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ABSTRACT
Autonomous mobile service robots navigate in their envi-
ronments in order to perform tasks requested by users. We
envision service robots learning about their environment by
scheduling exploration tasks in which they seek out new
knowledge and using this knowledge to improve the services
they offer. We present the Task Graph algorithm, which
chooses times for user requests based on the robot’s knowl-
edge so as to increase the chance of success, and schedules
exploration tasks in between user requests by reducing the
problem to a graph search.
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1. INTRODUCTION
The CoBots are mobile autonomous service robots that

operate in a multistory office building [5, 2]. Users request
tasks of the CoBots online, such as delivering a message
or finding and fetching an object, to be performed within
flexible time windows. Currently, the CoBots have little
knowledge of their environment beyond a map. However,
the services the CoBots provide could be improved if they
stored more environmental knowledge. For example, a mes-
sage delivery can fail if the recipient’s office’s door is closed
when CoBot delivers its message. If CoBot had a model of
when each office door is most likely to be open, it could time
message deliveries for when they are most likely to succeed.

In order to learn this information, we envision CoBot
scheduling its own “exploration tasks” in addition to user re-
quests. Other work has been done with service robots that
acquire knowledge and use it to improve their services, such
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as Jijo-2, a robot that learns information through conver-
sations with users [1], or Dora the Explorer, which models
where to find objects for find and fetch tasks based on past
observations [4]. However, these works focus primarily on
how the robot can acquire and evaluate knowledge. In this
work, we focus on addressing the challenge of managing the
robot’s time. The robot must perform user requests at the
times that maximize the probability of success, and choose
how best to use its remaining time for exploration.

Scheduling only user requests within the time windows
provided by users is an instance of the Vehicle Routing Prob-
lem with Time Windows (VRPTW). The VRPTW can be
solved using heuristics or approximations, but for CoBot we
solve it exactly using mixed integer programs (MIP)[6, 3].
While the MIP approach can handle the number of requests
typically made by users (fewer than ten at a time), it is in-
effective for scheduling large numbers of user requests and
exploration tasks simultaneously.

Thus, when scheduling exploration tasks we cannot rely
solely on the MIP approaches CoBot uses to schedule user
requests. To this end, we present the Task Graph algo-
rithm, which creates a schedule by first restricting the flex-
ible user-provided time windows of the user requests to im-
prove the expected reward, then schedules exploration tasks
in between by reducing the problem to a graph search.

2. THE TASK GRAPH ALGORITHM
The goal of the Task Graph algorithm is to create a sched-

ule of start times for a set of user requests and exploration
tasks. Each user request has an interval of constraint in
which it must be performed, and all tasks must be com-
pleted within a given interval of operation. Additionally,
the robot must have sufficient time to travel between tasks,
which have specific start and end locations. The robot can
evaluate the expected probability of success of any user re-
quest or the expected reward of any exploration task (based
on the value of the knowledge it expects to gain) at a spe-
cific time given the its current knowledge base. The first
priority is to maximize the reward achieved by the schedule
via user requests. The second priority is the maximize the
reward achieved via exploration tasks. Our algorithm has
two stages, corresponding to these two goals.

2.1 Maximizing User Request Successes
The first stage of the algorithm seeks to choose start times

for all user requests in order to maximize the probability of
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success. It first selects a time interval for each user request
with the maximum average reward, scaled by a power of its
length:

Iri = arg max
I⊆Ic,i

[
(length(I)f )Rrequest(ri, I|K)

]
,

where Iri is the interval chosen for the ith user request, Ic,i
is the constraint interval for that request, K is the robot’s
current knowledge base, and f is a flexibility parameter.
Initially, f is set to 0, and a set of start times is chosen
using CoBot’s MIP scheduling algorithm [3]. If no valid set
of start times exists, f is increased by δ = 0.1, and the
process is repeated until one is found. We assume that a
possible set of start times exists for a sufficiently high f .

2.2 Scheduling Exploration Tasks
The second stage of the algorithm schedules exploration

tasks in between the user requests to achieve a high explo-
ration reward. The algorithm first finds the intervals of ex-
ploration between the user requests during which the robot
can schedule exploration tasks. Each interval of exploration
also has a start location and end location. For each interval
of exploration, the robot then constructs a “task graph,” a
directed graph with the property that any path in the graph
represents a sequence of exploration tasks, and the length of
the path is the expected time to perform those tasks. The
task graph is constructed automatically. It contains the fol-
lowing nodes:

• “Start” and “end” nodes for each location.

• “Wildcard” start and end nodes with 0 distance to any
node.

• “Task” nodes for each exploration task with reward
equal to the mean reward of that task over the interval.

The wildcard nodes are used when the interval has no re-
quired start or end location. The task graph has these edges:

• From each start node to each task node with length
equal to the distance from the start node’s location to
the task node’s start location.

• From each task node to each other task node with
length equal to the distance from the first task node’s
end location to the second task node’s start location.

• From each task node to each end node with length
equal to the distance from the task node’s end location
to the end node’s location.

The “cost” of a task node is the sum of the length of the
edge to that node and the task’s duration. Our goal is to find
the path from the interval’s start location’s start node to its
end location’s end node with length less than the length of
the interval. We would like to find the path with the maxi-
mum reward, but for larger task graphs this is intractible.

Instead, we use a heuristic search to find a high-reward
path. The search begins at the start node and computes
the benefit (ratio of reward to cost) of all task nodes. It
then selects the task node with the highest benefit, adds
it to the path, and continues the search starting from that
node. If at any time the end node of the search cannot

be reached within the time remaining in the interval, the
search backtracks and chooses the next-highest-benefit task
node. When no task nodes can be added to the path without
exceeding the interval’s length, the search is complete, and
the tasks in the path are added to the schedule. Each task is
assigned the earliest possible start time in order of the path.
The schedule is complete when exploration tasks have been
scheduled for each interval of exploration.

3. EXPERIMENTAL RESULTS
We tested the algorithm in a simulation of CoBot operat-

ing in three floors of the Gates-Hillman Center at Carnegie
Mellon University. CoBot was assigned four random mes-
sage deliveries over 40-minute intervals, and doors had a
random probability of being open each minute. Attempt-
ing to deliver a message to a closed door resulted in failure.
CoBot could explore hallways as exploration tasks, observe
doors, and model their probabilities of being open. Results
were averaged over 50 trials.

We tested the Task Graph algorithm with both an un-
informed uniform exploration reward and an informed re-
ward inversely proportional to the number of observations
CoBot had of the doors on a hallway at a given time. Af-
ter 100 intervals, the average error of the probabilities in
the model was 0.312 when using the informed reward, 0.336
when using the uninformed reward, and 0.435 when no ex-
ploration tasks were scheduled. Thus, exploring using the
Task Graph algorithm improved the robot’s model of its en-
vironment dramatically, especially when using an informed
reward function.
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