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ABSTRACT
The problem of finding the influencers in social networks has been
traditionally dealt in an optimization setting by finding the top-k
nodes that has the maximum information spread in the network.
These methods aim to find the influencers in a network through
the process of information diffusion. However, none of these ap-
proaches model the individual social value generated by collabora-
tions in these networks. Such social value is often the real moti-
vation for which the nodes connect to each other. In this work, we
propose a framework to compute this network social value using
the concept of social capital, namely the amount of bonding and
bridging connections in the network. We first compute the social
capital value of the network and then allocate this network value to
the nodes of the network. We establish the fairness of our allocation
using several axioms of fairness. Our experiments on the real data
sets show that the computed social capital is an excellent proxy for
finding influencers and our approach outperforms several popular
baselines.

Categories and Subject Descriptors
J.4 [Social and Behavorial Sciences]: Sociology; I.2 [Artificial
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General Terms
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1. INTRODUCTION
The problem of finding influencers is becoming increasingly im-

portant. The existing methods to find influencers aim to propa-
gate influence through the process of information diffusion. These
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methods infect a set of seed nodes to achieve maximum amount
of information spread in the network. In these related work [7, 3],
the model captures only the process of information diffusion in net-
work and does not attempt to capture the actual social value of the
person in that network. The notion of the influence model used in
these papers fails to offer insights on the influence in the context
of whole network, or when there are few available observation of
information flow. To explain, let us consider the following exam-
ple. The new CEO of a company may have only a few connections
and limited information flows in the social networks within the or-
ganization. Whether he/she can influence a new technology in the
company? The answer would be yes. The reason for this influence
is not because of his/her few connections or limited information
flows, but because of the control that he/she exerts on the network
resources (in this case all the employees of the company). Such as-
pects, cannot be fully captured by local interactions of two nodes.
Instead, they can only be studied if we understand the value that
each node contributes to and derive from the overall network. We
hypothesize that nodes with high social value in networks tend to
be more influential, as the case of the CEO in our example.

For this purpose, we first characterize the value of the network
using “Social Capital”. There are various definitions of social cap-
ital [2, 4]. One of the most accepted and general definition is: “So-
cial capital is about the value of social networks, bonding similar
people and bridging diverse people, with norms of reciprocity” [4].
The bonding capital is the ability to calibrate people against each
other, and bridging capital is the ability to connect diverse sets of
people. The power of these bonding and bridging nodes to coop-
erate and communicate with each other creates an inherent value
for the entire network. The overall value generated by such co-
operation is termed as the social capital of the network. Now the
question remaining is, how the nodes share this overall social capi-
tal amongst themselves in a fair way? After we know the fair share
of network value for each node, we hypothesize that this value is
proportional to the potential of a node to influence the network.

2. OUR APPROACH
We first begin by formalizing the notion of social capital value

v(g) for the network g. For this purpose, we follow the defini-
tion in [4]: “social capital is the value of social networks, bonding
similar people and bridging between diverse people, with norms
of reciprocity”. Given a network g = 〈V,E〉 with vertex set V
and edge set E. We define the social capital value v(g) as, v(g) =∑

(i,j)∈E b (dg(i, j)). The distance function dg computes the length
of the shortest path between nodes i and j. Note that, we as-
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sume that people often make new connections within the network to
reach newer friends through shortest paths. This assumption is con-
sistent with many network formation studies [6, 8]. The function
b(.) is the benefits acheived due to shortest path of certain length
l. We choose the benefits function to be exponentially decaying
e−λl, where l is the length of the shortest path. When there is no
shortest path between i and j the function dg tends to ∞ and the
corresponding benefit value is zero.

This definition captures the two important desired aspects of our
valuation function: (1) the benefits from immediate neighbors, and
(2) the benefits from non-immediate neighbors which decay as a
function of social distance. In addition, it also satisfies two impor-
tant valuation properties, anonymity and component additivity [8].
The anonymity property ensures that any permutation of node la-
bels will not alter the node valuations. The property of component
additivity ensures that the total value of the disconnected compo-
nents of the network g is the sum of the individual components,
as there is no surplus generated by any cooperation between these
components.

We define allocation function Y : Ψ → <n, where Ψ is the set
of all possible network topologies of node set V and Y = [Y1...Yn]
denotes the allocated social capital value of nodes 1 through n. Our
allocation function satisfies the following four desired properties
Y : (1) anonymity; (2) component balance; (3) weak link symme-
try; and (4) improvement property. Therefore, it falls in the same
class as the Myerson Value allocation function [5].

The anonymity property ensures that the allocation function is
independent of the player labels. The property of weak link sym-
metry is a more general form of equality criterion specified in the
Myerson’s allocation function. This states that when a new edge e
is added to the network g, if the utility of one end point increase
then the other node’s utility must strictly increase. We prefer to en-
sure this criterion compared to the equality criterion, because the
utility received by adding a new edge in the network may not be
necessarily due to equal contributions from both nodes. Our criteria
guarantees that when adding a new edge e = (i, j) to the network
g, if the utility for any node other than i and j increases, then the
utility for at least one of the nodes i or j must strictly increase.

Our proposed allocation function Y is based on the idea that
each node contributes a certain value to the network by being in the
shortest path of lengths l varying from 1 to |V − 1|. We measure
their fractional contribution of each node k ∈ V for all possible
shortest path length and take a weighted average of the benefits due
to each path length based on this fractional contribution. Let this
fractional contribution for path length l for node k be denoted as
αlk(g). The allocation function Yk(g) for any node k ∈ V is de-
fined as the weighted sum of benefits due to all the path lengths,
weighted by the corresponding fractional contribution. More for-

mally, Yi(g) =
n−1∑
l=1

αli(g)b(l).

Algorithm: Our algorithm to implement the allocation rule is
listed in Algo. 1. The core part of the algorithm SCV al is the sub
algorithm ComputeFC, which computes αlk, the fractional con-
tribution of node k for paths of length l. Once αlk gets computed
for all k ∈ V and for all path lengths l varying from 1 to L, the
algorithm SCV al simply sums up the weighted fractional contri-
butions for each node k in Yk, where the benefit function b(l) acts
as the corresponding weight for each path length l. Finally, vector
Y is returned as the output by SCV al. The parameter L can be
adjusted to control the maximum path length l in the algorithm.

The algorithm for computing the all pair shortest paths has the
time complexity of O(|V |3), which is computationally infeasible
for the large networks. Hence we developed ComputeFC as a

Algorithm 1: SCVal
Input: g: social network graph; L: maximum path length
Output: Y = [Y1, ..., Yn]: social capital of nodes in V

1 Y ← 0 ;
2 αlv ← ComputeFC(g, L);
3 for i← 1 to n do
4 for l← 1 to L do
5 Yi ← Yi + αli ∗ b(l);

6 Return Y ;

modified version of Brandes betweenness centrality algorithm [1].
The complexity of Brandes algorithm isO(|V ||E|), which is a sig-
nificant improvement overO(|V |3) for sparse networks. The Bran-
des algorithm [1], however, does not compute the fractional contri-
butions based on varying path lengths. Our proposed algorithm
ComputeFC calculates the fractional contributions for varying
path lengths for each node k at no additional cost.

We evaluated our algorithm with real-life collaboration networks
such as DBLP 1 and USPTO 2 against the popular baselines such
as PMIA [3], PageRank, and weighted degree. We find that our
algorithm outperforms the baseline algorithms in terms of the stan-
dard influence measure, such as the expected number of infected
nodes [7]. The run times of our algorithm was better than PMIA
and comparable to that of the other two baselines.

3. CONCLUSION
In summary, we proposed a new approach to compute influencers

in networks using their social capital value. We formulated the
problem of computing social capital and sharing this value amongst
the nodes of the network as a value-allocation model that satisfies
several desired properties. We propose an efficient algorithm and
empirically demonstrate the effectiveness using two real-life data
sets.
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