
Double-oracle Algorithm for Computing an Exact Nash
Equilibrium in Zero-sum Extensive-form Games

Branislav Bošanský1, Christopher Kiekintveld2, Viliam Lisý1, Jiří Čermák1, Michal Pěchouček1

1Agent Technology Center, Dept. of Computer Science, FEE, Czech Technical University in Prague
{bosansky, lisy, cermak, pechoucek}@agents.fel.cvut.cz

2Computer Science Department, University of Texas at El Paso
cdkiekintveld@utep.edu

ABSTRACT
We investigate an iterative algorithm for computing an exact Nash
equilibrium in two-player zero-sum extensive-form games with im-
perfect information. The approach uses the sequence-form rep-
resentation of extensive-form games and the double-oracle algo-
rithmic framework. The main idea is to restrict the game by al-
lowing the players to play only some of the sequences of avail-
able actions, then iteratively solve this restricted game, and ex-
ploit fast best-response algorithms to add additional sequences to
the restricted game for the next iteration. In this paper we (1) ex-
tend the sequence-form double-oracle method to be applicable on
non-deterministic extensive-form games, (2) present more efficient
methods for maintaining valid restricted game and computing best-
response sequences, and finally we (3) provide theoretical guar-
antees of the convergence of the algorithm to a Nash equilibrium.
We experimentally evaluate our algorithm on two types of games:
a search game on a graph and simplified variants of Poker. The re-
sults show significant running-time improvements compared to the
previous variant of the double-oracle algorithm, and demonstrate
the ability to find an exact solution of much larger games compared
to solving full linear program for the complete game.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

Keywords
game theory, extensive-form games, exact Nash equilibrium, algo-
rithms

1. INTRODUCTION
Computational game theory is one of the fundamental meth-

ods for analyzing multi-agent systems using a formal mathemati-
cal framework. Improved algorithms for solving different classes
of games have led to an increasing number of successful appli-
cations of game theory in areas ranging from auctions and trad-
ing agents [14], security [11], to Poker [15], and many others.
We focus on making fundamental algorithmic advances for solving
large instances of an important general class of games: two player,
zero-sum extensive-form games (EFGs) with imperfect informa-
tion. This class of games captures sequential interactions between

two adversarial players in situations where they have uncertainty
about the state of the world or the other player’s actions. Many well
known games are instances of this class, including Poker, Kreigspiel
(blind chess), and various security and pursuit evasion games.

Solving these games is a very difficult computational task for
problems of realistic size; hence, approximation methods are com-
monly used to solve them in practice, including: regret minimiza-
tion techniques (e.g., CFR) [16], later improved with sampling meth-
ods [6]; Nesterov’s Excessive Gap Technique (EGT) [2]; or vari-
ants of Monte-Carlo tree search algorithms applied on imperfect-
information games (e.g., see [9]). The first two types of algo-
rithms guarantee convergence to approximate ε-Nash equilibrium,
while the third method has no theoretical guarantees for imperfect-
information games, but it can produce good strategies in practice [9].

We focus on finding exact solutions, though our method could
be used to develop approximate algorithms as well. The lead-
ing exact algorithm uses the sequence-form representation [5, 12]
and linear programming optimization techniques to find a solution.
Solving the linear program (LP) requires significantly more mem-
ory and time than the approximate methods. However, research on
decomposition methods for solving large-scale optimization prob-
lems provides a framework for developing iterative approaches that
do not need to enumerate the full problem. These techniques are
known in the game theory as oracle algorithms [8] and they have
been successfully used to solve large normal-form games [3].

In this paper we use the same iterative principle to develop a new
exact algorithm for two-player, zero-sum EFGs with imperfect in-
formation based on the sequence-form double-oracle algorithm re-
cently introduced by Bosansky et al. [1]. The main idea of the
algorithm is to create a restricted game, in which the players have a
limited number of allowed sequences, and then iteratively expand
the restricted game by adding best-response sequences to the solu-
tion of the current restricted game. In the worst case, this approach
may need to enumerate all possible sequences, but in typical cases
a solution can be found by exploring a small fraction of the strategy
space. There are two other approaches that use similar oracle-based
decompositions for EFGs, but which operate on the complete strat-
egy space of the game. The first was introduced by McMahan et al.
in [7] for the more general class of convex games; this method
searches a space of linear combinations of multiple mixed strate-
gies on the full game tree. A similar approximative method using
strategies defined on the complete game tree was used in [15] to
create a competitive Poker bot. We build on ideas of the sequence-
form double-oracle, since it exploits the tree structure of an EFG
by using the compact sequence form so that the strategies do not
need to be represented over the complete game tree. While this is a
strong advantage, working with the sequence form also introduces

335

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

complexities in maintaining a valid restricted game and ensuring
convergence to a Nash equilibrium.

The contributions of this paper include several major improve-
ments of the sequence-form double-oracle method: (1) we extend
the double-oracle framework to model more general games of im-
perfect information with moves by Nature, (2) we dramatically
improve the performance of the algorithm by introducing a novel
technique for maintaining a valid restricted game without adding
unnecessary sequences to the restricted game, (3) we improve best-
response calculations for sequences using a set of domain-indepen-
dent pruning techniques, and (4) we provide formal theoretical anal-
ysis to guarantee that the algorithm converges to a Nash equilib-
rium. Finally, we present an experimental evaluation of our algo-
rithm on two very different classes of games: a search game based
on a pursuit evasion scenario and a game based on simplified vari-
ants of Poker. For search games, which have small support in the
equilibrium, our algorithm is much faster than both computing the
LP for the full game, and the previous sequence-form double-oracle
algorithm. On the poker variants, which generally have larger sup-
port, the algorithm does not show speedups in all cases compared
to the full LP, but it still has much lower memory requirements so
it is possible to solve larger games using our approach.

2. TECHNICAL BACKGROUND
Adversarial situations with sequential moves can be modeled as

extensive-form games (EFGs) visually represented as game trees.
EFGs are sufficiently general to model stochastic changes in the en-
vironment, private information of players, and limited observabil-
ity of the actions of the opponent. We study zero-sum two-player
games, where a special Nature player is used to model stochastic
events. An EFG is formally defined as follows (the outline of the
main symbols is depicted in Table 1): N is a set of two players
N = {1, 2}, we use i to refer to one of the two players (either 1 or
2), and −i to refer to the opponent of i. H denotes a finite set of
the nodes in the game tree. Each node corresponds to a unique his-
tory of actions taken by all players and Nature from the root of the
game; hence, we use the terms history and node interchangeably.
We denote Z ⊆ H as the set of all terminal nodes of the game. For
each terminal node z ∈ Z we define a utility function for each player
i (ui : Z → R). Our games are zero sum, so ui(z) = −u−i(z) holds
for all z ∈ Z. A(h) represents the set of actions available in node
h ∈ H, we denote ha = h′ ∈ H to be a node h′ reached from node h
by performing an action a ∈ A(h), and we say that h is a prefix of h′.

The function P : H → N ∪ {c} assigns each node to a player
who takes the action in the node; c denotes the Nature player that
selects in the node an action based on a known fixed probability dis-
tribution. We represent the uncertainty that each player i has using
information sets Ii which form a partition over the nodes assigned
to player i (P(h) = i). That is, every node in the game tree belongs
to exactly one information set, and the player does not know which
of the nodes in the information set he is currently in when playing
the game. All nodes h in a single information set Ik

i ∈ Ii have the
same set of possible actions A(h). We assume perfect recall, which
means that all nodes in any information set Ik

i have the same history
of actions for player i (i.e., players cannot misremember their own
actions). We use function C : H → [0, 1] to denote the probability
of reaching node h if both players do their best to reach it, which is
calculated as a product of probabilities of all actions of the Nature
player in history h.

2.1 Sequence Form LP Method
Solving a game for a Nash equilibrium involves computing a pro-

file of strategies (a strategy for each player) in which each player

plays the best response to the strategies of the other players. For-
mally, let Πi be the set of pure strategies for player i, i.e., a selection
of exactly one action for each information set. A mixed strategy
is a probability distribution over the set of all pure strategies of a
player and we denote by ∆i the set of all mixed strategies of player
i. For any pair of strategies δ ∈ ∆ we denote ui(δ) = ui(δi, δ−i)
the expected outcome of the game for player i. A best response of
player i to the opponent’s strategy δ−i is a strategy δBR

i such that
ui(δBR

i , δ−i) ≥ ui(δ′i , δ−i) for all strategies δ′i ∈ ∆i. A strategy profile
δ = (δ1, δ2) is in a Nash equilibrium if for each player i it holds that
δi is a best response to δ−i.

Extensive-form games with perfect recall can be represented us-
ing the compact sequence form [5, 12]. A sequence σi is an or-
dered list of actions of player i in a history h. The set of all possible
sequences in a game for player i is denoted by Σi and the set of
sequences for all players is Σ = Σ1 × Σ2. A sequence σi ∈ Σi can
be extended by a single action a taken by a player i, denoted as
σia = σ′i . In games with perfect recall, an action a taken to extend
sequence σi uniquely identifies an information set Ik

i of player i.
We use the function Ii(σ′i) to denote the information set in which
the last action (i.e., a in this case) was executed. Similarly, all
nodes in an information set Ik

i share the same sequence of actions
of player i and we use seqi(Ik

i) to denote this sequence. We over-
load the notation and also use seqi(h) to denote the sequence of
actions of player i leading to node h, and seqi(H′) ⊆ Σi, where
seqi(H′) =

⋃
h′∈H′ seqi(h′) for some H′ ⊆ H. Finally, we define

function gi : H → R that extends the utility function to all nodes
by setting gi(h) = ui(h) · C(h) if h ∈ Z and gi(h) = 0 if h is not a
terminal node (h < Z).

We use function ω : Σ → P(H) to identify the set of nodes that
can be reached using a fixed combination of sequences of players.
More precisely, nodes in ω(σi, σ−i) can be reached by sequential
execution of actions in the given order, stopping when either the
next action is not valid in the reached node, or a leaf is reached. In
non-deterministic games the execution of a single combination of
sequences for two players can reach different nodes depending on
the actions of Nature. Thus, function ω returns the set of all nodes
in H that can be reached by execution of sequences for two players.

Using the sequence form we can find a Nash equilibrium of a
two-player zero-sum extensive-form game using a linear program
(LP) (e.g., see [10, p. 135]). This is enabled by an equivalent com-
pact representation of mixed strategies of players in a form of real-
ization plans. A realization plan of a sequence σi is a probability
that player i will play this sequence of actions under the assump-
tion that the opponent will choose compatible actions that reach
the information sets in which actions specified in the sequence σi

are applicable. We denote realization plans of player i by function
ri : Σi → R, and they can be computed using a LP:

min vIi(∅)

vIi(σi) −
∑

Ik
i ∈Ii:seqi(Ik

i)=σi

vIk
i
≥
∑

σ−i∈Σ−i

∑
h∈ω(σi ,σ−i)

gi(h) · r−i(σ−i) ∀σi ∈ Σi (1)

r−i(∅) = 1 (2)∑
∀a∈A(Ik

−i)

r−i(σ−ia) = r−i(σ−i) ∀σ−i = seq−i(I
k
−i), Ik

−i ∈ I−i (3)

r−i(σ−i) ≥ 0 ∀σ−i ∈ Σ−i (4)

A separate LP is constructed for computing the strategy of each
player. It uses variables vIk

i
that represent the expected utility of

the player i in an information set Ik
i , and variables r−i represent

the strategy of the opponent in the form of realization plan. The

336

H game-tree nodes / histories
Z ⊆ H leafs / terminal states
σ′i ∈ Σ′i sequences of player i in the restricted game
φ′i ∈ Φ′i full-length sequences of player i

added by the best-response sequence algorithm
ω : Σ→ P(H) all nodes reached by the maximal sequential execution

of actions in a pair of sequences
ri : Σi → R realization plan of player i for a sequence
C : H → R probability of reaching a node w.r.t. Nature play
gi : H → R extension of the utility function to all nodes;

gi(h) = ui(h) · C(h) if h ∈ Z, gi(h) = 0 otherwise
πi implicit default pure strategy for player i
seqi sequence(s) of actions of player i leading to

a node / a set of nodes / an information set
Ii : Σi → Ii an information set, in which

the last action of sequence was executed

Table 1: Outline of the main used symbols.

first equation (1) ensures the maximization of the expected utility
of player i for each information set, while the opponent is trying to
minimize the utility by selecting the optimal realization plan, which
is constrained by equations (2–4).

3. DOUBLE-ORACLE METHOD
In this section we describe in detail the sequence-form double-

oracle algorithm for EFGs and our main contributions. The basic
structure of the algorithm consists of iterating through three main
steps until convergence: (1) create a restricted game by limiting the
set of sequences that each player is allowed to play; (2) compute a
pair of Nash equilibrium strategies in this restricted game; (3) for
each player, compute a best response strategy against the equilib-
rium strategy of the opponent, which may be any sequence in the
complete game. The best response sequences found in step 3 are
added to the restricted game and allowed in the next iteration. The
algorithm terminates if the value of the best-response sequences
against the equilibrium strategies does not improve the value of the
equilibrium strategies in the restricted game.

3.1 Definitions
We now introduce the concept of full-length sequences that lead

to a terminal state of the game, and which we denote Φ ⊆ Σ. The
restricted game is defined by a limited set of allowed sequences for
each player, which are used to construct the sequence-form linear
program (LP). We denote the set of restricted sequences as Σ′ ⊆ Σ

and we overload the notation and also use Σ′ to refer to the re-
stricted game corresponding to this set of sequences. The following
section explains how this subset of sequences can be constructed
based on the limited subset of full-length sequences Φ′ ∈ Φ using
the best response methods.

Our algorithm also needs to use partial strategies from the re-
stricted game in the context of the complete game. We extend the
strategies from the restricted game to be defined in the complete
game using the concept of a default pure strategy for player i, de-
noted πi ∈ Πi. This strategy is an arbitrary, fixed, pure strategy that
can be implicitly defined for all information sets of player i (e.g.,
take the first action from each A(h)). The default strategy is used
only where the strategy from the restricted game is not defined in
the complete game.

3.2 Upper-bound Validity Algorithm
In [1] the authors show that a naïve implementation of the sequence-

form double-oracle method may result in an incorrect solution. If
we simply add best-response sequences to the restricted game, the
game can get malformed because of incompatibilities among the

Figure 1: An extensive-form game between two players, circle
and box. The dashed boxes indicate the information sets.

sequences, resulting in incorrect solutions. We now describe the
situations that lead to these inconsistencies in more detail, and in-
troduce a novel solution to this problem.

3.2.1 Inconsistencies in the Restricted Game
Consider the game depicted in Figure 1 and assume the restricted

game is defined by sequences Σ′
©

= {∅, A, AC} for the circle player
and Σ′� = {∅, y, yu} for the box player. Now assume, that the circle
player adds sequences B, BE based on its best response calculation
and we need to construct a new restricted game from sequences
(Σ′
©
∪ {B, BE},Σ′�). Executing sequences BE and yu together ends

in an inner node h = ByE in which the box player does not have
any action available in the restricted game.

Having nodes such as h with no valid continuation in the re-
stricted game causes inconsistencies because the LP does not know
how to assign a value to these interior nodes. In general the prob-
lem appears whenever the best-response algorithm adds a sequence
σi to a restricted game that already contains some sequence σ−i for
the opponent, such that the execution of these two sequences ends
in an inner node h assigned to the player −i = P(h), from which
there is no continuation in the restricted game. That is, there is
no sequence of player −i in the restricted game that reaches h and
contains a valid action to take in h. A continuation for h does exist
in the complete game, otherwise it would be a terminal node and
would have a utility function assigned to it. The problem with hav-
ing interior nodes with no continuations in the restricted game LP
is that the LP assigns a value of 0 to these nodes. This can result
in the LP finding an “optimal” solution that ends in this node, and
player −i may not choose to add a new sequence to extend beyond
node h if all possible continuations have very low values (less than
0), leading to incorrect termination of the double-oracle algorithm.

The method introduced in [1] solved this problem by adding ad-
ditional sequences to the restricted game that provide valid con-
tinuations for all interior nodes. However, this method has large
computational inefficiencies, and was the major bottleneck in the
algorithm. We introduce a new approach that treats these interior
nodes as temporary leaf nodes in the restricted game, and assigns
them temporary utility values that will guarantee convergence of
the algorithm to equilibrium. For convergence, these temporary
values must be lower bounds on the utility for the player −i who is
moving in h (and has no valid continuation), and therefore an up-
per bound for player i. This accomplishes two things. First, player
i will play in the restricted game so as to end in node h if there is
any chance that there is a better outcome based on a continuation
of this node. Second, player −i will add a best response sequence
continuing from this node if it occurs with non-zero probability in
the solution to the restricted game, and there exists a better strategy
for −i that can improve over the pessimistic value assumed for this
node in the current restricted game solution.

337

To find a temporary value that meets these criteria, we compute
the utility of the best response of player i to the default strategy
of the opponent. This is an upper bound on the value of node h
for player i because the utility of the best response to the arbitrary
default strategy π−i will always be at least as good as if −i was
playing an intelligent strategy instead of the default. If we consider
again the example from Figure 1, the node ByE will represent a
temporary leaf in the restricted game and the temporary value will
be equal to an upper bound estimation from the perspective of circle
player.

3.2.2 Managing the Set of Temporal Leaves
Calculating the values of the temporary leaf nodes and updating

them as new sequences are added to the restricted game requires
some bookkeeping in the algorithm. First, we formalize the pro-
cess of constructing the sequence-form LP for the restricted game
(CoreLP). The set Φ′ represents the set of full-length sequences
added to the restricted game by best-response algorithms, and the
set Σ′ represents a set of sequences that are used to create the
CoreLP. Intuitively, the sequences in Σ′ always form a maximal
compatible part of the game given by a set of full-length sequences
Φ′, so

Σ′ ⊆ {getAllPrefixes(φ) : φ ∈ Φ′} (5)

is maximal, such that:

∀σi ∈ Σ′i ∃ σ−i ∈ Σ′−i s.t. σi ∈ seqi(ω(σi, σ−i)). (6)

This means that for each sequence σi in Σ′ there exists a compat-
ible sequence of the opponent σ−i that allows an execution of the
sequence σi in full.

Given the definition of Σ′, the restricted game can now have tem-
porary leaves instead of inner nodes in the complete game, and we
define the set L ⊆ H to represent these temporary leaves. For each
temporary leaf h, assigned to player −i, we define a temporary util-
ity equal to the value of the best response of player i to the default
strategy of the opponent. The sequences of both players leading to
node h are extended to full-length sequences using either the default
strategy (for player −i) or the best-response strategy (for player i).
We denote these extended sequences as ΦBR(h) ⊂ Φ. Now, the tem-
porary utilities are incorporated into the CoreLP using a modified
function g′, defined as follows:

g′i (h) =
∑

φBR(h)∈ΦBR(h)

∑
h′∈ω(φBR(h))

g(h′) (7)

if h ∈ L, and we set g′i (h) = gi(h) otherwise.
In the implementation, we maintain some additional information

for each temporary leaf h, including the set of full-length sequences
of player i that were added by the best-response sequence algo-
rithm, and which end in h, with a corresponding sequence from the
default strategy of player −i. In general there may be multiple such
sequences for each h, which form the set Φ

BR(h)
i . This information is

useful for updating the temporary leafs as new sequences are added.
If a new sequence σnew

−i has an action that is applicable in node h,
then h will no longer be a temporary leaf and it will be removed
from the set L. However, new temporary leaves could be created
somewhere in the sub-tree rooted in node h. In this case, we can
reuse the sequences from Φ

BR(h)
i to quickly estimate the temporary

utilities of these new temporary leaves.

3.3 Best-response Sequence Algorithms
The goal of the best-response sequence (BRS) algorithm is to

generate new sequences that will be added to the restricted game
in the next iteration, or to prove that no more sequences need to be

added. Throughout this section we use the term searching player
to represent the player for whom the algorithm computes the best-
response sequence. We denote this player as i. First, we describe
the basic steps of the best-response sequence algorithm and then
we focus on domain-independent pruning techniques.

3.3.1 Game-tree Search Algorithm
BRS algorithm returns a pure strategy that is a best response to

the input strategy of the opponent completed by his default strategy
where it is not defined. The algorithm returns both the set of se-
quences forming this strategy, as well as the expected value of this
strategy against the completed realization plan of the opponent.

The algorithm is based on a depth-first search that traverses
through the complete game tree, in which the behavior of the op-
ponent −i is fixed either to the strategy given by the realization
plan r−i from the CoreLP solution in information sets already in-
cluded in the restricted game, or the default strategy π−i. The be-
havior of the depth-first search algorithm in each currently evalu-
ated node h depends primarily on the player, to which the node is
assigned (searching player i, opponent −i, or Nature).

If node h is assigned to Nature (i.e., it is a chance node), the
method recursively evaluates the succeeding nodes, computes the
expected value of node h as a sum of the values of the succes-
sors weighted by the fixed probability distribution associated with
node h, and propagates this expected value to the predecessor. If
node h is assigned to the opponent, the algorithm acts similar, but
the probability distribution is either given by the realization plan of
the opponent r−i, or by the default strategy π−i.

Finally, if the algorithm evaluates node h associated with the
searching player i, the algorithm selects the value of the best ac-
tion played in the information set Ik

i , where this node h belongs.
The probability of being in a specific node h′ ∈ Ik

i in this informa-
tion set is given by the probability of the Nature play C(h′), and
again either by the realization plan of the opponent r−i(seq−i(h′)),
or by the default strategy π−i. Therefore, by applying each action
a ∈ A(h) in every node h′ ∈ Ik

i the algorithm finds the best action
with the maximal expected utility.

3.3.2 Pruning Techniques
Since the best-response sequence (BRS) algorithm operates on

(generally large) game tree of the complete game, its performance
can be substantially improved by ensuring that irrelevant branches
are not evaluated. To do this, we introduce several domain-indepen-
dent pruning techniques. First, the method of selecting a fixed ac-
tion according to the default strategy described in the previous sub-
section for nodes that belong to the opponent −i not included in
the restricted game results in pruning that significantly reduces the
searched space.

Second, we can estimate the value for the searching player i in
nodes assigned to the opponent that are included in the set of tem-
porary leaves of the restricted game. The algorithm has already cal-
culated and upper bound value for these temporary leaves accord-
ing to the sequences of the searching player and the default strategy
of the opponent. Therefore, the searching player can re-use this in-
formation directly without a need to search the state space beyond
this node.

Finally, we introduce pruning for the nodes that are assigned to
the searching player (i.e., P(h) = i, h ∈ Ik

i) and that are a part of
the restricted game. The pruning relies on fact that (1) it evaluates
the nodes from the information set Ik

i in an ordered fashion that is
given by the probability of these nodes, and (2) we can prune the
evaluation of some branches if the selection of the best action with
maximal expected utility is certain. The pseudocode of this part of

338

Require: i - searching player, h - current node, Ik
i - current information set,

r−i - opponent’s strategy, Min/MaxUtility - bounds on utility values
1: H′ ← {h′; h′ ∈ Ik

i }

2: sort H′ descending according to value r−i(seq−i(h)) · C(h)
3: w←

∑
h′∈H′ r−i(seq−i(h′)) · C(h′)

4: maxVal← −∞
5: for h′ ∈ H′ do
6: if (maxVal - secMaxVal) > w · (MaxUtility−MinUtility) then
7: vh′

maxAction ← vh′
maxAction+BRSi(h′maxAction)

8: else
9: for a ∈ A(h′) do

10: vh′
a ← vh′

a +BRSi(h′a)
11: end for
12: maxAction← arg maxa∈A(h′) va

13: maxVal← vh′
maxAction

14: secMaxVal← maxa∈{A(h′)rmaxAction} va
15: end if
16: w← w − r−i(seq−i(h′)) · C(h′)
17: end for
18: return vh

maxAction

Figure 2: Pruning in the nodes of the searching player.

pruning is depicted in Figure 2. It uses BRS i(h) to denote the recur-
sive call of the best-response sequence algorithm in node h. First,
we sort all the nodes in this information set based on the probabil-
ity of occurrence (set H′), which is determined by the realization
plan of the opponent as well as moves by Nature (lines 1-2). Then,
the algorithm evaluates recursively the nodes in the set H′ (line 10)
and for all actions it calculates the expected utility value (the recur-
sive call returns the utility value already weighted by the probabili-
ties). The pruning occurs if the choice for the best action cannot be
changed — more formally, if the maximal expected value cannot be
overcome in the remaining nodes given the remaining probabilities
for these nodes (denoted as w) and bounds for minimal and maxi-
mal utility values in the game (line 6). If pruning is enabled, for the
remaining nodes in H′ the algorithm evaluates only the values by
executing action maxAction (line 7), and these values are returned
when some of these nodes is reached by the BRS algorithm.

4. THEORETICAL ANALYSIS
In this section we prove that our sequence-form double-oracle

algorithms will always converge to a Nash equilibrium of the com-
plete game. First, we define formally the strategy computed by the
best-response sequence (BRS) algorithm, then we prove lemmas
about the basic characteristics of the BRS strategies, and finally
prove the main convergence result. In the proof we use the concept
of an extension of a realization plan from a restricted game to the
full game using a default strategy outside of the restricted game.
Formally, if r′i is a mixed strategy of player i in the form of realiza-
tion plan in a restricted game Σ′, then we define r̄i

′ to be a strategy
identical to r′i on sequences in Σ′ and identical to default strategy πi

on the remaining sequences from Σ that are not in Σ′ .

Lemma 4.1. Let r′
−i be a realization plan of player −i on some

restricted game Σ′. BRS (r′
−i) then returns a strategy qi in the com-

plete game, such that qi is a pure best response strategy to ¯r−i
′. The

value returned by the algorithm is the value of executing the pair
of strategies ui(qi, ¯r−i

′).

Proof. BRS (r′
−i) searches the game tree and takes the action that

maximizes the value of the game for player i in all information sets
Ii assigned to player i. In the opponent’s nodes, it takes the expected
value of playing r′

−i, where it is defined and the value of playing the
pure action of the default strategy π−i where r′

−i is not defined. In

chance nodes, it returns the expected value of the node as the sum
of successors weighted by their probabilities. In each node h, if the
successors have the maximal possible value for i then also node h
has the maximal possible value for i (when playing against ¯r−i

′).
The selections in the nodes that belong to i achieves this maximal
value; hence, they form the best responce to strategy ¯r−i

′.

For brevity we further use v(BRS (r′
−i)) to denote the value re-

turned by the BRS algorithm that is equal to ui(qi, ¯r−i
′).

Lemma 4.2. Let r′
−i be a realization plan of player −i on some

restricted game Σ′ and let v∗i be the value of the complete game Σ

for player i, then

v(BRS (r′−i)) ≥ v∗i .

Proof. The value of the game (v∗i) is the value of the best re-
sponse for player i in the restricted game against r′

−i. From Lemma 4.1,
we know that v(BRS (r′

−i)) is the value of the best response to strat-
egy ¯r−i

′ for player i. Since the best response in restricted game Σ′

to r′
−i is also a possible response to the extended strategy ¯r−i

′, the
value of the best response to ¯r−i

′ must be at least v∗i , and could be
greater since the responding player has strictly more strategies to
choose from in the unrestricted game.

Lemma 4.3. Let r′
−i be a realization plan of player −i on re-

turned by the CoreLP for some restricted game Σ′ and let vLP
i be

the value of the restricted game returned by the CoreLP, then

v(BRS (r′−i)) ≥ vLP
i .

Proof. r′
−i is a part of the Nash equilibrium strategy in a zero-

sum game that guarantees value vLP
i in Σ′. If the best response

computation in the complete game selects only the actions from Σ′,
it creates the best response in game Σ′ as well obtaining value vLP

i .
If the best response selects an action that is not included in Σ′, there
are two cases.

Case 1: The best response strategy uses an action in a temporary
leaf of Σ′. Player i makes the decision in the leaf, because other-
wise the value of the temporary leaf would be directly returned by
BRS . The value of the temporary leaf has been under-estimated for
i in the LP computation and it is over-estimated in the BRS com-
putation as the best response to the default strategy π−i. The value
of the best response can only increase by including this action.

Case 2: The best response strategy uses an action not included
in Σ′ in an internal node of the game. This can occur in nodes
assigned to player i, because the actions of −i going out of Σ′ have
probability zero in r′

−i. BRS takes maximum in the nodes assigned
to player i, so the reason for selecting an action leading outside Σ′

is that it has greater or equal value to the best action in Σ′.

Lemma 4.4. Under the assumptions of the previous lemma, if
v(BRS (r′

−i)) > vLP
i then it returns sequences that extend game Σ′ in

the next iteration.

Proof. Based on the proof of the previous Lemma, BRS for
player i can improve over the value of the LP (vLP

i) only by an
action a not present in Σ′ performed in a node h included in Σ′, in
which i makes decision. Let (σi, σ−i) be the pair of sequences lead-
ing to h. Then in the construction of the restricted game in the next
iteration, sequence σ−i is the sequence that ensures that σia can be
executed in full and will be part of the restricted game.

Theorem 4.5. The double-oracle algorithm for extensive form
games described in the previous section stops if and only if

v(BRS (r′−i)) = −v(BRS (r′i)) = vLP
i = v∗i , (8)

which always happens after a finite number of iterations, and strate-
gies (r̄i

′, ¯r−i
′) are a Nash equilibrium of the complete game.

339

Proof. First we show that the algorithm continues until all equal-
ities (8) hold. If v(BRS (r′

−i)) , −v(BRS (r′i)) then from Lemma 4.2
and Lemma 4.4 we know that for some player i it holds BRS (r′

−i) >
vLP

i , thus the restricted game in the following iteration is larger by
at least one action and the algorithm continues. In the worst case,
the restricted game equals the complete game Σ′ = Σ, and it cannot
be extended any further. In this case the BRS cannot find a better
response then v∗i and the algorithm stops due to Lemma 4.4.

If the condition in the theorem holds, it is clear we have found
a NE in the complete game, because from Lemma 4.1 we know
that q−i = BRS (r′i) is the best response to r̄i

′ in the complete game.
However, if the value of the best response to a strategy in a zero-
sum game is the value of the game, then the strategy is optimal and
it is a part of a Nash equilibrium of the game.

5. EXPERIMENTS
We experimentally evaluate the performance of the described

sequence-form double-oracle algorithm with novel methods for main-
taining a valid restricted game and computing best-response se-
quences. Since both novel methods are complementary, we experi-
mentally analyze the impact of each of them separately. We run the
first set of experiments on the search games used for experimental
evaluation in [1], the second set of experiments is on variants of a
simplified Poker games inspired by Leduc Hold’em [13].

The test games have differing characteristics in terms of stochas-
ticity (the first one is deterministic, while the second includes chance
nodes) and private information of the players (the players cannot
observe the actions of the opponent in the first game, however,
the private information is completely determined by the moves of
Nature in the second game). Also, these games differ greatly in
the size of the support of Nash equilibria (i.e., the number of se-
quences actually used with non-zero probability in a Nash equi-
librium). While there are only few sequences in the support of the
equilibrium in the first game, the size of the support is considerably
higher in poker games. Such differing characteristics give us an op-
portunity to present a broader evaluation of the performance of our
algorithm and determine both strengths and current limitations.

Note that all algorithms were implemented using a generic frame-
work for modeling arbitrary extensive-form games, and neither al-
gorithm is using any domain-specific knowledge. Both the validity
and best-response algorithms we present could be further enhanced
with domain-dependent knowledge, which could significantly im-
prove the runtime. However, our focus here is on generic meth-
ods. In all of the experiments we used a single thread on an Intel
i7 CPU running at 2.8 GHz. Each of the algorithms was given at
maximum of 10 GB of memory for Java heap space, and we used
IBM CPLEX 12.2 for solving the linear programs.

5.1 Experiment Settings

Search Games.
The search game contains two players: the patroller (or the de-

fender) and the evader (or the attacker). The game is played on a
directed graph (see Figure 3), where the evader aims to cross safely
from a starting node (E) to a destination node (D), and the defender
moves in the intermediate nodes (the shaded areas) trying to capture
the evader (i.e., to be at the same node as the evader). The defender
controls two units and during each turn both players move their
units simultaneously from the current node to an adjacent node, or
stay in the same location. The only exception is the evader, who
cannot stay in the two leftmost nodes. If a pre-determined number
of turns is made without either player winning, the game is a draw.

Figure 3: Two variants of the graph used in the experiments;
we refer to them as G1 (left) and G2 (right).

Players are unaware of the location and the actions of the other
player with one exception – the evader leaves tracks in the visited
nodes that can be discovered if the defender visits the nodes later.
The game also includes an option for the attacker to avoid leaving
tracks using a special move (termed slow move) that requires two
turns (the evader removes the tracks in a node in one turn).

Figure 3 shows two examples of the graphs used in the exper-
iments. The patrolling units can move only in the shaded areas
(P1,P2). Even though the graph is small, the concurrent movement
of all units implies a large branching factor (up to ≈ 50 for one turn)
and thus large game trees (up to ≈ 1011 nodes). In the experiments
we altered three different graphs (G1 and G2 from Figure 3 and G3
that has no edges in the middle column), maximal number of turns
of the game (from 3 to 7), and the option for the attacker to remove
the tracks (SA if the slow moves were allowed, SD otherwise).

Poker Games.
Secondly, we use variants of a simplified two-player poker game

inspired by Leduc Hold’em. Each player starts with the same amount
of chips, and both players are required to put some number of chips
in the pot (called ante). In the next step, the Nature player deals a
single card to each player (the opponent is unaware of the card)
and the betting round begins. A player can either fold (the oppo-
nent wins the pot), check (let the opponent start the round), bet (add
some amount of chips as first in the round), call (add the amount
of chips equal to the last bet of the opponent into the pot), or raise
(match and increase the bet of the opponent). If no further raise
is made by any of the players, the betting round ends, the Nature
player deals one card on the table, and the second betting round
with the same rules begins. After the second betting round ends,
the outcome of the game is determined — a player wins if: (1) her
private card matches the table card and the opponent’s card does
not match, or (2) none of the players’ cards matches the table card
and her private card is higher than the private card of the opponent.
If no player wins, the game is a draw and the pot is split.

In the experiments we altered the number of types of the cards
(ranging from 3 to 5; there are 3 types of cards in Leduc), num-
ber of cards of each type (ranging from 2 to 3; set to 2 in Leduc),
maximum length of sequence of raises in a betting round (ranging
from 1 to 4; set to 1 in Leduc), and the number of different sizes
of bets (i.e., amount of chips added to the pot) for bet/raise actions
(ranging from 1 to 4; set to 1 in Leduc).

5.2 Results

Search Games.
In the search game we measured the impact of each of the meth-

ods proposed in this paper. Therefore we compared 4 different
instances of the double-oracle algorithm, where we used different
version of the validity algorithms and the best-response sequence
algorithms. The names of the algorithms are composed as fol-
lows: DO prefix denotes a double oracle algorithm; UBva denotes
the upper-bound validity algorithm presented in this paper; SAva
denotes the sequence-adding validity algorithm presented in [1];

340

Algorithm Iterations |Σ′ | VA [s] BR [s] LP [s]
FullLP - - - - 278
DO-SAva-ORGbrs 77 2064 1251 19 22
DO-SAva-NEWbrs 77 1662 1028 14 22
DO-UBva-ORGbrs 110 765 1 29 3
DO-UBva-NEWbrs 123 839 1 28 5

Table 2: Time breakdown for scenario G1-SD of the search
game; columns VA, BR, LP refer to the cumulative time spent
in the validity algorithm, the best-response sequence algorithm,
and the method for generating and solving the CoreLP.

NEWbrs denotes the best-response sequence algorithm presented
in this paper; and ORGbrs denotes original best-response sequence
algorithm presented in [1]. FullLP denotes constructing and solv-
ing the full sequence-form linear program for the complete game.

In all scenarios all variants of double-oracle algorithm were able
to find the exact solution by adding only a small fraction of the se-
quences to the restricted game. For the largest scenarios the size
of the restricted game was ≈ 0.1% − 0.4% of the complete game.
These results show that the double-oracle algorithms are particu-
larly useful for games with small support of Nash equilibria, where
they are able to quickly find the sequences actually needed for the
solution without any domain-dependent knowledge.

The results for the selected scenarios of the search game with
number of turns fixed to 7 are depicted in Figure 4 (missing values
for FullLP indicate that the algorithm run out of memory). The
overview of the complete running time of the algorithms shows
that the novel UBva algorithm dramatically speeds-up the overall
running time (note the logarithmic scale), and the double-oracle al-
gorithms with UBva significantly outperform other algorithms even
on smaller instances of the search game. The impact of the new
validity algorithm is demonstrated on the time breakdown for se-
lected scenario G1-SD (see Table 2). The new validity algorithm
increases the number of iterations somewhat, however, time needed
for keeping the restricted game valid is dramatically lower. In ad-
dition, since we do not add additional sequences beyond the best
responses, the restricted game is smaller so generating and solving
the linear program is faster as well.

The novel NEWbrs algorithm also typically improves the run-
time (it significantly speeds up calculating the best-response). How-
ever, it slows down the overall performance of the algorithm for
some cases. The reason lies in the increased number of iterations in
comparison to the original ORGbrs – for these instances of graphs
the original optimistic BRS algorithm quickly found the correct se-
quences that form support of the Nash equilibrium.

Poker Games.
For variants of simplified Poker games we compared only the

best algorithm from the previous set of experiments, the double-
oracle method with the upper-bound validity algorithm and the new
best-response algorithms that utilize default strategies (DO-UBva-
NEWbrs; from now on we refer to this algorithm only as DO),
along with the FullLP algorithm.

Contrary to the previous game, the variants of poker have rela-
tively large support, so the running-time performance of the DO al-
gorithm was typically somewhat worse. For the instances of exper-
imental settings where we primarily increased the number of cards
and card types the size of the final restricted game was ≈ 44%−65%
of the size of the complete game (up to 4481 sequences for each
player in this case), and it took the double-oracle algorithm roughly
2 − 10 times the amount of time needed by the FullLP to find the
exact solution (for example, ≈ 6 seconds for FullLP compared to

10
1

10
2

10
3

10
4

G1-SD G2-SD G3-SD G1-SA G2-SA G3-SA

T
im

e
[s

]
(l

o
g
 s

ca
le

)

Search Game Scenarios

FullLP
DO-SAva-ORGbrs
DO-SAva-NEWbrs
DO-UBva-ORGbrs
DO-UBva-NEWbrs

Figure 4: Running times for FullLP and variants of DO algo-
rithm on different scenarios of the search game (G1-G3 denotes
graph;SA(SD) that slow moves were (dis)allowed). Missing val-
ues for FullLP indicate that the algorithm ran out of memory.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

B1 B2 B3 B4

M
em

o
ry

 C
o
n
su

m
ed

 [
G

B
]

Number of different values for bet/raise actions

FullLP-R1
DO-R1

FullLP-R2

DO-R2
FullLP-R3

DO-R3

FullLP-R4
DO-R4

Figure 5: Memory consumption for instances of Poker games
(R denotes number of re-raise actions, B number of possible
betting amounts): solid lines represent FullLP, dashed lines
DO algorithm. Missing values for FullLP indicate that the al-
gorithm ran out of memory.

the ≈ 60 for DO on the instance with 5 types of cards, 3 cards of
each type, and 4 different betting values in the second round).

The situation changes when we increase the depth of the game
tree by allowing players to re-raise the opponent’s bet, and increase
the branching factor for player’s actions by increasing number of
different betting values for the actions bet and raise in both rounds.
The size of the restricted game dropped to ≈ 2%−5% for the largest
instances solvable by both algorithms and FullLP was quickly un-
able to construct and solve the linear program due to the memory
restrictions. Figure 5 shows the scaling of the memory consump-
tion for FullLP and DO algorithm – we fixed number of types of
cards to 3, number cards of each type to 2. We can see that with
increasing depth of the game tree (increasing number of re-raise ac-
tions, denoted as R1-R4) and increasing branching factor at nodes
assigned to players (differing number for betting amounts, denoted
as B1-B4) the memory consumed by both algorithms grows expo-
nentially. However, DO requires orders of magnitude less memory
and we were able to find exact solution to much larger instances of
Poker games compared to the FullLP.

341

Case B2 |Σ′1 | |Σ′2 | Support P1 Support P2
DO-R1 1521 (67%) 1576 (69%) 492 479
DO-R2 3863 (34%) 4448 (39%) 871 914
DO-R3 6819 (13%) 7118 (14%) 717 1040
DO-R4 8140 (3%) 8579 (4%) 735 1188

Table 3: Sizes of the restricted sets of sequences (% of the com-
plete game) and the number of support sequences with increas-
ing depth.

Table 3 shows the exact sizes of the sets of sequences in the
restricted game Σ′ for a fixed number of betting amounts B2 and
increasing depth R1-R4. We can see that although the size of the
restricted game increases, it corresponds to smaller fractions of the
complete game. Similarly, the size of the support in the restricted
game increases, but we can see that there is an increasing number of
sequences in Σ′ that are not actually used in the support. By reduc-
ing the number of sequences added by best-response algorithms,
we can reduce the overall number of iterations of DO algorithm,
and thus further improve the performance.

6. DISCUSSION AND CONCLUSION
In this paper we present a sequence-form double-oracle algo-

rithm for computing exact solutions for two-player zero-sum extensive-
form games with imperfect information. We extend the double-
oracle framework to non-deterministic games, provide new algo-
rithms for key parts of the double-oracle framework, and present
theoretical proof that our double-oracle algorithm converges to a
Nash equilibrium of the game. We experimentally evaluated our
algorithm on two classes of games and show significant speed-up
in running time for games with small support Nash equilibria, and
significant reduction in memory consumption even for games with
large support in comparison to state-of-the-art exact algorithms.

The benefits of the approach presented in this paper are twofold.
Firstly, it computes exact Nash equilibria for extensive-form games
prior to constructing the complete game by identifying the sequences
of promising actions that the players should play without any do-
main knowledge. Secondly, our approach decomposes the prob-
lem of computing a Nash equilibrium into separate sub-problems.
Therefore, it can be seen as a framework, in which the domain-
independent validity and/or best-response sequence algorithms can
be replaced with domain-specific and thus much faster implemen-
tations (e.g., exploiting new efficient best-response algorithms for
poker games [4] would bring significant speed-up in these games).
The presented formal analysis identifies the key properties that these
domain-specific implementations need to satisfy to guarantee the
convergence to the correct solution of the game.

The algorithm presented in this paper stimulates a large volume
of possible future work. Besides applications to specific domains,
several theoretical questions need to be investigated. First of all, the
performance of the double-oracle algorithm currently depends on
the number of iterations. We intend to exploit theoretic characteris-
tics of the structure of support of Nash equilibria in extensive-form
games and improve the methodology of adding sequences in order
to lower the number of iterations. Secondly, we plan to investigate
possibility of adapting this framework for general-sum games, in
which pruning techniques and upper-bound calculations are much
more complicated. Finally, a modification of this algorithm for
different solution concepts in extensive-form games (such as re-
finements of Nash equilibria, or Stackelberg equilibria) is a natural
continuation of this work.

Acknowledgements
This research was supported by the Czech Science Foundation (grant
no. P202/12/2054) and by the Czech Ministry of Education, Youth
and Sports (grant no. LH11051).

7. REFERENCES
[1] B. Bosansky, C. Kiekintveld, V. Lisy, and M. Pechoucek.

Iterative Algorithm for Solving Two-player Zero-sum
Extensive-form Games with Imperfect Information. In Proc.
of European Conf. on Artificial Intelligence (ECAI), 2012.

[2] S. Hoda, A. Gilpin, J. Peña, and T. Sandholm. Smoothing
techniques for computing nash equilibria of sequential
games. Math. Oper. Res., 35(2):494–512, May 2010.

[3] M. Jain, D. Korzhyk, O. Vanek, V. Conitzer, M. Tambe, and
M. Pechoucek. Double Oracle Algorithm for Zero-Sum
Security Games on Graph. In Proc. of the Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), 2011.

[4] M. Johanson, M. Bowling, K. Waugh, and M. Zinkevich.
Accelerating best response calculation in large extensive
games. In Proc. of Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2011.

[5] D. Koller, N. Megiddo, and B. von Stengel. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior, 14(2), 1996.

[6] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling.
Monte carlo sampling for regret minimization in extensive
games. In Advances in Neural Information Processing Syst.
(NIPS), pages 1078–1086, 2009.

[7] H. B. McMahan and G. J. Gordon. A fast bundle-based
anytime algorithm for poker and other convex games.
Journal of Machine Learning Research - Proceedings Track,
2:323–330, 2007.

[8] H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the
presence of cost functions controlled by an adversary. In Int.
Conf. on Machine Learning, pages 536–543, 2003.

[9] M. J. V. Ponsen, S. de Jong, and M. Lanctot. Computing
approximate nash equilibria and robust best-responses using
sampling. J. Artif. Intell. Res. (JAIR), 42:575–605, 2011.

[10] Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations.
2009.

[11] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[12] B. von Stengel. Efficient computation of behavior strategies.
Games and Economic Behavior, 14:220–246, 1996.

[13] K. Waugh, N. Bard, and M. Bowling. Strategy grafting in
extensive games. In Advances in Neural Information
Processing Systems 22 (NIPS), pages 2026–2034, 2009.

[14] M. P. Wellman. Trading Agents. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan &
Claypool Pub., 2011.

[15] M. Zinkevich, M. Bowling, and N. Burch. A new algorithm
for generating equilibria in massive zero-sum games. In
Proc. of National Conference on Artificial Intelligence
(AAAI), pages 788–793, 2007.

[16] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
Advances in Neural Information Processing Syst. (NIPS),
20:1729–1736, 2008.

342

