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1. INTRODUCTION
Steven J. Brams’s 1994 book Theory of Moves provides

a complete information game framework where play com-
mences at a particular state and subsequent moves are deter-
mined from a finite lookahead in conjunction with backward
induction analysis, resulting in convergence to Non-Myopic
Equilibrium(NME) [1]. For certain 2 × 2 games, the initial
state is the NME. This can happen by players realizing they
have no benefit to move (for example, if the initial state is
mutually preferred), or realizing that making an initial move
results in a cycle back to the initial state. Though agents in
the standard TOM framework do not move if doing so will
result in a cycle, average payoff over a cycle may be of higher
utility for agents than being stuck in any particular state.
Consider a price war between businesses over a commonly
offered good. While the businesses might cycle around even-
tually offering the same initial price, during each price level,
products continue to be sold, and the overall profit for a
business is a function of the time spent at each price point.
While certain states might prove lucrative for certain agents
(a price hike), others might be disadvantageous. Is it ratio-
nal to engage in the cycle expecting that gains in desired
states will offset the loss in others?

If we modify rationality rules of TOM and incorporate
strategizing for time spent in each state and indefinite game
play, equilibria solutions must be analyzed to determine
which solutions, if any, are stable in the long run. We study
different time constraints on moves in a cycle for a player
and show that only certain time choices can be rational. We
further construct a meta-matrix with those limited time op-
tions to derive equilibria in terms of time spent at each state.
Our analysis produces a complete specification of when to
cycle and how much time to spend at each state where an
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agent can choose to move in TOM play.

2. MODIFIED TOM FRAMEWORK
In TOM, play starts at an outcome determined by an ini-

tial strategy profile chosen by the players. Either player can
unilaterally switch its strategy, thereby changing the initial
state into a new state. Players take turns moving until one
player declines and the game terminates in the correspond-
ing state. We now present an augmentation of basic TOM
play to account for time and dynamic utility where t is the
current time step, tkr is player pk’s time remaining for the
current cycle (initially set to T ), Ukt is pk’s utility at t, Ukf
is pk’s final utility, and tc is time spent in the current state.
tc and t are initialized to 0, tkr to b (the maximum time
allowance per iteration), and Ukt and Ukf are initialized to

vk(S0) (pk’s valuation for state S0).

1. Initial Move If player pk makes an initial move after
t0, then tkr ← tkr − t0, t ← t + t0. If neither player
makes an initial move by b, game play terminates.

2. Subsequent Moves Given current state Si, current
player pk, and current values tc and t:

• tc ≥ tkr : Play terminates and ∀ players pm:

Umf ←
[

t

(t+ 1)

]
Umt +

[
1

(t+ 1)

]
vm(Si);

• tc < tkr and pk decides to remain in Si: tc ← tc+1,
t← t+ 1, and ∀ players pm

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si);

• tc < tkr and pk moves to state Sj 6= S0: then
tkr ← tkr − tc, t← t+ 1, tc ← 0, and ∀ player pm:

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si);

• tc < tkr and pk moves to state Sj = S0: a cycle
occurs. t← t+ 1, ∀ players pm, tmr = b and

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si).

Notice if b = ∞, the algorithm provides no clear play
termination and hence no calculation of final utility. In such
games, Ukf = lim

t→+∞
(Ukt ). Resultantly, the revised paradigm

supports characterization of noncyclic games.
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3. OPTIMAL STRATEGY CONSTRUCTION
If time constraints are given on game play, an agent’s ra-

tional strategy must not only take into account moving or
staying, but how long it should stay before moving. For the
ith round of game play, a player pk

1 can construct a time
strategy si = (t1, t2, ..., tn) where tj indicates how long it
will stay in it’s jth decision state. It would like to find the
strategy Si optimizing its utility function uk(Si).

3.1 Games with a min/max move time limits
We limit our discussion to 2 × 2, strictly ordinal games

with payoffs (a,w), (b,x), (c,y), (d,z); pk has two decision
states per round and seeks a time strategy si = (tk1 , t

k
2) given

a minimum time limit ε each decision state and maximum
time limit M per cycle. WLOG, suppose pk prefers its first
decision state to its first.

Theorem 1. If there is a minimum time limit ε each de-
cision state, a player should never spend more than ε time
in its least preferred decision state.

We now wish to find the optimal value for it’s least pre-
ferred decision state. Because uk(S) is continuous on the
closed bounded interval [ε,M − ε], we are guaranteed it will
attain a maximum at some point on this interval and that
this maximum will occur either on the endpoints of the in-
terval or at a critical point corresponding to:

∂uk

∂δ
=
tk̄1(b− a) + tk̄2(d− a) + ε(c− a)

M − δ + ε+ tk̄1 + tk̄2
= 0

Three cases arise:

1. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) > 0

⇒ increasing δ increases uk ⇒ (ε, ε) optimal

2. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) < 0

⇒ increasing δ decreases uk ⇒ (M − ε, ε) optimal

3. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) = 0;

δ has no impact and pk is indifferent to cycling.

Meta Matrix Construction.
Because pk’s strategy about a cycle is dependent upon pk̄’s

and since players may deviate from strategies each decision
state, pk must also predict the long term consequences of
cycling on the dynamics of pk̄’s strategy selections before
determining if cycling is rational.

Nash Equilibria (NE) solutions occur when no player has
an incentive to deviate from their contributing strategy, and
the previous analysis indicates the only viable candidates
are strategies of the form (M − δ, ε) with δ on either end
the interval [ε,M − ε]. We can construct a “meta matrix”
like the one pictured where action profiles for each player
consist of these strategies and each square corresponds to
the solution composed of the intersecting player strategies.2

Payoffs are derived from the utility functions and describe

1pk’s opponent is henceforth denoted as pk̄
2Example: For a game where R, C prefer their first de-
cision state, the top left outcome corresponds to both
players selecting δ = ε, resulting in overall time strategy
(M − ε,M − ε, ε, ε).

the net difference in utility incurred for a cycle using the
solution associated with that square. NE in a meta matrix
indicates a stable strategy set which in turn corresponds to a
stable game solution. When a meta matrix lacks NE, players
will engage in a constant cascade of deviation to different
extremes of δ, cycling about the squares of the meta matrix
itself. An agent can use the following procedure then to
determine if cycling is rational:
(1) Construct meta matrix and assign payoffs using Equa-
tions 1 and 2.
(2) If all payoffs in the meta matrix are positive for a player,
it is rational for it to induce the cycle.
(3) If a NE exists and the payoffs for a player is positive, it
is rational for it to induce the cycle. Conversely, if payoff is
negative, cycling is irrational.
(4) If no NE exist, but the average payoff about the meta
matrix for a player is positive (negative), it should (should
not) cycle.

Meta Matrix

ε M − ε
ε ∆k

1

∆k̄
1

∆k
4

∆k̄
4

M − ε ∆k
2

∆k̄
2

∆k
3

∆k̄
3

∆uk(δ1, δ2) =


ε(b+ c− 2a) + (M − δ2)(d− a)

2M + 2ε− δ1 − δ2
|z > x

ε(c+ d− 2a) + (M − δ2)(b− a)

2M + 2ε− δ1 − δ2
|x > z

(1)

∆uk̄(δ1, δ2) =


ε(x+ y − 2w) + (M − δ2)(z − w)

2M + 2ε− δ1 − δ2
|z > x

ε(z + y − 2w) + (M − δ2)(x− w)

2M + 2ε− δ1 − δ2
|x > z

(2)

3.2 Games with min time limit but no max
Our analysis showed that while a player’s most rational

strategy minimizes its time in the least preferred state, it
does not always want to maximize the time it spends in
its most preferred moving state. As long as decision states
have minimum time limits, are there games that have NE
solution even when lacking a maximum time constraint per
cycle? Due to limited space, we only present the following
theorem, which is not restricted to 2 × 2 games, and omit
the analysis.

Theorem 2. Consider an n-cycle (S1, S2, ..., Sn) with m
players. Let Sε = (ε, ε, ..., ε). If for each player pi, v

i(S0) ≤
U i(Sε) ⇒ Sε is NE.

In conclusion, for games with min but no max time limits,
players need only check if each player’s valuation of the cyclic
state is less than their average valuation about the cycle.
If it is, then not only is the minimum solution NE, but it
is mutually beneficial for all players and the player should
cycle. If this test fails, then there is no NE for the game.
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