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ABSTRACT
Distributed Constraint Satisfaction (DisCSP) is a popular
formalism that is used for developing a wide variety of general-
purpose protocols. With very few exceptions, these protocol
are tested using completely random instances with the un-
derstanding that this leads to better overall solutions. In
many real-world situations, however, the variables in the
problem represent objects that exist in n-dimensional space
with constraints between them based on distance. In such
instances, the constraint network forms a geometric graph
and therefore is referred to as a Geometrically-Structured
Constraint Satisfaction Problem (GS-CSP).
This paper introduces the GS-CSP and evaluates the per-

formance of two complete DisCSP protocols to demonstrate
how the introduction of structure affects these general prob-
lem solving approaches. Our findings show that GS-CSPs
possess unique characteristics particularly in the phase tran-
sition regions and these characteristics can have a dramatic
impact on the performance of current DisCSP algorithms.
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1. INTRODUCTION
Since the early 1990s the Distributed Constraint Satisfac-

tion Problem (DisCSP) [5] has been used to model a signif-
icant number of real-world problems. For example, DisCSP
protocols have been used for controlling sensor networks [1]
and robot routing [6]. Yet, neither of these domains has
random structure.
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This paper introduces the geometrically-structure constraint
satisfaction problem (GS-CSP), which is formed when vari-
ables are located in n-dimensional space and are connected
together by random binary constraints when their distance
is less than a given threshold. Section 2 gives a formal def-
inition of the distributed GS-CSP. Section 3 then describes
a set of experiments that were conducted using two com-
plete DisCSP solvers, APO [2] and AFC-CBJ [3]. Finally,
in section 4 we present our conclusions and future work.

2. THE DISTRIBUTED GEOMETRICALLY-
STRUCTURED CSP

A geometric graph is a tuple G = ⟨X, r⟩ where X ⊂ Rn is
a set of vertices located in n-dimensional space with undi-
rected edges connecting all pairs {x ∈ X, y ∈ Y } with ||y −
x|| ≤ r [4]. We can expand on the definition of the geomet-
ric graph to formally describe the Geometrically-Structured
Constraint Satisfaction Problem (GS-CSP) P = ⟨V,D, f⟩,
which consists of a set of n variables V = {v1, . . . , vn}
with each variable vi ∈ Rn, discrete, finite domains for
each variable D = {D1, . . . , Dn}, and a set of binary con-
straints c = {c1, . . . , cm} where each ci(di,x, di,y) is a func-
tion ci : Di,x ×Di,y → {true, false} and ||y − x|| ≤ r. The
task is to find an assignment S = {d1, . . . , dn|di ∈ Di} such
that all of the constraints are satisfied or to report that no
such solution exists.

For a number of reasons, it is natural to think about ob-
jects that are located in an n-dimensional space as agents.
So it is equally natural to extend the definition of the GS-
CSP to the distributed GS-CSP. In the distributed version
of the problem, each agent has a spacial location and man-
ages one or more variables. The relationships between the
variables are again dictated by a radius or range, however
in the multi-variable per agent case, each variable may have
a unique range associated with it. For example, imagine a
robot that is coordinating its sensing activities to provide
coverage of warehouse while at the same time must coordi-
nate its use of a share radio frequency.

3. EVALUATION
To evaluate the effect of structure on distributed proto-

cols, we chose to use two very different DisCSP algorithms.
Namely, the AFC-CBJ protocol, which is a tree-based back-
tracking protocol and APO, which is a partial centralizing
mediation based protocol. Following standard practice, we
used 20 variable problems with a domain size of 10. We used
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Figure 1: A comparison of AFC-CBJ and APO on 20 variable random and geometrically-structured DisCSPs.

values for p1 of 0.1, 0.4, and 0.7 and values for p2 that var-
ied from 0.1 to 0.9. We conducted experiments on both ran-
dom and geometrically-structured instances and collected 30
samples per data point. Both algorithms were given the ex-
act same problem instances with the same initial variable
assignments. We used a cycle based simulator where during
each cycle, messages were delivered to the agents, they were
allowed to process them, and then queue up messages for de-
livery at the beginning of the next cycle. During the runs,
we counted the number of messages sent and the number of
NCCCs used by each protocol.
The results of these experiments can be seen in Figure

1. We see that on low and high density problems, that dis-
tributed GS-CSPs on average are easier to solve than ran-
dom DisCSP instances. This trend reverses for the medium
density problems, where it is clear that for both APO and
AFC-CBJ that a shifted phase transition has a meaningful
effect. This has a particularly profound effect on AFC-CBJ.
Another interesting trend that is noteworthy is that the

most recent implementation of APO outperforms AFC-CBJ
on all instances for both metrics. In the best case, we found
that it used 20X fewer NCCCs than AFC-CBJ. We should
note that for time considerations, we were forced to stop
some of the runs for AFC-CBJ at 250,000 cycles. This only
affected the p1 = 0.4, p2 = 0.4 results by making them ap-
pear somewhat better than the actual values we would ob-
tain if they were allowed to run to completion.

4. CONCLUSIONS AND FUTURE WORK
This paper introduces an important subset of the classi-

cal CSP formulation: the geometrically-structured CSP. The
GS-CSP is based on the recognition that many real-world
problems occur in n-dimensional space and that constraints
in these domain are often based on distance. These prob-
lems can be represented as geometric graphs, which possess
a unique set of properties. By exploring these problems,
we have discovered that they are characteristically easier to
solve when the density of their constraints are either fairly
low or fairly high. However, for medium density problems,
they become more difficult to solve than their random coun-
terparts.
Many of these discoveries can be explained by examining

the clustering properties of geometric graphs as the edge
density increases. GS-CSPs form tightly coupled clusters at
low densities, yet remain fairly disconnected overall when
compared to random instances. There is considerable work
that still remains to be done to fully understand the impli-

cations of geometric structure on constraint networks. For
example, the experiments in this paper were done using a
small number of variables with large domains. This choice
was made in part to follow convention. However, we found
that using a larger numbers of variables was impractical due
to the run times of AFC-CBJ. We believe it is important to
look at larger problems, potentially sacrificing the size of the
variable’s domains, in order to truly understand the conse-
quences that structure has on problem solving complexity
and solution optimality.

5. ACKNOWLEDGMENTS
This material is based on research sponsored by the Air

Force Research Laboratory, under agreement number FA8750-
11-2-0066. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of the Air Force Research Laboratory or the U.S. Govern-
ment.

6. REFERENCES
[1] J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings.

An agent-based distributed coordination mechanism for
wireless visual sensor nodes using dynamic
programming. The Computer Journal, 53(8):1277–1290,
2010.

[2] R. Mailler. Improving asynchronous partial overlay. In
Proceeding of IAT 2012, 2012.

[3] A. Meisels and R. Zivan. Asynchronous
forward-checking for DisCSPs. Constraints, 12:131–150,
2007.

[4] M. Penrose. Random Geometric Graphs. Oxford
Studies in Probability. Oxford University Press, New
York, 2003.

[5] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing
distributed problem solving. In International
Conference on Distributed Computing Systems, pages
614–621, 1992.

[6] X. Zheng and S. Koenig. Reaction functions for task
allocation to cooperative agents. In 7th International
Conference on Autonomous Agents and Multi-agent
Systems, 2008.

1222




