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ABSTRACT
Unmanned aerial vehicles (UAVs) are more and more often
used to solve different tasks in both the private and the pub-
lic sector. Some of these tasks, can be often performed com-
pletely autonomously, while the others are still dependent on
the remote pilots. They control an UAV using a command
display where they can control it manually using joysticks,
or give it a simple task. The command display allow for the
planning of the UAV trajectory through the waypoints while
avoiding the no-fly zones. Nevertheless, the operator can be
aware of other preferences, or soft restrictions, for which it’s
not feasible to be inserted into the system especially during
the time critical tasks. We propose to provide the operator
with several alternative trajectories which are different from
the operator’s point of view. So he can choose the best one
for the current situation. In this contribution we evaluate
previously presented techniques for diverse planning. We fo-
cus on an evaluation made by a group of human operators
and show how it can be deployed in an UAV control display.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Operator inter-
faces

General Terms
Algorithms,Human Factors
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1. INTRODUCTION
Nowadays, when the operator wants to change a trajec-

tory of an UAV (or other remote controlled robot), he can
define the new trajectory, e.g. by means of waypoints and
no-fly zones. When the waypoints are updated, the new tra-
jectory is planned (on UAV or within ground control station)
by a trajectory planner, e.g. Θ* [4], which plans the opti-
mal trajectory in respect to the fuel consumption, needed
time, or other user specified criteria. Nevertheless, the op-
erator can be aware of other preferences, where the plane
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should fly, or soft restrictions on areas which would be nice
to avoid. These can contain, for example, possible future
colliding traffic, weather conditions, flights over inhabited
areas, etc. It is not feasible to insert all these preferences
into the system, especially during the time critical tasks.
The operator typically does not accept proposed trajectory
in the cases when he sees other, suboptimal but more prefer-
able one. Then, he has to change input values to force the
system to give the desired solution. This process can be im-
proved by a system giving several possible trajectories out
of which the operator selects one based on his preferences
which is then applied. We proposed to use diverse planning
and introduced several methods in [5].

In this contribution we summarize several metrics measur-
ing how much the trajectories differ and several approaches
to the diverse planning in Section 2. All the proposed ap-
proaches have been evaluated by human operators and re-
sults are examined in Section 3.

2. DIVERSE PLANNING OVERVIEW
In [5] we defined several trajectory diversity metrics count-

ing different states, distance of the trajectories or how the
obstacles are avoided by each trajectory. Based on these
metrics we have implemented several diverse planners:

Metrics Based Planners are solely based on the diver-
sity metrics. These planners start with the optimal
trajectory found by any trajectory planner. Then it
iteratively looks for next trajectories while maximiz-
ing the diversity metric.

Obstacle Extension Approach transforms the planning
task into several new tasks and then runs a traditional
trajectory planner on each task. The transformed task
contains obstacles extended in different directions (4
directions in our case).

Voronoi–Delaunay Graph Based Trajectory Planner
uses Voronoi graph to find representative trajectories
from the start to the target. These trajectories are
not locally optimal, thus for each such trajectory we
generate a set of obstacles and run classical trajectory
planner to get a locally optimal trajectory similar to
that Voronoi trajectory. Obstacles are generated from
the Delaunay graph [1], which is dual to the Voronoi
graph.

3. EXPERIMENTS
We have evaluated all presented diverse planners using

metrics described above. In this contribution we focus on
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Figure 1: Average quality evaluated by human op-
erator and cluster centroids.

the user evaluation of the methods. A group of 12 people,
familiar with the trajectory planning and the UAV control
problem, have manually evaluated results of each method.
Each user has been presented with a set of 15 problem in-
stances of two scenarios in the 8-grid domain with randomly
placed obstacles and 5 trajectories proposed by each method.
User grades each solution with 1 to 5 points (more points
mean better solution).

Average quality evaluation of each method for different
number of obstacles are shown in Figure 1. We can see
that the best score was achieved by the Trajectory Distance
Metric MaxMin planner and the Voronoi-Delaunay graphs
based planner. The Voronoi-Delaunay graphs based planner
outperformed other methods mainly in the scenario with up
to 12 obstacles. Based on our experience, one segment of
the UAV trajectory typically does not avoid more obstacles
which makes this method very suitable for use in operators’
control panels.

Closer evaluation shows that the users can be divided into
two groups. Some have preferred trajectories whose length
is closer the to optimum while the others preferred more
diverse trajectories. First group of users, graded higher the
Voronoi-Delaunay graphs based planner while the latter one
preferred the Trajectory Distance Metric MaxMin planner.
We used k-means clustering to find centroids of both groups.
These centroids of evaluations both groups are shown in the
Figure 1. This observation will direct our future research to
create a method which will satisfy both groups.

4. CONCLUSION
The human-UAV interaction is a bottleneck of today’s

unmanned aerial systems. The interface of the trajectory

Figure 2: The screenshot shows several trajectories,
which are proposed to the user after he set up new
waypoint for the UAV.

planning can be certainly improved by providing a user with
several alternative trajectories from which a user can choose
the most suitable one. This problem has not been targeted
by the scientific community yet even though it has signifi-
cant practical impact. This contribution presented experi-
mental results of user evaluation of several methods suitable
for trajectory diverse planning for UAV mission displays.

We have implemented the Voronoi-Delaunay graphs based
planner together with RRT* (optimal rapid-random trees,
[2, 3]) planner into a prototype of UAV control display.
When user specifies new waypoints, several diverse trajec-
tories are created and proposed to the user, as shown in
Figure 2. User can choose one trajectory or refuse all of
them. When a trajectory is accepted, it is sent to the UAV
and it starts to follow it.
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