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ABSTRACT
This paper explores a multi-robot coverage approach called
StiCo (for“Stigmergic Coverage”) by deriving a probabilistic
macroscopic model. The proposed model makes it possible
to quickly and efficiently study the swarm-type behavior of
StiCo, and also allows for making predictions about its long
term behavior. The model is validated in a twofold way:
through computer simulations, and with real robots.
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1. INTRODUCTION
StiCo is specifically designed for robots equipped with

low-range sensors that operate in environments where di-
rect robot-robot communication is limited or not possible
at all [1]. The basic notion underlying this approach is to
partition the environment into equal circular regions (also
called territories) where each robot takes responsibility to
guard one of these regions. Therefore, StiCo answers the
core question “How should robots move in order to decrease
the intersections of their territories”.

In StiCo, each robot starts to move with a constant for-
ward linear velocity, and a constant angular velocity, which
results in a circular motion on the borders of the robot’s ter-
ritory. The forward linear velocity remains constant during
the whole mission. However, when the robot sensor detects
a pheromone (i.e. an evaporable robot trail), it indicates
to the robot that it is about entering another territory, and
therefore the robot changes its circling direction immedi-
ately. In this way, the robot establishes its territory in a
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new region without any intersection with the previous ter-
ritory. The effective coverage behavior of StiCo is shown
in [2] by means of various simulation scenarios for robotic
swarms of different sizes. This behavior is also validated
with experiments on real robotic swarms1.

2. MACROSCOPIC MODEL DESIGN
Consider the number of singular territories (i.e., the terri-

tories, which does not have intersection with any other one)
as the performance criterion for StiCo. In order to be able
to capture this criterion formally, the following three simpli-
fying (but not unrealistic) assumptions are made:

Assumption 1. In each iteration, just one territory leaves
its x-tuple group (x > 1), where an n-tuple group is a cluster
of n territories which can not be separated into two disjoint
clusters.

Assumption 2. Any n-tuple group (n > 1) of territo-
ries have a configuration similar to a hexagon tessellation
in which territories are inscribed in hexagons.

Assumption 3. The free area required for a robot to es-
tablish its new singular territory after leaving its current
group is called landing region and is approximated as SL =
0.5π(2R)2.

Let’s define the state Cn, n = 1, 2, . . . ,M , for the case that
there are n singular territories in the environment. Then, we
need a mathematical expression to compute the probability
of transition from state Cn1 to state Cn2, in one iteration
(Assumption 1). This probability is denoted by Pn1,n2.

The first step for computing probability Pn1,n2, is to par-
tition a general state Cn to all of its possible configurations
(the word partition, refers to a concept of number theory).
The configuration Cn

Ta1,Ta2,...,Tak
denotes a configuration in

state Cn, in which Tai denotes existence of one ai-tuple in
the configuration. If we define Qn(K) as the probability
that a swarm of territories be in state Cn in K-th iteration,
then the discrete state transition model can be written as

Q1(K + 1)
Q2(K + 1)

..

.
QM (K + 1)

 =

 P1,1 · · · PM,1

.

..
. . .

.

..
P1,M · · · PM,M




Q1(K)
Q2(K)

.

..
QM (K)

 (1)

For computing Pn,n−1, which is the transition from Cn to
Cn−1, the chance that a singular territory becomes a mem-
ber of a double group should be computed. Let L(M,n) be
1http://swarmlab.unimaas.nl/stico/
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a function that computes number of possible configurations
of M territories, in which exactly n of them are singular.
Then, consider the t-th configuration of Cn as

Cn

T1, T1, . . . , T1︸ ︷︷ ︸
n

,T2, T2, . . . , T2︸ ︷︷ ︸
rt

,Ta1t
,Ta2t

,...,Takt
(2)

The probability for a transition from the t-th configuration
of Cn to one of the configurations of Cn−1 is computed by
calculating the probability that one of the non-singular ter-
ritories leave their group and intersect with one of the n
singular territories:

ptn,n−1 =
M − n− rt
M − n

× n
SL

A−Ao

(
1 − SL

A−Ao

)n−1

(3)

where Ao denotes the region occupied by non-singular ter-
ritories: Ao = (M − n)SH , and SH denotes the area of a

hexagon circumscribed by a territory: SH = 3
√
3

2
R2 (As-

sumption 2). SL is the area of landing region approximated
in Assumption 3.

Therefore, the overall probability function Pn,n−1 is de-
fined as

Pn,n−1 =

L(M,n)∑
t=1

ptn,n−1 (4)

For computing the chance of transition from Cn to Cn+1

which is for the case that number of singular territories in-
creases by one, consider the same t-th configuration provided
in (2). we can calculate ptn,n+1 as

ptn,n+1 =
M − n− rt
M − n

× n

(
1 − SL

A−Ao

)n

(5)

and overall probability function Pn,n+1 is defined as

Pn,n+1 =

L(M,n)∑
t=1

ptn,n+1 (6)

For Pn,n+2 there is just one configuration in which a tran-
sition from Cn to Cn+2 happens: A territory leaves a double
group, and instead becomes a singular territory. In this way,
two new singular territories will be added to the previous
configuration. For the t-th configuration provided in (2), we
have

ptn,n+2 =

{
rt

M−n
× n

(
1 − SL

A−Ao

)n
rt > 0

0 rt = 0
(7)

and overall probability function Pn,n+2 is defined as

Pn,n+2 =

L(M,n)∑
t=1

ptn,n+2 (8)

Finally, if we ignore the probability for transition from Cn

state to the states Ci, in which i < n− 1 or i > n+ 2, then
the probability for remaining in the same state is

Pn,n = 1 − Pn,n+1 − Pn,n+2 − Pn,n−1 (9)

In order to check the conditions of fundamental Ergodic
Theorem for Markov chains on P matrix, these conditions
are simply explained as: (1) P should be stochastic: The
values of P must be within the range [0, 1] and each column
(or row) sums to 1. (2) P should be irreducible: From each
state of our system, it must be possible to get to any other

state. (3) P should be aperiodic: The graph represented by
P should not be bipartite. The first condition holds based
on the fact that each probability is in the range of [0, 1], and
Eq. (9) which shows each column sums to 1. The two other
conditions can be easily checked with constructing the graph
represented by P . Therefore, P is a Markov chain which can
denote a stationary configuration Π = lim

i→∞
P i.Q(0), where

Q(0) can be any initial probability distribution for initial
configuration.

3. RESULTS
Three groups of 4, 8, and 20 robots are initialized at

the center of environment. For each group, the probabil-
ity of being in the final stationary configuration, Q(.), is
first computed using the macroscopic model. Then com-
puted by using computer simulations, and finally by using
real robot experiments. The results of computing the con-
vergence probability are illustrated in Fig. 1a. The presented
results show that the macroscopic model can estimate the
behavior of StiCo for robotic swarms of various sizes. As
shown in Fig. 1b, the convergence speed of StiCo increases
linearly with growth of the swarm population.
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Figure 1: Model verification (a) Convergence prob-
ability in different iterations (MM: Macroscopic
Model, CS: Computer Simulations, RE: Real Exper-
iments). (b) Effects of swarm size on convergence
time.

4. REFERENCES
[1] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee. A

multi-robot coverage approach based on stigmergic
communication. In Multiagent System Technologies,
volume 7598 of Lecture Notes in Computer Science,
pages 126–138. Springer, 2012.

[2] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee.
Stigmergic coverage algorithm for multi-robot systems
(demonstration). In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 3, pages 1497–1498, 2012.

1234




