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ABSTRACT
We study online bipartite matching settings inspired by parking al-
location problems, where rational agents arrive sequentially and se-
lect their most preferred parking slot. In contrast to standard online
matching setting where edges incident to each arriving vertex are
revealed upon its arrival, agents in our setting have private pref-
erences over available slots. Our focus is on natural and simple
pricing mechanisms, in the form of posted prices. On the one hand,
the restriction to posted prices imposes new challenges relative to
standard online matching. On the other hand, we employ specific
structures on agents’ preferences that are natural in many scenarios
including parking. We construct optimal and approximate pricing
mechanisms under various informational and structural assump-
tions, and provide approximation upper bounds under the same as-
sumptions. In particular, one of our mechanisms guarantees a better
approximation bound than the classical result of Karp et al. [10] for
unweighted online matching, under a natural structural restriction.

Categories and Subject Descriptors: I.2.11 Artificial Intelligence:
Distributed Artificial Intelligence—Multiagent Systems

General Terms: Theory, Algorithms, Economics
Keywords: Online Matching, Parking, Mechanism design, Posted
prices

1. INTRODUCTION
In recent years, smart parking systems are being deployed in an

increasing number of cities. Such systems allow commuters and
visitors to see in real time, using cellphone applications or other
digital methods, all available parking slots and their prices.1 At
the same time, dynamic pricing becomes more popular in various
domains [12], including for example congestion tolls [19], smart
grids [16], and electric vehicle charging [7, 17].

Parking allocation as matching. We consider the problem of
maximum online bipartite matching with dynamic posted prices,

∗Part of the research took place while the author was a visitor at
the Center for Research on Computation and Society in Harvard
University.
1San Francisco and other cities in California are already supporting
such an application for some time now. Other cities are rapidly
catching up [15, 14].
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motivated by the real-world challenge of efficient parking alloca-
tion. As in standard online matching setting, one side of the bipar-
tite graph (representing the parking slots) is known in advance. The
vertices of the other side (representing commuters or agents) arrive
sequentially and each demand a slot. However, in contrast to stan-
dard online matching setting where edges incident to each arriving
vertex are revealed upon its arrival, the preference of an agent over
available slots is private and not completely revealed. Future sys-
tems may provide communication interfaces that will allow com-
muters to report their parking preferences [6]. As such interfaces
are not yet available, and to avoid unnecessary complication, we
focus on natural posted price mechanisms. Agents are assumed to
be rational and select a slot based on their private preference and
prices of slots at the time of arrival.

While private preferences of agents and the restriction to posted
price mechanisms impose additional challenges relative to stan-
dard online matching, in the parking allocation domain there are
some natural structures on agent preferences that can be exploited
to achieve more efficient allocation. Specifically, we assume that
every agent has a goal (e.g. her office building), and prefers park-
ing slots closer to her goal, ceteris paribus. An agent’s valuation
of a parking slot depends on its distance to her goal. In this pa-
per, we consider two natural single-parameter valuation schemes:
MAXDISTANCE and LINEARCOST. In MAXDISTANCE, an agent
is willing to accept any slot within a certain distance from her goal,
while in LINEARCOST, an agent’s valuation of a slot decreases lin-
early with the distance between the slot and her goal.

The objective of a system designer is to set up (dynamic) prices
for available parking slots to prompt the most efficient allocation,
in terms of social welfare — the total value of all agents who are
allocated a slot. That is, the sole purpose of payments is to align the
incentives of the agents with that of the society, rather than to make
a profit. In cases where the optimal allocation cannot be achieved
in the online setting, we seek the best possible approximation ratio
that can be attained by posted price mechanisms.

Although our problem is motivated by the application of parking
allocation, the general setup is applicable to other domains with pri-
vate preferences that have similar structural restrictions. An exam-
ple is online procurement, where each agent has some ideal product
or service in mind (the goal), but must select from a limited range
of available options based on their similarity to her goal and cur-
rent prices. However, in such domains, the system designer may
arguably be more interested in maximizing revenue than optimiz-
ing social welfare, which is the focus of this paper.

1.1 Related work
“Smart parking” has attracted much attention in urban planning.

For example, Geng and Cassandras [6] proposed a system asking

303



each agent to report her maximum acceptable distance to her goal
and maximum parking cost and leveraging integer programing to
decide an allocation. Such systems do not consider the strategic
nature of agents and have not yet provided theoretical guarantees
on efficiency. Some related online allocation problems such as
charging of electrical vehicles [7, 17] and WiFi bandwidth allo-
cation [5] use auction-like mechanisms that are based on agents’
reported type. The main difference in our approach is that it uses
posted prices, which come with their pros and cons (in particular,
we require no input or almost no input from the agents).

Matching. The parking allocation problem we study closely re-
lates to maximum online matching in unweighted bipartite graphs,
as defined by Karp et al. [10].2 In fact, one variant of our prob-
lem coincides with it exactly. In this case, we can easily imple-
ment their well-known RANKING algorithm, using random posted
prices. Karp et al. proved that RANKING achieves an approxima-
tion ratio of 1 − 1/e, and that no online algorithm (and thus no
pricing mechanism) can do better.

Some later work on online bipartite matching studied the best
possible approximation ratio that can be guaranteed in several vari-
ants of the original problem, typically by varying the informational
and distributional assumptions on arriving vertices [13, 4, 9]. The
motivation behind some of these comes from the AdWords assign-
ment problem. A setting where all slots reside on a line was also
studied, albeit with a focus on minimum matching [11].

Weighted matchings. While the general problem of online match-
ing with weights is quite difficult (even in bipartite graphs), better
algorithms exist if certain restrictions are made. Aggarwal et al. [1]
extended the result of Karp et al. [10] to vertex-weighted match-
ings, where every vertex on the known side (the parking slots in our
case) has a weight. In one of our models, there are values (weights)
attributed to the unknown vertices (the agents), in which case the
approximation ratio may be unbounded. A different restriction on
weights that has been considered - namely triangle inequality - has
led to a 1

3
-approximation mechanism [8].

Allocation with posted prices. Chawla et al. [3] recently tackled
a much more general challenge of resource allocation (not neces-
sarily matching) using posted prices. They gave constant approxi-
mation bounds (between 1

8
and 2

3
) for maximum revenue in a range

of allocation problems.3 Among other differences from our model,
their model assumes that each arriving agent is sampled from some
known distribution.

1.2 Our contribution
We study the parking allocation problem under MAXDISTANCE

and LINEARCOST valuation schemes respectively and with various
informational and structural assumptions.

For MAXDISTANCE, our contribution is two-fold. At the con-
ceptual level, we isolate explicit structural and informational as-
sumptions inspired by real-world parking allocation and establish
connections to the well-studied online bipartite matching problem.

At the technical level, we provide several powerful, yet simple
to implement, pricing mechanisms. We show that when the popu-
lation (but not the order of arrival) is known in advance, an opti-
mal mechanism exists provided that we have access to each agent’s
goal. For other variants of the problem we provide approximation

2This is yet another difference from online allocation settings such
as EV charging, where the underlying optimization problem does
not always resemble matching.
3Chawla et al. [3] claimed that the same bounds hold for maximum
social welfare.

mechanisms and approximation upper bounds. Our results for the
MAXDISTANCE valuation scheme are summarized in Table 1.

Notably, we show that under a plausible structural restriction,
there is a mechanism that guarantees a 0.682 approximation ratio
in the “unweighted” variant of the problem. It is better than the
1 − 1/e ∼= 0.632 approximation ratio provided by Karp et al. [10]
for general unweighted matching problems. Further, in contrast to
Karp et al., our pricing mechanism is deterministic.

For the more intricate LINEARCOST scheme, we focus on the
case where both the population and the goals are known. Using
results from ad auction theory, we provide a pricing mechanism
that guarantees the optimal social welfare.

Some proofs are omitted due to space constraints, but can be
found in the full version of this paper.4

2. MODEL
An instance of a parking allocation problem is a tuple H =
〈S, N, π〉, consisting of a structure, a population and an arrival or-
der. Specifically, the structure S is given by a tuple S = 〈S,G, d〉,
where S is a finite set of parking slots,G is a finite set of goals, and
d is a distance metric over S ∪ G. We denote m = |S|, k = |G|.
The population consists of a set of agentsN with their preferences,
where n = |N |. Finally, π is a permutation of [n], indicating the
order of arrival.

The preference of an agent j ∈ N is given by (gj , vj), where
gj ∈ G is the goal of agent j, and vj : S → R is a function
specifying the valuation of agent j for being allocated some slot
s. We assume that vj(s) is distance based. More specifically,
vj(s) = φj − Cj(s), where φj is a constant and Cj(s) is some
non-decreasing function of d(gj , s). φj can be interpreted as the
cost of using a default option, in case the agent j is not allocated
any slot. Such a default option might be a large parking lot that is
always available, but is either expensive or inconveniently located.
Throughout the paper we assume that this cost depends only on the
goal and not on the identity of the agent, i.e., φj = φg whenever
gj = g. A special case is φj = φg = φ for all agents, for example,
when there is a single default option available for all goals.

An allocation of slots S to agents N is a matching σ : N →
S ∪ {∅}, specifying for each agent her allocated slot (or in the
case of ∅, no slot is allocated). Given any i, j ∈ N , the allocation
satisfies σ(i) 6= σ(j) unless σ(i) = σ(j) = ∅. That is, each slot
can be allocated to at most one agent.

A mechanism M maps an instance of a parking allocation prob-
lem to an allocation. Let MH denote the allocation outputted by
M for instance H . The social welfare achieved by mechanism M
at instance H is defined as the sum of agent valuations at the allo-
cation, i.e. SW (M,H) =

∑
j∈N vj(MH(j)). We emphasize that

although the agent’s decision is eventually based on the prices of
slots, the social welfare is not influenced by monetary transfers.5

For randomized mechanisms, we treat SW (M,H) as the expected
value over all realizations of prices and allocations.

We consider posted price mechanisms. Agents with private pref-
erences arrive in sequence according to π and are presented with
a posted price p(s) for every available parking slot s ∈ S. The
utility of an agent for selecting a slot s is quasi-linear, defined as
uj(s) = vj(s) − p(s). Agents are assumed to be rational; they
select a slot to maximize their utility or reject all slots and use the
default option if none of the slots provides nonnegative utility. The

4Available from: http://tinyurl.com/a2mvczc.
5Equivalently, we can count payments in and sum over all agents
and the parking authority in calculating the social welfare.
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goal of the system designer is to design a posted price mechanism
that maximizes social welfare.

Approximation ratio. We adapt the competitive model of Karp et
al. [10] to evaluate pricing mechanisms. The structure S is com-
mon knowledge among all agents and the system designer. We
allow our mechanism to flip coins when setting prices. An adver-
sary who knows the mechanism selects a set of agents N (i.e. their
preferences) and an arrival order π.6 The performance of the mech-
anism is compared to that of the optimal allocation, in the worst
selected instance. Formally, the approximation ratio7 of a pricing
mechanism M over a structure S is

ARS(M) = min
N

min
π

SW (M, 〈S, N, π〉)
opt(〈S, N〉) ,

where SW is the expected social welfare taken over the random-
ization of the mechanism, and opt(〈S, N〉) is the social welfare
achieved by the optimal allocation for structure S and agents N .
Note that AR(M) ≤ 1, with equality if and only if the mechanism
is optimal. Optimal allocations are w.l.o.g. deterministic.

Unless explicitly stated otherwise, we assume that the instances
are “large enough”. That is, the number of allocated slots in the
optimal allocation goes to infinity. In particular, n and m are suffi-
ciently large to ignore rounding issues.

Valuation Schemes. We will consider two valuation schemes of
agents in this paper. An agent’s preference under each scheme can
be characterized by a single parameter on top of her goal.
MAXDISTANCE: In this scheme each agent j has a parameter mj ,

specifying the maximum distance she is willing to walk. Thus
if agent j is allocated slot si ∈ S, her valuation is vj(si) = φj
if d(gj , si) ≤ mj , and 0 otherwise.

LINEARCOST: Each agent j incurs a cost cj for walking a unit of
distance. Thus, the valuation of a parking slot si ∈ S for agent
j is vj(si) = φj − cjd(gj , si).

Informational assumptions. In some cases, we make simplified
assumptions on what the system designer knows.
Assumption KP (Known Population): The size ofN and the distri-

bution of agent preferences are public information. That is, the
system designer knows how many agents exist for what prefer-
ence, but does not know the preference of any arriving agent.

Assumption KG (Known Goal): gj is public information. E.g.,
each commuter has a chip in her car to identify her employer.

Assumption UV (Uniform Values): φj = φ for all j.
For the purpose of comparing our results with standard results on
online matching algorithms, we also define Assumption KT (Known
Type), which means that the full preference of each arriving agent
is public information. Clearly KT entails KG.

It is easy to see that under Assumptions KT+UV the parking
allocation problem in the MAXDISTANCE setting is a special case
of online bipartite matching. We will later see (Cor. 3) that the
reverse is also true.

Structural restrictions. We will consider the following four classes
of structures, ordered by their level of generality.
1. Structures with a single goal.
2. Structures with two goals, where all slots are scattered along an

interval between them. That is, d(s, g1) = R− d(s, g2) for all
s ∈ S and some constant R.

6Following Karp et al., this is a non-adaptive adversary.
7This ratio is sometimes referred to as competitive ratio.

3. Layered structures. Coarsely speaking, this means every slot
has several duplicates or near-duplicates (see details in Sec-
tion. 4.3). Layered structures include for example slots scat-
tered along the edges of sparse graphs, and structures where all
slots are concentrated in several large parking lots.

4. General structures.

3. GENERAL OBSERVATIONS
It is sometimes useful to decompose the allocation problem into

two steps: find the right partition of space for the goals and opti-
mally allocate space assigned to each goal to agents with that goal.

OBSERVATION 1. Finding an optimal offline allocation is a spe-
cial case of maximum weighted bipartite matching. Thus, under As-
sumption KP, the optimal allocation (and in particular an optimal
partition of the space) can be found in polynomial time.

To see this, suppose we define agents to be the vertices of the left
side of the graph, and slots to be the vertices of the right side. We
add an edge between every agent j and slot i, whose weight is
the valuation of j for slot i. Then, an allocation is a matching
and its social welfare is exactly the total weight of the matching.
Maximum weighted matching can be found in polynomial time,
e.g. by the Edmond-Karp algorithm.

According to Observation 1, the MAXDISTANCE model under
Assumption UV is a special case of maximum cardinality (un-
weighted) matching in bipartite graphs. Our next result shows that
they are equivalent.

LEMMA 2. Let (I, S,E) be a bipartite graph with vertex sets I
and S and edge setE. Then there is an instance of MAXDISTANCE
where d(s, gi) ≤ mi if and only if (i, s) ∈ E.

Given the last lemma, we have the equivalence of the online
problems under Assumptions KT+UV.

COROLLARY 3. Under the MAXDISTANCE model with Assump-
tions KT+UV, the parking allocation problem is equivalent to the
online maximum cardinality matching problem.

This is simply because if the preference of an arriving agent is
known, we have the same information as in online matching. We
can allocate any desired slot s to this agent by setting the price of
s to 0, and prices of other slots to infinity. It follows that any al-
gorithm or approximation upper bound for online algorithms in one
domain (bipartite matching/parking allocation) immediately applies
to the other as well.

Our next observation is that given a partition of space to k goals,
P = (S1, . . . , Sk), the online allocation problem reduces to a sin-
gle goal problem provided that we have access to agents’ goals.

OBSERVATION 4. Suppose we have a pricing mechanism that
finds an optimal allocation for a single goal. Then under Assump-
tion KG, we have a pricing mechanism that implements the optimal
allocation for any given partition P .

Upon the arrival of an agent with goal g, we block all slots of
Sg′ , g

′ 6= g, and price the slots of Sg as if this is the entire space.
Since our pricing for every set Sg yields an optimal allocation of
these slots, we get the best possible allocation for P .

Thus, under Assumption KG we have the following recipe:
• Design an optimal online pricing mechanism for a single goal.
• Based on prior information, find a good partition of slots to

goals (either optimal or approximately optimal). For example,
by Observation 1, an optimal offline partition can be found un-
der Assumption KP.
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• Run the single goal mechanism for the appropriate goal when-
ever an agent arrives.

4. RESULTS FOR MAXDISTANCE
We first note that by the equivalence to matching, even trivial

mechanisms work reasonably well if all agents have the same φ.

OBSERVATION 5. Under Assumption UV, any maximal match-
ing is a 1

2
-approximation. A maximal matching can be easily at-

tained by setting prices of all slots to 0.

A single goal. We next consider a restricted setting, in which there
is a single goal g, with value φ. In this case, we sort all slots accord-
ing to non-decreasing distance from g. Thus d(g, si) ≤ d(g, si′)
for all i < i′.

It is easy to see that if we take agents in an arbitrary order, and
place j on the highest (i.e. most distant) slot si s.t. d(g, si) ≤ mj ,
then this allocation would be optimal. Indeed, if some m∗ slots are
allocated, then either all agents got slots; or all m∗ slots closest to
g are allocated, in which case there are no agents with mj > m∗.
The allocation in both cases is clearly optimal.

There is a very simple pricing mechanism that implements such
an optimal allocation: We sort slots according to nondecreasing
distance from g, and set prices to pi = (m − i)ε for all i, with
some ε < φ/m. We refer to this mechanism as monotone pricing
scheme. Under these prices, each agent prefers the most distant slot
s.t. d(g, si) ≤ mi.

By Observations 1 and 4, monotone pricing can be easily ex-
tended to any number of goals in arbitrary spaces.

COROLLARY 6. Under Assumptions KP+KG, there is an opti-
mal pricing mechanism.

In the remainder of this section, we study the best approximation
ratio that can still be guaranteed when these assumptions are re-
laxed. For easy comparison, the results are summarized in Table 1.
Throughout this section, we use the notation α =

maxg φg
ming′ φg′

≥ 1.

4.1 Two goals on an interval
Our next setting involves two goals, residing on the two ends of

an interval containing all slots. We sort all slots by non-decreasing
distance from g1, and this is also a non-increasing distance from
g2. We assume, w.l.o.g. φ1 ≥ φ2, thus φ1 = αφ2.

We say that Pt = (S1, S2) is a threshold partition for threshold
t if si ∈ S1 for all i ≤ t and si ∈ S2 for all i > t.

LEMMA 7. There is always an optimal threshold partition Pt∗ .
Moreover, w.l.o.g. t∗ is exactly the maximal number of agents with
goal g1 that can be placed in the optimal allocation.

PROOF. If there is an agent with goal g1 getting a higher slot
than some agent with goal g2, we could just switch them. Also, if
there are gaps on both sides of the threshold, we could push down
the threshold t∗. If we could assign a slot to one more agent from
goal g1 when α > 1, this would shift the threshold up by one,
which would displace at most one agent of goal g2. Since φ1 ≥ φ2,
this would weakly increase welfare.

LEMMA 8. For any threshold partition Pt, we can implement
with posted prices an allocation that is at least as good as Pt.

PROOF. The mechanism THRESHOLD is defined as follows.
We need each agent to select the most distant slot si from her goal
g, s.t. d(g, si) is bounded by both mj and the threshold t. In other
words, the slot closest to t s.t. d(g, si) ≤ min{mj , d(g, t)}.

On arrival, we price available slot si by εdi, where di is the
number of available slots between si and t (not the distance); and ε
is small enough such that, for all i, εdi is less than φ2 and if α > 1
it is also less than φ1−φ2. Moreover, if all slots in S2 are full and
α > 1, we add φ2 to the price of all slots in S1.

Now, suppose that an agent with goal g1 and maximum distance
to walk mj , denoted (g1,mj), arrives and selects si. There are
three cases: (a) There is one cheapest slot closer than mj , below t
(i.e. on the “correct” side). Then this is the slot assigned to j by
the optimal allocation anyway. (b) There are two cheapest slots,
one on each side of t. Then one of these is the one from case (a),
which is preferred by default since it is closer to g1. (c) si > t
(but below mj). This means that all slots s < si are taken, and
it cannot prevent future agents from being allocated slots above si.
Thus, this new allocation is still optimal for the threshold t.

A similar argument works for agents with goal g2, except that in
case (c) all available slots belong to S1 and thus cost more than φ2.
Therefore, agents with goal g2 are never allocated slots i ≤ t.

Given a threshold t, we can still implement an optimal allocation
for t without knowing agents’ goals. By Lemma 7, the optimal
partition is indeed a threshold partition, we thus have the following.

COROLLARY 9. Under Assumption KP, there is an optimal mech-
anism for two goals on an interval.

We will later see that this no longer holds even in slightly more
complex structures.
Unknown population. By Observation 5 there is a simple 1

2
-

approximation mechanism under Assumption UV. However, when
agents have different values, larger inefficiencies may occur. This
holds even if agents’ preference is known on arrival (i.e. the diffi-
culty arises from the online setting).

PROPOSITION 10. Every online algorithm under Assumption UV
has a worst-case approximation ratio of at most 3

4
, even on an in-

terval. If we relax Assumption UV, then the bound is at most 1
2

.

PROOF. Consider the following two sequences of n agents, where
n = m. The first n/2 agents (denotedN ′) are of type (g1, n), with
goal g1 and maximum distance to walk n. They can be allocated
any slot. Our two instances differ in the next n/2 agents (denoted
N ′′). In H1, we have n/2 agents of type (g2,

1
2
n). In H2, we have

n/2 agents of type (g1,
1
2
n). Note that opt(H1) = opt(H2) = n.

Let r1, r2 be the expected number of agents from N ′ that are
allocated slots by the mechanism in half of the interval that is closer
to g1 and g2, respectively. Since r1 + r2 ≤ |N ′| = n/2, at least
one of them is at most n/4. We divide into two cases: (a) if r1 ≤
n/4, then on instance H1 all of N ′′ are placed closer to g2; (b) if
r2 ≤ n/4, then on instance H2 all of N ′′ are placed closer to g1.

In both cases, the total number of allocated slots is at most 1
2
n+

n/4 = 3
4
n. Thus for any mechanism M either SW (M,H1) ≤

3
4
n = 3

4
opt(H1), or SW (M,H2) ≤ 3

4
n = 3

4
opt(H2).

Next, suppose that we drop Assumption UV, and set φ1 � φ2.
Let N ′ contain n agents of type (g2, n), and N ′′ contain n agents
of type (g1, n). Once again we define two instances H1, H2. In
H1, only N ′ arrive. In H2, N ′ arrive and then N ′′.

Denote by r the expected number of agents from N ′ placed by
the mechanism. If r ≤ n/2 we are done since SW (M,H1) ≤
1
2
|N ′| = 1

2
opt. Otherwise, consider the performance of M on

H2. Note that since φ1 � φ2, we can practically ignore the
type 2 agents in the welfare computation. However strictly less
than n− r ≤ 1

2
n of the type 1 agents are placed in expectation, so

the approximation is at most 1
2

.
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To conclude the section, we present a mechanism that matches
the upper bound on the interval without any assumption.

PROPOSITION 11. There is a 1
2

-approximation mechanism for
two goals on the interval.

PROOF. We will prove that running the THRESHOLD mecha-
nism for the threshold t̂ = m/2 provides us with a 1

2
-approximation.

Let t∗ be the minimal true optimal threshold. Let N1, N2 be the
sets of agents from each goal that are allocated in the optimal allo-
cation. By the Lemma 7, |N1| = t∗. We divide in two cases. Note
that opt = α|N1|+ |N2|.

If t∗ < t̂, then our mechanism will allocate to all of N1, as none
of them is restricted by t̂. Also, all of N2 will be allocated unless
all topm/2 slots are full. Thus the total utility in our mechanism is

α|N1|+ min{|N2|,m/2} ≥ α|N1|+ |N2|/2 ≥ opt/2.

If t∗ ≥ t̂, then |N1| ≥ m/2, and thus our mechanism allocates
all of the bottom m/2 ≥ |N1|/2 lower slots to g1. Also, all of N2

are allocated. Thus the total utility is at least

α|N1|/2 + |N2| ≥
α|N1|+ |N2|

2
= opt/2.

4.2 General structures
The RANKING algorithm by Karp et al. [10] assigns a random

priority over slots, and matches every arriving node to its highest-
priority neighbor. They prove that the algorithm has an approxima-
tion ratio of 1−1/e ∼= 0.632 in expectation, and that no mechanism
can do better on general unweighted bipartite graphs. By Corol-
lary 3, it follows that no better mechanism exists for the general
parking allocation problem either.

The RANKING algorithm can easily be implemented with posted
prices without any additional assumption (except Assumption UV),
by assigning random prices to slots and keep these prices fixed.

In contrast, when φg’s significantly differ, no constant approxi-
mation can be guaranteed even under Assumption KT.

PROPOSITION 12. No online algorithm can guarantee an ap-
proximation ratio better than 1/α.

PROPOSITION 13. Setting fixed prices at 0 guarantees a 1/2α
approximation.

Thus, the approximation ratio on general structures without fur-
ther assumptions is Θ(1/α). Another bound we can get is in terms
of the number of goals. Consider the RANDOM-PARTITION mech-
anism, which generates a random partition of spaceP =(S1,..., Sk)
to the k goals. We know by Observation 4 that any partition in-
cluding P can be optimally implemented with posted prices under
Assumption KG.

PROPOSITION 14. Under Assumption KG, for any number of
goals k, RANDOM-PARTITION is a 1

k
-approximation mechanism.

Moreover, it can be derandomized.

PROOF SKETCH. A random partition allocates every goal roughly
1/k of the slots in every possible distance (in expectation). Further,
with a deterministic queuing algorithm, we can make sure that at
least 1/k of the slots at distance at most d are allocated to goal g -
for every goal g and distance d.

Suppose that in the optimal allocation some set Ni ⊆ N of goal
gi’s agents are allocated slots. Then such a partition guarantees that
at least 1/k of the agents in Ni can still be allocated.

Known population. Our upper bounds thus far relied on the inher-
ent difficulty of the online matching problem. When the popula-
tion is known, the online matching problem (which is equivalent to
parking allocation with Assumption KT) is trivial by Corollary 6,
and thus this setting highlights the mechanism design challenge.
That is, how does the fact that the allocation is done by a pricing
mechanism affects the approximation ratio.

We next show that if agents’ goals are unknown, then no pricing
mechanism can implement the optimal allocation even if the pop-
ulation is initially known. Further, this holds even if the space is
a mild variation of the interval setting from Section 4.1. We still
use two goals on a one-dimensional line. However, the goals may
not be located on the ends of an interval, and there can be slots on
either side of each goal.

PROPOSITION 15. For the structure of two goals on a line, un-
der Assumption KP, there exists no pricing mechanism that imple-
ments the optimal allocation.

PROOF SKETCH. Consider a structure S over a line of size 8,
{s1, . . . , s8}, with two goals g1 = s4, g2 = s7, and four vacant
slots {s1, s5, s6, s8}. All other slots are blocked. We set φ1 =
2, φ2 = 1. The population N has five agents: (g1, 1); (g1, 8);
(g2, 1); (g2, 1); (g2, 8). Note that in the optimal solution we can
place both agents with goal g1 and two other agents, thus opt =
2φ1 + 2φ2 = 6. Our proof shows that for any deterministic mech-
anism M , minπ SW (M, 〈S, N, π〉) ≤ 5 = 5

6
opt. Since there is

only a finite number of outcomes, it follows that the approximation
of any randomized mechanism is also bounded away from 1.

While no optimal mechanism exists, the knowledge of the pop-
ulation can be exploited to achieve a constant approximation ratio.
The mechanism computes an optimal offline allocation. Then it
blocks low-value agents from getting slots that should be allocated
to high-value goals, by using appropriate pricing.

PROPOSITION 16. Under Assumption KP, the described mech-
anism has an approximation ratio of 1

2
.

4.3 Layered structures
Our next result shows that for structures that are “well-shaped” in

a sense, we can actually break the 0.632 bound and get a better ap-
proximation ratio than the RANKING algorithm. While the formal
definition of layered structures require some lengthy notations, the
intuition behind it is quite simple. Suppose that parking slots are
clustered in large underground parking lots around the city. Each
parking lot has a single pedestrian exit, so all slots in the lot are
equivalent in terms of their distance to goals. Then our structure
can be split into (say) five parts, where every part contains 20% of
each parking lot. We call these parts “layers”. All layers in this
example are essentially equivalent. The following definitions are
required to handle more general structures where layers are only
roughly equivalent.

DEFINITION 1. We write A ⊆r B if B contains all elements in
A except at most r. Similarly, A =r B if A ⊆r B and B ⊆r A.

Given a structure S, let Ri,d ⊆ S be the set of all slots which are
at distance at most d from gi.

DEFINITION 2. Two disjoint sets of slots S′, S′′ are r-equivalent
if there is a bijection f : S′ → S′′, such that for every goal i
and every distance d, Ri,d ∩ S′ and Ri,d ∩ S′′ can be mapped
onto one another. Formally, if Ri,d ∩ S′′ =r Ri,d ∩ f(S′) and
Ri,d ∩ S′ =r Ri,d ∩ f−1(S′′), where f(S) ≡

⋃
s∈S f(s).
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DEFINITION 3. We say that a structure8 S is β-layered, if all
but at most r slots in S can be partitioned to β subsets that are
r-equivalent, for some r = O(β).

Note that in a β-layered structure, f is in fact a partition to equiv-
alence classes of size β. Intuitively, this means that all slots in this
class are roughly in the same location (w.r.t the goals). Any struc-
ture is β-layered for β = 1 and also for sufficiently large β (e.g.
β = |S|), but the definition will turn out to be useful for intermedi-
ate values that are much smaller than the number of slots.

It is not hard to see that β-layered structure with low β are quite
common. A trivial case is when every slot has β duplicates, as
with the underground parking lots example above (holds even for
r = 0). Another common case is when slots are scattered along the
edges of a graph. Figure 1 gives an example and Lemma 17 shows
it formally.

LEMMA 17. Let Q be a fixed graph with q edges, and suppose
that all slots and goals of S are placed along the edges of Q, s.t.
|S| � q. Then S is β-layered for any β.

s1 s2 s3 s4 s5 s6 s7
s8

s9

s10

s11
s12

s13

s14

s15

g1

g2

S′ S′′

s1 s2
s3 s4
s5 s6
s7 s8
s9 s10
s11 s12
s13 s14
s15

Figure 1: A partition of a structure into two layers S′, S′′. We
outlined the sets R1,2 (dotted), R2,1 (solid), and R2,3 (dashed).

Given a β-layered structure, the LAYERS mechanism is defined
as follows.
1. Choose an arbitrary order over layers.
2. Give all slots in layer j price j

β+1
ming φg .

The behavior of the agents under the mechanism is straightforward.
On arrival, each agent selects a slot in the first layer, if one in her
range is available. Otherwise, she is looking for a slot in the second
layer, and so on.

THEOREM 18. Consider β-layered instances where β � 1,
and opt � β2. Under Assumption UV, the worst-case approxi-
mation ratio of mechanism LAYERS is 0.682.

PROOF SKETCH. To simplify the proof, we will assume that
the layers S1, . . . , Sβ are identical copies. I.e. that they are 0-
equivalent rather than O(β)-equivalent. Thus there are γ · β slots,
where γ = |Sj | for all j. That is, there are γ equivalence classes,
with β equivalent slots in each. Given some S′ ⊆ Sj , we denote
by fj′(S′) ⊆ Sj′ the locations corresponding to S′ in Sj′ . That is,
the entries in column j′ that are in the same rows as S′.

Denote by N∗j the set of agents that are assigned by our mech-
anism to layer j, and by S∗j ⊆ Sj the slots N∗j occupy. Denote,
N∗ =

⋃
N∗j ;h = |S∗β |. By the way our mechanism works, it is

guaranteed that S∗j ⊆ fj′(S
∗
j ) for all j > j′. We can therefore

enumerate the equivalence classes 1, 2, . . . , γ, s.t. every S∗j inter-
sects classes 1 to |S∗j |. Therefore, slots can be organized in a matrix
of γ × β, where all of the first h rows are occupied. Also, by our
assumptions, γ � β.

Given a suboptimal allocation, we can w.l.o.g. allocate slots to
additional agents by replacing some of the current agents to other
8Formally, this should be a family of structures since the definition
is asymptotic in m = |S|.

hγ NL

Rt

Rt−1

Sβ Sβ−1

S′t

St

S∗t

St+1

S∗t+1

S′t−1

St−1

S∗t−1

S′2

S2

S′1

S1

D(S′t) NUt

D(S′t−1) NUt−1

Figure 2: The worst case allocation for LAYERS. The area
under the solid line is occupied. In the optimal allocation, all
agents located in S′j are displaced to D(S′j), and S′j is occupied
by agents of Zj .

available slots. LetZ be a maximum-size set of agents that could be
assigned by replacing currently assigned agents. Note that opt =
|Z|+ |N∗|.

Suppose we now allocate slots to Z, where in each Sj there is
a set of agents Zj ⊆ Z displacing a currently allocated set N ′j ⊆
N∗j . The agents of N ′j are displaced from slots S′j ⊆ S∗j to some
other locations D(S′j) = D(N ′j). Clearly |Zj | = |N ′j | = |S′j | =
|D(S′j)|. It can be shown that in any outcome:
• For all j ≤ β, S′j ⊆ fj(S∗β).
• For all j′ < j, D(S′j) ∩ Sj′ = ∅.
• For all j < β, fj(S∗j+1 ]D(S′j+1)) ⊆ S∗j .

The proof first shows that w.l.o.g. the structure of the worst-
case allocation is as in Figure 2. Then, we compute the ratio of
the instance from the figure, showing that |N∗| ≥ 2.146|Z|, which
entails the stated approximation ratio.

We partition the occupied part S∗j of each column to a lower part
Lj (bottom h rows), and an upper part Uj = S∗j \ Lj . W.l.o.g.
S′j = Lj for all j ≤ t for some t, and S′j = ∅ for all j ≥ t+ 1. In
particular, |Z| =

∑t
j=1 |Zj | =

∑t
j=1 |S

′
j | = ht.

In order to count N∗, we split it to disjoint sets as follows. The
set NL contains all agents in the first h rows. Clearly |NL| = hβ.

Consider the set of slots S′t and the displaced locations D(S′t).
LetRt be the set of rows that intersectD(S′t). By the points above,
all slots in the block Rt × {1, . . . , t− 1} are occupied. Therefore
|N∗| is minimized when |Rt| is minimized. Thus w.l.o.g. D(S′t) is
the rectangleRt×{t, . . . , β}. Now, since |D(S′t)| = |S′t| = h, we
have that |Rt| = h

β−t , which entails |NU
t | ≥ (t− 1)|Rt| = t−1

β−th.
We can similarly define Rj , NU

j for every j ≤ t. In the worst
case, all of Rj are minimal and disjoint, D(S′j) are rectangles,
and thus NU

j are also disjoint. By a simple calculation as above,
|NU | ≥

∑t
j=1 |N

U
j | ≥

∑t
j=1

j−1
β−jh ≥

∑t−1
j=1

j
β−jh.

We can now write the |N∗|/|Z| ratio as

|N∗|
|Z| =

|NL|+ |NU |
|Z| ≥ 1

ht
(hβ + h

t−1∑
j=1

j

β − j )

∼=
1

x
(1− ln(1− x))− 1 ≥ 2.146 (for x = t

β
)

Finally, opt = |N∗|+|Z| ≤ (1+ 1
2.146

)|N∗| ∼= 1.466|N∗|, which
means a 0.682-approximation.
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As the bound in Theorem 18 is asymptotic in β, one may wonder
whether a large number of layers is required for a good approxima-
tion ratio. For β = 3 we will have t = 2, and one “step” NU

1 of
height h/2. Thus the approximation ratio (when opt → ∞) will
be 7/11 ∼= 0.636. That is, already better than 1− 1/e. The approxi-
mation then gradually improves as β increases, but not necessarily
monotonically due to rounding.

5. RESULTS FOR LINEARCOST
We begin by characterizing the optimal offline allocation for a

single goal under the LINEARCOST scheme. Suppose that in the
optimal allocation there are m′ occupied slots. Then it is clear that
(a) these are the m′ slots closest to the goal; and (b) each of the m′

agents with lowest cost cj gets a slot. Assume slots are sorted by
non-decreasing distance from g, and agent j gets slot σ(j). Then
the social welfare of this allocation is∑
i≤m′

(φ− d(g, si)cσ−1(i)) = m′ · φ−
∑
i≤m′

d(g, si)cσ−1(i).

Sort agents by cost cj in non-decreasing order. In order to minimize∑
i≤m′ d(g, si)cσ−1(i) (and thus maximize welfare), we need to

assign sm′ (farthest occupied slot) to agent 1 who has the lowest
cost c1, assign sm′−1 to agent 2 and so on. Thus to find the optimal
allocation we can try all m′ ≤ min{m,n}, and for each m′ apply
the optimal allocation of m′ agents described above.

5.1 Parking as a position auction
We will leverage results for the standard generalized second price

(GSP) auction [18] to set posted prices for our parking allocation
problem under the LINEARCOST scheme and with Assumptions
KP+KG.

In a GSP auction, there are a set of slots (e.g. advertising slots)
with quality (xs)s∈S , and a set of agents (e.g. advertisers) with
valuation (Vi)i∈N . The utility that agent i extracts from slot s
at price ps is U(i, s) = Vixs − ps. Agents each submit a bid
(bi)i∈N . The GSP auction allocates the slot of the highest quality
to the agent with the highest bid and so on. It then charges agent
assigned to slot s a price ps = xsbσ−1(s+1). Hence, U(i, s) =
xs(Vi − bσ−1(s+1)).

Varian [18] characterized the Symmetric Nash Equilibria (SNE)
of GSP auctions and provided closed-form expressions of agent’s
bid bi at an SNE in terms of (xs)s∈S and (Vi)i∈N . He showed that
these SNEs are envy-free, that is, for any two agents i and i′ it holds
that U(i, σ(i)) ≥ U(i, σ(i′)). These results suggest that if we can
calculate ps (without engaging the bidding process) and use them
as posted prices for the slots, we can achieve the same allocation
as the GSP auction at an SNE. Varian’s expressions of bi make it
possible to remove the actual bidding process. Given (xs)s∈S and
(Vi)i∈N , we can “simulate” bids at an SNE and then calculate ps.

We now map a single-goal parking allocation instance to a GSP
auction. Let D = maxs d(g, s), and set the quality as xs = D −
d(g, s). To determine the valuation of each agent, we set Vi = ci.

Suppose that every agent i ∈ N submits a bid bi, and is allocated
slot s = σ(i) at price ps (GSP prices). The utility of i is

ui(s) = φ− d(g, s)ci − ps = φ− (D − xs)ci − ps
= φ−Dci + xsVi − xsbσ−1(s+1) = µi + U(i, s).

That is, the utility of i in the parking allocation is exactly the utility
of i in the induced ad-auction allocation, plus a constant µi = φ−
Dci that does not depend on the allocation.

For slots S and agents N , let p = p(S,N) be a vector of SNE
prices (there are usually more than one). As ui(s) is an affine trans-
formation of U(i, s), p induces an envy-free parking allocation.

LEMMA 19. Suppose we assign m′ slots to m′ agents using
SNE prices p. Agent utility is non-decreasing in the distance from
g. That is, if d(g, σ(i)) > d(g, σ(j)), then ui(σ(i)) ≥ uj(σ(j)).

We now define mechanism GSP-PARK for a single goal under
Assumption KP.

1. Given the population N and structure S, sort agents by in-
creasing cost, and slots by increasing distance from g.

2. Compute an optimal offline allocation σ, and extract m∗,
which is the optimal number of agents allocated a slot. Note
that σ(m∗) = 1, σ(m∗ − 1) = 2, etc.

3. Simulate some SNE bids b1, . . . , bm∗ for these agents (in the
induced GSP auction) given Vi = ci and xs = D − d(g, s).

4. If m∗ ≥ n, set the price of slot si as pi = xibi+1. Other-
wise, define M = um∗(s1, p1)− ε (for some low ε), and set
prices as p′i = pi +M .

PROPOSITION 20. Under Assumption KP, GSP-PARK is opti-
mal for a single goal.

PROOF. Due to envy-freeness, we know that each agent j ≤ m∗
prefers the slot allocated to her over any other slot at these prices.9

The translation M is required to prevent high-cost agents from
selecting a slot on arrival. Indeed, for every j s.t. cj > cm∗ ,

uj(s1, p
′
1) = uj(s1, p1)−M = uj(s1, p1)−um∗(s1, p1)+ε < 0.

Thus no such agent will be interested in the first slot. Moreover,
since agent m∗ prefers the first slot to any other, this must apply
for any agent whose cost cj is higher. Thus at prices p′, any agent
with cj > cm∗ will avoid all slots. A slight complication is when
cj = cm∗ for some j > m∗. It can be similarly shown that these
agents will forgo any slot assigned to agents of lower-cost types.

It remains to prove that the new mechanism is individually ratio-
nal, i.e. all agents j ≤ m∗ want their slot at the modified price p′.
Indeed, since cm∗+1 > cm∗ (and the distance of every slot is non-
zero), um∗(s1, p′1) = um∗(s1, p1)−M = ε > 0. By Lemma 19,
uj(sσ(j), pσ(j)) ≥ um∗(s1, p′1) > 0 for all j ≤ m∗.

An immediate corollary from Observations 1 and 4, is that under
Assumptions KP+KG, there is an optimal pricing mechanism for
LINEARCOST for any structure and number of goals.

6. DISCUSSION
In this work we established a firm link between online bipartite

matching mechanisms and practical parking allocation problems.
We then provided pricing mechanisms that can exploit the rising
popularity of advanced city-wide parking systems in order to in-
crease the social welfare of the population.

Our mechanisms also advance the state-of-the-art in “standard”
online bipartite matching by taking advantage of structural restric-
tions of the matching graph. For unweighted graphs with layered
structure we improve the 1− 1

e
∼= 0.632 bound of Karp et al. [10]

(which is tight in the general case) to 0.682. Moreover, in contrast
to Karp’s RANKING algorithm, our LAYERS algorithm is deter-
ministic. We conjecture that the bound could be further improved
by determining a random priority (equivalently, random prices) for
each layer independently, similar to what is used by Karp et al. [10].

Our result for the LINEARCOST scheme reveals interesting con-
nection between parking allocation and ad auctions. While in this
9Indifference between slots might pose a problem in principle.
However, it can be shown that this is solved if a particular SNE
solution is chosen.
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``````````̀Structure
Assumptions Uniform values for goals (UV) Different values for goals

KP, ¬KG ¬KP KP + KG KP,¬KG ¬KP
Interval (2 goals) opt UB: 0.75 (P.10) opt opt (P.9) 0.5 (P.11,P.10)

Layered LB: 0.682 LB: 0.682 (T.18) opt UB: < 1 (P.15) UB: O(1/α) (P.12)

Any LB: 0.632 0.632 (Karp et al. [10]) opt (P.6) LB: 0.5 (P.16) LB: Ω(1/α) (P.13)*

Table 1: Summary of results for MAXDISTANCE. KP = Known Population, KG = Known Goal, α =
maxg φg
ming′ φg′

. The results in the ¬KP
columns hold regardless of whether there is information on the full type, the goal only, or none at all. Proposition numbers appear
in brackets. Entries with no reference follow from entries to their right or bottom. * LB: max{Ω(1/α), 1/k} under KG (P. 14).

paper we showed how known techniques from GSP auctions can
be applied to parking allocation, the other direction is interesting
too: The multi-goal version of our problem can be interpreted as
a generalization of the ad auction setting. That is, where the value
of a slot to different advertisers may depend on different spatial
attributes. As a concrete example, think of ads that are displayed
from right to left. While advertisers in English value ads by their
proximity to the left end of the screen, advertisers in languages that
are written from right to left (like Hebrew and Arabic) value ads by
their closeness to the right end. Interestingly, this motivating exam-
ple exactly coincides with our interval structure from Section 4.1.

From a mechanism design perspective, the welfare criterion should
be weighted against other properties of the assignment mechanism
such as stability (as in the recent and lucid survey of Eric Bud-
ish [2]). The choice of using posted prices mechanisms eliminates
the need to deal with agents’ incentives, and allow the designer to
focus on welfare optimization. In other words, the inherent con-
straints of today’s parking systems settle the tradeoff between sta-
bility and welfare. As future applications for parking allocation will
collect more information from the agents themselves, the tradeoff
between the various properties of the allocation will become more
important, and mechanisms will have to deal with it explicitly.
Future directions. While the assumption that the goals of agents
are known is often realistic, the population itself is unlikely to be
completely known in advance. Future work will focus on weaken-
ing Assumption KP by considering only partial knowledge about
the population (e.g. its distribution).

Our current model characterizes the situation where parking slots
are allocated for the entire day (or month/year), which is suitable
for commuter parking but not, for example, for parking at shopping
malls and entertainment places. A possible extension to accommo-
date these scenarios is to allow agents arrive and leave dynamically,
and thus their preferences include the amount of time they plan to
use a slot. The latter may in turn depends on prices of slots. Hence,
such a model presents a much more complicated challenge.
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