1, 3, 5].

One of the core aspects of JIAC is the integration of agents
with the service oriented architecture paradigm (SOA) [2].
A reliable discovery and messaging infrastructure ensures,
that JIAC agents can be distributed transparently over a
network, or even beyond network boundaries.

An agent-platform comprises one or more ‘agent nodes’
which are physically distributed and provide the runtime
environment for JIAC agents. New agents, services, as well
as further agent nodes can be deployed at runtime. Agents
interact with each other by means of service invocation, by
sending messages to individual agents or multicast chan-
nels, and by complex interaction protocols. Each individual
agent’s knowledge is stored in a tuple-space based mem-
ory. Finally, JIAC agents can be remotely monitored and
controlled at runtime via the Java Management Extension
Standard (JMX).

Each agent contains a number of default components, such
as an execution-cycle, a local memory and the communica-

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tion adaptors. The agents’ behaviours and capabilities are
implemented in a number of so-called AgentBeans. Agent-
Beans support very flexible activation schemes: A bean may
be executed at regular intervals or according to a life-cycle
change, such as initialised, or started. Further, AgentBeans
can attach observers to the agent’s memory, being called for
instance each time the agent receives a message or updates
its world model.

AgentBeans also provide action methods, which are ex-
posed to the directory and invoked either within the agent
or by other agents. By using these mechanisms, it is possi-
ble to define all of the agents’ capabilities and behaviours.
The entire multiagent system is then defined by one or more
Spring1 configuration files.

1.1 Default and Extension AgentBeans
JIAC agents contain a set of default AgentBeans that con-

stitute core functionalities of an agent, as well as a number of
individual AgentBeans, that are implemented as described
above. One such AgentBean each JIAC agent is equipped
with by default is the Communication Bean. This com-
ponent manages the inter-agent service communication and
also allows agents to exchange messages with other agents
or groups of agents in the network, addressing individual
agents or multi-casting to message channels. The messages
are not restricted to FIPA messages but can have any data
as payload.

Complementary to the AgentBeans, there are NodeBeans,
adding functionality to a node as a whole. Each agent node
is by default equipped with a Directory Node Bean, listing
the actions of the different agents, and a Message Broker
Node Bean, being the counterpart to the agent’s communica-
tion bean and allowing them to transparently send messages
from node to node using ActiveMQ2.

Other commonly used AgentBeans and NodeBeans can
be added to a multiagent system by simply adding the bean
to the agent’s configuration. For the composition of ser-
vices, JIAC includes an Interpreter AgentBean for the ex-
ecution of the high-level service-oriented scripting language
JADL++ [2]. Reactive behaviour of agents can be enabled
with a Drools3 rule engine that can be synchronised with
the agents’ memory.

Extensions to the capabilities of nodes and agents include
a Migration NodeBean, that enables strong agent migration

1Spring: http://www.springsource.org/
2ActiveMQ: http://activemq.apache.org/
3JBoss Drools: http://www.jboss.org/drools/

1189



between agent nodes, a Persistence NodeBean that saves the
node configuration and allows for restarting the node later
on, and NodeBeans for Load Measurement and Load Balanc-
ing that provide cross-node load information and distribute
agents over nodes at start- and runtime. In order to support
application development, JIAC also provides generic func-
tionalities such as AgentBeans for User Management, Hu-
man Agent Interfaces, a Webserver NodeBean running an
embedded Jetty-server, and a Web Service Gateway Agent-
Bean that exposes JIAC actions as web services and vice
versa. Last but not least, the OSGi Gateway allows JIAC
nodes to be executed within an OSGi framework and to ac-
cess other OSGi services.

1.2 Development Methods and Tools
To improve the development efficiency, JIAC provides a

set of additional tools, all of which are integrated directly
into the Eclipse IDE. To start with, the JIAC Project Wizard
helps with creating new JIAC projects by generating a uni-
form project structure, including a readily configured Maven
pom.xml file, as well as a starter class for running the new
JIAC application. Furthermore, several Eclipse views pro-
vide information about currently running JIAC applications
on the network and the agents and services they contain,
as well as the possibility to start and interact with newly
created agents and services. Complementary to those basic
development tools and utilities, JIAC agents can be mod-
elled using two high-level graphical editors. The Visual Ser-
vice Design Tool [4] allows for the modelling of workflows
and interactions of individual agents by means of a series
of BPMN diagrams. Based on these diagrams, executable
JIAC AgentBeans or JADL++ services can be generated.
The Agent World Editor (AWE) [4] can be used to create
diagrams, showing the different agents and agent nodes in a
distributed system and the individual services they provide.
From these visual models, the AWE can generate the cor-
responding Spring configuration files and JIAC AgentBean
stubs. Finally, the running multiagent system can be mon-
itored and manipulated using the ASGARD runtime moni-
tor [6], providing an intuitive, three-dimensional view of all
agent nodes and agents running in the local network as well
as the communication between them.

1.3 Application Frameworks
JIAC was also used for a number of frameworks, which we

present in this section. While these frameworks have usually
been developed for specific domains, they are generic enough
so they can easily be adapted and reused in other contexts.
NeSSi2, the Network Security Simulator [1], was originally
developed for checking the security of computer networks,
but is also capable of simulating other networks, e.g. power
grid, or ICT networks. Also, a generic Optimisation frame-
work can be used to run an optimisation, distributed among
several agents [3]. It can be used with different optimisa-
tion algorithms and problem domains. JIAC was also used
for the development of a Driver Simulation framework [5].
Using a mental model, the framework is able to simulate
a special form of human traffic behaviour, namely strategic
compensatory behaviour. Finally, the Eclipse Plugin Node
is an Eclipse plugin running a JIAC node inside of the devel-
oper’s IDE. This allows e.g. to use JIAC’s discovery mech-
anisms to display available nodes and agents in a view and
to deploy or invoke actions on those nodes.

2. FINAL REMARKS
We certainly recognise that there are many multiagent

frameworks available – each one, with a focus on particular
system characteristics. Yet, as of today, the agent commu-
nity was not able to convince industrial players to adopt
their ideas. JIAC was never intended to include the cutting
edge of agent research but to constitute a robust, reliable,
homogeneous and well-documented framework for the de-
velopment of agent-based software applications. It was also
our intention to equip JIAC with features which are gen-
erally required for extensive industrial appliances. Today,
the JIAC framework has proven its applicability. Common
requirements were integrated as core functionalities, while
the additional features can be easily implemented, due to
the openness and the extensibility of the framework. We do
not consider JIAC to be an ultimate solution for the dis-
crepancy between agent research and the applying industry.
Yet, given the fact that JIAC was originally streamlined to-
wards industrial projects and ease of use, it is our opinion
that JIAC has the potential to provide new incentives for in-
dustrial stakeholders and users which are not all too familiar
with the agent paradigm, to adopt multiagent technology.

3. REFERENCES
[1] D. Grunewald, M. Lützenberger, J. Chinnow, R. Bye,

K. Bsufka, and S. Albayrak. Agent-based network
security simulation (demonstration). In K. Tumer,
P. Yolum, L. Sonenberg, and P. Stone, editors,
Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems, Taipei,
Taiwan, pages 1325–1326, May 2011.

[2] B. Hirsch, T. Konnerth, and A. Heßler. Merging agents
and services – the JIAC agent platform. In R. H.
Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Tools and Applications,
pages 159–185. Springer, 2009.

[3] T. Küster, M. Lützenberger, and D. Freund.
Distributed optimization of energy costs in
manufacturing using multi-agent system technology. In
Proceedings of the 2nd International Conference on
Smart Grids, Green Communications and IT
Energy-aware Technologies, pages 53–59, Maho Bay,
Sint Maarten, March 2012.

[4] T. Küster, M. Lützenberger, A. Heßler, and B. Hirsch.
Integrating process modelling into multi-agent system
engineering. Multiagent and Grid Systems,
8(1):105–124, January 2012.

[5] M. Lützenberger, S. Ahrndt, B. Hirsch, N. Masuch,
A. Heßler, and S. Albayrak. Reconsider your
strategy—An agent-based conceptualisation of
compensatory driver behaviour. In Proceedings of the
15th Intelligent Transportation Systems Conference,
Anchorage, AK, USA, pages 340–346, September 2012.

[6] J. Tonn and S. Kaiser. Asgard—A graphical monitoring
tool for distributed agent infrastructures. In
Y. Demazeau, F. Dignum, J. M. Corchado, and J. B.
Pérez, editors, Advances in Practical Applications of
Agents and Multiagent Systems, volume 70 of Advances
in Intelligent and Soft Computing, pages 163–173.
Springer Berlin Heidelberg, 2010.

1190




