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ABSTRACT

Research regarding the stable marriage and roommate prob-
lem has a long and distinguished history in mathematics,
computer science and economics. Stability in this context is
predominantly core stability or one of its variants in which
each deviation is by a group of players. We consider stability
concepts such as Nash stability and individual stability in
which the deviation is by a single player. Such stability con-
cepts are suitable especially when trust for the other party is
limited, complex coordination is not feasible, or when only
unmatched agents can be approached. Furthermore, weaker
stability notions such as individual stability may in principle
circumvent the negative existence and computational com-
plexity results in matching theory. We characterize the com-
putational complexity of checking the existence and comput-
ing individual-based stable matchings for the marriage and
roommate settings. Some of our key computational results
also carry over to different classes of hedonic games and net-
work formation games for which individual-based stability
has already been of much interest.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms

Economics, Theory and Algorithms

Keywords

Game theory (cooperative and non-cooperative), teamwork,
coalition formation, and coordination

1. INTRODUCTION
In stable matching problems, the aim is to match agents

in a stable manner to objects or to other agents, keeping in
view the preference of the agents involved. These problems
have significant applications in matching residents to hospi-
tals, students to schools, etc. and have received tremendous
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interest in the mathematical economics, computer science
and operations research communities (see e.g., [12, 26]). In-
formally, a matching is deemed ‘stable’ if the agents do not
have an incentive to deviate to achieve a better matching for
themselves. In the matching theory literature, the predom-
inant notion of stability is indeed the core in which no pair
of agents prefer to be matched to each other than remain
in their current matching. Core stability (also simply called
stability) has been extensively investigated in the context of
the stable marriage (SM) problem [11] and stable roommate
(SR) problem [15] which are two of the most fundamental
settings in matching theory. A comprehensive survey of the
stable marriage and roommate problems is present in [12].

We formulate the stable marriage and stable roommate
settings as marriage games and roommate games. Both of
these games are basic subclasses of hedonic coalition forma-
tion games in which an agent’s preference of a partition only
depends on the coalition (of arbitrary size) he is a member of
and not on how the remaining agents are grouped (see e.g.,
[6, 13]). Of course, in the roommate and marriage games,
feasible partitions simply correspond to matchings because
each coalition is of size at most two. The main focus in hedo-
nic games has been on different natural notions of stability of
partitions. The stability concepts include individual-based
stability concepts (Nash stability (NS), individual stability
(IS), and contractual individual stability (CIS)) and group-
based stability concepts (core (C) and strict core (SC)) (see
e.g., [6]). Another individual-based stability concept is con-
tractual Nash stability (CNS) which is stronger than CIS
and is defined in an analogous way to IS [28].

In this paper, we characterize the complexity of check-
ing existence of and computing individual-based stable out-
comes in marriage and roommate games. A number of ex-
istence results are also presented. Our results shed further
light on the dynamics of stability concepts like Nash stability
in fundamental settings such as marriage games.

There are a number of reasons why individual-based sta-
bility in matching and hedonic models may be of interest.
Individual-based stability applies in situations when form-
ing arbitrary new coalitions may be ‘costly or may require
complex coordination among the players’[24]. Furthermore,
‘if information on the preferences of other players is scarce
[. . .], then considering the actions of individual players only
may be quite compelling ’[24]. Since marriage games and
roommate games may not admit a strict core stable and core
stable matching respectively [12], it makes sense to exam-
ine weaker stability notions such as IS. IS may also apply to
other matching models. For e.g., in hospital-resident match-
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ing, the hospital may not deviate with a resident and may
accept any acceptable candidate (with a minimum level of
competency).

Since marriage and roommate games are two of the most
fundamental classes of hedonic games, our results have bear-
ing on the coalition formation literature. In fact, one of
our key computational results for marriage games also car-
ries over to different classes of hedonic games for which
individual-based stability has already been of much inter-
est.

Finally, we point out the relation between marriage and
roommate games and network formation games. In network
formation [17], agents establish links between each other and
they have preferences over the links or even the whole net-
work structure. Therefore, marriage and roommate settings
are also one of the most basic models in network forma-
tion [18] which further motivates our study.

2. RELATED LITERATURE
The complexity of computing partitions which are Nash

stable or individual stable has previously been examined
for some classes of hedonic games such as additively sep-
arable hedonic games (see e.g., [23, 29]), and hedonic
games represented by individually rational lists of coali-
tions (RIRLC) [4]. Sung and Dimitrov [28] introduced CNS
and showed that a CNS partition is guaranteed to exist for
separable hedonic games satisfying weak mutuality. Papai
[24] used restrictions on acceptable coalitions to characterize
classes of hedonic coalition formation games with strict pref-
erence for which Nash stable and individual stable partitions
are guaranteed to exist. ∗

For the roommate and marriage settings, there has been
considerable work on the stable marriage (SM) problem and
stable roommate (SR) problem. Stability in this regard is
mostly core stability (also simply called stability). In the
stable marriage (SM) problem , the set of agents is parti-
tioned into men and women; men and women express strict
preferences over all their counterparts; and the aim is to find
a stable matching in which men and women are matched to
each other. The stable roommate problem (SR) is the uni-
sex generalization of the stable roommate problem in which
roommates are paired with each other in a stable match-
ing [15].

Subsequently, variants of the problems SM and SR have
been examined: i) SMI and RMI — stable marriage and
stable roommate problems with incomplete preference lists
thereby signifying that the agents not in a preference list of
an agent are unacceptable to the agent; ii) SMT and RMT
— cases which allow ties/indifferences in the preference; iii)
and finally SMTI and RMTI — cases which allow both ties
and incomplete lists. The reader may refer to Table 1 which
summarizes the complexity results in the literature concern-
ing stable matchings where the stability concept concerns
deviation by groups or pairs of players. We will cover all
the stable marriage and stable roommate settings mentioned
above but instead of considering core stability, we will con-
sider individual-based stability concepts.

Recently, Ackermann et al. [1] and Nisan et al. [22] mod-
eled uncoordinated marriage games and roommate games
∗As a result, Papai [24] proved that for marriage games with
strict preferences, an individually stable partition is guar-
anteed to exist. The proof is non-constructive and an algo-
rithm to compute an IS matching was not presented.

with strict preferences via a normal form game in which the
pure Nash equilibria of the normal form game coincide with
core stable matchings.

As mentioned in the introduction, our results can also be
viewed as results on network formation. Computation of
Nash stable networks has been shown to be computation-
ally demanding for much more elaborate models of network
formation [5].

3. PRELIMINARIES

Hedonic games.
We review the terminology and notation used in this pa-

per. Let N be a set of n players. A coalition is any non-
empty subset of N . By Ni we denote the set of all coalitions
player i may belong to, that is, Ni = {S ⊆ N : i ∈ S}.
A coalition structure, or simply a partition, is a partition π

of the players N into coalitions, where π(i) is the coalition
player i belongs to.

A hedonic game is a pair (N,%), where %= (%1, . . . ,%n) is
a preference profile specifying the preferences of each player i
as a binary, complete, reflexive, and transitive preference
relation %i over Ni. If %i is also anti-symmetric we say
that i’s preferences are strict. Note that S≻i T if S%i T

but not T %i S—that is, if i strictly prefers S to T—and
S∼i T if both S%i T and T %i S—that is, if i is indifferent
between S and T .

For a player i, a coalition S in Ni is acceptable if for i

being in S is at least as preferable as being alone—that is, if
S%i {i}—and unacceptable otherwise. If {i, j} ≻i {i}, then
we say that i likes j. We also say that partition π is accept-
able or unacceptable to a player i according to whether π(i)
is acceptable or unacceptable to i, respectively. Moreover, π
is individually rational (IR) if π is acceptable to all players.

Roommate & marriage games.
A roommate game (RG) is a hedonic game (N,%) in which

for each i ∈ N , coalitions of size three or more are unaccept-
able and preferences % over other players are extended nat-
urally over preferences over coalitions in the following way:
{i} ∪ {j} %i {i} ∪ {k} if and only if j %i k for all i, j, k ∈ N .
In the matching theory literature, preferences %i of player
i over other players are represented via preferences list so
that if j 6= i is not on the preference list of i, then j is
unacceptable to i. A marriage game (MG) is a roommate
game in which N is partitioned into two sets M (men) and
W (women) such that each agent considers a member of his
own sex unacceptable. By marriage games with no unac-
ceptability, we will mean preferences such that each player
considers a member of the opposite sex acceptable.† Simi-
larly, by roommate games with no unacceptability, we mean
that each player consider all other players acceptable. When
we refer to a matching, we will mean the obvious partition
in which the unmatched players are in singleton coalitions.

Stability Concepts.
We now present the standard stability concepts for he-

donic games. The following are standard stability con-
cepts based on deviations by individual players (see e.g.,
[6, 28, 9, 10, 2, 23, 29]).

†Such a setting is also referred to as marriage problem with
complete lists.
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Game Preference Problem Stability Complexity
Restrictions setting concept

RG No (SRT) C NP-C [25]
unacceptability

RG Strict (SRI) C in P [15]

RG (SRTI) SC in P [27]

MG (SMTI) C in P [11]a

MG (SMTI) SC in P [16, 20]

a Only combination of game setting and stability concept in the table for which a stable matching is guaranteed to exist.

Table 1: Complexity of computing a stable matching in marriage and roommate games for group-based
stability: literature summary. In roommate and marriage games, core stability and pairwise-stability coincide.

• A partition is Nash stable (NS) if no player can ben-
efit by moving from his coalition to another (possibly
empty) coalition T .

• A partition is individually stable (IS) if no player can
benefit by moving from his coalition to another exist-
ing (possibly empty) coalition T while not making the
members of T worse off.

• A partition is contractually individually stable (CIS) if
no player can benefit by moving from his coalition S

to another existing (possibly empty) coalition T while
making neither the members of S nor the members of
T worse off.

• A partition is contractual Nash stable (CNS) if no
player can benefit by moving from his coalition S to
another existing (possibly empty) coalition T while not
making the members of S worse off.‡

Depending on the context, we will utilize abbreviations
NS, IS, CNS, and IR etc. either for adjectives (for e.g. IS for
individually stable) or for nouns (for e.g. IS for individual
stability). Core (C) and strict core (SC) are defined via
deviations by a group or pair of players.

• We say that a coalition S ⊆ N strongly blocks a par-
tition π, if each player i ∈ S strictly prefers S to his
current coalition π(i) in the partition π. A partition
which admits no blocking coalition is said to be in the
core (C).

• We say that a coalition S ⊆ N weakly blocks a parti-
tion π, if each player i ∈ S weakly prefers S to π(i)
and there exists at least one player j ∈ S who strictly
prefers S to his current coalition π(j). A partition
which admits no weakly blocking coalition is in the
strict core (SC).

In the restricted domain of roommate and marriage
games, core stability and strict core stability correspond re-
spectively to pairwise stability and strong pairwise stability.

Based on their definitions, we see how stability concepts
are related to each other. The inclusion relationships be-
tween stability concepts depicted in Figure 1 follow from
the definitions of the concepts.

‡A suitable example is that of a criminal organization where
joining may be easy but moving out requires permission from
the other members. In the frivolous marriage parlance, this
can be interpreted as requiring permission for divorce.

NS SC

ISCNS C

CIS IR

Figure 1: Inclusion relationships between stability
concepts. E.g., every NS partition is also IS.

4. NEGATIVE RESULTS
We first start with some bad news which contrasts sharply

with the fact that a core stable matching can be computed
efficiently for marriage games.

Theorem 1. For marriage games, checking whether
there exists a NS matching is NP-complete.

Proof . We present a polynomial-time reduction from
MinimumMaximalMatching (MMM) to checking whether
there exists a NS matching for a marriage game.

Name: MinimumMaximalMatching (MMM).
Instance: Graph G = (V,E) and integer k ∈ Z+.
Question: Does G have a maximal matching M with size
≤ k?

MinimumMaximalMatching (MMM) is NP-complete
even for subdivision graphs [14, 21]. Let G = (V,E) and
and integer k ∈ Z+ be the instance of MMM. Graph G is
the subdivision graph of some graph G′ = (V ′, E′) such
that V = V ′ ∪ E′ and E = {{e, v} : e ∈ E′, and v ∈
V ′ and v is incident to e in G′}. It is easy to see that G

is a bipartite graph where V = A∪B. We may assume that
|A| = |B| = n. §

We construct a marriage game (N,%) where N = V ∪X∪
{y} where X = {x1, . . . , xn−k} and the player preferences

§If this were not the case and |A| = |B| + r, then we can
add r vertices a1, . . . , ar to A and 2r vertices to b1, . . . br,
c1, . . . , cr to B where ai is adjacent to bi and ci for each i
(1 ≤ i ≤ r). Then G has a maximal matching of size k if
and only if the reduced graph has a maximal matching of
size k + r.
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are represented with an abuse of notation such that players
in the same set in the preference list are equally preferred
and each player in the next set is strictly less preferred:

a : {b′ ∈ B : {a, b′} ∈ E} ≻a X ≻a a ≻a ∀a ∈ A

b : {a′ ∈ A : {a′
, b} ∈ E} ≻b b ≻b ∀b ∈ B

x : A ∼ y ≻x x ≻x ∀x ∈ X

y : y ≻y

Then, the claim is that there exists a maximal matching
of size at most k if and only if there exists a Nash stable
matching.

(⇒) If there exists a maximal matching M of size at most
k of (V,E), there are at most k players in A which are
matched. This implies that there are least n − k players
in A which are not matched in M . We match n − k play-
ers from A which are not in matched in M with players in
X. Therefore all the players in X are perfectly matched to
players in A. Since each player in X is matched to a player
in A and has no incentive to deviate to y. Each player in
A is either matched to a player in B or X or is unmatched.
If a ∈ A is matched to an acceptable player b ∈ B, it is
perfectly happy and has no incentive to deviate. If a ∈ A is
not matched to some acceptable player in B, it is either in
a singleton coalition or is paired with a player in X. In ei-
ther case, a does not have an incentive to deviate elsewhere
because all players in X are perfectly matched, and there
is no unmatched b ∈ B such that (a, b) ∈ E. If this were
the case, then M would not be a maximal matching. Simi-
larly, each unmatched b ∈ B has no incentive to deviate to
an unmatched a ∈ A because of maximality of M . Finally,
player y is of course fine by being alone as he finds every
other player unacceptable.

(⇐) Assume that each maximal matching in G has size
greater than k. Then for any such matching M ′, there are
at most n − k − 1 unmatched players in A which need to
be matched with n − k players in X. Therefore one player
in X will not be matched to a player in A and will try to
match with y who wants to be alone. Therefore there exists
no NS matching. It could have been the case that if M ′

was not maximal, there would be enough free players from
A which could cater for players in X. Consider a matching
M ′′ of size less than or equal to k which is not maximal.
Then, there are at least n − k players in A which can form
a perfect matching with players in X. However since M ′′

is not maximal, some player a ∈ A which is matched to an
x ∈ X wants to deviate to an unmatched acceptable player
in B. Therefore M ′′ is also not Nash stable.

As a corollary of Theorem 1, we obtain corresponding re-
sults for a number of hedonic games including hedonic games
in RIRLC [4], additively separable hedonic games [23, 29]
and hedonic games based on the best or worst players [7, 3].
Before, we present the corollary, we will define the other
classes of hedonic games for the help of the reader.

In the Representation by Individually Rational Lists of
Coalitions (RIRLC) for hedonic games, each player ex-
presses his preferences only over his acceptable coalitions [4].
An additively separable hedonic game (ASHG) is pair (N, v)
such that each player i ∈ N has value vi(j) for player j being
in the same coalition as i and if i is in coalition S ∈ Ni, then i

gets utility
∑

j∈S\{i} vi(j). For coalitions S, T ∈ Ni, S %i T

if and only if
∑

j∈S\{i} vi(j) ≥
∑

j∈T\{i} vi(j). Finally, we
define B-hedonic games and W-hedonic games based on the
best and worst players. For a subset J of players, we denote
by max%i

(J) and min%i
(J) the sets of the most and least

preferred players in J by i, respectively. We will assume that
max%i

(∅) = min%i
(∅) = {i}. In a B-hedonic game the pref-

erences %i of a player i over players extend to preferences
over coalitions in such a way that, for all coalitions S and T

in Ni, we have S%i T if and only if either some player in T

is unacceptable to i or all players in S are acceptable to i

and j %i k for all j ∈ max%i
(S \{i}) and k ∈ max%i

(T \{i}).
Analogously, in a W-hedonic game (N,%), we have S%i T

if and only if either some player in T is unacceptable to i or
j %i k for all j ∈ min%i

(S \ {i}) and k ∈ min%i
(T \ {i}).

Corollary 1. The problem of checking whether there
exists a NS matching is NP-complete for the following: i)
roommate games, ii) hedonic games in RIRLC [4], and iii)
additively separable hedonic games [23, 29]. iv) B-hedonic
games, and v) W-hedonic games.

Proof. We address each of the cases separately.

i. Roommate games are a generalization of marriage
games with as compact a representation.

ii. A marriage game can be reduced in linear time to a
hedonic game in RIRLC which is linear in the size of
the marriage game. Instead of each player having pref-
erences over players, it has preferences over coalitions
of size two with each coalition of course including the
player himself.

iii. A marriage game (N,%) can be reduced to an ASHG
(N, v) in which v is defined as follows: vi(i) = 0;
vi(j) ≥ vi(k) if and only if j %i k; and vi(j) is a suit-
ably large negative valuation if j is unacceptable to i

in (N,%). Then, in any IR partition π in game (N, v),
the pigeon-hole principle ensures that two members of
the same sex are never together in the same coalition.
It follows that an IR partition π for (N, v) is an indi-
vidually rational matching for marriage game (N,%).
Furthermore, π is NS in ASHG (N, v) if and only if it
is NS in the marriage game (N,%).

iv. A marriage game (N,%) is a B-hedonic game G in
which acceptable coalitions are of size one or two. If
a coalition were of size more than two, then members
of the same sex would be present which makes the
coalition unacceptable. Therefore a partition is NS for
G if and only if it is NS in the marriage game (N,%).

v. Same argument for W-hedonic games as for B-hedonic
games.

This completes the proof.

Some of the statements in Corollary 1 were known but
required separate proofs for each particular class [4, 23, 29,
3]. However Theorem 1 and its corollaries provide a unified
and simpler proof for a number of previously proved results.

It can also be shown that for roommate games, even check-
ing whether there exists an IS matching is NP-complete.
The proof utilizes a three-player roommate game for which
no IS partition exists.
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Theorem 2. For roommate games, checking whether
there exists an IS matching is NP-complete.

Proof . We present a polynomial-time reduction from
MinimumMaximalMatching (MMM) to checking whether
there exists an IS matching for a roommate game.

As in the proof of Theorem 1, we assume that the in-
stance of MMM is a bipartite graph in which the ver-
tices V are partitioned into sets A and B. We con-
struct a roommate game (N,%) where N = V ∪ X where
X = {x0

1, x
1
1, x

2
1, . . . , x

0
n−k, x

1
n−k, x

2
n−k} and the player pref-

erences are as follows with an abuse of notation.

a : {b ∈ B : {a, b′} ∈ E} ≻a X ≻a a ≻a ∀a ∈ A

b : {a′ ∈ A : {a′
, b} ∈ E} ≻b b ≻b ∀b ∈ B

x
j
i : A ∼

x
j
i

x
(j+1)mod3
i ≻

x
j
i

x
(j−1)mod3
i ≻

x
j
i

x
j
i ≻

x
j
i

∀i ∈ {1, . . . , n− k}, j ∈ {0, 1, 2}

The preferences are set in such a way that each triplet
x0
i , x

1
i , x

2
i for i ∈ {1, . . . n − k} is in a perpetual cycle of

deviations {x0
i , {x

1
i , x

2
i }}, {{x

2
i , x

0
i }, {x

1
i }}, {{x

2
i }, {x

0
i , x

1
i }},

and back to {x0
i , {x

1
i , x

2
i }}. And this cycling can only be

stopped by the help of players in A which is not already in
a coalition with a player b ∈ b such that (a, b) ∈ E.

The claim is that MMM has a ‘yes’ instance (i.e., there
exists a maximal matching of size k) if and only if there
exists an IS matching for (N,%).

(⇒) If there exists a maximal matching M of size k or
less, then there are at least n− k players in A which are not
matched in M . Then for each i ∈ {1, . . . , n− k} a player x0

i

is matched to one of the unmatched a ∈ A. The x0
i ’s have no

incentive to deviate anywhere. Each x1
i and x2

i are matched
to each other and have no incentive to deviate. Similarly, no
player in B and Ahas an incentive to deviate. Thus there
exists an IS matching.

(⇐) Assume that each maximal matchingM ′ in G has size
greater than k. Then, there are at most n− k− 1 players in
A which are not matched in M ′ and which can be matched
with n − k players in X. Therefore not all n − k triplet IS
cycles of x0

i , x
1
i , x

2
i can be disrupted. Therefore, there does

exist one set of players x0
i , x

1
i , x

2
i which is in a perpetual IS

cycle. Therefore there exists no IS matching. It could have
been the case that if M ′ was not maximal, there would be
enough free players from A which could cater for players in
X. Consider a matching M ′′ of size less than or equal to k

which is not maximal. Then, there are at least n−k players
in A which can form a perfect matching with players in X.
However since M ′′ not maximal, some player in a wants to
deviate to some b ∈ B such that (a, b) ∈ E.

5. POSITIVE RESULTS
In this section, we present a number of positive compu-

tational and existence results concerning individual-based
stability in marriage and roommate games. Firstly, we can
use a potential-function argument to show the following.

Proposition 1. For every roommate game, a CIS and
IR matching exists and can be computed in O(n2).

Proof . Take the IR partition of singletons. If the par-
tition is CIS, we are done. Otherwise, if there is a feasible
CIS deviation, enable it. In each CIS deviation at least one

player strictly improves his utility and no player’s utility de-
creases. Since there can only be a maximum of n(n−1) CIS
deviations, a CIS and IR partition is obtained in O(n2).

What is much more surprising is that although an IS
matching is not guaranteed to exist for roommate games
(Theorem 2), a CNS matching is. Therefore, we identify an
important class of hedonic games other than weakly mutual
separable hedonic games [28] for which a CNS partition is
guaranteed.

Theorem 3. For every roommate game, a CNS matching
exists and can be computed in O(n2).

Proof . Let π be the partition of singletons. Set B, the
set of players with at least one CNS deviation to the empty
set. Let arbitrary CNS deviations take place from π and
update B accordingly. The argument is that CNS deviations
will not cycle, at least not if the starting configuration is
π. Let i ∈ N be the player which deviates from his current
coalition π(i) to another coalition {j}. Then, i is guaranteed
to never decrease his utility because he does not permit j

to move away. Clearly no player k wants to join {i, j} as a
coalition of size three is unacceptable to each k. Therefore,
players in B can only improve their utility and cannot end
up in a previous partition. In each deviation, either set
B grows or a player in B improves his utility. Therefore,
there can only be O(n2) deviations until a CNS matching is
achieved.

Interestingly, even in the absence of any preference restric-
tions, marriage games admit at least one IS matching which
can be computed efficiently.

Theorem 4. For marriage games, an IS matching is
guaranteed to exist. Moreover, it can be computed in O(n2).

Proof . We present a constructive proof of the existence
of an individually stable matching for marriage games. It is
already known that a (core) stable matching exists for mar-
riage games. However, in the presence of ties, core stability
does not imply individual stability.

Given a marriage game (N,%), first raise the preferences
% to %′ in order to obtain the new modified game (N,%′).
By raising preferences from % to %′, we mean the following:
for all b, c ∈ N \ {a}, b %a c if and only if b %′

a c but if
b ∼a a then b ≻′

a a. Now run the woman-optimal version
of the Gale-Shapley algorithm on (N,%′). The claim is that
the resultant matching π is IS for the original game (N,%).
Note that there are no core deviations in π according to
preferences % and also %′.

Since core stability implies individual rationality, the only
possible IS deviations according to preferences % are as fol-
lows: 1. Matched man has a valid IS deviation to an un-
matched woman; 2. Matched woman has a valid IS deviation
to an unmatched man; 3. Unmatched woman has a valid IS
deviation to an unmatched man; 4. Unmatched man has a
a valid deviation to an unmatched woman.

1. If man mi matched to wj has a valid IS deviation to
an unmatched woman wk, then clearly wk ≻mi

wj and
mi ∼wk

wk. This means that mi ≻
′
wk

wk and woman
wk must have proposed to mi in the algorithm. If
mi was single, he would have paired with wk and if
he was engaged to wj , then he would broken off the
engagement and paired with wk.
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2. If woman wj matched to mi has a valid IS deviation
to an unmatched man ml, then clearly ml ≻wj

mi and
wj %ml

ml. Therefore, wj would have proposed to ml

before she proposed to mi. Therefore {wj ,ml} would
have been a pair in the first place.

3. If unmatched women wj has a valid IS deviation to
unmatched man mj , then mi ≻wj

wj and woman wj

would have proposed tomj in the algorithm and paired
up with him.

4. If unmatched man mi has a valid IS deviation to un-
matched man wj , then wj ≻mi

mi and mi ∼wj
wj .

This implies that mi ≻′
wj

wj . Therefore woman wj

would have proposed to mi and they would have paired
up.

One may wonder whether the negative results in the pre-
vious section can be circumvented by disallowing players to
express other players as unacceptable. Preferences are mu-
tual if whenever a player considers another player accept-
able, then the other player also considers the first player
acceptable.

Proposition 2. For roommate games and marriage
games with mutual preferences, a NS matching exists if and
only if an IS matching exists.

Proof. A NS matching is of course IS. Therefore the
right implication follows trivially. Assume a matching π is
not NS. Then, there exist a pair {ai, aj} in π such that ai

wants to deviate to a singleton coalition {ak}. Since ak finds
ai acceptable, therefore it does not object to ai joining him.
This means that π has a valid IS deviation and π is not
IS.

Corollary 2. For marriage games with no unaccept-
ability, a NS matching is guaranteed to exist. Moreover,
it can be computed in O(n2).

As a corollary, for marriage games with no unacceptabil-
ity, a NS matching is guaranteed to exist. Moreover, it can
be computed in O(n2). It was seen that there is a marked
contrast between marriage and roommate games regarding
the complexity of individual stability. However, if there is
no unacceptability, it can be checked efficiently whether a
NS or IS matching exists for roommate games.

Theorem 5. For roommate games with no unacceptabil-
ity, it can be checked in O(n4) whether a NS matching or an
IS matching exists.

Proof. From Proposition 2, we just need to check
whether a NS matching exists or not. If n is even, then
we are already done as any perfect matching of players is
not only IR but also NS. The problem becomes interesting
if n is odd. If there exists a NS matching in which there
are more than one unmatched players (singleton coalitions),
then there also exists a NS matching in which there is exactly
one unmatched player. Therefore, we need to check whether
there exists a NS matching with one unmatched player or
not. Take any player i to be the unmatched player. Then,
we want to check whether the other players in N \ {i} can
be matched so that no player has an incentive to deviate

to i. There is no other possible deviation as each player is
matched with an acceptable player and does not have an
incentive to become alone. For each player i, consider an
undirected graph Gi = (V,E) such that V = N \ {i} and E

is defined as follows: {j, k} ∈ E if and only if k %j i and
j %k i.

The main claim is that a NS matching exists if and only if
there exists one player i ∈ N for which Gi admits a perfect
matching.

(⇐) If there exists a perfect matching M of Gi, M ∪{{i}}
is a NS matching. It is clear that no players in N \ {i} want
to leave their partners and deviate to the unmatched i.

(⇒) For the other direction, assume that there exists a
NS matching. Then, there also exists a NS matching M ′ in
which all players except some player i are matched. For any
two players j, k such that {j, k} ∈ M ′, both j and k do not
have an incentive to deviate to i. This means that k %j i

and j %k i. This means that there exists a perfect matching
in graph Gi.

Therefore, the problem of checking whether a NS match-
ing exists reduces to computing a graph Gi for each i ∈ N

and checking whether Gi admits a perfect matching. Since it
can be checked in O(n3) whether a graph contains a perfect
matching [8], the overall algorithm takes O(n4).

6. CONCLUSIONS
We examined the computation of individual-based stable

outcomes in matching problems and focused on marriage
and roommate problems. A complete characterization was
achieved (please see Table 2). As a corollary of Theorem
1, we also gave simple proofs for some results in the hedo-
nic games literature. Our computational analysis also led to
constructive arguments for the existence of a CNS match-
ing for each roommate game, and an IS matching for each
marriage game.

There are some interesting contrasts in our results. Al-
though IS and CNS are defined in a symmetric way, we saw
that a CNS matching is guaranteed to exist for roommate
games whereas even checking the existence of an IS match-
ing is NP-complete. In the case of marriage games, we no-
ticed a contrast between the complexity of computing an IS
matching and computing a NS matching. Finally, one may
naively expect that group-based stability like core may be
harder to examine than individual-based stability. However,
we note that for marriage games, finding Nash stable match-
ing is intractable whereas computing a core stable matching
is polynomial-time solvable.

It will be interesting to consider individual-based stabil-
ity in other models such as hospitals/residents matching. It
remains to be seen whether the absence of ties in the pref-
erences can affect the NP-completeness results. Knuth [19]
proved that core deviations can cycle in marriage games.
It is also easy to see that Nash deviations can also cycle in
marriage games. It will be interesting to investigate whether
IS deviations can cycle in marriage games or not. Finally,
the complexity of computing a matching which is both CNS
and IR is also open.
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Game Preference Problem Stability Complexity
Restrictions setting concept

RG (SRTI) CIS & IR in P (Prop. 1)
RG (SRTI) NS NP-C (Cor.1)
RG (SRTI) IS NP-C (Th. 2)
RG (SRTI) CNS in P (Th. 3)

RG No unacceptability (SRT) NS, IS in P (Th. 5)

MG (SMTI) NS NP-C (Th. 1)
MG (SMTI) IS in P (Th. 4)

MG No unacceptability (SMT) IS in P (Th. 4)
MG No unacceptability (SMT) NS in P (Cor. 2)

Table 2: Complexity of individual-based stability in marriage and roommate games. The NP-completeness
result for checking the existence of a NS matching for a marriage game also applies to a number of represen-
tations and classes of hedonic games (Corollary 1).
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