Learning Agent Models in SeSAm

(Demonstration)

Robert Junges
Orebro University
70182 Teknikhuset
Orebro, Sweden
robert.junges@oru.se

ABSTRACT

Designing the agent model in a multiagent simulation is a
challenging task due to the generative nature of such sys-
tems. In this contribution we present an extension to the

multiagent simulation platform SeSAm, introducing a learning-

based design strategy for building agent behavior models.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence— Intelligent Agents

General Terms

Design, Experimentation, Performance

Keywords

Multiagent Simulation, Agent Learning

1. INTRODUCTION

The generative nature of multiagent simulations makes it
hard, specially at the design phase, to identify the particular
local agent behavior that will produce the desired macro-
level system behavior. It is necessary to devise a systematic
way of modeling the behavior program of the agent, thus
bridging the micro-macro levels gap. We recently suggested
a methodology for designing agent behavior models using
adaptive agents [1]. Instead of being equipped with their
behavior program since the beginning, the agents learn dur-
ing simulation and report their learned behavior program
to the modeler. However, specially for inexperienced mod-
elers or researchers without programming knowledge, it is
essential to have the tools supporting our proposed design
strategy. This contribution presents the implementation of
the learning tools that allow agents to learn their behav-
ior models. The chosen multiagent simulation platform is
SeSAm (www.simsesam.org).

In the following we give a short overview of the agent
design strategy in Section 2, then we describe its integration
into SeSAM in section 3. The paper ends with the test case
and the results obtained, in Section 4, and conclusion in
Section 5.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2018), Tto, Jonker, Gini, and Shehory (eds.), May, 6-10, 2013,
Saint Paul, Minnesota, USA.

Copyright (©) 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1373

Franziska Klugl|

Orebro University
70182 Teknikhuset
Orebro, Sweden
franziska.klugl@oru.se

2. LEARNING AGENT BEHAVIOR

The design strategy adopted here is based on the follow-
ing idea: an appropriate conceptual model of the overall
system can be developed by setting up a simulation model
of the environment, determining agent sensors and effectors,
and giving a function to evaluate agent validity as “perfor-
mance”. Put into in the simulated environment, agents are
then able to learn an appropriate behavior program that
fulfills the objective expressed by the performance function.
The learned behavior is then providing the modeler with a
draft agent design that can be used in later phases of model
development.

There are two critical steps in this overall process: the def-
inition of the performance function and the actual learning
mechanism used. The performance function should express
the agent’s goal with regards to the observed valid aggre-
gated behavior of the system, so we also achieve a valid
macro level behavior. The learning mechanism should be
able to cope with the situation-action-reward model. But
more importantly, it should produce a readable description
of the behavior learned, making the whole process transpar-
ent to the modeler.

3. INTEGRATION

This section presents SeSAm and the changes made to it.

3.1 SeSAm

SeSAm [3] stands for Shell for Simulated Multiagent
Systems and it is a modeling and simulation environment
that combines concepts of declarative high-level model rep-
resentation with visual programming. It is unique as it re-
places programming in a standard language with visual pro-
gramming, but scales with complex models. SeSAm contains
all components that are necessary for a useful simulation
and modeling environment: different data input and export
options, visualization of the ongoing dynamics, etc.

The high-level modeling language for behavior consists of
elements called primitives, representing agent actions, pred-
icates for perception or other functions for processing infor-
mation. In the standard SeSAm, these primitives are or-
ganized as a UML-like activity-graph with rule-based
transitions between activities. Activities represent ac-
tion scripts that are executed by an agent repeatedly while
the agent is in the respective activity.

3.2 Learning in SeSAm

To integrate the design strategy described in Section 2, we
added a new agent type: the learning agent, with the learn-

o7 X

Lo

| Features] Spatial Info]

‘ Edit Learning Agent 'Learner

Name: |Learner]

'Leaming Settings f Variables [Interaction elements

“Interface [Objective Function ' Learning Engine]
Actions
move left
move ahead
move right

Sensors
obstacle left?
obstacle ahead?
obstacle right?
exit left?

exit ahead?

exit right?

(a) Agent creation window.

(b) Visualization of the simulation.

true

=
move lef|

[Create ‘Activity Agent' from this model |

(c) Decision tree learned.

Figure 1: Simulation and learning tool interfaces.

ing reasoning engine. Contrary to the standard agent, for
which the entire behavior reasoning needs to be formulated
as an activity-graph, the learning agent generates its behav-
ior controller during simulation. The modeler only needs to
define what the perception and action functions do
and not how they will be used by the agent. Also, the
modeler needs to define the objective function. The selected
learning engine operates on creating a model, which will de-
pend on the particular learning mechanism chosen, but will
finally report a decision tree abstraction of the behavior (see
Section 3.3).

3.3 Learning Architecture

The learning architecture explores the combinations of
perceptions and actions, which are evaluated based on a
utility value, estimated using the objective function. The
final model should be abstracted into a decision tree format,
which not only is an intuitive notation for decision-making
processes, but also allows the model: to be exported and
used as a standard activity-graph agent in SeSAm; to be
post processed, as for instance using graph-matching algo-
rithms to find differences in models learned in different con-
figurations of the environment.

The actual learning algorithms are implemented as in-
terchangeable modules inside the learning reasoning engine.
We call these modules learning cores. Any variation of learn-
ing algorithms that follows the design strategy presented
here can be implemented as a learning core. At the current
stage, three learning cores are available: a) Q-learning+: Q-
learning is used for learning the situation-action pairs gov-
erning the agent behavior. The best pairs are used as the
training set to build the decision tree with the C4.5 algo-
rithm; b) LCS: the XCS learning classifier system is used to
learn situation-actions pairs, which are abstracted into de-
cision trees using the C4.5 algorithm; c) Genetic Program-
ming: perceptions and actions are assembled into decision
tree programs, evolved through generations using random
genetic programming. The objective function is used as the
fitness function of each individual tree.

When the behavior becomes interesting during the sim-
ulation, the modeler can get the abstracted decision tree
model of the behavior learned and export it as a standard
activity-graph agent. Figure 1(b) shows the visualization of
the simulation and Figure 1(c¢) shows the decision tree model
learned in a simple pedestrian evacuation scenario.

4. TEST CASE

The test case chosen for this contribution is a simple room

1374

evacuation scenario. We want to develop a behavior pro-
gram for pedestrian agents, which should leave the room as
fast as possible, avoiding collisions.

We followed a number of steps to use the learning tools:
1) model the environment in SeSAm; 2) add to the simula-
tion model a Learning Agent; 3) create the interfaces of the
learning agent: sensors are created as boolean functions
(perception of obstacles and exit) and actions as functions
operating the agent (moving), using the available primitives
in SeSAm. Figure 1(a) shows the edit window with the
defined sensors and actions; 4) define a numeric function
evaluating the state of the agent, which will be called by the
simulator after every action and the value reported to the
learning core. Here, it is the sum of a reward for avoiding
collisions and a reward for reducing the distance to the exit;
5) choose one of the available learning cores — in this case
Q-learning+.

We ran different experiments changing the settings of the
environment: size of the room, number of agents and ob-
stacles. Figure 1(b) depicts one of these cases, where one
agent leaves a 20x30m room with 12 randomly positioned
column-type obstacles. Experiments are composed by trials;
in each trial the agent is randomly positioned in the envi-
ronment and has to find the exit. The final decision tree
model generated is an abstraction of the full behavior of the
agent. The objective function directly affects the outcome:
a higher pressure on avoiding collisions results in a decision
tree with more rules for turning; if the objective prioritizes
the distance-to-the-exit factor, the learned decision tree is
more compact. More learning results can be found in [2].

S. CONCLUSION

We presented new tools, available in SeSAm, to learn
agent behavior models. The model learned serves as an in-
spiration for the modeler in further steps of the modeling
process or can be directly used in the simulation.

6. REFERENCES
[1] R. Junges and F. Kliigl. How to design agent-based

simulation models using agent learning. In Proceedings
of the Winter Simulation Conference 2012. WSC, 2012.
R. Junges and F. Kliigl. Programming agent behavior
by learning in simulation models. Applied Artificial
Intelligence, 26(4):349-375, 2012.

F. Klugl, R. Herrler, and M. Fehler. Sesam:
implementation of agent-based simulation using visual
programming. In AAMAS, pages 1439-1440. ACM,
2006.

2l

