
DeQED: an Efficient Divide-and-Coordinate Algorithm for
DCOP

(Extended Abstract)

Daisuke Hatano, Katsutoshi Hirayama
Kobe University

5-1-1 Fukaeminami-machi, Higashi-Nada-ku, Kobe, Japan 658-0022

daisuke-hatano@stu.kobe-u.ac.jp, hirayama@maritime.kobe-u.ac.jp

ABSTRACT

This paper presents a new DCOP algorithm called DeQED (De-

composition with Quadratic Encoding to Decentralize). DeQED

is based on the Divide-and-Coordinate (DaC) framework, where

the agents repeat solving their updated local sub-problems (the di-

vide stage) and exchanging coordination information that causes

to update their local sub-problems (the coordinate stage). Unlike

other DaC-based DCOP algorithms, DeQED does not essentially

increase the complexity of local sub-problems and allows agents

to avoid exchanging variable values in the coordinate stage. Our

experimental results show that DeQED significantly outperformed

other incomplete DCOP algorithms for both random and structured

instances.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Coherence and coor-

dination

General Terms

Algorithms

Keywords

Distributed Constraint Optimization Problem, Lagrangian Decom-

position, Divide-and-Coordinate framework

1. INTRODUCTION
In many applications of distributed problem solving, the agents

may want to optimize a global objective while preserving their pri-

vacy and security. This problem can be formalized as the Dis-

tributed Constraint Optimization Problem (DCOP). For solving DCOP,

several complete algorithms have been presented, but one recent

trend may be incomplete algorithms [1, 2, 3, 4], due to the needs

for finding a high-quality solution quickly for large-scale problem

instances.

This paper presents a new DCOP algorithm called DeQED (De-

composition with Quadratic Encoding to Decentralize). DeQED is

based on the Divide-and-Coordinate (DaC) framework, where the

agents repeat solving their updated local sub-problems (the divide

stage) and exchanging coordination information that causes to up-

date their local sub-problems (the coordinate stage). Unlike other

DaC-based DCOP algorithms [3, 4], DeQED does not essentially

increase the complexity of local sub-problems and allows agents to

avoid exchanging variable values in the coordinate stage.

Through comparison with MaxSum [1], DALO [2], and EU-DaC

[4], we demonstrate that DeQED works very well both in terms of

solution quality and efficiency.

2. DCOP
COP is defined by a set X of variables, where each variable xi

has a finite domain Di from which it takes its value, and a set F of

binary cost functions, where each function fi,j : Di ×Dj → ℜ+

returns a non-negative cost value for each binary relation between

variable xi’s domain and variable xj’s domain.

DCOP is the COP where variables are controlled by a set A of

agents. Each variable belongs to some agent who controls it. We

denote the fact that variable xi belongs to agent a by belong(xi) =
a. The goal of COP and DCOP is to find a value assignment to X

that minimizes a total sum of the values of cost functions.

3. DEQED
As with DaCSA [3], DeQED exploits the Lagrangian decompo-

sition technique, but the difference between DeQED and DaCSA

is the way of encoding of the entire problem. In DeQED, we use

quadratic encoding, in which an cost function is encoded into the

quadratic programming problem.

3.1 Quadratic encoding
Let us assume that every variable has the same domain, say D,

without loss of generality. For cost function fi,j ∈ F between vari-

able xi and variable xj , we introduce |D| × |D| cost matrix Fi,j

whose elements represent the values of the cost function. Further-

more, for variables xi and xj , we introduce new variables xi and

xj whose domains are the whole set of |D|-dimensional unit col-

umn vectors, respectively. Namely, we havexi ∈ {e1, e2, . . . , e|D|}

and xj ∈ {e1, e2, . . . , e|D|}, where e1 is (1, 0, 0, . . . , 0)T, e2 is

(0, 1, 0, . . . , 0)T, and so on. Superscript T means the transpose

of a vector. The value of cost function fi,j can be computed by

(xi)
T · Fi,j · xj . We also introduce two auxiliary variables α

i,j
i

and α
i,j
j for each cost function fi,j . These auxiliary variables are

supposed to be the copies of variables xi and xj in terms of fi,j ,

respectively.

Given this representation, DCOP can be formulated as

DCOP : min
∑

fi,j∈F

(αi,j
i)T · Fi,j ·α

i,j
j

s. t. xi = α
i,j
i , xj = α

i,j
j , ∀fi,j ∈ F, (1)

xi,∈ {e1, e2, · · · , e|D|}, ∀xi ∈ X,

α
i,j
i ,α

i,j
j ∈ {e1, e2, · · · , e|D|}, ∀fi,j ∈ F,

1325

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

where α as well as x are decision variables. Due to space limita-

tions, we omit the last two lines of the above formulation because

they just describe the domain of these decision variables.

3.2 Lagrangian Decomposition
We decompose this problem into the sub-problems over the agents.

First, we relax a set of copy constraints (1) to produce the La-

grangian relaxation problem. Then, we decompose its objective

function into the terms on the individual agents and the terms on

auxiliary variables. As a result, we get the following function:

L(µ) =
∑

a∈A

L
a(µ) +

∑

fi,j∈F

L
aux
i,j (µ), (2)

that computes a lower bound on the optimum of DCOP, where µ is

|D|-dimensional real-valued column vector,

L
a(µ) ≡ min

{

∑

(xi,xj)∈Pa

(µi,j
i)Txi +

∑

(xi,xj)∈Na

(µi,j
j)Txj

}

for each agent a, where P a ≡ {(xi, xj) | fi,j ∈ F, belong(xi) =
a} and Na ≡ {(xi, xj) | fi,j ∈ F, belong(xj) = a}, and

L
aux
i,j (µ) ≡ min

{

(αi,j
i)T ·Fi,j ·α

i,j
j −(µi,j

i)Tαi,j
i −(µi,j

j)Tαi,j
j

}

for each cost function fi,j .

DeQED solves the Lagrangian dual problem, whose goal is to

maximize L(µ), a lower bound on the optimum of DCOP, by con-

trolling values of µ

3.3 Problem Distribution
We need to clarify which agent should compute which part of

(2). Regarding the primal phase, where we solve the minimization

problem over x and α with specific values on µ, we propose that

• La(µ) should be computed by agent a since it includes only

agent a’s variables;

• Laux
i,j (µ) should be computed by either of the agents who

control variables xi or xj since it represents cost function

fi,j between these agents.

On the other hand, regarding the dual phase, where we solve the

maximization problem over µ with specific values on x and α, we

propose that

• Since Lagrange multiplier vectors µ
i,j
i and µ

i,j
j are related

to cost function fi,j , both vectors should be controlled by the

agents having variables xi and xj , respectively.

3.4 Minimal Procedure
Below is the minimal procedure of DeQED, where the agents try

to find values for µ that maximize L(µ).
Step 1: The agents initialize their µ as (0, . . . , 0)T.

Step 2: Every agent a sends, for each cost function fi,j with belong
(i) = a, the value of µ

i,j
i to the agent which xj belongs to.

Similarly, it sends, for each cost function fi,j with belong(j) =
a, the value of µ

i,j
j to the agent which xi belongs to.

Step 3: After receiving all of the latest values for µ, every agent

a solves La(µ) by an exact WCSP solver and Laux
i,j (µ) by

evaluating all possible pairs of the values for xi and xj .

Step 4: If CanTerminate? then the agents stop; otherwise they up-

date µ and go back to Step 2.

We refer to the minimal version of DeQED as DeQEDm. On the

other hand, the agents in DeQED can exploit the best lower and up-

per bounds that must be collected through global communication.

We refer to this extended version of DeQED as DeQEDa.

It is noteworthy that the agents in DeQEDm only exchange µ.

Namely, they do not have to exchange DCOP’s variables. Consid-

ering that one major motivation of DCOP is privacy and security,

this property of DeQEDm should be important.

B
es

tU
B

/B
es

tL
B

(a) the number of cycles (b) simulated runtime (ms)

1

1.1

1.2

1.3

1.4

1.5

50 100 150 200 250 300 350 400 450 500
1

1.1

1.2

1.3

1.4

1.5

0 200 400 600 800 1000 1200

MaxsumDeQEDmDeQEDa

Figure 1: Average quality upper bounds for random networks.

4. EXPERIMENTS
We compared DeQED with DALO [2], EU-DaC [4], and Max-

Sum [1] on binary constraint networks with random topology. We

did not adopt DaCSA since it was outperformed by EU-DaC [4].

We created 20 DCOP instances with random network, where the

domain size of all variables (nodes) is three and the cost value of bi-

nary cost functions (edges) is randomly selected from {1, 2, ..., 105}.

Since all of the algorithms are incomplete, our interest is on how

quickly each of these algorithms finds a better solution. Therefore,

in our experiments, we observed an average quality upper bound

for each algorithm when cutting off a run at a certain cycle bound,

which ranges from 50 to 500 cycles in step of 50. Furthermore,

since these algorithms clearly have different computational costs in

one cycle, we also observed an average quality upper bound against

simulated runtime at the above cut-off cycles.

The results are shown in Figure 1, where the left part denoted by

(a) shows the average quality upper bound against the number of

cycles and the right part denoted by (b) shows the average quality

upper bound against simulated runtime. In this figure, we plot the

average quality upper bounds with error bars only for MaxSum,

DeQEDm and DeQEDa for readability, because the best quality

upper bounds of the other algorithms were more than 1.4 even in the

best case. Moreover, EU-DaC spent more than simulated runtime

of 10,000ms to finish 500 cycles.

Figure 1 shows that DeQED clearly outperformed MaxSum for

these instances. We should emphasize that, DeQED converged

quite efficiently in simulated runtime. One reason for this efficiency

is that the computational cost of each agent in DeQED increases

only linearly with the number of its neighbors, while that in Max-

Sum increases exponentially [1].

5. REFERENCES
[1] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.

Decentralised coordination of low-power embedded devices

using the max-sum algorithm. AAMAS ’08, pages 639–646,

2008.

[2] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe.

Asynchronous algorithms for approximate distributed

constraint optimization with quality bounds. AAMAS ’10,

pages 133–140, 2010.

[3] M. Vinyals, M. Pujol, J. A. Rodriguez-Aguilar, and

J. Cerquides. Divide-and-coordinate: DCOPs by agreement.

AAMAS ’10, pages 149–156, 2010.

[4] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides.

Divide-and-coordinate by egalitarian utilities: Turning

DCOPs into egalitarian worlds. OPTMAS ’10, 2010.

1326

